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Abstract
The limitations of biodiversity data are commonly overcome by modelling the geographic distribution of species and community 
characteristics. Here we evaluate two Assemblage-level Modelling (ALM) techniques, General Linear Models (GLM) and kriging, 
assessing their ability to predict scarab dung beetle richness in the Iberian Peninsula using two different strategies. Calibration 
Errors (ability to interpolate values within the conditions where the model was built) were assessed by means of a leave-one-
-out jackknife. Validation Errors (ability to provide partial extrapolations to different environmental conditions within the same 
geographic domain) were calculated by comparing model projections with an independent dataset. Although the forecasts 
within the calibration dataset were very good for GLM and extremely good for kriging, both techniques provided surprisingly 
poor extrapolations. We discuss why such poor performance may be related to non-stationarity in the factors driving diversity 
patterns, and how ALM may be improved to account for it.
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Introduction

Our knowledge of the geographic distribution of biological 
diversity is relatively scarce and geographically patchy 
(i.e. the so-called ”Wallacean shortfall”; Lomolino 2004). 
After more than two centuries of taxonomic tradition, we 
lack data on the distribution of a large proportion of the 
diversity of life, with the exception of a few groups (mainly 
vascular plants and vertebrates) and some geographical 
regions (particularly central and northern Europe and 
North America). Typically, the information gathered in 
biodiversity databases provides an unreliable picture of 
the distribution of diversity, plagued with geographical and 
taxonomic gaps, limitations and biases (see Rocchini et al. 
2011 and references therein). However, such knowledge 
is needed to both (i) describe and study the causes of the 
geographic distribution of biodiversity, and to (ii) design 
effective conservation strategies and protected area networks 
(Ferrier 2002; Hortal & Lobo 2006) when reliable information 
on species composition is lacking.

A solution to this lack of information could be the use of 
predictive models of the distribution of diversity. Many 
modelling techniques have been proposed so far, mainly 
grouped in two kinds of approaches; (i) Species Distribution 
Models (SDM) intend to predict the spatial distribution 
of single species from data on their occurrences and 
an array of—often environmental—predictors (Guisan 
& Zimmermann 2000); (ii) Assemblage-level Models 
(ALM)—also called Synecological Models (Hortal & Lobo 
2006), Community-level Models (Ferrier & Guisan 2006) 
or Macroecological Models (Guisan & Rahbek 2011)—aim 
to represent the spatial variations in the diversity of whole 
assemblages based on data from a few well-known areas 
and the corresponding set of predictors (Austin et al. 1996). 
While SDM techniques are widely used to project species 
distributions into different geographical and temporal 
scenarios (see Lobo et al. 2010), ALMs receive less attention 
as predictive tools, being more used to study the relationships 
between diversity and environment (e.g. Lobo et al. 2001; 
see also Guisan & Rahbek 2011).

Our main aim is to evaluate the capacity of two different 
ALM techniques—General Linear Models (GLM) and 
kriging—to map the distribution of species richness from 
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a reduced set of territorial units with complete inventories. 
These two techniques present fundamental differences 
in the predictors they use. GLMs are used to model the 
relationships between the dependent variable and the 
predictors (Austin et al. 1996), providing forecasting 
models (sensu Legendre & Legendre 1998). Kriging is 
a geostatistical technique that models just the spatial 
structure in the data from observations of its value at 
locations placed nearby one from another (Cressie 1993). 
GLMs are commonly used to model the relationships of 
species richness with environmental variables and other 
predictors, either within macroecological analyses or to 
forecast its geographic distribution (e.g. Austin et al. 1996; 
Lobo et al. 2001; Lobo & Martín-Piera 2002). Kriging is 
much less used for this purpose (but see e.g. Ter Steege et al. 
2003; Parmentier et al. 2011). 

