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Abstract
Ecological niche models (ENMs) can be used to investigate the shifts in geographical distributions and in productivity of 
cultivated species in future climatic scenarios. Such models can be classified in correlative, mechanistic or hybrid. The aim of 
this study was to investigate the relationship between productivity of Zea mays in Brazilian municipalities and crop suitability in 
current scenarios using the three different ENMs’ types, as well as to predict the impacts of climate change on the geographic 
distribution of Z. mays in Brazil The mechanistic model used was Plantgro, the correlative one was Maxent, and to hybridize them 
we added the mechanistic model output as another predictor in a second Maxent model. The correlative and hybrid models 
were very similar, while the mechanistic model presented very distinct results from the other two models. The correlative (maxent) 
model was the best surrogate of maize productivity. The correlative model indicated that in the future there will be little change 
in environmental suitability in relation to the current climate.
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Introduction

Ecological Niche Models (ENMs) have been widely used to 
investigate the shifts in potential geographical distribution 
of the species in future scenarios of climate change 
(Peterson et al. 2011). However, two different types of ENMs 
are available: the correlative and the mechanistic approaches 
(Franklin 2009). The correlative approach is more frequently 
used and starts by associating the current and known 
geographical occurrences of species with environmental 
geographical data to generate a suitability gradient that is 
projected in geographical space (Peterson et al. 2011). The 
mechanistic models, on the other hand, combine values 
from physiological characteristics of the species with 
environmental data to generate a predictive model (Kearney 
& Porter 2009). Although there has been a recent dispute 
about the effectiveness of these two classes of ENMs (e.g., 
Buckley et al. 2010; Kearney & Porter 2009), a possible 
consensus can be achieved by a new approach, the hybrid 
niche model, that uses the mechanistic model as another 
predictor in the correlative model (Buckley et al. 2011).

For most species it is difficult to obtain physiological 
tolerances in different environmental dimensions, hindering 
the use of mechanistic models (Araújo & Peterson 2012). 
However, physiological information for cultivated species 
has long been available, so that the use of mechanistic, 
correlative or hybrid models for species of cultivated 
plants is feasible and reliable. Moreover, agriculture is 
one of the most vulnerable world’s economic activities 
in relation to climate change and may suffer progressive 
declines in production in the coming years due to increased 
temperatures (Assad et al. 2008). Thus, the use of ENMs for 
cultivated species allows a better investigation of the impact 
of global climate change on these crops (e.g. Hijmans & 
Graham 2006), in terms of distribution and even for crop 
productivity and for the economic impacts of such shifts 
(e.g. Nabout et al. 2011).

Considering the wide application of ENMs and the paucity 
of studies investigating the impact of climate change on crop 
plants (Beck 2012), the aim of this study was to investigate 
the relationship between productivity of Zea mays L. in 
Brazilian municipalities and crop suitability in current 
scenarios under the correlative, mechanistic and hybrid 
models, as well as to predict the impact of climate change 
on the geographic distribution of Z. mays using the ENMs.
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correlative model built using all data, and established at 
which distance the spatial correlogram crosses the intercept 
and thus define independently samples for modeling (see 
Tôrres et al. 2012). Based on such method, we defined 
880 km as distance necessary to get 16 spatially independent 
presence points for maize (Figures S1 and S2 in the Additional 
Supporting Information available at www.abeco.org.br). 
The following environmental predictors were used to fit 
the model: temperature seasonality, isothermality, minimal 
temperature of coldest month, annual precipitation and 
precipitation of coldest quarter, all of them were obtained 
from Wordclim (www.wordclim.org), and were converted 
into a grid with 0.0417 degrees of resolution.

