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Foreword from FGA / UnB 

 
The engineering sector drives and enables the development of a country. The formation 
of an engineer allows a technical capacity to evaluate, plan, design, suggest and apply 
all possible techniques in search of the best construction of a technological equipment. 
Currently, the engineer must be more and more prepared to solve existing problems in 
various sectors of society. It is through it that societies grow in search of progress. 
The recognition of engineering and the training of new professionals increases every 
year in Brazil. In the 2000s, the University of Brasília (UnB) went through an expansion 
process, resulting in the implementation of the new UnB Engineering Campus in the 
city of Gama (UnB-Gama, FGA). Five new undergraduate courses were created: 
Aerospace Engineering, Automotive Engineering, Electronic Engineering, Energy 
Engineering and Software Engineering. The UnB Gama Campus project converges to 
increase the education level of the Brazilian population, especially in the five areas of 
engineering activity, all in line with current national public policies, aimed at expanding 
the population's access to quality higher education in the country. 
Following the high quality teaching line, the UnB-Gama campus has the Graduate 
Program in Integrity of Engineering Materials (PPG-Integridade). The program has the 
following lines of research: Dynamics and Vibrations, Fatigue, Structural Materials, 
Biomaterials, Structure Fluid Interaction and Numerical Simulation of the Mechanical 
Behavior of Materials. This book series is an initiative of PPG-Integridade - UnB, 
organized as a collaborative work involving researchers, engineers, scholars, from 
several institutions, universities, industry, recognized both nationally and 
internationally. 
Beside the high technical quality and relevance of the topics covered in the books, this 
series will enable an essential internationalization of the research currently developed 
within the University of Brasília. Several authors from different countries also 
contributed to these books, enabling greater interaction between national and 
international research groups. This internationalization raises the level of academic 
education for new professionals in the field of engineering, in addition to more 
advanced scientific research and technological development. 
Additionally, this book series features a strong contribution from the industrial sector. 
Several professionals from different companies collaborated with the writing of some 
chapters in the three volumes that make up this series. These initiatives are of great 
strategic importance, as they allow the grouping of different technical capabilities. On 
the part of companies in the sector, with knowledge of market demands, and on the part 
of universities, by adding the technical-scientific knowledge of their team of researchers 
to the improvement of innovative products and services.  
This book should be appreciated by anyone in need of knowledge of Materials Integrity. 
The completeness of Discrete Modeling and Inverse Methods theory combined with the 
Uncertainty Modeling in Structural Integrity makes these books mandatory for 
everybody aiming at Direct and Inverse Problems, including model-based and signal-
based inverse problems. 
 

Prof. Dr. Sandro A.P. Haddad, Director 
UnB-Gama campus (https://fga.unb.br/) 

https://fga.unb.br/
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Foreword from LAJSS 
Book Series in Discrete Models, Inverse Methods, & Uncertainty 
Modeling in Structural Integrity 
Book Series editors: Ariosto B. Jorge, Carla T.M. Anflor, Guilherme 
F. Gomes, and Sergio H.S. Carneiro 
 
This book series represents a commendable effort in compiling the latest developments 
on three important Engineering subjects: discrete modeling, inverse methods, and 
uncertainty structural integrity. Although academic publications on these subjects are 
plenty, this book series may be the first time that these modern topics are compiled 
together, grouped in volumes, and made available for the community. 
The application of numerical or analytical techniques to model complex Engineering 
problems, fed by experimental data, usually translated in the form of stochastic 
information collected from the problem in hand, is much closer to real-world situations 
than the conventional solution of PDEs. Moreover, inverse problems are becoming 
almost as common as direct problems, given the need in the industry to maintain current 
processes working efficiently, as well as to create new solutions based on the immense 
amount of information available digitally these days. On top of all this, deterministic 
analysis is slowly giving space to statistically driven structural analysis, delivering 
upper and lower bound solutions which help immensely the analyst in the decision-
making process.  
All these trends have been topics of investigation for decades, and in recent years the 
application of these methods in the industry proves that they have achieved the 
necessary maturity to be definitely incorporated into the roster of modern Engineering 
tools. The present book series fulfills its role by collecting and organizing these topics, 
found otherwise scattered in the literature and not always accessible to industry. 
Moreover, many of the chapters compiled in these books present ongoing research 
topics conducted by capable fellows from academia and research institutes. They 
contain novel contributions to several investigation fields and constitute therefore a 
useful source of bibliographical reference and results repository. 
The Latin American Journal of Solids and Structures (LAJSS) is honored in supporting 
the publication of this book series, for it contributes academically and carries 
technologically significant content in the field of structural mechanics. 
 
On behalf of LAJSS, 

 Prof. Dr. Marcílio Alves (USP), Editor-in-Chief 
 Prof. Dr. Rogério J. Marczak (UFRGS), Assoc. Editor 

 Prof. Dr. Pablo A. Muñoz-Rojas (UDESC), Assoc. Editor 
 Prof. Dr. Marco L. Bittencourt (Unicamp), Assoc. Editor 

 

 

Latin American Journal of Solids and Structures (LAJSS) 
(www.lajss.org) 

https://www.lajss.org/index.php/LAJSS
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Foreword from ABCM 

 
 
The Brazilian Society of Mechanical Sciences and Engineering – ABCM welcomes 
enthusiastically the publication of the Book Series in Models, Inverse Methods & 
Uncertainty Modeling in Structural Integrity.  
The initiative, undertaken by Prof. Ariosto B. Jorge, Dr. Carla T.M. Anflor, Dr. 
Guilherme F. Gomes and Dr. Sergio H. S. Carneiro, with the support of the University 
of Brasília, is received by the scientific community as a valuable contribution to the 
dissemination of knowledge encompassing the large number of topics covered in the 
three volumes of the series.  
These topics have been judiciously selected to encompass comprehensively the 
theoretical aspects, modeling techniques and numerical methods related to Structural 
Integrity, and are presented in a large collection of chapters authored by renowned 
experts, from both academia and industry. We gladly realize that many members of 
ABCM have contributed as authors.  
Besides the comprehensive and well-articulated content, one distinguishing 
characteristic of this book series is that it has been conceived to serve both for 
educational purposes at graduate level and as an information source for researchers and 
engineering practitioners, which amplifies, to a large extent, its utility. Another relevant 
feature is that the material is intended to be available to the public in electronic format 
at no cost, which highlights the generosity of the authors and editors and their 
commitment to the most fundamental academic principles.  
On behalf of the scientific community of the field of Mechanical Sciences and 
Engineering, ABCM acknowledges the editors and authors of the present book series 
for their contribution to the progress of Engineering research and education. 
 
 
 
 

Prof. Dr. Domingos Alves Rade 
President of ABCM 

 
On behalf of 

 

Brazilian Society of Mechanical Sciences and 
Engineering (ABCM) 
(www.abcm.org.br) 

 

http://www.abcm.org.br/
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Foreword from ABMEC 
 
 
The whole range of topics related to Direct & Inverse Problems and Modeling of 
Uncertainties is substantially associated with the needs of the mechanical, civil, 
aeronautical/aerospace, nuclear, and naval/oceanic industries. Indeed, they play a core 
role in industrial renewal, contributing to productivity and competitiveness. Especially 
taking Brazil into account, this book series, conceived as a comprehensive one that 
covers these important topics, is very welcome. 
 
These themes are also among the main interests of the Brazilian Association of 
Computational Methods in Engineering, ABMEC. ABMEC is concerned with the 
application of numerical methods and digital computers to the solution of engineering 
problems. Its mission is to promote, foster, and organize activities encompassing the 
development and use of such computational methods in Brazil. 
 
We are fortunate to have the opportunity to support this book series as a collaborative 
work that intends to involve scholars from different institutions and researchers from 
industry, with national and international relevance. We sincerely believe that this work 
will provide a common forum for discussion, education, and research information 
transfer between the several subjects concerning computational methods in engineering.   
 
Our congratulations to the editors, professors Ariosto Bretanha Jorge, Carla Tatiana 
Mota Anflor, Sergio Henrique da Silva Carneiro, Guilherme Ferreira Gomes for this 
important contribution to the Brazilian engineering. 
 
 
 
 

Prof. Dr. Felício Bruzzi Barros 
President of ABMEC 

 
 
On behalf of 

 

Brazilian Association of Computational 
Methods in Engineering (ABMEC) 
(www.abmec.org.br) 

 

 
  

http://www.abmec.org.br/
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Abstract 
This chapter presents an overview of the Book Series in Direct Methods, Inverse Methods and 
Uncertainty Modeling (of which its Volume I: Model-Based and Signal-Based Inverse 
Methods has already been published), and a presentation of the current Volume II: 
Fundamental Concepts and Models for the Direct Problem. The chapter includes an 
introduction to the different topics in Optimization and Identification Techniques detailed in 
Volume I, and an introduction to topics related to materials, technologies, and discrete 
modeling, comprising the several chapters included in this Volume II of the Book series. 

1 Book Series in Discrete Models, Inverse Methods, & Uncertainty Modeling 
in Structural Integrity: overview 
The Book series in “Discrete Models, Inverse Methods, & Uncertainty Modeling in 
Structural Integrity” is an initiative of the Post-Graduate Program - Integrity of 
Engineering Materials (PPG-Integridade) of University of Brasilia (UnB), organized as 
a collaborative work involving researchers, engineers, scholars, from several 
institutions, universities, industry, recognized both nationally and internationally. 
This book series is an activity related to the Research, Development & Innovation 
(R,D&I) Project at UnB, titled: “Technological Demonstration Platform for Inverse 
Methods and Uncertainty Modeling Integrity of Structures and Components”, available 
at the UnB Central Library (in Portuguese) (Ariosto Bretanha Jorge, 2020). 
The Book Series project is comprised by three Volumes: 

• Volume I – Model-based and Signal-Based Inverse Methods (Ariosto B. Jorge et al., 
2022b) 

• Volume II – Fundamental Concepts and Models for the Direct Problem 
o Part I – Technologies and Materials Modeling 
o Part II - Discrete Modeling 

• Volume III – Uncertainty Modeling: Fundamental Concepts and Models 
The different book chapters were elaborated encompassing the relevant project topics, 
including chapters covering: 

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 2



• Fundamentals, including topics such as: basic principles, concepts & 
foundations, for the Direct & Inverse Problems (including model-based and 
signal-based inverse methods), and for the Modeling of Uncertainties; 

• Special Topics, Applications, and Research Review, including topics such as: 
research review, state-of-the-art & future trend topics, for the Direct & Inverse 
Problems (including model-based and signal-based inverse methods), and for the 
Modeling of Uncertainties. 