We assess the adequacy and reliability of GLM and kriging 
for mapping the species richness of scarab dung beetles 
(Coleoptera, Scarabaeidae) in the Iberian Peninsula. We 
have chosen species richness because is considered the 
basic parameter of biodiversity, and although its value for 
conservation planning is relatively limited (see e.g. Ferrier 
2002), it provides a first approximation to the geographic 
variations of species diversity in the absence of good quality 
data on species distributions or composition, which is more 
prone to error (see Hortal et al. 2007; Pineda & Lobo 2009; 
Aranda & Lobo 2011 for comparisons of both kinds of 
data). Being based in a simpler variable, it also provides a 
simpler way of analyzing the effects of data quality on model 
reliability; we assume that the results of this study can be 
extrapolated to ALM applications based on other aspects 
of biodiversity (see Hortal & Lobo 2006; Guisan & Rahbek 
2011). Thus, here we compare the adequacy of GLM and 
kriging to interpolate richness values. To do this, we use 
a set of grid cells with well-known inventories to calibrate 
both modelling techniques, and validate the accuracy of 
their predictions of the species richness of a completely 
independent group of cells. Here it is important to note that 
the boundary between interpolation and extrapolation is 
not well defined. While interpolations aim to forecast the 
values of the dependent variable to locations placed within 
the range of the observations, extrapolations try to predict 
these values outside the range of known observations; the 
latter are subject to a greater rate of uncertainty, and require 
identifying—either true or assumed—causal relationships 
between predictors and dependent variable (Legendre & 
Legendre 1998). Our analysis refers only to the forecast of 
values within a coherent geographic domain, the Iberian 
Peninsula. 

Methods

Origin and geographic coverage of data

Dung beetle data comes from BANDASCA (Lobo & 
Martín-Piera 1991), a database that includes all distributional 

information available for the 53 species of Scarabaeidae 
present in the Iberian Peninsula (data available at http://
es.mirror.gbif.org/datasets/resource/280/). Records in 
BANDASCA were referred to the 252 Iberian 50 × 50 km 
UTM grid squares with more than 15% of land surface (herein 
called UTM50 or grid cells for short; Figure 1a). Our analysis 
was based on the same data as Lobo & Martín-Piera (2002), 
which included the 15,740 records (101,996 individuals) 
that could be assigned accurately to a single UTM50. We 
merged the data from three of the 255 grid cells used by 
them, which had less than 15% of land surface, with their 
adjacent UTM50. Lobo & Martín-Piera (2002) used species 
accumulation curves to relate the sampling effort carried 
out on each cell and the number of species discovered 
(see also Hortal & Lobo 2005), identifying 82 UTM50 as 
being well-sampled (Lobo & Martín-Piera 2002). They later 
excluded seven of these cells, because they either pertained 
to the Balearic Islands or were identified as outliers due to 
oversampling (around Madrid and Barcelona). Data on 
the observed species richness of scarab dung beetles in 
the remaining 75 UTM50 will be used here as calibration 
dataset for the Assemblage-level Modelling of species 
richness (Figure 1b). In a later analysis using an updated 
version of BANDASCA and a different protocol to assess 
the quality of the inventories, Lobo (2008) identified 89 
well-sampled UTM50. Twenty-two of these grid cells were 
not included within the 75 used by Lobo & Martín-Piera 
(2002), and will be used here as independent evaluation 
dataset, herein called validation dataset (Figure 1b).

We assessed the coverage of the environmental and 
geographical variability of the Iberian Peninsula provided 
by the well-sampled UTM50 by means of their ED coverage 
(that is, coverage of the overall Environmental Diversity; 
see Hortal & Lobo 2005 and references therein). Here, 
the overall coverage of the environmental and/or spatial 
variability of a territory provided by a selected subset of 
areas is calculated as the sum of all the distances from each 
non-selected area to the selected subset; the lower such 
sum of distances, the larger is the coverage of the regional 
variability, in a typically decreasing curve. The environmental 
variability matrix was calculated as the squared Euclidean 
distance between UTM50 cells according to their values of 
13 variables related to soil, relief and climate (see variable 
details at Lobo & Martín-Piera 2002). The geographical 
variability matrix was calculated as the squared Euclidean 
distances between the centroids of all UTM50.