We used Jackknife criteria to selected environmental 
variables (see details in Nemésio et al. 2012) and then 
applied the Maximum Entropy algorithm (MAXENT; 
Phillips et al. 2006) to obtain the species’ distribution. The 
input parameters followed the program defaults, apart from 
the iterations that were set to 1000, with duplicates removed. 
Then we used the AUC (Area Under the – ROC – Curve) 
to evaluate the model (Peterson et al. 2011). Finally, for the 
hybrid model, we used the same environmental variables 
shown above and mechanistic model output obtained in 
the Plantgro model as another predictor in the MAXENT.

The same variables were used to project the ENMs model 
into future climate, derived from the global climate model 
CCCma (Canadian Centre for Climate Modelling and 
Analysis) for a pessimistic scenario (A2a) for 2050. The 
climatic data were obtained from Worldclim (www.worldclim.
org), and all the climate variables were converted into a 
grid with 0.0417 degrees of resolution. It was projected to 
future scenario only the ENMs that best correlated with 
productivity (see data analysis).

Data analysis

The association between Z. mays productivity and 
environmental suitability (for each one of ENMs) was 
investigated using Pearson correlation approach, after 
log-transformation of both variables. The significance 
test for these correlations was based on the Dutilleul’s 
correction for geographically effective degrees of freedom 
(dfDutilleul) obtained in SAM v.4 Software (Rangel et al. 2010). 
Furthermore, the difference in climate suitability due to 
climate change was investigated by delta suitability of cities 
that produce maize.

We performed a Pearson correlation of maize yield with 
the year (for each municipality), so that positive values 
indicate temporal increase of productivity (kept planting area 
constant) and negative values suggest loss of productivity in 
time. This is relationship indicates the trend of productivity 
of municipality (hereafter called “productivity trends”). The 
current suitability was then geographically correlated to 
“Productivity trend” and to the change in suitability across 
municipalities, also using Dutilleul’s correction.

Material and Methods

The species

The species investigated in this study was Zea mays (maize), 
which has been widely cultivated in several regions of Brazil 
and throughout the world. The maize is currently the third 
most traded cereal, after wheat and rice (see www.fao.org). 
Brazil is the third largest maize producer, reaching 57,406,900 
tons in 2010/2011 (1st and 2nd harvest), covering an area 
of 13,806,100 hectares (see historical series in http://www.
conab.gov.br). This is an important cereal and its economic 
importance is well known and characterized by its use in 
various forms, ranging from food (human and livestock) 
to the high-tech industry (Pavão & Ferreira Filho 2011).

Productivity data for maize at municipality scale was 
obtained from the relationship between production and 
harvested area. The production values and harvested area 
can be found at the Instituto Brasileiro de Geografia e 
Estatística (IBGE, www.ibge.gov.br) using the database 
“Sistema IBGE de Recuperação Automática” (SIDRA). We 
recorded the municipal agricultural production (tonnes) and 
their respective planted areas (ha) in the period 1994-2010.

Ecological Niche Models

We fitted here three ENMs approaches: Mechanistic, 
Correlative and Hybrid model. For the mechanistic model, 
we used Plantgro model (Hackett & Vanclay 1998), in which 
requirements for plant growth are described as plateau-
shaped curves that indicate plant responses (expressed as 
0 to 1) to monthly precipitation and minimum and mean 
temperature. This model is implemented in DIVA-GIS 
7.3.0 (Hijmans et al. 2005) and uses environmental data of 
temperature and precipitation to determine fundamental 
niche of the species and project it in geographical space. 
These environmental data are defined by two parameters 
(absolute and optimal). The environmental data for this 
model were monthly temperature and precipitation, obtained 
at the site Worldclim (www.worldclim.org), with resolution 
of 0.0417 degrees. The mechanistic parameters for Z. mays 
were taken from the ECOCROP database (http://ecocrop.fao.
org/), which includes killing (minimum) temperature, and 
minimum, maximum, and range of optimal temperatures, 
the minimum and maximum length of the growing season, 
and minimum, maximum and range of optimal amount 
of rainfall.

