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Abstract
The ongoing biodiversity crisis is pushing ecologists and conservation biologists to develop models to foretell the effects of 
human-induced transformation of natural resources on the distribution of species, although ecology and biogeography still lacks 
a paradigmatic body of theory to fully understand the drivers of biodiversity patterns. Two decades of research on ecological 
niche models and species distributions have been characterized by technical development and discussions on a plethora of 
methods or algorithms to infer and predict species distributions. Here we suggest a metaphorical classification scheme for some 
of the most popular models based on their complexity, interpretability and suitability for specific applications in ecology and 
conservation biology. Our purpose is not to compare methods by their capacity to accurately predict the observed distribution 
of species, nor to criticize how they are commonly used in applied studies. Instead, we believe that a simple classification 
scheme can potentially highlight how some methods are more suited for specific applications in ecology and conservation 
biology. Envelope and distance-based models are grouped into the “fish bowl” category, for their transparency and simplicity. 
Statistical models are classified as “turbine” models, because of their hidden complexity and general applicability. Finally, 
machine-learning models are classified as “vault” models, for their high complexity and lack of interpretability of fit parameters. 
We conclude that the diversity of species distribution models used today is expected for a young research field, but the choice of 
modeling strategy depends on the purpose of the study. We provide some general guidelines for choosing models for studies of 
conservation planning and climate change mitigation and suggest models of intermediate complexity for conservation planning 
and forecast of climate change effects on biodiversity as they provide a good balance between interpretability, predictive power 
and robustness to model over-fit.
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Introduction

“There is no part of natural history more interesting or 
instructive, than the study of the geographical distribution 

of animals.” Alfred Russell Wallace (1823-1913)

Since immemorial times, from Wallace to modern scientists, 
the study of the geographical distribution of species has 
fascinated humans. Many studies have focused on the 
evolution, dynamics, and structure of geographic ranges 
(Brown et al. 1996; Gaston 2003; Diniz Filho et al. 2010), 
but, albeit their theoretical relevance, estimating geographic 
ranges and species distribution is still a challenging issue 
for ecologists and biogeographers. Modern scientists have 
been developing statistical and mathematical models to 
infer and predict geographic distribution of species by 
coupling data on species occurrences at different spatial 
scales with environmental (bioclimatic) data (Pearson & 
Dawson 2003).

According to the ecological niche theory, species are 
constrained by their tolerance to environmental factors. As so, 
these models define an environmental space describing the 
ecological niche of a species (at least its abiotic component, 
see Soberón 2007), which can be then projected into 
geographic space to estimate species’ geographic distribution 
(Colwell & Rangel 2009) Models like these are now called 
“ecological niche models”, although given the confusing 
terminology in the field, they are also referred to as “species 
distribution models” (Franklin 2009) or “bioclimatic 
envelope models” (Araújo & Peterson 2012). Araújo & 
Peterson (2012) and Peterson & Soberón (2012) provide 
recent clarification on this topic.

The ongoing biodiversity crisis is pushing ecologists and 
conservation biologists to develop models that are able 
to foretell the effects of human-induced transformation 
of natural resources on the distribution of species. Of 
course, forecasting is a statement about events that have 
yet to be observed, and require models with reliable level 
of predictive power, as well as minimum risk and low 
uncertainty. Ecological niche models (henceforth ENMs) 
associate known species occurrences across the geographic 
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predictions in space and time (i.e. model transferability), 
and adds complexity to measure model fit (Lobo et al. 2008).

Ecological niche models, as most correlative models in 
ecology, are designed to identify and describe statistical 
patterns in species occurrence data by fitting values to 
model parameters (Franklin 2009; Peterson et al. 2011). 
The predictive power of model can be measured by some 
goodness-of-fit statistics, which quantifies the degree of 
similarity between a pattern estimated by the model using 
the adjusted parameters and an observed dataset (e.g. 
the input data). However, the ongoing debate on model 
performance, statistical fit and transferability indicates that 
it is currently difficult to determine what is the best method 
for modeling species’ distribution, because their outcome is 
strongly dependent on data availability and the geographic 
scale used, as well as the logic and objective when building 
the models (Elith & Leathwick 2009). To cope with these 
problems, a combination of different projections built upon 
different conditions and methods – the ensemble forecasting 
approach – has been suggested as more conservative than 
single model analysis (Araújo & New 2007). Ensembles 
of forecasts should be used when it is impossible, or quite 
difficult, to determine which type of model should produce 
the most accurate predictions in a complex set of situations. 
Predictions from multiple models or from multiple input data 
sets are usually averaged and weighted by model accuracy, 
although estimating model accuracy is also challenging. 
Thus, by combining different model projections the final 
consensus may benefit from accurate models: although 
depending on how model predictions are combined, poor 
model predictions may cancel accurate models (Lawler et al. 
2011). In the ensemble forecasting approach the final solution 
is an unique consensus, weighted by the overall statistical 
fit (e.g. TSS statistics) of combined models – from which is 
also possible to quantify and map uncertainties associated 
with ENMs (Diniz-Filho et al. 2009). In the next sections 
will discuss the applications of ENMs in ecology and 
conservation biology, propose a metaphorical classification 
for ENMS, and call attention to the advantages and pitfalls 
of using ENMs for conservation planning.

