The impact of glyphosate herbicides on soil microbial activity from the Carajás National Forest

ABSTRACT: The objective of this study was to evaluate the impact of different glyphosate-based herbicide formulations on microbial activity of soils from Carajás National Forest. We tested three formulations of glyphosate, i.e., Roundup Original®, Roundup Ultra® and Roundup WG® that were applied in five doses: 0; 240; 480; 720 and 1440 g of active ingredient in acid equivalent ha⁻¹, with four replications. Herbicides were sprayed on pots containing 500 g of soil derived from the 0-10 cm layer of the study site. We determined the carbon from microbial biomass (C-MB), microbial respiration rate (MR) and metabolic quotient (qCO₂) at one and 28 days after herbicide application. No treatment affected the C-MB and MR at one and 28 days of incubation. There was no difference for qCO₂ at any dose of Roundup Ultra® and WG® formulations at one and 28 days of incubation. However, the qCO₂ was inhibited by the Roundup Original® at one day post treatment. This parameter was normalized at 28 days after herbicide application. The data indicate that no one of the treatments tested cause significant impact on soil microorganisms of the Carajás National Forest, suggesting that herbicide-based invasive weed control could be used.

RESUMO: Objetivou-se com este estudo avaliar o impacto de diferentes formulações de herbicidas à base de glyphosate na atividade microbiana do solo da Floresta Nacional de Carajás. Foram testadas três formulações comerciais de glyphosate (Roundup Original®, Roundup Ultra® e Roundup WG®) e cinco doses (0, 240, 480, 720 e 1.440 g de ingrediente ativo em equivalente de ácido ha⁻¹), com quatro repetições. Os herbicidas foram pulverizados em vasos contendo 500 g de solo coletado da camada de 0-10 cm de solo proveniente da Floresta Nacional de Carajás. Determinaram-se o carbono da biomassa microbiana (C-MB), a taxa de respiração microbiana (MR) e o quociente metabólico (qCO₂) aos um e 28 dias após a aplicação dos herbicidas. Nenhum tratamento afetou o C-MB e a MR aos um e 28 dias de incubação. Não houve diferença para qCO₂ em qualquer dose de formuilações Roundup Ultra® e WG® aos um e 28 dias de após a aplicação. No entanto, o qCO₂ diferiu da dose 0 com a formulação Roundup Original® no 1° dia após o tratamento. Esse parâmetro foi normalizado aos 28 dias após a aplicação do herbicida. Os dados indicam que todos os tratamentos testados não causam impacto significativo nos micorganismos do solo da Floresta Nacional de Carajás, sugerindo que o controle com o herbicida testado possa ser utilizado nessa área.
1 Introduction

The Carajás National Forest is a protected area located in the southeastern region of Pará state that was created in 1998 in order to protect unique Amazonian ecosystems found in Brazil. Maintenance and correct management of the Carajás National Forest is a critical element of national environmental conservation efforts, because the forested area is one of the last islands of natural vegetation surrounded by the disturbed, deforested landscape that developed primarily due to the agricultural and livestock uses. Furthermore, the 411,948 ha reservation supports the livelihood of a few indigenous settlements and is exploited by mining companies for extraction of mineral ores, which brings employment to local communities, and by the extrativists who harvest wild plant biomass for natural products, such as biomedicines and oils (Souza-Filho et al., 2016).

After agricultural land expansion, the introduction of invasive exotic species is recognized as the second major cause of native biodiversity loss, which is comparable to projected impacts of climate change (Levine & D’Antonio, 1999). Exotic species compete with native species for nutrients and solar energy, changing ecosystem processes and community structure and ultimately leading to loss of biodiversity throughout the food chain (Vitousek & Walker, 1989; Vitousek et al., 1997; Mack, 1996; Rejmánek & Richardson, 1996; Keane & Crawley, 2002; Mijangos et al., 2009).

Historically, two related African grass species from the genus Urochloa have been used in cattle pasture lands in Brazil, and in the recovery of land areas degraded by mining, including the Carajás National Forest. Urochloa spp. Have shown great adaptability for local soils and climate, but when it is left uncontrolled, they invade natural ecosystems and become a threat to native species to the Carajás National Forest. One of the methods used to control Urochloa species is the application of glyphosate-based herbicide formulations, which represent a very efficient, fast and low cost strategy (Brighenti et al., 2011; Ruas et al., 2011). The herbicide glyphosate is the most widely used broad-spectrum, non-selective and post emergence pesticide (Schuster & Gratzfeld-Husgen, 1992). It is utilized for weed control in agriculture, forestry, urban areas and even aquaculture (Contardo Jara et al., 2009).