The book chapters were prepared as a collaborative work by researchers, engineers, 
scholars, involved in research, development and applications in the related areas. 
The research areas of interest throughout the book chapters include: 

• Modeling of the inverse problem, monitoring & diagnosis / prognosis: models 
and methods for inverse problems, optimization methods (including techniques 
such as; multi-objective optimization, topology optimization, evolutionary 
optimization), Wavelets, Kalman Filter (KF), Particle Filter (PF), Machine 
Learning (ML), Artificial Intelligence (AI), Data Science (DS), for applications 
such as Structural Health Monitoring (SHM) (including impedance-based and 
Lamb Wave-based techniques), Health & Usage Monitoring Systems (HUMS); 

• Modeling of the direct problem: mechanics of materials (including metallic 
materials, composites), structures (including civil, mechanical naval, 
aeronautical structures) machinery design and mechanical components, fracture 
mechanics, impact, fatigue, damage tolerance, integrity, mechanical vibrations, 
dynamics of structures, computational mechanics, including mathematical 
methods and numerical methods for discrete modeling for continuum mechanics 
(such as Finite Element Methods (FEM), Boundary Element Methods (BEM), 
Mesh-Free Methods (MFM)); 

• Probabilistic methods and modeling of uncertainties: probabilistic methods in 
engineering, Design of Experiments (DOE), Response Surface Methods (RSM), 
Risk & Reliability (including structural and system reliability), Uncertainty 
Modeling (UM) & Uncertainty Quantification (UQ), Bayesian Approaches 
(BA), stochastic Finite Element approaches (Stochastic FEM, Spectral FEM, 
Polynomial Chaos), stochastic optimization, meta-modeling (including 
techniques such as Surrogate Models (SM), Reduced Order Models (ROM)), 
model Verification & Validation (V&V). 

The different models, methods and approaches presented throughout the several 
chapters in the three Volumes of this Book Series are intended as an introductory 
presentation of some possibilities of methods that could be used in problems related to 
integrity of structures and components, and maybe even extended to other engineering 
areas, as appropriate. The list of models is not unique, and is neither comprehensive nor 
exhaustive, and the reader is encouraged to look for different possibilities of methods 
that may be applicable to the particular engineering problem at hand. 
A common aphorism, often presented as "All models are wrong, but some are useful", is 
usually considered to be applicable to scientific models in general, and to statistical 
models in particular. The aphorism recognizes that statistical or scientific models 
always fall short of the complexities of reality but can still be of use. The aphorism is 
generally attributed to the statistician George E. P. Box, although the underlying 
concept predates Box's writings. 

Jorge, Ariosto B., et al. (2022) Intro Direct Problem: Materials, Technologies, Discrete Modeling pp. 1-13
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Section 2 presents an overview of Volume I - Model-Based and Signal-Based Inverse 
Methods, which includes chapters on several Optimization Models and Identification 
Techniques. An introduction and context is presented, as well as a listing of the chapters 
included in Volume I. 
Section 3 presents an overview of Volume II - Fundamental Concepts and Models for 
the Direct Problem, which includes chapters distributed in Part I – Technologies and 
Materials Modeling, and in Part II - Discrete Modeling. An introduction and context is 
presented, as well as a listing of the chapters included in Volume II. 
Section 4 presents some final remarks and acknowledgements. 
 

2 Overview of Volume I 

2.1 Model-Based and Signal-Based Inverse Methods – context 
The detection, localization, classification and identification of parameters and/or 
material properties, related to the integrity of structures and components, with and 
without defects or damages, involves the modeling of inverse problems, as well as an 
adequate modeling and quantification of the uncertainties involved in the problem. 
The formulation of the direct problem, of the inverse problem, and the related 
uncertainties modeling, needed for an adequate description of the structure and/or the 
mechanical component, and of its potential defects or damages, involves 
multidisciplinary modeling techniques, whose understanding and proper application 
transcends the field of integrity and damage tolerance, being able to serve as a basis for 
applications, in other contexts or fields. 
Among the application problems of interest for inverse methods, one can cite Structural 
health monitoring (SHM) and Health and Usage Monitoring Systems (HUMS). 
The monitoring of structural integrity (SHM) is a competitive technique for damage 
detection and identification, wherein information is collected online, and compared with 
an existing database for an undamaged (“healthy”) structure. From this comparison, 
real-time information on the presence of damages can be obtained, including their 
localization, size, propagation speed, and, ultimately, the remaining operational life of 
the structural component. 
The monitoring of mechanical components (HUMS) is a technique which is being used 
to follow / accompany the state of the integrity of mechanical systems / components 
(Health) and to monitor the appearance of indicators of the presence of damage (usage) 
in dynamic systems, such as rotating components (in engines, for example) and in 
gearboxes (in mechanical transmission systems, for example). In this case, the 
comparison is made between vibration signals from the healthy components 
(accumulated historical data) and from the components being monitored, to identify 
significant discrepancies in the vibration signals, which could be correlated to specific / 
particular / known damages. 
The scientific challenge of the modeling of inverse problems, as well as of the adequate 
modeling and quantification of the related uncertainties, in a problem of integrity of 
structures and components, involves several aspects: 

Jorge, Ariosto B., et al. (2022) Intro Direct Problem: Materials, Technologies, Discrete Modeling pp. 1-13
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• The modeling of the problems (direct problem, inverse problem, uncertainties) 
needs to be done, whenever possible, by using more than one technique, for each 
case being described, in order to implement, for the particular problem at hand, 
model techniques which are independent, complementary, and/or redundant. 
Whenever possible, more than one model should be used, for redundancy and/or 
comparative analysis, especially in the case of unavailability of prior data for the 
healthy structure and/or component. 

• The techniques used for inverse methods may involve: 
i. Optimization techniques, based on multi-objective optimization models, using 

classical optimization techniques (such as Sequential Quadratic Programming 
(SQP), BFGS, etc), or evolutionary optimization techniques (such as Genetic 
Algorithms (GA), Differential Evolution (DE), Sunflower Optimization (SFO), 
Lichtenberg Algorithm (LA), etc.); 

ii. Identification techniques based on Artificial Intelligence, Machine Learning, 
Pattern Recognition, Data Science, etc., models (such as identification models 
based on Artificial Neural Networks (ANN), for example; 

iii. Models based on the Wavelet Transform (continuous Wavelet Transform 
(CWT), discrete Wavelet transform (DWT), with different types and sizes of the 
Wavelet window, for example); 

iv. Stochastic models (such as Kalman Filter (KF), Extended Kalman Filter (EKF), 
Extended Information Filter (EIF), Particle Filter (PF), Least Squares (LS), etc). 

• In several situations, the direct models to be implemented may involve different 
problem physics (Multi-physics Modeling), and multiple scales (Multi-scale 
Modeling). In such cases, the description for the direct problem may involve coarser 
global models, and more detailed local models; 

• The computational simulations and the experimental / laboratory tests must take into 
account the additional challenge of properly simulating / representing the local 
behavior of a complex structure, in the regions of interest, where the defect of 
damage is expected to be, or is expected to appear. For example, Fracture 
Mechanics (FM) problems and Damage Tolerance (DT) problems cannot be 
properly represented by reduced-scale models, as the damaged region must be 
represented using full-scale models. In these cases, the computational simulations 
(and also the experimental / laboratory tests) are required to reproduce the situation 
in the region of the damage using high fidelity local models. Thus, the region of the 
damage must be modeled in full scale, with the model also representing properly the 
geometry, the mechanical properties, and the real loading in that local region 
(loading that is coming from the external loads that were applied in the structure or 
in the component as a whole). 

• In many cases, inverse problems may belong to the category of ill-posed problems, 
which represents an additional challenge in the modeling of the problem at hand. In 
these cases, the approach for the inverse method may require additional hypothesis 
to be made (for problem regularization, for example), or that a meta-modeling 
approach is adopted (such as surrogate models, reduced order models, etc), 
replacing the original model by the proper meta-model, and then solving this 
approximate model for the problem. 

• The modeling of inverse problems, such as in the case of SHM and/or HUMS, must 
take into account the proper modeling of the sensor behavior, and also the 
uncertainties associated to these sensors, as well as the simultaneous use of multiple, 
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independent, techniques for monitoring, with different sensors. The optimal sensor 
positioning, to maximize the Probability of Detection (PoD), may be seen as a 
topological optimization problem and/or as a stochastic optimization problem. 

• The modeling of inverse problems may involve the detection, localization, and 
identification of parameters and/or material properties (for example, properties such 
as elasticity modulus, Poisson’s ratio, etc), which may vary through time (for 
example, material degradation thought time) and also along the length of the 
structure or mechanical component (for example, local changes which may occur in 
the material properties and / or mechanical properties of a composite plate, due to 
the debonding between the layers of the composite material). 

 

2.2 Chapter topics in Volume I: presentation 
Along Volume I of the Book Series, several topics related to model-based and signal-
based methods for inverse problems were presented in the several book chapters, 
representing the collaborative work from researchers, engineers, scholars, engaged in 
research, development and applications in the related areas, affiliated to several 
institutions, universities, industry, and recognized both nationally and internationally. 
The book chapters in Volume I of the Book Series were distributed as follows: 

• Chapter 1: Introduction to Optimization and Identification Techniques for Model-
Based and Signal-Based Inverse Problems (Ariosto B. Jorge et al., 2022a) 

• Chapter 2: Overview of Some Optimization and Identification Techniques for 
Inverse Problems of Detection, Localization and Parameter Estimation (Sousa et al., 
2022) 

• Chapter 3: An overview of Linear and Non-linear Programming methods for 
Structural Optimization (Choze, Santos, Jorge, et al., 2022) 

• Chapter 4: Overview of Traditional and Recent Heuristic Optimization Methods 
(Choze, Santos, & Gomes, 2022) 

• Chapter 5: Application of Machine Learning and Multi-Disciplinary/Multi-
Objective Optimization Techniques for Conceptual Aircraft Design (Mattos et al., 
2022) 

• Chapter 6: On a Bio-Inspired Method for Topology Optimization via Map L-
Systems and Fractone Modeling (Kobayashi, 2022) 

• Chapter 7: Fundamentals on the Topological Derivative concept and its classical 
applications (Carvalho et al., 2022) 

• Chapter 8: Ultrasound Obstacle Identification using the Boundary Element and 
Topological Derivative Methods (Cisilino & Anflor, 2022) 