A Metaphorical Classification of ENMs

“The metaphor is an origin, the origin of an image which 
acts directly, immediately.”  

 Gaston Bachelard (1884-1962)

As discussed above, ENM methods commonly applied 
in ecology and conservation biology vary widely in their 
underlying assumptions (hypothesized relationship 
between species’ occurrence and environmental factors) 
and complexity (number of parameters used to fit the 
hypothesized relationship). ENMs, as any statistical 
model, are an attempt to reduce complex reality into a 
simplified model of the observed phenomena through a 
set of hypothesized relationships among relevant factors. 
However, deciding on what should be simplified in the 

space to environmental conditions of the sites where species 
occurrences have been recorded. The association is used to 
define locations where viable populations of the species are 
likely to be maintained (Peterson et al. 2011). These models 
are an important tool for studies in ecology, biogeography, 
and conservation biology. Still, not all ecological processes 
that drive species distribution are known and understood 
by ecologists, and therefore phenomenological correlative 
models like ENMs are currently the most used and only 
general resort available. ENMs are now a hot topic, ranking 
among the most reviewed topics in the ecological literature 
(Araújo & Peterson 2012), and focus on recently published 
text books (Franklin 2009; Peterson et al. 2011). ENMs 
have been applied to a variety of problems ranging from 
biodiversity discovery, prediction of species invasion, 
to forecasting the effects of climate change on species 
distribution (Franklin 2009). Though widely used, their 
usefulness has been criticized by authors claiming that 
ENMs are built upon implausible assumptions and contradict 
empirical evidence (Araújo & Guisan 2006; Araújo & 
Peterson 2012).

The Jungle of Methods for Modeling 
Species’ Ecological Niches and 
Geographic Distributions

“Led by a new paradigm, scientists adopt new instruments 
and look in new places...” Thomas S. Kuhn (1922-1996)

As expected for a new field, research on ENMs has been 
characterized by technical development and discussions on 
the best method or algorithm used for modeling ecological 
niches and inferring species’ distributions. As Araújo & 
Peterson (2012) pointed out, the field publishes a rapidly 
increasing number of primary research papers and many 
syntheses. Still, it is surprising how it lacks conceptual and 
methodological unification.

Currently, there are several methods for modeling species’  
ecological niche as a function of environmental variables. 
As we will discuss later, techniques for generating ENMs 
range from very simple bioclimatic envelope models up 
to complex machine learning-based methods (Franklin 
2009, Peterson et al. 2011). Table 1 summarizes the most 
common methods used for modeling species’ ecological 
niches, a brief description of them, along with their best 
type of response and some available software in which they 
could be generated. These methods have been described 
and mathematically defined elsewhere (for a recent revision 
see Franklin 2009). However, independent of the methods 
used to produce ENMs, uncertainties in model predictions 
arise from many sources (Araújo & New 2007). For example, 
Diniz-Filho et al. (2009) found that 66% of variation in 
predictions of how climate change will affect species’  
distribution is due to uncertainty in model structure, whereas 
14% is due to future climate scenario. Of course, such 
uncertainty in model structure affects ability to extrapolate 
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distribution of species, but how the results of model are 
used and interpreted.

Scientific inference involves generalization about an 
ecological pattern or process, leaping from a known truth 
(observed data) to a logical conclusion that is presumed to 
be true with a degree of certainty (model structure). Usually 
inference is associated with an attempt to understand 
how a system behaves under certain conditions, and 
what are the processes involved. On the other hand, 

model structure depends not only on the reality to be 
described, but also on the purpose of the model and the 
state of science.

No model design is free of a trade-off between three 
desirable features – generality, realism and precision (Levins 
1966) – and it is the final balance between these features 
that define the most proper application for a given model. 
Thus, it is not the choice of ENMs or dataset that draws 
the boundary between the inference and prediction of the 

Table 1. Modeling methods commonly used for modeling ecological niches, their brief description, and indication of best type of 
response variables and some available software for building models. 