For the correlative models, we selected a total of 5391 
Brazilian municipalities in which occurrences (productivity 
larger than zero) of this species were recorded and used 
as occurrence data. However, many points are very close 
geographically, and this can generate an effect of spatial 
dependence that may disturb model fit. To control for the 
effect of spatial dependence, we used Moran’s I correlograms 
based on the environmental suitability obtained by an initial 

http://www.abeco.org.br
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(Figure S3 in the Additional Supporting Information). 
Maize productivity was positively correlated with current 
suitability estimated by the correlative (Figure 2, r = 0.44; 
P = 0.02; dfDutilleul = 15) and hybrid model (r = 0.40; 
P = 0.03; dfDutilleul = 70). Nonetheless, the correlation 
between productivity and mechanistic predictions was 
much lower and not significant (r = –0.11; P = 0.61; 
dfDutilleul = 18) (Figure 2).

The temporal trends in productivity of Brazilian 
municipalities reveal a general increase in productivity over 
the years, indicated by a mean positive correlation coefficient 
(Figure S4 in the Additional Supporting Information). The 
productivity trends was positively correlated with current 
environmental suitability (r = 0.28; P = 0.02; dfDutilleul = 57). 
Thus, municipalities with higher increases in productivity 
tend to occur in regions of high environmental suitability.

Results

The maize productivity was concentrated mainly in southern 
and southeastern Brazil (Figure 1a). Moreover, according 
to the map of suitability of correlative and hybrid model, 
only the Caatinga region (northeastern Brazil) do not 
exhibit favorable climatic conditions for the cultivation of 
maize (Figure 1b, c). On the other hand, in the mechanistic 
model the Caatinga region and southern Brazil has high 
environmental suitability whereas the northern region 
(Amazonia) shows low suitability, thus diverging strongly 
from the other two ENMs (Figure 1d). AUC from correlative 
and hybrid models were high and quite similar (0.945 and 
0.949, respectively).

Most municipalities have low productivity of maize and 
only a few municipalities have high productivity (3% of 
municipalities produce more than 5 tons per hectare) 

a b

c d

Figure 1. Map of Zea mays productivity in Brazilian municipalities (a), and environmental suitabilities for current time, generated 
using correlative (b) hybrid (c) and mechanistic models (d).
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Figure 2. Relationship between the environmental suitability and the maize productivity (r = 0.44; P = 0.02 with 15 geographically 
effective degrees of freedom) for all municipalities. Figure for hybrid model is qualitatively similar.

Figure 3. Map of environmental suitabilities of Zea mays for future time (2050), generated using correlative model.

The map of environmental suitability in future scenario 
(Figure 3), using correlative model only, indicated that 
there was little change in climatic suitability in relation to 
the current climate scenario. Actually, the map obtained 

in the current climate scenario is very similar to the map 
of future climate model (Pearson correlation r = 0.93, 
P < 0.01). Moreover, the number of municipalities that 
will lose climatic suitability is similar to the number of 
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municipalities that will gain suitability (Figure S5 and 
S6 in the Additional Supporting Information). However, 
an evaluation by states of Brazil indicated that the “Rio 
Grande do Norte” is the State that presents greater loss of 
environmental suitability, whereas “Paraná” is the State 
with highest gain of suitability.

The productivity trends were positively correlated with the 
delta environmental suitability, although the correlation 
is low and only marginally significant (r = 0.18, P = 0.15, 
dfDutilleul = 51). This suggests that the productivity today is 
higher in municipalities where gain in climatic suitability 
will occur in the future.