• Chapter 9: Fundamental Concepts on Wavelet Transforms (Erwin Ulises Lopes 
Palechor et al., 2022) 

• Chapter 10: Application of Wavelet Transforms to Structural Damage Monitoring 
and Detection (Erwin Ulises Lopez Palechor et al., 2022) 

• Chapter 11: Inverse Methods using KF, EKF, EIF, PF, and LS Techniques for 
Detection, Localization, and Parameter Estimation (Myers & Jorge, 2022) 

• Chapter 12: Fundamental Concepts for Impedance-based Structural Health 
Monitoring (Finzi Neto & Moura, 2022) 
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• Chapter 13: Fundamental Concepts for Guided Lamb Wave-based Structural Health 
Monitoring (Finzi Neto et al., 2022) 

• Chapter 14: Machine Learning and Pattern Recognition: Methods and Applications 
for Integrity Monitoring of Civil Engineering Structures (Alves et al., 2022) 

 

3 Overview of Volume II 

3.1 Fundamental Concepts and Models for the Direct Problem – context 
The modeling of the Direct Problem includes disciplines related to: 

• Materials Science, Mechanics of Materials (applications to engineering materials, 
such as metallic materials, composites, biomaterials, etc.), Material Characterization 
Techniques (Digital Image Correlation (DIC), etc.); 

• Modeling & Design of Structures (applications to several Engineering branches such 
as Mechanical, Aeronautical, Civil, Naval, Ocean & Offshore, Nuclear, Energy, Oil 
& Gas, etc.); 

• Design of Machines and Mechanical Components; 
• Manufacturing Technologies and Processes (Additive Manufacturing, etc.) 
• Structural & Component Integrity (Fracture Mechanics, Fatigue, Impact, Contact, 

Damage Tolerance, Inspection, Non-Destructive Testing (NDE), Maintenance, 
Structural Health Monitoring (SHM), Health and Usage Monitoring Systems 
(HUMS), etc.); 

• Mechanical Vibrations, Acoustics, Structural Dynamics (Data Acquisition, Modal 
Testing & Modal Analysis Techniques, etc.); 

• Computational Mechanics, Mathematical Methods, Numerical Methods (such as 
Finite Element Methods (FEM), Boundary Element Methods (BEM), Meshless / 
Meshfree Methods, etc.). 

Regarding structural integrity applications, the problem of detecting damage in a 
structure involves modeling the direct problem, that is, the behavior of that structure in 
the presence of one or more pre-established damages, of assumed shape and size, and at 
given locations. This modeling can be done, for example, involving the analysis of the 
distribution of stresses and strains in parts with cracks, done through a FEM, BEM or 
Meshless modeling, or by analyzing the distribution of sound waves in this cracked part, 
emitted by a pre-established source, by means of a FEM, BEM or Meshless modeling. 
Regarding component integrity applications, for the problem of detecting faults in 
dynamic components, experimental vibration data can be acquired from accelerometers 
conveniently distributed in the vicinity of the components of interest. In this case, there 
would be no direct problem modeling (the direct model is implicit), as the vibration data 
would be acquired for the healthy components to be later compared with the vibration 
data of the defective (with failures) components. 
With respect to Direct Problem Modeling, several problems of interest in structural 
integrity can be modeled as initial value problems and/or boundary value problems. In 
the case of boundary value problems, not varying in time, there is a valid partial 
differential equation in the region that represents the problem domain, and valid 
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boundary conditions at the boundary of this region. In the case of time-dependent initial 
value problems, there are also valid initial conditions in this domain. 
A boundary value problem can be represented by a general equation of type Au = p, 
valid in the domain D, with boundary conditions valid in the boundary ∂D. The 
complexity of the problem, the geometry of the boundary, the actions (external loads, 
restrictions on supports) limit the possibilities of analytical solution for this problem, 
which generates a demand for approximate solutions, such as, for example, through: 

• replacement of the differential operator A by an approximate operator A*. This is the 
case of the finite difference method, which adopts an algebraic operator A*, where 
the derivative at a given point is expressed through the values of the function at 
points located in a neighborhood of that point, allowing the construction of a system 
of linear equations, to be solved with the proper application of the initial and 
boundary conditions; 

• replacement of the variable u by an approximate variable u*, expressed in the form 
of a linear combination of a set of basic functions. These functions can be 
polynomial, trigonometric, etc. The coefficients of this linear combination are the 
components of this approximate solution in the coordinate system represented by 
these basic functions. When the number of components tends to infinity, the 
approximate solution u* tends to the solution u. Among the approximate solutions 
based on this method, many correspond to methods called “projective”, where the 
equation valid in the domain is projected in an auxiliary subspace of functions, 
called support functions, and integrated in the domain, with its boundary conditions, 
using integration by parts. This category of methods includes, among others: 

o The Finite Element Method (FEM), using an integration by parts and, in 
each element, the same functions, both for support and for approximation of 
the variable u, in order to obtain the solution in points of the domain, called 
nodes, and, by interpolation using these functions, the solution at all other 
points in the domain; 

o The Boundary Element Method (BEM), using two integrations by parts and 
using support functions called fundamental solutions, in order to eliminate 
the domain integral, leaving only the boundary integrals (also known as 
boundary integrals). Thus, the solution is initially obtained only at the nodes 
of the discretized contour. Then, by interpolation, the solution is found at the 
other points of the contour. Finally, by post-processing, the solution is 
obtained at any desired point in the domain. 

For problems of interest in structural integrity, the finite element method can be 
efficiently applied to problems in which the domain is inhomogeneous, where the 
discretization of the elements would already consider this local non-homogeneity. 
On the other hand, problems involving domain singularities, such as stress distribution 
in the vicinity of the crack tip, in fracture mechanics, can be well represented using the 
boundary element method. 
For initial value problems, with variable (in the domain and/or in the frontier) dependent 
on time, it may need a combination of methods that include the finite difference method, 
to model the march in time of the variable of interest. 
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Other numerical methods are also available, such as the Meshless / Meshfree Methods, 
in which the global system of equilibrium equations is constructed using a node-by-
node process, performed in the local domain of each node, and thus there is no need to 
define a priori a mesh of finite elements or a mesh of boundary elements. 
For the application of inverse methods in dynamic components, the methodology is 
based on the comparison of vibration data acquired and stored throughout the life of the 
components still undamaged, with the most recent vibration data, for the components 
currently in use, from so that significant changes in the spectrum of acquired signals can 
be used as a starting point for the detection and identification of damage to these 
components. In this case, instead of a numerical code for the direct problem, vibration 
and acoustics data acquisition systems are used, together with structural dynamics, 
vibration analysis, modal testing & modal analysis techniques. 
The direct problem modeling can also include the study of the damage evolution with 
time (such as, for example, the crack propagation rate), in order to estimate the 
remaining useful life (safe life) of the structure. 
The science and technology behind analyzing structures is not yet mature, and further 
advancements and research are unnecessary for the basic understanding of structural 
mechanics phenomena and behavior (design/analysis/test) (Hamm et al., 2021). Some 
remaining challenges in the structures discipline include many areas still in need of 
rigorous research to arrive at physics-based methodologies, including: Fracture 
Mechanics, Composite Materials, New Materials, Manufacturing and Processing 
Methods, New Applications, Lack of Physics-Based Theories, New Test Methods, 
Incorporation of Research Advancements, Computational Advances, Multi-Discipline 
Interactions. 
One final note; in the context of philosophy of science, two fundamental issues were 
pointed out in (Da Costa & French, 2006). One issue concerns the appropriate attitude 
we should take towards scientific theories - whether we should regard them as true or 
merely empirically adequate, for example. The other issue concerns the nature of 
scientific theories and models and how these might best be represented. These two 
issues together lead us to arguing that theories and models should be regarded as 
partially rather than wholly true, with issues in terms of belief, theory acceptance, and 
the realism-antirealism debate. 
 

3.2 Chapter topics in Volume II: presentation 

Along this Volume II of the Book Series, several topics related to technologies, 
materials and discrete modeling for direct problems are presented in the several book 
chapters, representing the collaborative work from researchers, engineers, scholars, 
engaged in research, development and applications in the related areas, affiliated to 
several institutions, universities, industry, and recognized both nationally and 
internationally. 

The book chapters in this Volume II of the Book Series are distributed as follows: 
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• Chapter 1: Introduction to the Direct Problem: Materials, Technologies, and 
Discrete Modeling 

Part I - Technologies, Structural Integrity & Material Modeling 

• Chapter 2: Technologies and Materials Issues Related to Naval and Ocean 
Engineering 

• Chapter 3: New Advances in Thermoplastic Commingled Composites: Processing 
and Molecular Dynamics 

• Chapter 4: The Influence of Weaving Patterns on the Effective Mechanical 
Response of Reinforced Composites - A Study Through Homogenization 

• Chapter 5: Auxetic Structures: Parametric Optimization, Additive Manufacturing, 
and Applications 

• Chapter 6: Additive Manufacturing of Ti-Alloys for Aerospace, Naval and Offshore 
Applications 

• Chapter 7: Review of Low Cycle Fatigue: Issues in Naval and Offshore Engineering 
• Chapter 8: Modeling of Damage in Turbine Blades for Large Deformations 
• Chapter 9: Stresses on Expansion Joints Used in Penetrations 
• Chapter 10: Leak-Before-Break Technology for Piping in Nuclear Industry 
• Chapter 11: Fatigue Control in Angra Nuclear Power Plants 
• Chapter 12: On the use of Modal Test Data in Inverse Problems: Fundamentals and 

Applications 
• Chapter 13: Application of Deep Learning Techniques for the Impedance-based 

SHM to the Oil & Gas Industry 
• Chapter 14: Noise, Vibration, and Health and Usage Monitoring Systems (HUMS) 

of Aircraft Dynamic Components 
• Chapter 15: On Vibration Analysis and Health and Usage Monitoring Systems 

(HUMS) of Dynamic Components of Helicopters 
• Chapter 16: Model-Based Parameter Identification for Helicopter Main Rotor 

Balancing and Tracking Using Once-per-Revolution Vibration Data 
 
Part II - Discrete Modeling: Finite Element, Boundary Element, Meshfree Methods 
 
• Chapter 17: Finite Element Method for Structural Integrity Problems 
• Chapter 18: An Application of Finite Element Method and Sensitivity Analysis in 

Structural Dynamics 
• Chapter 19: The Boundary Element Method for Potential Problems 
• Chapter 20: The Boundary Element Method for Structural Problems 
• Chapter 21: The Boundary Element Method for Damage Modeling 
• Chapter 22: Application of Roving Mass Technique Associated with Wavelet 