Modeling method Method description Best response variable Some available software
Envelope methods

BIOCLIM Simple bioclimatic envelope defining the 
environmental tolerance of a species for 

multiple predictors

Categorical presence-only BIOCLIM, OpenModeller

Mahalanobis 
distance

Distance method that finds similarity to 
conditions where the species occurs. It does 
not estimate the importance of predictors

Categorical presence-only DOMAIN, R, 
OpenModeller

ENFA Compares the distribution of the localities 
where the focal species was observed to a 
reference set describing the whole study 

area.

Categorical BIOMAPPER

Statistical methods
GLM Parametric regression methods with several 

response functions like linear, polynomial, 
piecewise, and interaction terms. GLM 
are extensions of linear models that can 

cope with non-normal distributions of the 
response variable

Quantitative, categorical, 
binomial

BIOMOD, Statistica, 
SYSTAT, GRASP, R

GAM Non-parametric regression methods with 
smoothing function, estimated using local 
regression, splines or other method. GAMs 

are a non-parametric extension of GLMs

Quantitative, categorical GRASP, R

MARS Adaptive piecewise linear regression. MARS 
are a generalization of stepwise linear 

regression, also related to regression trees 
and GAMs

Quantitative, categorical MARS, R

Machine-learning methods
GARP Complex method that combines decision 

rules using a genetic algorithm. In this 
method a population of classification rules 

is generated and then the rules “evolve” by a 
process analogous to natural selection until 

an optimal solution is reached

Categorical binomial Desktop Garp

MaxEnt Method based on a principle from statistical 
mechanics and information theory. It 

states that the most spread out and close 
to uniform probability distribution, 
subject to known constraints, is the 
best approximation for an unknown 
distribution. In MaxEnt, non-linear 
response functions can be described

Categorical binomial MaxEnt

ANN Method that hierarchically partition the data 
into subareas, focusing on the informative 

portions and ignoring the empty parts. 
ANNs response functions are non-linear 
decision boundaries in covariate space

Quantitative, categorical NNETW, R

ENFA  =  ecological niche factor analysis, GLM  =  generalized linear models, GAM  =  generalized additive models, MARS  =  multivariate adaptive 
regression splines, GARP = genetic algorithm for rule set production, MaxEnt = maximum entropy, ANN = artificial neutral networks.
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We illustrate our argument by suggesting a classification 
scheme for some of the most popular ENMs models 
(see Table 2), based on their complexity, interpretability 
and suitability for specific applications in ecology and 
conservation biology. Our purpose is not to compare 
ENM methods by their ability to accurately predict the 
observed distribution of species, nor to criticize how they are 

prediction uses observed facts (empirical data) and scientific 
reasoning (model structure) to foretell a phenomenon under 
unobserved conditions. Predictions drawn for conditions that 
are similar or within the range of those that were observed 
are called interpolation, whereas these predictions will be 
called extrapolations if they are drawn for conditions that 
were never observed by the scientist.

Table 2. Metaphorical classification of the most used ecological niche models and some general characteristics of models within each 
class.

Metaphor “Fish bowl” models “Turbine” models “Vault” models
Common classification Envelope models, distance 

models, classification 
models

Statistical models Machine-learning models

Example of models 
under this class

BIOCLIM, Euclidian 
distance, Gower 

distance, Mahalanobis 
distance, Ecological 

Niche Factor Analysis 
(ENFA)

Generalized Linear Models 
(GLM), Generalized Additive 
Models (GAM), Multivariate 
Adaptive Regression Splines 

(MARS)

Random Forests, Genetic Algorithm 
for Rule Set Production (GARP), 

Maximum Entropy (MaxEnt), 
Artificial Neural Networks (ANN), 
Generalized Boosting Regression 
Models (GBM), Support Vector 

Machines (SVM)
Explanation for the 

metaphor
Geographic distributions 

of species are 
constrained by 

their tolerance to 
environmental factors; 

fish cannot survive 
outside the fish bowl, 

which is transparent and 
simple

Models work like turbines: data 
come in, predictions go out. 