Discussion

The number of papers about ENMs has grown sharply in 
recent years (Peterson et al. 2011), but most of them used the 
correlative approach, most likely due to lack of physiological 
data required by mechanistic models (Araújo & Peterson 
2012). For the present study the correlative model was 
the best surrogate for productivity of maize in Brazilian 
municipalities and the incorporation of physiological data 
did not produced significant improvements in ENMs. 
Thus, for cultivated species, mechanistic models are not 
necessarily good to predicting productivity, and therefore 
are not useful to understand the impacts of global climate 
change. Certainly, the inclusion of new biophysical variables 
can improve the mechanistic model, but this is also valid 
for both the correlative and hybrid models, and indeed the 
inclusion of new types of variables is on the edge of research 
frontiers in all ENMs (Peterson et al. 2011). Also with respect 
to the mechanistic model, it is important to consider that 
the physiological data obtained for maize came from an 
international database (i.e. FAO) that combines physiological 
information of species from various countries. Therefore, 
local improvements can alter the physiological tolerance of 
this species, and the lack of theses local information may 
explain the low predictive power of the mechanistic model.

Considering the importance of correlative models and their 
good fit, based on our data and analyses, we recommend their 
use to investigate the potential geographical distribution of 
cultivated species. In this study we found a significant and 
positive correlation between productivity and climate, clearly 
suggesting that, despite strong technological investment in 
cultivated plants, the climate is still critical to the productivity 
and distribution of the species. Furthermore, it reinforces 
the importance of studies evaluating the effects of global 
climate change on cultivated species, since it may influence 
future productivity and, consequently, the economy at 
local, national and global scales (Hijmans & Graham 2006).

However, it is important to keep in mind that the ENMs 
applied to native species has many problems and drawbacks 
(see Elith et al. 2010), and the situation tend to be even more 
complicate when they are applied to cultivated species (Beck 
2012). In fact, cultivated species are strongly influenced 
(geographic distribution and productivity) by several 

factors usually not included as model predictors, such as 
resource biotech, irrigation, soil types and fertilization and 
other local factors (see Connor et al. 2011).

Although the use of ENMs for modeling cultivated species 
response is still scarce, there is great concern about the 
impacts of climate change on the distribution and physiology 
of these cultivated species (e.g. Beck 2012), with studies 
related to food safety (e.g. Ureta et al. 2012) and impact 
of pests in agriculture (e.g. Zhu et al. 2012). In general, 
studies that investigate the impact of climate change on 
cultivated species found a reduction in area of cultivation 
in future scenarios (Lane & Jarvis 2007; Jarvis et al. 2008; 
Beck 2012; Ramirez-Villegas et al. in press). However, we 
found that climate change does not seem to exert a strong 
impact on the geographic distribution of maize.

Other studies have found different results for maize. 
Ureta et al. (2012), for instance, found significant reductions 
of potential distribution areas of Mexican maize races by 
2030 and 2050. Assad et al. (2008) investigated the impact of 
global climate change in 9 cultivated species of Brazil, and 
in almost all cultures they predict a reduction in potential 
geographic distribution (excepted sugarcane), according to 
the model Precis (Providing Regional Climates for Impact 
Studies). Compared with the present study, Assad et al. (2008) 
found a greater reduction in the geographical distribution of 
maize in future scenarios of climate change (approximately 
12% reduction in the geographical distribution). Nonetheless, 
the authors used different projection technique (i.e. Precis), 
as well as other predictors, so the results are hardly directly 
comparable. Also, it is important to keep in mind that 
niche model techniques are important sources of variation, 
driving large uncertainties in predictions (e.g. Diniz-
Filho et al. 2010). The aims of this study was not to compare 
different techniques for ENMs, but future studies may focus 
on how different correlative models are correlated with 
productivity, with important applications to agricultural 
science. Depending on these results, this may also lead to 
recommending the use of ensemble forecasting approach 
(sensu Araújo & New 2007) to reduce uncertainties in 
predictions of geographical distribution.