Transform to Structural Damage Detection and Localization 
• Chapter 23: Local Mesh Free Methods in Linear Elasticity and Fracture Mechanics 
• Chapter 24: Meshless smoothed point interpolation methods for damage modelling 
• Chapter 25: A New Non-Iterative Reconstruction Method for Solving a Class of 

Inverse Problems 
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4 Final remarks and acknowledgements 
This Chapter presents an overview of the Book Series in Direct Methods, Inverse 
Methods and Uncertainty Modeling, with focus on: 

• The previously published Volume I: Model-Based and Signal-Based Inverse 
Methods, including an introduction to the different topics in Optimization and 
Identification Techniques detailed in this Volume I of the Book series; 

• This current Volume II: Fundamental Concepts and Models for the Direct 
Problem, including an introduction to the topics in Materials, Technologies and 
Discrete Models, presented in this Volume II of the Book series; 

This book series is an initiative of the Graduate Program in Integrity of Engineering 
Materials (PPG-Integridade) at the University of Brasilia (UnB), Brazil 
(www.pgintegridade.unb.br). 
The editors would like to thank PPG-Integridade and UnB for the initiative, incentive 
and support for this Book Series project. 
The book series is organized as a collaborative work involving researchers, engineers, 
scholars, engaged in research, development and applications in the related areas, 
affiliated to several institutions, universities, industry, and recognized both nationally 
and internationally. 
The editors are grateful and would like to show their appreciation to all the co-authors 
of the book chapters, for their participation, dedication, and support. 
The book series is published as a digital version, with ISBN provided by UnB, and DOI 
for each chapter, provided by the Latin American Journal of Solids and Structures 
(LAJSS) (www.lajss.org). 
The scope of the Book series is in the broad areas of interest of LAJSS, and also of the 
Brazilian Society of Mechanical Sciences and Engineering (ABCM) 
(www.abcm.org.br) and the Brazilian Association of Computational Methods in 
Engineering (ABMEC) (www.abmec.org.br). 
For increased visibility, these three institutions are encouraging the divulgation of the 
Book Series project in their websites. 
The editors would like to express their appreciation to LAJSS, ABCM and ABMEC, for 
their incentive, encouragement and support for this Book Series project. 
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Abstract 

 The sea routes have been part of the globalization movements and help to shape 
up the world economy heavily. Seafaring has required different ship types, with 
specific dimensions, propulsion power and engineering materials. More recently, the 
defense sector has guided the development of naval and marine technologies, mainly 
in the underwater branch. With the use of nuclear technology, ships have gained a 
buster in his autonomy and range, setting other challenges tough. Fire aboard and 
run aground can happen at different world areas, and no ship seems fully protected 
against them, although their annual frequency has dimmed in the last half century. 
All these achievements were possible with a broader application of materials 
technology and selection properly. In the current energy transition and environment 
protection enhancement, ship materials reliability has caught more attention of ocean 
and naval experts, who are now applying Machine Learning and Artificial 
Intelligence, with wireless digital networks, for ship maintenance and hazard 
analysis, among others, helping to improve the ship performance, especially the 
economics and safety. 

Keywords: naval engineering, ship structures, advanced materials, ship construction, ship 
design, screw alloys, materials reliability, mechanical fatigue, ship risk management, 
hydrogen embrittlement, steel toughness, corrosion. 

1 Introduction 

1.1 The importance of sea communications 
Looking to a photograph of the Earth from the outer space, it is easy to see that most of 
the planet surface is covered by sea waters, connecting continents, people, and cultures. 
This characteristic has made feasible manifold routes and improved the exchanged of 
items, services, and other side assets towards History. 
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 In his book [1], Boxer highlighted the importance of the sea communications in 
the build-up of Portugal as a maritime sea power. Even with few resources, that nation 
was able, from the XV to the XVIII Century, to expedite a first full version of the 
globalization, carrying thousands of tons of any kind of goods and people, discovering 
new lands and so on. Today, more than ninety percent of the world trade is made by sea 
[2]. Therefore, sea communications have become more and more vital to mankind. 
 In a closer example, due to the British naval blockade to France, from 1804 to 
1815, the war in Europe took a different shape during the Napoleonic era. In other 
words, the French Empire could not use sea communications to get key raw materials or 
goods, from Asia, America, and Africa, and made its actions based on a continental 
approach exclusively. One of the consequences was the move of the Portuguese Court 
to Brazil, after the French-Spanish invasion of Portugal, in a change of a central power 
to a colony in the first time in History. In the end, the naval blockade changed our fate 
for good in the end, opening new lanes to our country, without any parallel among other 
former colonies. As an initial remark, the dominance of sea communications makes all 
the difference between countries and societies, showing aftermaths beyond a naive 
eyesight.  
 

The ship design and its links with economics & environment issues 
 The use of sea needs all sorts of boats, ships, ferries, among other kinds of 
maritime transportation means. The design of ships depends on its general purpose, 
safety standards, the kind of sea routes and weather conditions to be sailed. In the last 
decade, the ship casualties and accidents have dimmed hopefully [3]. Equally important, 
to make it real, ship designers and operators have taken the economic feasibility 
carefully. Due to shorter profit margins, because of recent economic and logistic 
transients, the shipping companies look nowadays for more reliable and cheaper ship 
systems. 
 In another technical perspective, environmental requirements have been 
narrowed due to the worse climate effects seen in the last two decades and, thus, the 
environment impact has received more attention in the ship design process. For 
instance, the change from fossil fuels to electricity to propel a ship has been considered, 
together with a deeper recycling planning and action of ship materials, mainly in oil 
tankers and drilling rigs [4]. The ship safety standards have been raised to a degree 
preventing fuel, oil or cargo spills into the oceans and further harm to marine species 
and coastlines [5]. Nonetheless, small incidents and even accidents can take place in any 
ship. 

1.2 Overall preview of the chapter 
 In this chapter, the connections between materials behavior, such as steel and 
non-ferrous alloys, and ship design issues will be covered, after a quick overview in the 
types of ships and their general characteristics. Moving on, construction and 
manufacturing processes, testing, structural failure, and trends in ship materials 
selection will be addressed. The chapter reading intends to provide a broad view on how 
some material aspects impact the ship construction and handling technology. Besides, it 
may present a spark to the readers to get deeper into the items covered. 
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2 Development 

2.1 Types of ships 
As a quick opening, this section deals with the ship technical characteristics to allow a 
better understanding of their kinds and singularities. Normally, the displacement or 
weight, is the main parameter, being measured in tons, and helps to cluster a certain 
ship. The overall dimensions also help to define a ship, such as total length (L), beam 
(B) and draft (H), expressed in meters. Table 1 summarizes some figures and types of 
ships. 

Table 1: main figures related to each type of ships 
Ship type Length 

m 
Beam 

m 
Draft 

m 
Displacement 

ton 
Max Speed 

knots 

Container ship 400 60 15 250.000 23 

Large Oil tanker 400 60 30 500.000 18 

Harbor tug 30 10 4 75 10 

Line cruiser 250 25 7 70.000 20 

Frigate 120 15 4 3.500 27 

Naval cruiser 170 17 10 10.000 33 

Corvette 80 10 3.5 2.000 25 

Aircraft carrier 300 70 11 100.000 30 

Nuclear attack 
submarine 

100 12 11 9.000 30 

2.2 Vessels versus naval ships 
The term ‘merchant ship’ or ‘vessel’ refers to the ships used in the general shipping of 
goods and people in the civilian market, managed by commercial companies, private or 
state owned. For instance, an oil tanker is a sort of merchant ship (MS) or vessel, the 
same applicable for ore freighters. On the other hand, the word ‘Naval Ship’ or simply 
‘ship’ refers to the military or defense application, such as aircraft carriers, attack 
submarines, troop cargo ships and so on.  
 In terms of design, naval ships have more strict design criteria, due to the 
wartime scenario they may find. For example, naval ships are designed to survive to 
nearby explosions or ‘shocks’, even nuclear attack, and its fallouts, which is not the case 
for the merchant ships. In the Brazilian Navy, some ships, like the Niteroi class frigates, 
can provide shelter for nuclear attacks, due to its specific design. On the other hand, 
merchant ships are required to have insurance contracts, not only for their cargo but also 
to themselves. Due to the possibility to be attacked and the need to survive in some 
extend, the insurances companies do not cover naval ships, as also seen with other 
defense hardware, otherwise the insurance burden will be too costly and closer to 
infinity. Figure 1 shows the Frigate F-43 ‘Liberal’ of the Brazilian Navy. 
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Figure 1: Brazilian Navy Frigate F43 ‘Liberal [6] 

 Naval ships have structural shape & painting colors (normally Munsell scale 
6.5N grey) related to the requirement to avoid being detected easily. Their system 
reliability and noisy propagation management are key as well, which is not the case for 
merchant ships, more focused on the economic feasibility of their operation and 
ownership. Figure 2 shows the special painting configuration of a naval ship during the 
Second World War. 

 
Figure 2: special camouflage layout of a US naval vessel in the IIWW [7] 

2.2.1.1 Surface ships 
Among naval and merchant ships, there is another set called ‘surface ships’, or those 
which sail on the sea surface, facing two media (air and water) normally within a wave 
pattern. Surface ships are the most numerous categories and have a wide range of 
characteristics. Classic examples of surface ships are oil tankers, general cargo ships, 
transatlantic ships, trawlers, tugs, and others. They are made of a combination of steel, 
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wood, and polymeric materials mostly. The larger the surface ship, the heavier its 
structure. Figure 3 shows a standard large oil tanker. 

 
Figure 3: a typical large oil tanker [8] 

2.2.1.2 Submarines 
Submarines make part of a special type of ship, due to its ability to dive several times 
along its operational life. When submerged, the submarine can navigate at higher 
speeds, in comparison to the condition at surface. This feature comes from the 
hydrodynamics details, while sailing in a homogeneous mean [9]. 
 Nonetheless, submarine diving requires a safe and reliable set of systems and 
procedures, making submarines more expensive ships than surface ships, even with 
heavier displacement. Bottomline, submarines are complex ships, being used more for 
defense purposes than merchant applications, dealing with fatigue, noisy management, 
system redundancy, and other technical details, more carefully. As the sea exploration 
rises, in the search of different sources of raw materials, like minerals and food, civil 
applications of submarines have been in focus in the last decades. Figure 4 shows the 
Brazilian Navy submarine S-41 ‘Riachuelo’, which has a conventional propulsion 
system. 