Leverages under the control are 
used to regulate the amount 
of energy used to move the 
turbine, and therefore its 

rotation speed; parameters 
could be regulated to improve 

model predictions

As in vaults, the inner contents of 
these models are usually hidden 

from the scientist. Even if scientists 
were allowed inside the vault, it 

would take a great effort to make 
sense of the organization of all items

Complexity Low Intermediate High
Transparency High From intermediate to low Low

Strengths Easy to understand, 
easy interpretation of 
parameters, intuitive, 

high generality, deeply 
rooted in ecological and 

physiological theory

Relatively easy to understand, 
predictive power higher than 

in fish bowl models, high 
precision, somewhat rooted in 

ecological theory

High statistical fit, high precision

Weaknesses Low statistical fit, low 
precision and realism

Require addition scientific effort 
to extract information and 

interpret the ecological meaning 
of model parameter, not 

necessarily rooted in ecological 
theory, realism and generality 

often sacrificed

Difficult to understand, usually no 
constraint to limit the maximum 

number of parameters, over fitting, 
low generality, predictions may be 

highly contingent on the geographic 
position of input data

Best-practice application More appropriate in 
studies aiming to 

understand and infer 
the form and direction 

of relationships between 
species occurrence 
and environmental 
conditions; good to 

infer species potential 
distribution

Best results will take place if 
species occurrence respond 

linearly to changes in 
environmental factors or 

incorporate the consequences of 
the interaction between factors 
for the distribution of species

Effective for predicting the 
distribution of species after 

appropriate validation of their 
predictive power by robust statistical 

methods; work well especially for 
describing actual (not potential) 

geographic distributions when all or 
almost all populations are known

Precaution with 
application in 

conservation planning

High; tend to overestimate 
species occurrences 

increasing commission 
errors

Intermediate; could have high 
model fit, but low biological 

meaning

From intermediate to high; should 
follow a good reasoning for their 
application given difficulties in 

parameter interpretation; tend to 
increase omission errors given their 
dependence on the quality of input 

data.
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of model parameter. Thus, realism, and to some extent 
generality, are sacrificed for the sake of precision (Table 2).

We suggest the turbine analogy because these models usually 
work on their “sealed” state: data come in, predictions go 
out. Leverages under the control of the scientist are used to 
regulate the amount of energy used to move the turbine, and 
therefore its rotation speed. If the turbine is disassembled 
into small pieces, and its mechanisms are carefully studied, 
it is easier to understand that blades control fluid flow 
inside the turbine. Of course, fluid dynamics may not be 
always trivial, especially when the interaction between 
fluid and blades creates turbulence. Still, the rotation of 
the shaft creates useful work, which can be used to propel 
knowledge about the distribution of species.

Vault models

The most complex models are those that employ machine-
learning algorithms to search (mine) for the parameters 
values that maximize the relationship between observed 
species occurrence and environmental since t (Franklin 
2009). The most popular models that employ such technique 
are Genetic Algorithm for Rule Set Production (GARP) 
(Stockwell & Noble 1992), Random Forests (Breiman 2001), 
Artificial Neural Networks (ANN) (Manel et al. 1999), 
Generalized Boosting Regression Modelsince t (Friedman 
2001), and Maximum Entropy (MaxEnt) (Phillips et al. 
2006). The searching procedure involves maximizing 
model predictive power while minimizing the number 
of parameters, but there is usually no constraint to limit 
the maximum number of parameters or complexity of the 
relationship between species occurrence and environmental 
factors. Of course, when contrasted against models under the 
other categories, these models usually provide “predictions” 
that best fit the original data (Elith et al. 2006), but the 
complexity of the model prevents any interpretation of the 
parameters (Jiménez-Valverde et al. 2008)

Vault models tend to sacrifice realism and generality for 
the sake of precision. These models may be suited for 
predicting the distribution of species after appropriate 
validation of their predictive power by robust statistical 
methods (Peterson et al. 2011). However, over-fitting these 
models is a real concern, especially when they are used for 
extrapolations (Table 2).

We suggest the “vault” analogy because the inner contents 
of these models are usually hidden from the scientist. In 
addition, even if these scientists were allowed inside the vault, 
it would take a great effort to make sense of the organization 
of all items. In fact, very few personnel are allowed within the 
vault, while the scientist only interacts with the front-desk. 
When new items come in they are processed and recorded 
by automated algorithms, which decide the most economical 
way to store and secure them inside the vault. In addition, 
the same algorithm is required to find the exact location 
of each item, or to decipher the meaning of the label of 

commonly used in specific studies. Instead, we believe that 
this simple classification scheme can potentially highlight 
how some methods are more suited for applications in 
ecology and conservation biology.