Assemblage-level modelling

GLM predictions come from Lobo & Martín-Piera (2002) 
and kriging analyses were developed for this article. Briefly, 
GLM was used to relate species richness with 24 predictors 
accounting for soil, relief, climate, land use, habitat diversity 
and geographical location, assuming a Poisson distribution 
for species richness and a logarithmic function as link 
between it and the predictors. The model was built through 



202 Natureza & Conservação 9(1):200-207, December 2011Hortal & Lobo

Figure 1. Information on dung beetle diversity provided by BANDASCA database for the 252 Iberian 50 × 50 km UTM grid squares 
used in this work: a) Observed species richness; b) Location of well-sampled UTM50 cells; dark grey – cells identified as well-sampled 
by Lobo & Martín-Piera (2002), used here as calibration dataset; light grey – additional cells identified as well-sampled by Lobo 
(2008), used here as empirical validation dataset.
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an iterative mixed forward/backward stepwise procedure; 
in each step a new predictor was added to the model 
according to their change in deviance and the resulting 
model was subject to a backward analysis to eliminate the 
non-significant ones. This process was repeated until no 
more variables were significant enough to enter into the 
final model, which was a function of maximum elevation, 
grassland area, land use diversity, forest area, geological 
diversity, terrestrial area, surface of calcareous rocks and 
latitude. See Lobo & Martín-Piera (2002) for further details 
on the modelling process.

Kriging is the common mapping tool in the toolbox of 
geostaticians (Legendre & Legendre 1998), because it provides 
a powerful way to include both local and regional trends in 
the interpolated maps. It produces a statistically optimum 
estimate—the mean difference among observed and predicted 
values is 0, and its variance is minimal—through modelling 
the spatial dependence among observations (Cressie 1993). 
Briefly, the spatial dependence among the observations is 
first identified by a semi-variogram (or simply variogram), 
a mathematical function that describes the semi-variance 
at sequential distance classes. Semi-variance is a measure 
of the variability in the scores of a variable placed at a 
given distance interval. It thus provides a description of 
the spatial autocorrelation in the variable alternative to the 
most-used-in-ecology correlogram, which measures the 
correlation between values in the focal point and at each 
distance class. The semi-variance values of the variogram 
are fitted to a mathematical function, usually to a spherical 
model, although other models such as linear, exponential or 
Gaussian may give better results depending on the spatial 
structure of the data (Rossi et al. 1995). The resulting model 
is used to interpolate the values of the dependent variable. In 
our case, species richness values were lognormal-transformed 
to normalize its distribution. According to the variogram 
(not shown), dung beetle species richness values showed 
significant spatial dependence through the first 150 km. To 
account for directional differences in spatial dependence 
(i.e., non-stationarity), a series of anisotropic variograms 
were constructed using 150 km as lag distance, to identify 
the axis of maximum variation. There was little variation 
in the length of the axes of the anisotropic variograms, so 
we used an almost isotropic variogram with 150 km of 
lag distance to fit all models. The spheric model Ln(S) = 
0.001200 Nug(0) + 0.0693 Sph(148000,180,0.13) accounted 
for the highest explained variability, so we used it to predict 
species richness values. Here, Nug stands out for the nugget, 
the internal variability of the dependent variable within 
the lag distance (i.e. less than 150 km), and Sph stands 
out for an spherical model of three parameters defining, 
respectively, the range of significant spatial dependence (in 
km), the sill (i.e. a plateau in the variogram starting at the 
distance where there is no significant spatial dependence) 
and the anisotropy ratio (i.e. the ratio between the distance 
of significant spatial dependence in the major and minor 
anisotropy axes). All geostatistical analyses were conducted 
in the Idrisi Andes GIS software (Clark Labs 2006).

Predictive power and reliability of the models

We evaluated the reliability of GLM and kriging models 
by assessing their capacity to: (i) forecast species richness 
values within the calibration dataset (Calibration Error 
or CE); and (ii) estimate the values in the UTM50 cells 
not used in the training process (Validation Error or VE). 
We calculated CE through a Jackknife procedure (see 
Lobo & Martín-Piera 2002), where each UTM50 used to 
fit the model is left out once, and model parameters are 
recalculated without it. The Prediction Error (PE) for such 
UTM50 is the percentage of difference between the values 
observed in the focal cell and the predictions of the model 
excluding such cell; an CE is then calculated as the average 
of all PE values from this resubstitution process. Similarly, 
VE was calculated by comparing model predictions with 
the 22 cells of the independent validation dataset, which 
were not used to calibrate the model. Here, PE for each 
of these cells is calculated as the percentage of difference 
between the values observed and model predictions, and 
VE as the average of these values.