Glyphosate belongs to the chemical group of amino acid synthesis inhibitors and contains N-(phosphonomethyl)glycine as active ingredient (Bridges, 2003). After absorbed by the plant, the chemical is promptly translocated from the foliar application points to distant sinks (Santos et al., 2009). In sensitive species, glyphosate inhibits the activity of the plastidic enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at the pre-chorismate stage of the shikimate route in biosynthesis of the phenylalanine, tyrosine and tryptophan amino acids (Shaner & Bridges, 2003; Boocock & Coggins, 1983). Inhibition of EPSPS by glyphosate therefore limits protein synthesis, leading the plant to death (Mesnage et al., 2015).

The EPSPS enzymatic step is absent in metazoans, but is fundamental for the primary metabolism of plants, fungi and bacteria (Hinchee et al., 1993). Hence, the use of glyphosate in protected areas such as Carajás National Forest poses a challenge for the thorough assessment of the possible impacts that glyphosate molecular off-target may cause to myriad species of poorly characterized organisms that inhabit Amazonian ecosystems. Various non-target organisms have been used as bioindicators of glyphosate environmental impacts, including protozoans (Coupe & Smith, 2006), worms (Contardo-Jara et al., 2009); insects (Linz et al., 1999; Baker et al., 2014) and microorganisms (Tsui & Chu, 2003; Ratcliff et al., 2006; Gomez et al., 2009; Mbanaso et al., 2014; Santos et al., 2009). The focus on a particular group of organisms results in data inherently limited to the phylum, and could be financially prohibitive. Thus, integrative parameters are preferable. For example, soil respiration, microbial biomass carbon content and metabolic quotient provide reliable and sensitive measurements to assess the pollutant impact on soil health and overall survival of millions of species that comprise both soil microbiota and macrobiota, including various arthropods and worms (Bölter et al., 2006; Brohón et al., 2001).

In the above mentioned studies where negative effects were documented, the direct role of glyphosate itself was not thoroughly examined. The pure chemical is expensive, whereas commercial products are highly complex mixtures of chemicals that differ in purity of the synthesized glyphosate, and contain additives, such as surfactants and stabilizers. Thus, comparative studies on environmental toxicology are required for the products available in the market. The differential environmental impact of glyphosate-based herbicides requires careful toxicological assessment to help in the selection amongst commercial products and in the determination of minimal dosages required to control invasive species in protected areas.

The aim of this study was to investigate the impact of glyphosate herbicides on soil microbial activity from the Amazonian Carajás National Forest.

2 Materials and Methods

2.1 Soil samples

The soil type classified as a typical Udox Brazilian soil was collected inside the Carajás National Forest, Amazon, Brazil (60° 29’ 87” S; 93° 28’ 30” E) in an area infested by the exotic grass Urochloa brizantha. Top soil samples were collected to a depth of 10 cm, excluding the organic matter of the soil surface. There was no reported application of glyphosate in the study area. Bulk soils were air dried and sieved through a 2 mm mesh before use. The principal characteristics of the soil are shown in Table 1.

2.2 Experimental design

The experiment was completely randomized with four replications in a 3 x 4 + 1 factorial design, as follows: three herbicides (Roundup Original®, Roundup Ultra® and Roundup WG®), four doses (240; 420; 740, and 1.440 g of a. i. in acid

Table 1. Characteristics of soil investigated.

<table>
<thead>
<tr>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
<th>Organic matter (g kg⁻¹)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>22</td>
<td>72</td>
<td>82.75</td>
<td>5.4</td>
</tr>
</tbody>
</table>
2.4 Soil biological activity measurements

One and twenty eight days after herbicide application, soil samples were analyzed for Carbon from microbial biomass (C-MB) and microbial respiration rate (MR). The C-MB was measured by fumigation–incubation as described by Jenkinson & Powlson (1976). In the sequence, fifty grams of soil were exposed to chloroform vapor for 24 h; then the fumigant was removed and soil was incubated in 0.6 L gas-tight glass containers for 10 days at 25 °C. Duplicate samples were incubated under the same conditions omitting the fumigation step. The CO$_2$ evolved was trapped in a solution of 0.5 N of NaOH. The alkali was titrated to the phenolphthalein with 0.5 N HCl in the presence of BaCl$_2$. The CO$_2$ evolved and the daily respiration rate were calculated as a difference between samples and blanks without soil as described by Frioni (1999).