Fish bowl models

It is arguable that the simplest ENMs are those known as 
“envelope models”, a category that includes, for example, 
BIOCLIM (Busby 1991), Euclidian and Gower distances 
(Carpenter et al. 1993), and Ecological-Niche Factor Analysis 
(ENFA) (Hirzel et al. 2002). These models assume that the 
geographic distributions of species are constrained by their 
tolerance to environmental factors. Such assumption is 
deeply rooted in several ecological theories, dating back to 
Gauss, Grinnell and Hutchinson. Not only these models rely 
on assumptions that are intuitive to any ecologist, but they 
also fit parameters with clear-cut interpretation. Fish bowl 
models are transparent – any ecologist can clearly see the 
ecological concepts behind the model, and easily interpret 
the parameters fit by the model. However, the substantial 
advantage in inference and interpretation power made 
possible by simplistic assumptions behind these models 
usually lead to a sacrifice in predictive power, especially 
when compared to models in the other two categories. Thus, 
fish bowl models tend to sacrifice precision and realism 
for the sake of generality. They are especially appropriate 
in studies that aim to understand and infer the form and 
direction of relationships between species occurrence and 
environmental conditions (see Table 2).

Turbine models

Regression-based methods, such as Generalized Linear 
Models (GLM) (Guisan et al. 2002), Generalized Additive 
Mode (GAM) since t (Hastie & Tibshirani 1986) and 
Multivariate Adaptive Regression Splines (MARS) (Friedman 
1991) are more complex than “envelope models”, both in 
terms of number of parameters they fit and the accepted 
relationship between species occurrence and environmental 
factors. Notice that within this category models may range 
widely in complexity (e.g. MARS is substantially more 
complex than GLM). Not surprisingly, more complex models 
usually have better explanatory power. It is arguable that 
these models are also somewhat rooted in ecological theory, 
especially those that assume that species occurrence respond 
linearly to change in environmental factors, or incorporate 
the consequences of the interaction between factors for the 
distribution of species. Thus, these models fit parameters 
that are potentially very useful to the understanding of 
species distribution, as they may be able to capture valuable 
ecological and evolutionary information about species 
(Franklin 2009). However, as opposed to the fish bowl 
models, the turbine models require addition scientific effort 
to extract information and interpret the ecological meaning 
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therefore jeopardizing the efforts to protect the endangered 
species. In this case, commission errors favor resource 
misallocation. On the other hand, in the face of unlimited 
funds to protect a given species, omission errors may result 
in a subset of the actual habitat being protected (Lawler et al. 
2011; Lemes et al. 2011). When predicting climate change 
effects on species distributions, commission errors lead 
to overestimation of range expansions whereas omission 
errors produce overestimates of range contractions. If one 
is employing such models to predict regions of climatic 
stability (Garcia et al. 2012; Loyola et al. 2012; Terribile et al. 
2012), and to guide conservation actions, both omission 
and commission errors are of particular interest, as these 
errors are likely to produce huge bias in the results of 
gap-analysis as well (Marini et al. 2009).

Fish bowl models tend to inflate commission errors and 
individual species distribution, which are usually larger 
than predicted by other models. Turbine models provide 
intermediate predictions of range contraction/expansion, 
whereas vault models usually result in smaller distributions 
when compared to other models (Faleiro et al. 2013). Thus, 
if conservation practitioners want to reduce commission 
errors, vault models are perhaps the best option for the 
task, although in this case one will probably face the 
inconvenience of lack of clarity and difficulty of explaining 
results to stake holders and decision makers involved in 
the conservation process (Table 2).

How about the use of ensemble of forecasts? Arguably, the 
use of different ENMs to project species distributions may 
produce very distinct results increasing the uncertainties 
among the predictions and their applicability to conservation 
planning (Pearson et al. 2006; Araújo & New 2007). 
Diniz-Filho et al. (2009) were the first to provide a robust 
methodology to partition and map variation among ensemble 
of forecasts. Additional authors have also highlighted the 
need to measure and explicitly include ENMs uncertainty 
in conservation plans to increase its accountability and 
effectiveness (Diniz-Filho et al. 2009; Thuiller et al. 2009; 
Faleiro et al. 2013). It has been recently suggested that the 
use of ensemble of forecasts is preferred as oppose to model 
species distribution based on only one ENM (e.g. MaxEnt) 
(Loyola et al. 2012). Ensembles of model projections keep 
only the consensus-projected areas, minimizing variation 
among all projections (Araújo & New 2007). This is especially 
important for conservation purposes given that model 
uncertainty may mislead conservation efforts ending up 
being cost-ineffective.

Concluding Remarks

The famous quote on model building settles that “[…] 
essentially, all models are wrong, but some are useful [...]” 
(Box & Draper 1987). Thus, on the one hand, defining a 
specific model application is essential for any fair attempt 
of model comparison, whereas, on the other hand, a given 
model may be more useful and appropriate for specific 

any given item inside the vault. However, it is guaranteed 
that if the vault is maintained under careful organization 
and constantly fed with additional items, it may eventually 
store enough resources to the scientist.