 
Figure 4: Brazilian Navy S-40 ‘Riachuelo’ submarine [10] 
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2.2.2 Oil Drilling Rigs 
The discovery and exploration of oil sources at the bottom of the oceans has encourage 
the continuous design and development of oil drilling rigs in the last seventy years. 
They can be used to prospect and to extract oil to be stored in large oil tankers, being 
floatable or fixed depending on the application. Their operation requires manifold 
support systems, such as long mooring lines, support surface ships, among others.  
 In the energy transition trend, towards an environment with lower carbon 
signatures, the oil drilling rigs may have different applications, such as to support large 
ocean mining operations or as rescue bases in key positions in the middle of sea routes. 
Figure 5 presents a typical oil drilling rig operated for the Brazilian oil company 
Petrobras. This oil drilling rig is floatable (no structure link to the bottom of the sea) and 
sails like a vessel or ship. The materials used in its construction belong to the common 
list found in shipyards and shops dedicated to ships. Even the hardware focused on the 
oil exploration can use shipping construction materials. 

 
Figure 5: a standard oil drilling rig used for Petrobras [11] 

2.2.2.1 Drones 
The expansion of the digital technology has motivated the development of unmanned 
systems, which show less risk for the human operations. Unmanned underwater systems 
and unmanned ships are a reality more and more, using digital signal processing in large 
scale with the application of artificial intelligence and machine learning tools. Drones 
used in maritime applications has been made of advanced polymeric materials, such as 
carbon and aramid fibers. Equally important, they also use advanced energy 
management systems, like high-capacity batteries. 
 Figure 6 helps to catch some details of an underwater drone used for 
environment surveys. 
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Figure 6: Drone used in underwater environment survey [12] 

2.3 Ship general characteristics 
As said above, ships can be clustered by its displacement or weight, measured in tons. 
The L-B-H dimensions have impact in the ship performance, evaluated by ratios, like: 
L/B, which is related to maneuverability, the B/H (ship stability), L/(displacement)0.33 
linked to the ship propulsion resistance. Reference [13] has more details about these 
ratios. These are more individual label for a boat. 
 For merchant ships the payload capacity and speed are most relevant due to 
economics. The weapons capacity and its types, autonomy and main purpose define the 
outline of the naval ships. For instance, the aircrafts (planes, helicopters, and drones) are 
the main weapons of an aircraft carrier. For strategic submarines, the long-range 
missiles, with nuclear weapons, are the main military asset. 
 Another way to categorize a ship is its structural pattern that can be longitudinal 
or transverse, considering the bow-stern axis. For small boats, there were longitudinal 
framing as a common sense. Nevertheless, the transverse framing is the current way to 
build-up the ship structure nowadays. For instance, submarines have circular ring steel 
structures, with circularity difference smaller than 3%, due to the compression loads 
while diving. 
 Figure 7 presents the two patterns of ship structures. Note the set of beams, 
longitudinal and transverse, making a grid where the spacing depends on the structure 
design criteria. In the outer part, metal plates close the spaces between the grid points. 
Bulkheads can be found transversally, segregating blocks and large parts of the ship, 
providing the longitudinal tightness. For bulkheads, the main structure design load is 
buckling (compressive loads) of metal sheets. Normally, the keel is the lowest and 
largest beam, laying longitudinally. 
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Figure 7: longitudinal and transverse framing patterns of ships [14] 

 Today ship construction is also based on modules, optimizing the construction 
schedules, done inside assembling buildings preferably to improve the fabrication 
quality. Figure 8 shows the assembling of ship structural blocks in a drydock, with tasks 
being done simultaneously. 

 
Figure 8: Ship modular construction in a shipyard [15] 

2.4 Overall ship design criterion 
In a broad view, ships are taken as an integration of systems: structures, propulsion, 
electric, auxiliaries, navigation, and others. These systems are combined according to 
design techniques also present in the aerospace industry, by the design and review steps, 
trying to maximize the solutions to the common trade-offs. 
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 In addition, the ship design also considers at its very start the examples done 
previously, as ‘similar or reference’ ships, to explore the best answers, practices and 
experiences achieved. 

2.4.1 How a ship is designed 
A classical method to design a ship is the convergence or ‘spiral’ technique. Once the 
overall technical requirements have been defined, the ship designer starts to define the 
main dimensions: L, B, H, displacement etc. Following the steps of Figure 9, at the end 
of each turn, the designer has a set of ship characteristics that differ smaller and smaller 
from the previous turns, if the design has been properly conducted. Design reviews take 
place at any moment to confirm this trend and the fulfilment of the technical 
requirements. For instance, the ship design need to consider different logistic chains, 
where some chains change more frequently than others, and this feature must be 
considered in the convergence indicated above. 

 
Figure 9: Spiral design scheme for ships [16] 

2.4.2 Conceptual, Preliminary and Detailed Design 
After receiving the general guidelines from the ship owner, the first stage is the 
conceptual design, when the design team has convergence of the main initial figures, 
according to main requirements, the technical rules selected, and the comparison to 
similar ships. Also in this step, the design team has an order of magnitude of the 
margins to be considered in the next phases. 
 Normally, as the design advances, the margins tend to decrease. At the end of 
the first phase, the line drawing of the ship will be done, allowing to check how the 
design cope with the stability and safety requirements. Figure 10 presents an example of 
a line drawing of an oil tanker. 
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Figure 10: Ship lines or body plan of a cargo ship [17] 

 The upper part of the drawing shows the longitudinal view cuts of the ship, and, 
at the middle, there is a transverse view cut where the right side shows the fore section, 
towards the bow, and the left side the aft part, towards the stern. The lower part of the 
drawing shows a bird eye´s view and the cuts as horizontal planes, taken vertically. 
 The application of this drawings aims the determination of manifold ship 
parameters linked to the stability, the determination of the wet surface, the overall 
power required and surface and volume estimate to the quantity of metal sheets 
necessary for the shipyard construction. The drawing also allows to have a better insight 
of the number of metal blocks to be welded and, consequently, an first ideal about the 
ship cost. 
 In the preliminary design, the main systems of the ship have the hardware 
chosen, with a better figure of dimensions, weight, system performance and other 
technical features. For instance, the propulsion system will be quite defined in terms of 
power, fuel consumption, volume required, operational temperature range, brand of 
motors, size, and shape of the screw and so on. 
 The structures will have their size, materials selection, layout, weight, and others 
also defined, indicating the best construction techniques to be taken. In addition, the 
module construction scheme will be also clearly set. Thus, the approved preliminary 
design allows the ship owner to sign the construction contract with a shipyard. 
 The detailed design encompasses the construction steps in deep, defining all the 
wiring paths across the ship structures and bulkheads, the definition of the all the 
supports of motors, electric hardware, piping, the whole set of welding drawings and its 
procedures applicable to each structure, among others. Normally, the shipyard design 
team takes charge of the detailed design documents. The overall cost of the ship will 
have a clearer figure so far. The material purchase by the shipyard starts after the 
contract has been signed, with priority to the long lead items, or those with a long time 
to be delivered. As soon as the detailed design documents have been approved, the 
construction itself can start. 
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 Even during the construction, the ship systems are tested, progressively, 
according to each technical specification. In the end, after the ship launching into the 
protected waters of the shipyard, the outfitting starts and continues towards the final 
tests, which take place with ship moored and at sea, before the acceptance by ship 
owner. 

2.4.3 Availability, maintenability, acessability 
For a shipping company, as well airlines, the main objective is to keep the transport 
mean (ship or airplane) in operation, integrated into logistic chains, action that sustain 
the profit and the business. 
 To carry on, the ships and auxiliary system must be available as much as 
possible, requiring constant attention to the maintenance types and all the intelligence 
behind. 
 In this matter, all hardware has its own code of maintenance, overhauling and 
updates, which must be managed by modern digital systems, including the purchase of 
spares, lubricating oils, inspection services, which now have more drones and robots 
than in the last decade. Therefore, the data management system handles a set of sensors, 
now with Internet of Things (IoT), providing blocks of measurements of technical 
variables along time, or time series. 
 In parallel, some material techniques also are considered, such as the 
management of material behavior as a function of time, and one of them is the Fracture 
Mechanics. 
 This field takes care to understand how a crack may appear and how it can 
propagate inside the crystal lattice or other material structures. Since the 50´s, a better 
knowledge of crack growth has used more and more laboratory testing, searching for the 
reasons for material failures and how to prevent or mitigate them. The shipping industry 
considers all this technical endeavor from the mechanical and material engineering 
fields. 

2.4.4 Reliability-centered maintenance 
For any main economic goal, profit rules the enterprise planning and execution and, 
among the strategic view, the maintenance phase demands special attention due to the 
probability of incidents and accidents, in case of catastrophic breakdowns, which will 
wind up as extra costs, turning down the profit margin in the end. By the way, it may 
fall into a vicious turnaround. 
 Therefore, once the enterprises can predict the maintenance required goals and 
metrics, as much as possible, the economic feasibility of systems, hardware and even 
software apply prediction models related to the reliability centered maintenance. 
 The main objective is to avoid failure and, equally important, to bound the 
operational associated costs by the early fault detection, as an example. Another task is 
the monitoring of the vibrations mode, allowing to assess the change in the whole set of 
natural frequencies, associating them to some specific system optimization in the end. 
 Most system engineers have in mind to describe the operational limits, and in 
this endeavor, they need to determine, or state, when a specific item or a set of items 
must be replaced. 
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 One fair example is the aerospace industry, based on data collected from 
manifold sources. Accident analysis has provided indications on how a certain item, 
such as a shaft bearing or pump gasket, may crack down and provoke an 
accident/failure, after a spilling or initiating event. As a common sense, an incident or 
accident come from a sum up or combination of small causes, linked sequentially or by 
other arrangements. The reliability centered maintenance focuses the management of 
these details, allowing the maximum availability of hardware, system, or their 
combinations.  
 Reference [18] presents some insights about the use of Machine Learning or 
other digital tools for this aim. In that case, a Structural Monitoring System considers 
the pattern recognition technique, of cracks or other singularities, to assess how safe a 
structure has been. In a ship, this means to install a set of strain gauges in key spots, 
building up a strain measuring log, and to compare the results against a certain safety 
criterion, linked to the structural safety design approach. After some time of operation, 
the strain pattern will look up different from the start, due to the reasons discussed in 
previous items above (i.e. fatigue). The reliability centered maintenance approach 
compares the evolution of the strain pattern against recommend values gathered from 
laboratory testing, under the scope to avoid failure. 
 