The results of C-MB and MR were expressed as mg C-CO$_2$ g$^{-1}$ soil in a dry basis. The microbial metabolic quotient (qCO$_2$) was calculated as the ratio of CO$_2$ produced by respiration and C-MB and was expressed as µg C-CO$_2$ g$^{-1}$ C-BM.

2.5 Statistical analysis

Data variance was analyzed through F tests. When significant, the means of the measurements after treatment with herbicide were compared to control treatments using Dunnet test at p > 0.05 significance. Different means from control treatment were considered as indicative of impact on soil microbial activity. When necessary, Tukey’s test at p > 0.05 significance was used for pairwise comparisons, excluding the control treatment.

3 Results and Discussion

3.1 Carbon from microbial biomass (C-MB)

Table 3 shows that herbicides do not exert differential influence on any of the variables, and no significant change was observed when results are compared to the control. Doses, as isolated factor, promoted changes in both evaluations.

The C-MB at one and 28 days after herbicide application did not differ from control for any glyphosate containing formulation (Figure 1A and B). These measurements suggest equivalent ha$^{-1}$ and a control without herbicide application. Treatments are described in Table 2.

Table 2. Description of treatments.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Doses of glyphosate g a. i. in a. e. ha$^{-1}$</th>
<th>Doses of commercial product L ha$^{-1}$ or Kg ha$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundup</td>
<td>240</td>
<td>0.7</td>
</tr>
<tr>
<td>Original</td>
<td>480</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>720</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>1440</td>
<td>4.0</td>
</tr>
<tr>
<td>Roundup Ultra</td>
<td>240</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>720</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>1440</td>
<td>2.2</td>
</tr>
<tr>
<td>Roundup WG</td>
<td>240</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>720</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>1440</td>
<td>2.0</td>
</tr>
<tr>
<td>Control</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* g of active ingredient in acid equivalent ha$^{-1}$.

Table 3. Summary of ANOVA variables microbial respiration rate, microbial biomass carbon and metabolism quotient at 1 and 28 days after herbicide application.

<table>
<thead>
<tr>
<th></th>
<th>1 day</th>
<th>28 days</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microbial respiration rate</td>
<td>Carbon microbial biomass</td>
<td>Metabolic quotient1</td>
</tr>
<tr>
<td></td>
<td>F-ANOVA</td>
<td>F-ANOVA</td>
<td>F-ANOVA</td>
</tr>
<tr>
<td>Herbicide</td>
<td>0.26 (p>0.05)</td>
<td>1.03 (p>0.05)</td>
<td>1.92 (p>0.05)</td>
</tr>
<tr>
<td>Dose</td>
<td>2.29 (p>0.05)</td>
<td>2.99 (p>0.05)</td>
<td>3.68 (p>0.05)</td>
</tr>
<tr>
<td>Herbicide × Dose</td>
<td>1.52 (p>0.05)</td>
<td>0.51 (p>0.05)</td>
<td>3.78 (p>0.01)</td>
</tr>
<tr>
<td>Treatment vs control</td>
<td>0.00 (p>0.05)</td>
<td>0.02 (p>0.05)</td>
<td>0.27 (p>0.05)</td>
</tr>
<tr>
<td></td>
<td>Microbial respiration rate</td>
<td>Carbon microbial biomass</td>
<td>Metabolic quotient1</td>
</tr>
<tr>
<td></td>
<td>F-ANOVA</td>
<td>F-ANOVA</td>
<td>F-ANOVA</td>
</tr>
<tr>
<td>Herbicide</td>
<td>0.16 (p<0.05)</td>
<td>0.01 (p>0.05)</td>
<td>0.03 (p>0.05)</td>
</tr>
<tr>
<td>Dose</td>
<td>3.31 (p<0.05)</td>
<td>0.61 (p>0.05)</td>
<td>2.06 (p<0.05)</td>
</tr>
<tr>
<td>Herbicide × Dose</td>
<td>1.82 (p<0.05)</td>
<td>1.08 (p<0.05)</td>
<td>0.56 (p<0.05)</td>
</tr>
<tr>
<td>Treatment vs control</td>
<td>0.99 (p<0.05)</td>
<td>0.03 (p<0.05)</td>
<td>1.17 (p<0.05)</td>
</tr>
</tbody>
</table>

1Transformed by log neperian.
that there was no deleterious effect of the formulations and their components on the production of microbial biomass and, therefore, no adverse environmental impact. However, microbial biomass alone should not be considered a proper bio-indicator of impact because the possibility of compensatory alterations in overall metabolic activity of soil populating organisms cannot be excluded.