The Metaphors and their Consequences 
for Application of ENMs in Conservation 
Planning

“Go wisely and slowly. Those who rush stumble and 
fall.” Friar Laurance, William Shakespeare’s Romeo and 

Juliet, Act 2, Scene 3

Conservation scientists, practitioners and resource managers 
often work with limited data to answer critical questions, 
such as the allocation of scarce resources for conservation 
(Moilanen 2012). Species geographic extent is the raw 
material of conservation planning and science-based 
management (Lawler et al. 2011). It is also indispensable 
for assessing the risks of climate and land-use changes, and 
other human activities to natural populations. However, in 
many regions of the world, even this basic information is 
lacking (Whittaker et al. 2005; Lawler et al. 2011).

Ecological niche models have been applied in conservation 
biology mainly for three purposes: (1) discovering 
biodiversity, i.e. the use of ENMs for detecting new species 
or to increase effectiveness in sampling populations of 
a target species, (2) conservation planning and climate 
change effects, i.e. the use of ENMs for forecasting species 
distribution and evaluation of adaptation strategies, and 
(3) studying species’ invasions, i.e. using ENMs to forecast 
invasions of introduced species (Peterson et al. 2011). 
Here we will focus on the limitations to the use of ENMs 
in conservation planning and climate change mitigation.

Conservation planning occurs at broad spatial extents and 
detailed data on species distribution are usually not available. 
As a shortcut, many studies use data on the extent of species’ 
occurrences, typically depicted from taxonomic atlases or 
digital range maps. These maps, however, have a coarse 
resolution and tend to overestimate species occurrences 
(Lemes et al. 2011; Rodrigues 2011; Rondinini et al. 2011). 
To overcome these limitations the ENMs have been used 
to provide finer resolution estimates of species occurrences 
that feed spatial planning analyses (Lawler et al. 2011).

In this case, we must pay special attention to ENMs 
commission and omission errors (Table 1). If a site is 
indicated as priority because it complements the current 
established network of protected areas, although model 
predictions are wrong, we may face a serious problem of 
misallocating valuable conservation resources. What is the 
worst-case scenario then? Well, that depends on the specific 
situation (Lawler et al. 2011). For example, consider a given 
endangered species that occurs only at five localities, but 
only two sites will be set aside for protecting that species. 
If ENMs predicted the occurrence of the species at fifty 
sites it is likely that the two sites out of fifty will not protect, 
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climate change effects on biodiversity we suggest models 
of intermediate complexity, which provides a good balance 
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models of species distribution (Buckely et al. 2010). In 
any case, because ENMs vary widely in complexity and 
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here is useful to highlight the differences in suitability of 
these models for inference of ecological processes, predictive 
power of species distribution, and trustful applications for 
conservation planning.

Acknowledgements

We thank Paulo De Marco Jr for his kind invitation to 
contribute to this special issue and José Alexandre F. Diniz 
Filho for providing comments and criticism on the first 
version of this paper. TFR and RDL research is funded by 
CNPq, the Brazilian Research Network on Global Climate 
Change (Rede CLIMA), and Conservation International 
Brazil. This is a contribution to the GENPAC research 
network (Geographical Genetics and Regional Planning for 
natural resources in Brazilian Cerrado), supported by CNPq 
and FAPEG (grants #563727/2010-1 and #563624/2010-8). 
TFR and RDL received research productivity grants from 
CNPq (grants #310117/2011-9 and #304703/2011-7, 
respectively).

References

Araújo MB & Guisan A,  2006. Five (or so) challenges 
for species distribution modelling. Journal of 
Biogeography,  33()(10):1677-1688. http://dx.doi.
org/10.1111/j.1365-2699.2006.01584.x

Araújo MB & New M, 2007. Ensemble forecasting of species 
distributions. Trends in Ecology and Evolution, 22(1):42-47. 
http://dx.doi.org/10.1016/j.tree.2006.09.010

Araújo MB & Peterson AT, 2012. Uses and misuses of bioclimatic 
envelope modeling. Ecology, 93(7):1527-1539. http://dx.doi.
org/10.1890/11-1930.1

Box GEP & Draper NR, 1987. Empirical model-building and 
response surfaces. John Wiley & Sons.