Results

The seventy-five UTM50 of the calibration dataset cover 
51.42% of the geographical variability of the Iberian Peninsula 
and 52.90% of its environmental variability. The twenty-two 
cells of the validation dataset increased such coverage to 
63.02 and 64.61% of the spatial and environmental variability, 
respectively, showing that although the predictions of the 
models into these cells are a forecast within the geographical 
domain of the Iberian Peninsula, they are also in part an 
extrapolation (i.e. prediction) into new environmental and 
spatial domains.

The predictions obtained with GLM and kriging were 
highly concordant in the 75 cells of the calibration dataset 
(Spearman R = 0.744, p < 0.001), but such concordance 
was much smaller in the whole extent of 252 UTM50 
(Spearman R = 0.394, p < 0.001). These inconsistencies reflect 
that there are important differences in their predictions; 
although both GLM and kriging provide relatively similar 
species richness maps, kriging predictions were in general 
smaller in the Central Iberian Plateaus, parts of the north 
and most of the eastern coast (Figure 2). GLM tends to 
overestimate richness values in the poorest UTM50 and 
underestimate it in the richest ones (Figure 3a), which is 
somewhat expected because regression methods (such as 
GLM) estimate central trends in the dependent variable 
rather than its extreme variations. However, according to 
the jackknife analyses the Calibration Error of this model 
is small, with a high correlation between observed and 
predicted values and a high Predictive Power (Table 1). 
The performance of kriging in the calibration dataset was 
nearly perfect, with no apparent bias in the predictions 
(Figure 3a), and extremely good predictions (Table 1).
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Figure 2. Species richness of Scarabaeidae dung beetles on the 252 Iberian 50 × 50 km UTM grid squares used in this work, as 
predicted by: a) General Linear Models; and b) kriging. See text for details on the interpolation methods and the accuracy of the 
results.
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In spite of their good results in the interpolation within the 
calibration dataset, the performance of both techniques was 
very poor in the (partial) extrapolation to the cells of the 
validation dataset. In general, both techniques consistently 
overpredict species richness values in poorer places, and 
underpredict them in the richest ones (Figure 3b). Although 
kriging predictions show higher correlation to the observed 
values than those of GLM, the actual Predictive Power 
of both techniques is negligible, with validation errors 
averaging around 100% of the observed richness value 
and reaching almost three times such difference in the 
extreme cases (Table 1).

Discussion

In spite of their high predictive power and correlation with 
observed richness values within the training dataset, our 
results clearly show that both GLM and kriging provide 
surprisingly poor results when they are transferred to 
localities outside the training dataset. This is in spite that 
the calibration dataset includes almost 30% of the Iberian 

UTM 50 × 50 km grid cells, covering more than half of the 
environmental and spatial variability of the studied territory. 
And, strikingly, that the validation dataset represents 
only a partial extrapolation, because it is located within 
the same geographic domain and covers only slightly 
different environmental conditions than those of the 
cells used to build the model. Also importantly, although 
the leave-one-out jackknife validation is thought to be 
unbiased (e.g., Olden & Jackson 2000), its disparity with 
the independent validation evidences that it does not allow 
to determine the accuracy of projecting model results to 
slightly different environmental domains.

Our results are similar to those of Parmentier et al. (2011), 
who found that kriging predictions of rainforest tree 
diversity were as good as regression-based ones—among 
other techniques—, but also that the performance of all 
techniques was good in well-sampled areas and bad in 
poorly inventoried territories. Kriging and other related 
techniques such as co-kriging can be used for interpolating 
spatially autocorrelated data (Legendre & Legendre 1998), 

Table 1. Accuracy of model predictions in the calibration and validation datasets. 

Obs. vs. 
pred.