In our experiments, the availability of chemicals and their chemical stability could have been altered due to physico-chemical properties of the type of soil studied. Udom Brazilian soil contains considerable amount of Fe oxides, clays and organic matter, as illustrated in Table 1. These key soil constituents could adsorb glyphosate or trigger chemical decomposition, thus promoting the decline in glyphosate biological activity (Sprankle et al., 1975; Torstensson, 1985; McBride & Kung, 1989; Piccolo et al., 1994; Haney et al., 2000). Furthermore, other authors (Carlisle & Trevors, 1988; Dick & Quinn, 1995; Mijangos et al., 2009; Zabaloy et al., 2008) have reported that, in the short-term, glyphosate can stimulate microbial activity and increase microbial biomass because it might work as a ready source of C, N and P retained within soil colloids and available for consumption by microorganisms.

In agreement with our results, Mijangos et al. (2009) did not observe differences in the total microbial biomass DNA content in soils with and without addition of glyphosate in 15 and 30 days after herbicide application and glyphosate application did not alter the fungi-bacteria ratio in a soil with no history of herbicide application (Lane et al., 2012).

Field studies are also in agreement with our results, reinforcing the negligible effects of glyphosate on microbial biomass production. Liphasiazi et al. (2005) compared the effect of different herbicides and tillage systems and found that microbial biomass was not affected by glyphosate. In similar field experiments, Wardle & Parkinson (1990) did not observe alterations in microbial biomass when the herbicide was applied to agricultural plots. Busse et al. (2001) did not find changes in the microbial biomass in the surface horizon of forest soils. Likewise, Ratcliff et al. (2006) found no evidence of glyphosate-induced changes in a forest soil community structure when herbicide was applied at agronomical acceptable rates.

While some groups of microorganisms are able to use glyphosate as a nutrient source, others can be sensitive to glyphosate toxicity owing to the inhibition of the enzymatic activity of enolpyruvylshikamate-5-phosphate synthase that initiates biosynthesis of amino acids (Kuklinsky-Sobral et al., 2005; Busse et al., 2001; Motavalli et al., 2004). The potentially toxic effects of glyphosate should inhibit microbial activity, reducing biomass carbon content. That effect was not observed in this study.

3.2 Microbial respiration rate

Our analysis showed that microbial soil respiration and microbial biomass were similar between the control and soil samples treated with herbicides at both, one and 28 days after herbicide application (Figure 2A and B).

Studies with different naive soils, i.e. non-agricultural soil with no history of herbicide use, are in agreement with our results. Zabaloy et al. (2008) did not observe difference in the total soil respiration between control and glyphosate treatment in a Pampa region in Argentina. Soil respiration rates did not significantly differ after application of different doses of glyphosate in Argentinian Vertic Argiudoll region (Gomez et al., 2009).

On the other hand, the adaptation of soil microbiota has been observed in case studies on agricultural soils where glyphosate was used for weed control. Araújo et al. (2003) and Wardle & Parkinson (1990) observed soil respiration increase indicating that carbon dioxide production is related to the decomposition of glyphosate by soil microbiota, which is capable of using glyphosate as a carbon source. The time course in the relationship between the glyphosate application and the release of carbon dioxide is complex and is suggestive of soil adsorption mechanism that limits the availability of herbicide to soil microorganisms (Sprankle et al., 1975; Nomura & Hilton, 1977; Panettieri et al., 2013). Agronomic soil management practices also have an impact on the relationship glyphosate-soil respiration (Lane et al., 2012). In organic, herbicide-free practices, glyphosate application does not influence the soil respiration rate. On the other hand, glyphosate stimulates microbial respiration insools managed with herbicide-based weed control. Organic agriculture implies a great input of...
is particularly sensitive to Roundup Original®. However, those differences disappeared at 28 days after herbicide application (Figure 3B). In other words, the soil microbiota was able to recover from the deleterious effects elicited by the Roundup Original® herbicide over time.

The uncoupling between respiration activity increase and microbial biomass production indicates the lower catabolic efficiency of microorganisms with less biomass accumulation. The investment of cellular resources into a detoxification or degradation of Roundup Original® is a possible mechanism that could explain the observed differences in metabolic quotient at the day one. In line with this argument, Gomez et al. (2009) observed a similar impact of glyphosate on the metabolic quotient of Vertic Argiudoll soil. They proposed that the initial decline in metabolic activity is a reflection of stress in microbial communities due to the inhibitory effect of the herbicide. In addition, the exact composition of microbial communities greatly differed between soils.