Buckely LB et al., 2010. Can mechanism inform species’ 
distribution models. Ecology Letters, 13:1041-1054. http://
dx.doi.org/10.3410/f.6630956.6777054

Breiman L, 2001. Random Forests. Machine Learning, 45(1):5-32. 
http://dx.doi.org/10.1023/A:1010933404324

Brown JH et al., 1996. The geographic range: size, shape, 
boundaries, and internal structure. Annual review of ecology 
and systematics, 27:597-623. http://dx.doi.org/10.1146/
annurev.ecolsys.27.1.597

Busby JR, 1991. BIOCLIM - a bioclimatic analysis and prediction 
system. In: Margules CR & Austin MP. Nature Conservation: 
cost effective biological surveys and data analysis. Intl 
Specialized Book Service Inc. p. 64-68.

http://dx.doi.org/10.1007/BF00051966
http://dx.doi.org/10.1007/BF00051966
http://dx.doi.org/10.1073/pnas.0901650106
http://dx.doi.org/10.1590/S0085-56262010000300001
http://dx.doi.org/10.1111/j.1600-0587.2009.06196.x
http://dx.doi.org/10.1111/j.1600-0587.2009.06196.x
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159
http://dx.doi.org/10.1214/aos/1176347963
http://dx.doi.org/10.1214/aos/1176347963
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1111/j.1365-2486.2011.02605.x
http://dx.doi.org/10.1111/j.1365-2486.2011.02605.x
http://dx.doi.org/10.1016/S0304-3800(02)00204-1
http://dx.doi.org/10.1016/S0304-3800(02)00204-1
http://dx.doi.org/10.1214/ss/1177013604
http://dx.doi.org/10.1214/ss/1177013604
http://dx.doi.org/10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2
http://dx.doi.org/10.1111/j.1365-2699.2006.01584.x
http://dx.doi.org/10.1111/j.1365-2699.2006.01584.x
http://dx.doi.org/10.1016/j.tree.2006.09.010
http://dx.doi.org/10.1890/11-1930.1
http://dx.doi.org/10.1890/11-1930.1
http://dx.doi.org/10.3410/f.6630956.6777054
http://dx.doi.org/10.3410/f.6630956.6777054
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1146/annurev.ecolsys.27.1.597
http://dx.doi.org/10.1146/annurev.ecolsys.27.1.597


126 Natureza & Conservação 10(2):119-126, December 2012Rangel & Loyola

Pearson RG et al., 2006. Model-based uncertainty in species 
range prediction. Journal of Biogeography, 33(10):1704-1711. 
http://dx.doi.org/10.1111/j.1365-2699.2006.01460.x

Peterson AT & Soberón J, 2012. Species Distribution Modeling 
and Ecological Niche Modeling: Getting the Concepts 
Right. Natureza & Conservação, 10(2): 102-107. http://
dx.doi.org/10.4322/natcon.2012.019

Peterson AT et al., 2011. Ecological Niches and Geographic 
Distributions. Princeton University Press. v. 2011, p. 336.

Phillips S  et  al.,  2006. Maximum entropy modeling 
of species geographic distributions. Ecological 
Modelling, 190(3-4):231-259. http://dx.doi.org/10.1016/j.
ecolmodel.2005.03.026

Rodrigues ASL, 2011. Improving coarse species distribution data 
for conservation planning in biodiversity-rich, data-poor, 
regions: no easy shortcuts. Animal Conservation, 14(3):1-3. 
http://dx.doi.org/10.1111/j.1469-1795.2011.00451.x

Rondinini C et al., 2011. Global habitat suitability models 
of terrestrial mammals. Philosophical transactions 
of the Royal Society of London. Series B, Biological 
sciences, 366(1578):2633-41. http://dx.doi.org/10.1098/
rstb.2011.0113

Soberón J, 2007. Grinnellian and Eltonian niches and geographic 
distributions of species. Ecology letters, 10(12):1115-23. 
http://dx.doi.org/10.1111/j.1461-0248.2007.01107.x

Stockwell DRB & Noble IR, 1992. Induction of sets of 
rules from animal distribution data: a robust and 
informative method of data analysis. Mathematics and 
Computers in Simulation, 33(5-6):385-390. http://dx.doi.
org/10.1016/0378-4754(92)90126-2

Terribile LC et al., 2012. Areas of Climate Stability of Species 
Ranges in the Brazilian Cerrado: Disentangling Uncertainties 
Through Time. Natureza & Conservação, 10(2): 152-159. 
http://dx.doi.org/10.4322/natcon.2012.025

Thuiller W et al., 2009. BIOMOD - a platform for ensemble 
forecasting of species distributions. Ecography, 32(3):369-373. 
http://dx.doi.org/10.1111/j.1600-0587.2008.05742.x

Whittaker RJ et al., 2005. Conservation Biogeography: assessment 
and prospect. Diversity and Distributions, 11(1):3-23. http://
dx.doi.org/10.1111/j.1366-9516.2005.00143.x