In present study the relationship between productivity and 
environmental suitability of correlative model can be better 
described as a constraint envelope, and not as a functional 
relationship. In this envelope, regions with low suitability will 
always minimally produce maize, whereas highly suitable 
regions can produce more or less maize. The low production 
of maize in areas of high suitability may also be related low 
support to exploitation of this crop by local governments 
and other economic and political problems, thus making 
the production of other crops (such as soybean and sugar 
cane) a more profitable investment. It is worthwhile to 
notice that researchers have investigated the relationship 
between environmental suitability obtained from ENMs 
and other characteristics of the species, such as genetic 
population structure (Diniz-Filho et al. 2009), functional 
traits (Thuiller et al. 2010), population density (Tôrres et al. 
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2012), and fruit production of native plants (Nabout et al. 
2011). Constraint envelopes were found in some of these 
papers (Tôrres et al. 2012; Nabout et al. 2011), demonstrating 
that the ENM in high environmental suitability does not 
make a good prediction of these demographic attributes 
for both native (other paper cited) and cultivated species 
(this study).

Here we compared three different types of ENMs and 
demonstrated the importance of them, particularly the 
correlative model, to understand the impact of global 
climate change on cultivated species. The use of ENM in 
cultivated species allows important strategies to minimize 
the economic impact of climate changes on agriculture, 
such as: i) change the cultivated species in areas that will 
have a reduction in the environmental suitability for a given 
species; ii) explore new potential regions for crops in future 
scenarios (e.g. Ureta et al. 2012), and; iii) indicate regions 
for development of programs for develop varieties tolerant 
to climate change. Moreover, the difficulties found to model 
the cultivated species are not different from those when 
modeling native species, so it is still necessary investigate the 
uncertainties of climate change impact on cultivated species 
(e.g. Ramirez-Villegas et al. in press). Finally, researchers 
who wish to use these ENMs to native or cultivated species 
should consider that Box (1979, p. 3) wrote: “[...] Models, 
of course, are never true, but fortunately it is only necessary 
that they be useful. For this it is usually needful only that 
they not be grossly wrong”.

Acknowledgements

We acknowledge CAPES for scholarships granted to Jordana 
Moura Caetano, Rafael Batista Ferreira. Our work on 
ecological niche models and agriculture science has been 
continuously supported by different grants CNPq. We thank 
José Alexandre Felizola Diniz-Filho, Paulo De Marco Júnior 
and Ricardo Dobrovolski for discussions and suggestions 
that improved previous versions of the manuscript.

References

Araújo MB & Peterson AT, 2012. Uses and misuses of bioclimatic 
envelope modelling. Ecology, 93:1527-1539. PMid:22919900. 
http://dx.doi.org/10.1890/11-1930.1

Araújo MB & New M, 2007. Ensemble forecasting of species 
distributions. Trends in Ecology and Evolution, 22:42-47. 
PMid:17011070. http://dx.doi.org/10.1016/j.tree.2006.09.010

Assad ED et al., 2008. Aquecimento Global e a Nova Geografia da 
produção Agrícola no Brasil. Brasília: Embaixada Britânica. 
PMCid:2646102.

Beck J, 2012. Predicting climate change effects on agriculture 
from ecological niche modeling: who profits, who loses? 
Climate Change. In press. http://dx.doi.org/10.1007/
s10584-012-0481-x

Box GEP, 1979. Some problems of statistics and everyday life. 
Journal of the American Statistical Association, 74:1-4. http://
dx.doi.org/10.1080/01621459.1979.10481600