3 Ship & Marine Technology 

3.1 Materials for ship construction 
In modern shipbuilding industry, several kinds of materials have been used following 
the development of polymeric and metallic alloys mostly. Steels have dominated the 
field, where high tensile steel carbon steel (HTS) figures on the top. 
 Notwithstanding, the first ship built with steel dates from the end of the 18th 
Century, but the metallurgy processes at that time were more likely to the Middle Ages, 
when steel or cast iron were used to join ship wood parts as rivets. In the middle of the 
19th Century, steel making improved with a more scientific and engineering approach 
with support of testing laboratories. With the improvement of the electric technology, 
during the 20th Century, steel making has matured, and welding has been the main 
technique to joint steel parts. 
  Nonetheless, Aluminum alloys, Copper-Nickel alloys, as well as carbon fibers, 
has their own niche. Take the example of the high-performance yachts, sailing with 
speeds higher than 30 knots (around 55 km/h), combining advanced concepts of 
aerodynamics and hydrodynamics, alongside an optimized materials selection. It is 
worth noting the use of several types of wood, combining resistance and lower density, 
in comparison to the metallic alloys, for specific applications and due to traditional 
reasons. 
 Take the example of a medium size aircraft carrier, with the displacement 
around 9.000 tons, which has almost 7.500 tons of steel (96% carbon and 4% stainless). 
The other 1.500 tons are composed by 1.100 tons of copper alloys and 400 tons of 
Aluminum. The small quantity of stainless steel avoids the fabrication cost to reach 
stratospheric levels. 
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 The key material properties required for general ship hull applications are high 
strength, corrosion resistance, fatigue resistance and good ductility for fabrication 
processes. Thinking on the steels, the only answer for this requirement is low carbon 
alloys. Table 2 presents the most common alloys selected for ship structure applications. 

Table 2: Carbon steel alloys for hull structures 

Steel 
Codification 

Yield strength 
min 

(MPa) 

Tensile 
strength min 

(MPa) 

Elongation 
(min) 
(%) 

Main 
composition 
C-Mn-Si (%) 

A 230 450 22 0.22-3.0-0.3 

B 230 450 22 0.21-0.6-0.3 

D 230 450 22 0.21-0.6-0.3 

A32 310 550 22 0.18-1.2-0.4 

A36 350 600 21 0.18-1.3-0.4 

 Take a common steel alloy used in the automotive industry, the HTS has a 
mechanical strength 5 times higher, while the ductility shows a ratio of 4. 
 However, when dealing with submarine hull structures, where the safety factor 
remains around 1.5-1.8, and the fabrication requirements are tighter than those from the 
surface ships, other alloys are used, known as high strength low alloy (HSLA) or high 
yield alloy (HY). 
 In terms of material stress, due to technical requirements, the design of ship 
structures normally requires staying at most around the elastic yield, with few cases 
inside the inelastic field of the materials. Some technical rules are based on the Von 
Mises design criterion, but others are based on the Tresca criterion. 
 The materials above deal with the main structure of the ships, or the structure 
responsible for the ship tightness. For inner structures, known as secondary or even 
tertiary, with a smaller ship tightness impact, other materials may be used, looking for 
the affordable economics too. Nonetheless, the designer must have attention in the 
materials compatibility to avoid corrosion stresses, due to “chemical pile” activation. 
 One famous example are some naval ships, built during the 60´s and 70’s, where 
the main hull used carbon steel plates, but the superstructure was made with Aluminum 
alloys, taking the concept to reduce the overall displacement. Consequently, some stress 
corrosion developed forcing costly repair in the end. 
 Another interesting case is the screw or propeller, where the conditions above 
are magnified.  Summing all of them up, the copper alloy can withstand the intense 
corrosive effects of saltwater. 
 As the propellers have special shapes, following helix lines, with varied 
thicknesses, ductility has a strong importance, alongside the obvious corrosion 
resistance. Common rotation speeds fall within 60 and 100 rpms, shaping up a low 
cycle fatigue case. 
 Cavitation is a phenomenon to prevent during high propeller speeds because it 
causes erosion due to implosion of vapor bubbles generated on the blades. 
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 The roughness of the blades serve as an initiation spot for the occurrence of 
cavitation and the blade surface finishing demands a constant attention. The most 
common propeller materials are shown in Table 3. 

Table 3: materials used in ship or submarine propellers 

Alloy 
Codification 

Yield strength 
min 

(MPa) 

Tensile 
strength min 

(MPa) 

Elongation 
(min) 
(%) 

Main 
composition 

(%) 

Cooper-
Aluminum 

200 500 20 60Cu-2Al-3Mn 

Cooper-
Aluminum-

Nickel 

180 500 30 9Al-4Ni-2Fe 

Stainless Steel 550 850 15 13Cr-4Ni-0.06C 

Sonoston 270 570 25 36Mn-3.5Cu-3Al 

Carbon Fiber 3000 4.000 2 --- 

 One of these alloys of special application is the Sonoston, developed in the 60´s 
with high damping and mechanical strength, for many applications including military 
ships. 
 In ship screws, it is not possible to impose external damping appendices, while 
handling general vibration issues. 
 One of the solutions is to use alloys such as Sonoston, based on Manganese, 
with a mechanical damping capacity over 20 times of other metallic alloys. 
 The Sonoston alloy also shows a ductile fracture profile with temperatures 
below -100oC. 
 Stress corrosion crack can be observed, and it turns to be a disadvantage, but 
with thicker parts and suitable anodic protection, this drawback has been managed 
satisfactorily [19]. 
 In the nuclear propulsion, the materials selection takes other boundary 
conditions, due to the radiation effects, higher stress fields and the risk management. 
 In more than 95% of the nuclear-powered ships, mostly submarines nowadays, 
the pressurized water reactor (PWR) is used, where the primary circuit operates with 
pressures around 150 atm, and the secondary circuit (Rankine cycle) works with 
pressures of 60 atm. 
 Due to the flow of cooling and neutronic moderator agents (light water), which 
induces vibration in the nuclear fuel, fatigue resistance plays a key role too. 
 Moreover, most of the hardware is designed not to be changed during the ship 
lifespan, closer to 30 years, requiring thus a high reliability and endurance standard. 
 For instance, the primary circuit pump is designed to last for 30 years or more, 
dealing with high pressure, transients, and high fatigue cycle. 
 On the other hand, in the same energy system, the piping also deals with high 
pressure, transients, but in a lower fatigue cycle. 
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 Table 4 summarizes the key materials used in the primary circuit of a typical 
PWR reactor for nuclear propulsion. 

Table 4: Common materials used in PWR circuits of nuclear propulsion 

Hardware Material Yield Strength 
(MPa) 

Mechanical 
Strength (MPa) 

Elongation (%) 

Reactor Vessel SA504 or SS304L 200 500 40 

Reactor 
Internals 

SS 304/347/316 200 500 40 

Fuel Cladding Zr-4, Zr alloys 380 500 30 

Main Pipe SS 304/316 200 500 40 

Steam generator 
tubes 

600MA or 690TT 
(325 oC) 

220 570 46 

Steam generator 
shell 

Low Carbon Steel 300 600 30 

 To present more details, Figure 11 shows most of the materials used in the 
primary circuit, which deals with the nuclear fuel elements, and in the secondary circuit, 
more specific to generate steam and use it to produce propulsion power or electricity. 
 Note the vertical border line, which separates the two circuits, also showing the 
containment limits, regarding pressure and nuclear material tightness. 
 Although the picture shows ‘carbon steel’ for the pipelines in the secondary 
circuit, nowadays ‘stainless steel’ has been used instead. 
 Due to the technical requirements, few components inside the primary circuit 
need to be exchanged during the nuclear facility lifespan. 
 The classical example is the steam generator, the largest item near the border 
line, which deals with two pressure loads or, approximately, 150 atm in the primary 
side, and 60 atm in the secondary circuit. It normally shows problems related to 
corrosion (e.g., stress-corrosion cracking). 
 In some extent, the pressurizer also may show corrosion issues, normally 
associated to the two-phase regime (water-steam) operating condition. 
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Figure 11: materials among equipment of the primary and secondary circuits [20] 

3.2 Ship construction and manufacturing processes 

3.2.1 Testing – material characterization 
As required by industrial design codes, within the quality control sphere, materials must 
be checked against their real properties, before allowing their use in fabrication or 
construction. 
 In other words, the materials must have its properties within the code range. 
Thus, material properties are confirmed with the testing of samples. 
 The American Society of Testing Materials (ASTM) is an example of standard 
to be considered in this matter, alongside the American Society of Mechanical 
Engineers (ASME), which focuses the hardware design (e.g., structures, pumps etc.).  
 Due to reasons related to the safety, reliability and insurance, the material 
characterization has a high importance, to protect the environment and to avoid huge 
losses in court disputes. 
 In the shipbuilding industry, the American Bureau of Shipping (ABS) has its 
own standards applicable to boats and ships. 
 Other best-know classification societies are Lloyd´s Register (UK), Det Norske 
Veritas Germanischer Lloyd (Germany) and Bureau Veritas (France). 
 For instance, ships with cryogenic or low temperature tanks, for the transport of 
liquified fuels or special substances, such as acids, the presence of Silicon (Si) in carbon 
steels must be low and tightly controlled, to avoid brittle failures. 
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 The main material tests applicable to the shipbuilding industry are: 
• Chemical composition 
• Tensile strength test 
• Charpy / Izod test 
• Transition temperature test 

3.2.2 Welding 
Welding is the most common bond process used in ship construction, focusing metallic 
joints. The Welding Handbook is published by the American Welding Society (AWS) 
and describes the welding techniques in detail, where the thermal flux management is 
fundamental for the material properties changes. 
 During the welding, high heat flux goes throughout the material thickness, 
making crystal modifications like the heat treatment processes. 
 In case of a fast cooling of the weld joint, the local material hardness may 
increase beyond the acceptable levels. Thus, the temperature transient in the weld joint 
can affect the local mechanical strength and ductility, towards the crack inception and 
material failure unfortunately. 