Predictive 
power

Prediction errors
MPE Min 25%Q Median 75%Q Max

CE GLM 0.744*** 85.78 14.22 ± 11.16 0 6.17 11.11 17.91 50
CE Kriging 1*** 94.74 5.26 ± 1.41 3.23 4.17 5 5.88 9.09
VE GLM 0.442* -0.26 100.26 ± 86.70 16.67 32.10 64.58 167.36 280
VE Kriging 0.585** 0.84 99.16 ± 70.38 15.38 39.06 65.15 160.71 260
Calibration Errors (CE) correspond to the results of a leave-one-out jackknife within the 75 UTM 50 x 50 km cells used to calibrate the model. 
Validation Errors (VE) stand for the comparison between observed and predicted values in the 22 cells of the independent validation dataset. Obs. 
vs. pred. are the results of Spearman R correlations between observed and predicted values; *p < 0.05, **p < 0.01, ***p < 0.001. Predictive Power and 
Prediction Errors are calculated as percentages of error from the residuals of comparing observed and predicted values (see text); MPE is Mean 
Prediction Error (± Std.Dev.), and Min, Max, 25%Q and 75% are the minimum, maximum, first and third quartiles of the prediction errors for each 
observation, respectively.
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Figure 3. Comparison between observed and predicted species richness values for the GLM (green circles) and kriging (empty 
triangles) models: a) within the 75 cells of the calibration dataset; and b) in the 22 cells of the validation dataset.
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but their success in extrapolating the dependent variable to 
new geographical domains will depend on how consistent 
is its spatial structure across the studied region; in our case, 
on how stationary are the spatial trends in species richness. 
Arguably, other methods based on modelling the relationship 
between species richness and environmental predictors, such 
as GLM, may be better for extrapolation. However, they 
will provide reliable predictions only if they identify causal 
relationships that—importantly—are also stationary; in 
other words, that the predictors affect the dependent variable 
in the same way that they do in the territory where the 
model is developed (Lobo & Martín-Piera 2002). However, 
species richness is the outcome of a number of processes 
that affect different groups of species differently, depending 
on their response to environmental gradients—which is 
mediated by evolutionarily-constrained characteristics and 
recent adaptations—, together with interactions between 
species, historical events and environmental changes. 
This complexity results in non-stationary relationships 
between species richness and the environment even when 
the causal relationships have been correctly identified, as 
with, e.g., European scarab dung beetles and temperature 
(Hortal et al. 2011).

Here we argue that the non-stationary nature of the 
geographic variations in species richness—and of its 
relationships with environmental gradients—may prevent 
reliable estimation of their geographic patterns, unless the 
sample used provides a complete spatial and environmental 
coverage of the studied region. Further, the limit between 
interpolations and extrapolations for ALMs may be closer 
to the geographic domain defined by the training dataset 
than is commonly assumed, so many species richness 
models may have virtually no extrapolation ability. Previous 
studies have attributed the poor performance of ALMs to 
predict geographic patterns to the geographical biases and 
limitations in the data (Hortal et al. 2007). However, the bad 
performance of kriging—that does not need environmental 
predictors—and the geographic proximity of the cells of 
calibration and validation datasets (see Figure 1b) suggest 
that ALMs can fail to provide reliable predictions even 
when based on relatively good data. 

Two different research lines are needed to improve our 
ability to map diversity gradients in incompletely-known 
territories: (i) evaluate whether more complex techniques 
accounting for either non-stationarity—either regression-
based (e.g. Hortal et al. 2011) or geostatistical methods (e.g. 
Fuentes 2001; Hernández-Stefanoni et al. 2011)—or both 
environmental responses and spatial structure altogether 
(Algar et al. 2009) provide better predictions of species 
richness patterns; and (ii) investigate the processes causing 
such non-stationarity in detail. It could be argued that 
the effects of ecological assembly rules may, at least in 
part, account for the geographical non-stationarity in 
species richness gradients (Guisan & Rahbek 2011), so 
an investigation on the relationship between the errors 
in the extrapolation of species richness and differences 

in the—phylogenetic, functional or ecological—structure 
of the assemblages may provide insights on why it is so 
difficult to predict the geographical patterns of diversity.
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