Received: November 2012 
First Decision: November 2012 

Accepted: November 2012

Jiménez-Valverde A et al., 2008. Not as good as they seem: the 
importance of concepts in species distribution modelling. 
Diversity and Distributions, 14(6):885-890. http://dx.doi.
org/10.1111/j.1472-4642.2008.00496.x

Lawler JJ et al., 2011. Using species distribution models for 
conservation planning and ecological forecasting. In: Drew 
Yolanda A et al. (eds.). Predictive Modeling in Landscape 
Ecology. New York: Springer. p. 271-290. http://dx.doi.
org/10.1007/978-1-4419-7390-0_14

Lemes P  et  al.,  2011. Refinando Dados Espaciais para 
a Conservação da Biodiversidade. Natureza & 
Conservação, 9(2):240-243. http://dx.doi.org/10.4322/
natcon.2011.032

Levins R, 1966. The strategy of model building in population 
biology. American Scientist, 54:421-431.

Lobo JM et al., 2008. AUC: a misleading measure of the 
performance of predictive distribution models. Global 
Ecology and Biogeography, 17(2):145-151. http://dx.doi.
org/10.1111/j.1466-8238.2007.00358.x

Loyola RD et al., 2012. Severe loss of suitable climatic conditions 
for marsupial species in Brazil: challenges and opportunities 
for conservation. PLoS ONE, 7:e46257. http://dx.doi.
org/10.1371/journal.pone.0046257

Manel S et al., 1999. Alternative methods for predicting species 
distribution: an illustration with Himalayan river birds. 
Journal of Applied Ecology, 36(5):734-747. http://dx.doi.
org/10.1046/j.1365-2664.1999.00440.x

Marini MA et al., 2009. Major current and future gaps of 
Brazilian reserves to protect Neotropical savanna birds. 
Biological Conservation, 142(12):3039-3050. http://dx.doi.
org/10.1016/j.biocon.2009.08.002

Moilanen A,  2012. Spatial Conservation Prioritization 
in Data-Poor Areas of the World. Natureza & 
Conservação, 10(1):12-19. http://dx.doi.org/10.4322/
natcon.2012.003

Pearson RG & Dawson TP, 2003. Predicting the impacts 
of climate change on the distribution of species: are 
bioclimate envelope models useful? Global Ecology 
and Biogeography,  12(5):361-371. http://dx.doi.
org/10.1046/j.1466-822X.2003.00042.x

http://dx.doi.org/10.1111/j.1365-2699.2006.01460.x
http://dx.doi.org/10.4322/natcon.2012.019
http://dx.doi.org/10.4322/natcon.2012.019
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1111/j.1469-1795.2011.00451.x
http://dx.doi.org/10.1098/rstb.2011.0113
http://dx.doi.org/10.1098/rstb.2011.0113
http://dx.doi.org/10.1111/j.1461-0248.2007.01107.x
http://dx.doi.org/10.1016/0378-4754(92)90126-2
http://dx.doi.org/10.1016/0378-4754(92)90126-2
http://dx.doi.org/10.4322/natcon.2012.025
http://dx.doi.org/10.1111/j.1600-0587.2008.05742.x
http://dx.doi.org/10.1111/j.1366-9516.2005.00143.x
http://dx.doi.org/10.1111/j.1366-9516.2005.00143.x
http://dx.doi.org/10.1111/j.1472-4642.2008.00496.x
http://dx.doi.org/10.1111/j.1472-4642.2008.00496.x
http://dx.doi.org/10.1007/978-1-4419-7390-0_14
http://dx.doi.org/10.1007/978-1-4419-7390-0_14
http://dx.doi.org/10.4322/natcon.2011.032
http://dx.doi.org/10.4322/natcon.2011.032
http://dx.doi.org/10.1111/j.1466-8238.2007.00358.x
http://dx.doi.org/10.1111/j.1466-8238.2007.00358.x
http://dx.doi.org/10.1371/journal.pone.0046257
http://dx.doi.org/10.1371/journal.pone.0046257
http://dx.doi.org/10.1046/j.1365-2664.1999.00440.x
http://dx.doi.org/10.1046/j.1365-2664.1999.00440.x
http://dx.doi.org/10.1016/j.biocon.2009.08.002
http://dx.doi.org/10.1016/j.biocon.2009.08.002
http://dx.doi.org/10.4322/natcon.2012.003
http://dx.doi.org/10.4322/natcon.2012.003
http://dx.doi.org/10.1046/j.1466-822X.2003.00042.x
http://dx.doi.org/10.1046/j.1466-822X.2003.00042.x