http://dx.doi.org/10.1890/11-0066.1
http://dx.doi.org/10.1007/ s11295-009-0214-0
http://dx.doi.org/10.1007/ s11295-009-0214-0
http://dx.doi.org/10.1111/j.1752-4598.2010.00090.x
http://dx.doi.org/10.1111/j.1752-4598.2010.00090.x
http://dx.doi.org/10.1111/j.2041-210X.2010.00036.x
http://dx.doi.org/10.1016/S0304-3800(97)00185-3
http://dx.doi.org/10.1016/S0304-3800(97)00185-3
http://dx.doi.org/10.1111/j.1365-2486.2006.01256.x
http://dx.doi.org/10.1111/j.1365-2486.2006.01256.x
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.1016/j.agee.2008.01.013
http://dx.doi.org/10.1016/j.agee.2008.01.013
http://dx.doi.org/10.1111/j.1461-0248.2008.01277.x
http://dx.doi.org/10.1111/j.1461-0248.2008.01277.x
2011.Global
http://dx.doi.org/10.4322/natcon.2011.006
http://dx.doi.org/10.4322/natcon.2011.006
http://dx.doi.org/10.1007/s10841-012-9459-2
http://dx.doi.org/10.1890/11-1930.1
http://dx.doi.org/10.1016/j.tree.2006.09.010
http://dx.doi.org/10.1007/s10584-012-0481-x
http://dx.doi.org/10.1007/s10584-012-0481-x
http://dx.doi.org/10.1080/01621459.1979.10481600
http://dx.doi.org/10.1080/01621459.1979.10481600


183The Correlative, Mechanistic and Hybrid Niche Models to Predict Maize Distribution

grain sorghum. Agricultural and Forest Meteorology. In 
press. http://dx.doi.org/10.1016/j.agrformet.2011.09.005

Thuiller W et al., 2010. Variation in habitat suitability does not 
always relate to variation in species’ plant functional traits. 
Biology Letters, 23:120-123. PMid:19793738. PMCid:2817270. 
http://dx.doi.org/10.1098/rsbl.2009.0669

Tôrres NM et al., 2012. Can species distribution modelling 
provide estimates of population densities? A case study with 
jaguars in the Neotropics. Diversity and Distributions, 18:615-
627. http://dx.doi.org/10.1111/j.1472-4642.2012.00892.x

Ureta C et al., 2012. Projecting the effects of climate change 
on the distribution of maize races and their wild relatives 
in Mexico. Global Change Biology, 18:1073-1082. http://
dx.doi.org/10.1111/j.1365-2486.2011.02607.x

Zhu G et al., 2012. Potential Geographic Distribution of 
Brown Marmorated Stink Bug Invasion (Halyomorpha 
halys). PLoS ONE, 7(2):e31246. http://dx.doi.org/10.1371/
journal.pone.0031246

Received: October 2012 
First Decision: November 2012 

Accepted: November 2012

Pavão AR & Ferreira Filho JBS, 2011. Impactos econômicos 
da introdução do milho Bt11 no Brasil: uma abordagem 
de equilíbrio geral inter-regional. Revista de Economia e 
Sociologia Rural, 49: 81-108. http://dx.doi.org/10.1590/
S0103-20032011000100004

Peterson AT et al., 2011. Ecological niches and geographic 
distributions. Princeton: Princeton University Press. p. 314.

Phillips SJ et al., 2006. Maximum entropy modeling of species 
geographic distributions. Ecological Modeling, 190:231-259. 
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026

Rangel TF et al., 2010. SAM: a comprehensive application for 
Spatial Analysis in Macroecology. Ecography, 31:46-50. 
http://dx.doi.org/10.1111/j.1600-0587.2009.06299.x

Ramirez-Villegas J, Jarvis A & Läderach P. 2011. Empirical 
approaches for assessing impacts of climate change on 
agriculture: The EcoCrop model and a case study with 

http://dx.doi.org/10.1016/j.agrformet.2011.09.005
http://dx.doi.org/10.1098/rsbl.2009.0669
http://dx.doi.org/10.1111/j.1472-4642.2012.00892.x
http://dx.doi.org/10.1111/j.1365-2486.2011.02607.x
http://dx.doi.org/10.1111/j.1365-2486.2011.02607.x
http://dx.doi.org/10.1371/journal.pone.0031246
http://dx.doi.org/10.1371/journal.pone.0031246
http://dx.doi.org/10.1590/S0103-20032011000100004
http://dx.doi.org/10.1590/S0103-20032011000100004
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1111/j.1600-0587.2009.06299.x