3.2.2.1 Heat Affected Zone (HAZ) 
In the welding processes used in the shipbuilding, due the phenomenon briefly 
described above, the HAZ is a key factor to be controlled. The American Welding 
Society (AWS) has technical guidelines on this matter and the HAZ shows its relevance 
in the hull construction of submarines and reactor pressure vessels. Reference [21] has 
more data to get deeper.  
 Figure 12 presents a combination of graphs: on the left-hand side, it shows the 
steel microstructures developed from the join center position, or the place of the peak 
temperature. 
 These microstructures come from different heat transfer pattern and temperature 
profile as a function of time. On the right-hand side, there is the phase diagram of a 
typical low carbon steel. The vertical axis shows the temperature, and the horizontal 
axel has the Carbon concentration (%). 
 Near the welding joint, there is a set of 5 types of microstructures, which one 
with different mechanical properties, then with a heterogeneous material profile. This 
fact must be considered in the mechanical design, to cope with the worst-case scenario 
for the safety factor. That is the main reason to take heat treatment for welding of thick 
steel plates, such as the ones present in shipbuilding, to make the material more 
homogeneous after the welding. 
 Another solution focuses the use of alloy carbon steel, to handle the lack of 
homogeneity from the heat flux and temperature distribution. 
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Figure 12: the HAZ typical weld contour [21] 

3.2.3 Plate rolling 
Most of the steel parts in a ship starts from a plate geometry made with a set of 
thicknesses and dimensions. 
 The plates are made in the steel factory by plate rolling, using large cylinders, or 
rollers, under compression loads on the steel flowing, which is already solid but with 
temperatures close to the transition threshold, showing a vivid orange reddish color. 
 This operation sets some residual stresses on the material, after some operations 
such as quenching, and thus annealing also takes place to handle the final mechanical 
properties. 

3.2.4 Cutting 
Prior to any further operation, the steel plates need to be cut into shapes closer to the 
final geometries required to make up the structural components. In this operation, the 
steel plates geometries are checked against the optimal scheme to generate the least 
quantity of material disposal, as also seen in the clothing industry. 
 Depending on the thickness, several cutting tools can be used, such as gas torch 
or plasma technology, normally underwater this last one. The main concept is to dim the 
microstructure are affected by these processes, preserving the material as homogenous 
as possible. It is worth noting this kind of detail is taken since the preliminary design, 
allowing dimensions and margins related to the optimization of the whole set of 
materials. 
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3.2.5 Bending 
As used in mechanical structures of different sizes, the bending process is responsible to 
produce any sort of curved shapes, mainly in the bow (fore) and stern (aft) ship areas. In 
addition, bending is used in the resistant hull transition geometries, from the bottom 
(horizontal) to the main deck (vertical). This shipbuilding application has a strong link 
with the same applicable in the automotive industry. Normally, the steel plate thickness 
for the shipbuilding industry remains closer to 2 inches or 50 mm, which must be 
considered when planning the bend operation. Figure 13 shows the bend structures 
normally found in oil tankers ships. 

 
Figure 13: Bend plates for oil tanker ships [22] 

3.2.6 Machining 
In the same fashion of large mechanical structures, machining is quite present for plate 
preparation to welding. In this case, the notch between two plates must have its shape 
according to the detailed design. The notch is produced by the machining the two plates. 
Propulsion shafts are also machined following the detailed design, considering 
assembling clearances and the softening of sharp corners, to prevent cracks from stress 
concentration and fatigue. 

3.2.7 Metal forming 
In some special parts of the ships, with special geometries formats, the metal forming is 
required, with the application of pressing for instance. The classical case comes from 
the spheric tanks used to transport liquified substances, such as natural gas, because 
with this format, the internal stresses are smaller, with lighter structures too. The bow 
structural hull of submarines is also made by pressing of carbon steel alloys, in small 
parts to be welded and assembled in the final stage of the manufacturing. 
 Another example is forging, which is seen for instance in the fabrication of 
propulsion shafts or assembling bases of heavy hardware, such as the diesel engines for 
large oil tankers. These engines have peculiar characteristics like large dimensions and 
weight around tens of tons, using thus just one per ship. 
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3.2.8 Additive processes 
With the technology advance of the polymeric materials, mainly for high tech sailing, 
additive techniques have been used in the construction of advanced boats, following the 
aerospace industry trends. Modern outfitting techniques, used for small internal items, 
can been seen with the use of bonding procedures. 

3.3 Main ship systems 
As an integration of several hardware, a Work Breakdown System (WBS) helps to 
present an overall view of the main ship systems. According to Reference [23], the main 
ship systems are known as: 

a) Structures 
b) Propulsion 
c) Electric 
d) Auxiliaries 

 The ship structures consist of a set of supports and resistant components, 
requiring monitoring, inspection, and maintenance, like the other systems. 
 The propulsion components also make a system division because they cover 
several types of energy management details, using different types of fluids and 
mechanical parts, and more recently, advanced digital control techniques. 
 A specific field is dedicated to the electricity, covering subjects as electric 
motors and generators, automation, switchboards, power converters. 
 Finally, the auxiliaries take care of all other systems, such as ventilation, air 
conditioning, hydraulics, steering devices, damage control items.  
 Additional ship system division may be set, depending on the logistic or 
management needs. 

3.4 Ship structural load profiles 
In short words, the main ship structure can be taken as a metallic beam, in a closed 
profile, being thus a hyperstatic structure. For sea going ships, the main structural load 
comes from: 

• the overall displacement, according to the weight internal arrangement. 
• the sea wave patterns, mainly during high seas and storms. 
• the propulsion resistance, more significant at high speeds. 
• The ship maneuvers, in high angle turns. 

 In some special cases, specific loads can be observed during the take-off and 
landing of aircrafts, weapons launching and towing operations, which are kind of 
common for the naval ships. Specifically, submarines have a more homogenous 
structure load profile once they go underwater most of the time. The compressive load 
varies with the diving depth. In general, modern submarines can sail at 300 m deep, 
corresponding to an external pressure of 30 atm roughly. 
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3.4.1 Wave loads 
The simplest wave configuration faced by the ship structure can be seen in Figure 14, 
with two cases basically. With the concept said above, the ‘ship beam’ can have a 
tension, or compression, distribution leading the main stress profile, due to the 
buoyancy. 

 
Figure 14: Buoyance wave loads to ship structures [24] 

 As the buoyance varies along the ship length, according to the wave pattern, the 
structural stress also changes. In the first picture, the load is equally distributed along 
the ship length, in a homogeneous fashion, and the structural stress seems quite uniform 
along the ship length. Nonetheless, as seen on the second picture, the extreme parts of 
the hull (bow and stern) have more buoyancy and the main hull section (midships) has 
lower buoyancy. The hull can be taken as bean with tension in the lower part and 
compression in the upper part. From the last picture, the opposite occurs, alternating the 
stress profile, typical framework for a fatigue analysis (low cycle). 

3.4.2 Other loads 
Another way to compute the external load, comes from the water column at every point 
of the ship structure, which is more relevant in underwater structures, such as 
submarines, drones and some oil drilling rigs. Winds also represent a key load, mainly 
for high superstructures, seen in transatlantic ships, figuring around 20.000 m2 or 3 
soccer fields, or even more. All the loads above have a transient behavior, varying in 
time and inducing the fatigue. 
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3.5 Types of ship structural failures 

3.5.1 Corrosion 
As the sea environment is rich in Oxygen, with salt and dirty, in some cases, the 
corrosion process is present to all metal structures of a ship. This feature makes 
corrosion a constant preoccupation in the shipping industry to prevent stresses beyond 
the design. As a general guideline, the ship structures have over dimensioned 
thicknesses to consider lifespans of 30 years or more, even with careful painting and 
maintenance. Make note that the corrosion product must be taken away, using abrasive 
methods, which decreases the ship plate thickness. Figure 15 shows a typical corrosion 
profile present in ship hulls.  The reddish spots represent the corrosion at high stage or 
degradation. The dark lane closer to the water line has marine life accumulation on the 
hull, also a contributing factor for the corrosion. The vertical black items near the bow 
are the ship anchors, also experimenting corrosion with middle stage pattern 
approximately. 

 
Figure 15: typical hull corrosion stages [25] 

3.5.2 Fretting 
This kind of failure links between rough surfaces and wear/ corrosion. The wear 
phenomenon requires a relative motion between surfaces under contact, originating then 
high levels of roughness, which is one of the sources for cracks, specially at high 
speeds. 
 Thus, fatigue can be present under fretting situations too when the fatigue cracks 
appear at fretting zones. In ships, it is possible to have this failure in rotating parts, such 
as axles and bearings, due to poor lubrication or maintenance. 
 As these parts are made of steels, fretting can be confirmed by the presence of 
pits and fine red dust, on the contact surfaces, which are related to oxides formed during 
the increasing of wear.  
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 Figure 16 shows some of indications of fretting in a ship propulsion shaft, at the 
joint flange with screws. On the upper right-hand side, there are nuts and bolts attached 
to the flange. In the middle, there are two empty holes, showing traces of fretting, pits, 
and red dust. 
 The ship shaft is a forged component, machined to handle the geometry changes, 
like the holes and flanges. Note the light line transition from the horizontal position to 
the vertical one, where the nuts and bolts are shown. This light transition helps to avoid 
stress concentration near the shaft joint. 

 
Figure 16: example of fretting in a ship shaft [25] 

3.2.3 Fatigue 
The ship dynamic load profiles seen in different conditions provoke fatigue failures. 
 There are two major cases: low cycle and high cycle [26], which need to be 
taken while composing the structural stress, according to different boundary conditions, 
such as local load profile, stress concentration, temperature conditions, material 
composition, welding geometries and so on. 
 The overview also considers the classic form to address fatigue throughout the 
evaluation of data from the failure stress against the number of operation cycles. 

3.5.3.1 Low-cycle / strain-based fatigue 
This situation is observed in the ship main hull, mostly closer to special configurations, 
normally linked to stress concentration, which happens in welded joints. The low cycle 
range can be set as lower than 104 number of cycles. 
 Depending on the shape and stress profile, low cycle fatigue may set the 
material into the plastic regime, which requires a special approach to prevent failure and 
to forecast the material lifespan.  
 Reference [27] presents a suitable reasoning to address this low cycle condition. 
The strain indicator takes the elastic and plastic regimes together, by summing up each 
contribution. 
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 It also focuses the welding joints as the worst case to be studied, due to the HAZ 
detected, basing on testing and empiric relations for shipbuilding steels. Figure 17 
presents some results related to marine structures low-cycle fatigue. The dots on the 
upper part of the figure come from mechanical testing, and the order of cycle magnitude 
is closer to 10.000. It is worth noting the dark points were made with welded specimen 
of the material, with a lower stress strength, in comparison to the base material. 
 In the figure two other limit lines are also shown: the elastic strain-life, closer to 
the fatigue curve, converging to the same stress limit, for higher cycles, and the plastic 
strain-life, straight down to the end life limit of 105 cycles approximately. The term 
‘SSC-346’ stands for a ship structural committee nr 346, from the US Government 
(1990), dealing with fatigue characterization of ship fabricated details. 