3.3 Metabolic quotient

The measurements of the metabolic quotient at one day after herbicide application detected differences between control and treatment samples when the Roundup Original® was used at doses of 720 and 1440 g of active ingredient in acid equivalent ha-1 (Figure 3A). These observations are important because they suggest that metabolic quotient is the most sensitive measurement indicating environmental impact. The results suggest that the reestablishment of microorganisms in dry soils

![Figure 2. Effect of different doses of the tested brands of commercial glyphosate-based herbicides on Microbial Respiration Rate (MR) after 1 (A) and 28 days (B) herbicide application. NS: means nonsignificance from the control treatment.](image)

![Figure 2. Efeito de diferentes doses de herbicidas comerciais à base de glyphosate sobre a Taxa de Respiração Microbiana (MR) aos 1 (A) e 28 dias (B) após a aplicação do herbicida. NS: médias dos tratamentos não diferem da testemunha.](image)

![Figure 3. Effect of different doses of the tested brands of commercial glyphosate-based herbicides on Metabolic Quotient (qCO\textsubscript{2}) after 1 (A) and 28 days (B) herbicide application. NS: means nonsignificance from the control treatment.](image)

![Figure 3. Efeito de diferentes doses de herbicidas comerciais à base de glyphosate sobre Quociente Metabólico (qCO\textsubscript{2}) aos 1 (A) e 28 dias (B) após a aplicação do herbicida. NS: médias dos tratamentos não diferem da testemunha.](image)

![Figure 2. Effect of different doses of the tested brands of commercial glyphosate-based herbicides on Microbial Respiration Rate (MR) after 1 (A) and 28 days (B) herbicide application. NS: means nonsignificance from the control treatment.](image)

![Figure 2. Efeito de diferentes doses de herbicidas comerciais à base de glyphosate sobre a Taxa de Respiração Microbiana (MR) aos 1 (A) e 28 dias (B) após a aplicação do herbicida. NS: médias dos tratamentos não diferem da testemunha.](image)

![Figure 3. Effect of different doses of the tested brands of commercial glyphosate-based herbicides on Metabolic Quotient (qCO\textsubscript{2}) after 1 (A) and 28 days (B) herbicide application. NS: means nonsignificance from the control treatment.](image)

![Figure 3. Efeito de diferentes doses de herbicidas comerciais à base de glyphosate sobre Quociente Metabólico (qCO\textsubscript{2}) aos 1 (A) e 28 dias (B) após a aplicação do herbicida. NS: médias dos tratamentos não diferem da testemunha.](image)
that other chemicals besides glyphosate are the likely cause of the initial metabolic quotient decline in our experimental model, because we did not find such effect with Roundup Ultra® and Roundup WG®. Thus, careful selection amongst commercial brands is important to minimize the environmental interference in ecosystem management.

4 Conclusions

There is no impact of Roundup Original®, Roundup Ultra® and Roundup WG® on microbial biomass and microbial respiration rate at one and 28 days after herbicide application. There is no impact of Roundup Ultra® and Roundup WG® on quotient metabolic at one and 28 days after herbicide application. Roundup Original® at 720 and 1440 g of i.a. in one day after application suppressed the quotient metabolic, an effect that disappeared at 28 days after application.

References

KUKLINSKY-SOBRAL, W.; ARAÚJO, W. L.; MENDES, R.; PIZZIRANI-KLEINER, A. A.; AZEVEDO, J. L. Isolation and characterization of endophytic bacteria from soybean (Glycine max)

TSUI, M. T. K.; CHU, L. M. Aquatic toxicity of glyphosate-based formulations: comparisons between different organisms and the effects

Authors’ contributions: Alexandre Castilho and Rafael Viana devised, planned and coordinated the realization of the experiment, as well as revised the final text of the article, being part of the master’s dissertation of the first author; Renata Santos and Mailson Oliveira installed the experiment and performed the collection and analysis of the soil samples; Yanna Costa carried out the bibliographical research and contributed to the elaboration of the text of the article; Kaléo Pereira performed the statistical analysis of the data and formatting the final text.

Acknowledgements: VALE S.A. for the financial assistance and EMBRAPA Amazônia Oriental for assigning the Laboratory of Sustainable Systems Analysis.

Funding source: The Environmental Management of Ferrous Metals North of Vale SA.

Conflict of interest: The authors declare no conflicts of interest.