 
Figure 17: typical strain-based low-cycle fatigue [27] 

3.5.3.2 High-cycle / cycle-based fatigue 
This case deals with the hardware found in the propulsion systems, like propulsion 
motors, pumps, air compressors, but it can also be seen in structural items. High cycle 
fatigue is assumed for work patterns above 105 cycles and it is also common to consider 
a very high cycle fatigue when dealing above 107 cycles. Reference [28] covers most of 
the details related to high cycle fatigue, including the fractography. In a general sense, 
high cycle fatigue is linked to tough failure mechanisms. Figure 18 shows a comparison 
of different materials and their behavior under high cycle fatigue, indicating the 
shipbuilding cases (A36 and other structural steels). Note that the alloy steel 4340 (0.4% 
of Carbon) exhibits a 100% higher fatigue strength than classical structural steels, and 
some specimen did not fail at 107 cycles or more. 
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Figure 18: typical high cycle fatigue [28] 

3.5.4 Hydrogen embrittlement 
Hydrogen is the smallest and lightest atom and thus, as an ion H+, it can have high 
mobility throughout crystal planes of metallic materials. Therefore, the diffusion of 
Hydrogen reveals quite easy when the concentration difference and temperature 
conditions are present. 
 As a matter of fact, this diffusion of Hydrogen is reversible consequently and, at 
room temperatures, it takes order of minutes to happen. In a few words, the presence of 
Hydrogen produces ‘hydrides’, which are brittle, inside the crystal lattice (interstitial), 
inducing the material failure because, when diffused into metallic matrices, this 
introduces brittle clusters, weakening the material toughness. Three major conditions 
favor this phenomenon: stress, a Hydrogen source, and the susceptibility of the target 
material. Note that it is a low temperature phenomenon for steels, which are not affected 
by Hydrogen embrittlement above of 150oC. All these can be found in ship structures 
once salt water is a fair source of Hydrogen and other ions. 
 Figure 19 shows a stress-strain graph (in the middle) and four associated 
metallography details, regarding the evolution of hydrogen embrittlement, during a 
effort to use heat treatment as a way to reduce the damage from the phenomenon. In this 
study, the authors propose to use ‘selective laser melting’ (SLM) to change the metal 
structure locally to increase the hydrogen embrittlement resistance. They also propose 
to carry on a heat treatment (annealing) with the SLM. The idea is to produce materials 
with the curves in the upper part of the tension test result, rather than the ones in the left 
lower corner. 
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Figure 19: hydrogen embrittlement metallography [29] 

 During the processing of metal plates at shipyards or factories, the operations of 
rolling, forming, coating, or cleaning may also introduce Hydrogen as described above, 
due to poor quality control techniques. The presence of dirty, inadequate, or damp 
materials in the fabrication line can be a Hydrogen diffusion source, which diffuses due 
to bad electroplating control. As seen in many industrial applications for high quality 
welding, the electrodes used in shipyards must have a low Hydrogen content and must 
be kept at controlled atmosphere (special casing or barns), avoiding moisture or other 
sources of Hydrogen. Any electric source can also start the Hydrogen diffusion and, 
therefore, galvanic corrosion needs attention to prevent the phenomenon. 

3.5.5 Transition temperature failures 
Metallic alloys exhibit a change in their ductility while the operating temperature 
changes, in direct relation or as the temperature lows so does the ductility. Nonetheless, 
this modification is not proportion, rather it shows a step profile. The temperature 
associated to this step start up (down) is called transition temperature. This phenomenon 
requires attention when dealing with structures facing low operating temperatures, such 
as cryogenic systems or polar navigation. In short words, above the transition 
temperature, the metal has a ductile behavior, as the strain follows the load application, 
as discussed previously. For temperatures below the transition threshold, the failure 
becomes ‘tough’ or no pre-sign of crack down can be detected, to avoid the total 
material collapse. Thus, the transition temperature demands special attention to ensure 
the suitable operating structure envelope. 

3.5.5.1 Liberty ships 
These ships were constructed in WWII to transport goods and soldiers between North 
America and Europe and had a cargo capacity of almost 11.000 ton.  Based on a British 
design, they symbolized a classical example of the huge industrial potential of the USA 
at that time, mobilizing 18 shipyards and a total of 2700 ships, making 4 ships per day 
as mean rate.  
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 The American design considered welding in the place of rivets, originally 
designed by the British. Due to poor quality control actions, the employment of non-
skilled workers, and other minor causes, some Liberty ships faced fatal cracks, 
evaluated as brittle failures. 
 The North Atlantic Ocean has severe conditions in terms of wave and wind 
loads, besides lower temperatures during the winter. Therefore, the transition 
temperature mechanism influenced the material behavior, or temperatures lower than 
the critical ductile-brittle transition zone. 
 The same phenomenon was already observed in some ships which operated in 
the Great Lakes, between Canada and the EUA, once the region shows normally very 
low temperatures in winter normally. Figure 20 shows of the damaged Liberty ships. 

 
Figure 20: A damaged Liberty ship due to hull cracking [30] 

 The cracks were originated in regions typically of stress-concentration, such as 
hatch corners. Additional causes for these failures were overweight and storms beyond 
the design envelope. 
 The whole structural design was then redone, widening the space between 
beams, making the ship less stiff and flexible enough to absorb strain in severe 
conditions. In addition, the transition temperature of the alloy steel was then dimmed to 
levels below the North Atlantic harsh conditions. 
 Figure 21, from the US Naval Research Laboratory [31], shows some technical 
hints of the importance of the transition temperature on steel alloys, after keeping in 
mind that above the transition temperature the material will have a ductile behavior, 
which goes towards a safer way. 
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Figure 21: the transition temperature curve [31] 

 The temperatures are represented in the horizontal axis and the nominal tensile 
testing stresses are shown in the vertical axis. As well known, the Yield stress 
represents the threshold between the elastic and plastic strain regimes. 
 Below the transition temperature, the material behavior will close to the tough 
category, and the higher the tensile load the faster a small crack will propagate (see the 
upper left corner of the picture), in opposition to a lower the tensile load (lower left 
corner respectively). 
 

Trends in material selection for ship construction 
The herald of an energy transition move indicates the substitution of the fossil fuels in 
the shipping industry and, consequently, the ship structures and materials already ask 
for more advance techniques linked to lighter and more reliable structures and systems. 
 The use of electric power shows to manage a set of advantages when reducing 
the CO2 footprint, although further development has been required for the batteries and 
energy management systems. Nanomaterials have shown a favorable way to be spread 
into the ship materials sphere, allowing a more precise property build up and selection, 
mainly to hull paints and covers. 
 The lighter ship structure will ask for lower propulsion power, for the same 
payload, and the polymeric materials present an advantage at a large. The development 
of systems to handle the Hydrogen has its place in the shipping technologies, 
strengthening the possibilities of the electric ship power. Some ships can burn liquified 
natural gas (LNG), which is not so environmental aggressive as other fossil fuels, but it 
requires special safety measures to prevent explosion and fires aboard. 
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 The integration of different power forms, such as screw and modern sails, can 
save money in time during this transition. For instance, the steel making industry has 
researched greener ways to operate furnaces and the whole logistic and factory chains, 
managing the wastes (thermal and material) more carefully (e.g., using more heat 
recovery techniques). This initiative adds a smaller CO2 footprint to the shipping 
industry as well. 

3.5.6 Structural reliability 
In modern structural design, the use of probability models has increased to save 
resources, lives and to a better environmental protection, because the data management 
has improved with the use of larger digital computing engineering. Therefore, the 
structural reliability has better profiles and continues to be expressed as the complement 
of the failure probability, or structure reliability equals to (1 – structure failure 
probability). As a result, structural reliability becomes more and more a design 
philosophy taking the place of the deterministic methods, being also applicable to the 
structural maintenance. 
 The core of the ship structural reliability is to handle the set of uncertainties 
found in the ship construction, operation, and maintenance. These uncertainties lie on 
the variability of the material composition, processing (where welding has a main 
contribution) and degradation (here oxidation/corrosion leads). Due to the large number 
of factors, it has been a place to use statistic models to predict the material failure, in 
different orders of math complexity. 
 As an example, the combination of two different materials, such as steel and 
Aluminum, or the impact of ice into ships not designed for it put together different 
approaches when dealing with ship structural reliability. Also worth noting, the use of 
accelerometers with wireless digital networks grabs data from hot spots to feed up 
statistical methods, and the Machine Learning and Artificial Intelligence tools to 
provide a quick overview of the hull reliability. 
 Another example of material reliability assessment comes from the nuclear 
material selection aiming the primary circuit conditions, or the materials closer to the 
nuclear core. To cool down the nuclear fuel elements and to extract the heat produced 
by the fission reaction chain, light water is used in most of the reactors. 
 Therefore, the materials will face a water medium under nuclear fluence, 
measured in terms of number of neutrons per square centimeters (n/cm2). This last 
characteristic comes from the integration of the neutron flux (n/cm2.s) over time, where 
one core can last for say 30 months or more, depending on the nuclear materials 
selected and actual power profile. During the fission, high energy particles are released 
from the core and produce heavy impact in the structural materials. The operational and 
economic performance of a reactor comes from the reactor core performance and its 
interaction with all the surrounding materials. 
 Stress corrosion cracking has presented problems in reactor materials reliability, 
when dealing with alloys such as the 600 and 152, they have a high corrosion resistance 
tough. These alloys also have a thermal expansion coefficient like the carbon steel, 
which is the main material of the reactor pressure vessel, and it is advisable to use 
materials with the same expansion coefficient, to prevent strain or dissimilar 
deformations due to the temperature. 
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 In the last forty years, these alloys have been used but shown early cracks 
impeding the reactor economics. The Electric Power Institute (EPRI/USA) has 
conducted a series of laboratory testing regarding the stress corrosion cracking in 
pressurized water reactors, mainly to assess what metallic alloys will improve the 
material reliability. 
 Even today, the causes of this stress cracking phenomenon have not been 
understood fully, and the prediction when and where it may occur has been a challenge, 
although studies have been carried out in weld parts. The most key chemical 
components have been identified as Carbon and Chromium, both present in the alloys, 
but also their manufacturing details, residual stresses, and the operational envelope have 
a significant contribution. To improve the material reactor reliability, the solution was 
the change for the alloy 690, which is now set for the new designs and replacements. 

3.5.7 Risk management 
Since its beginning, the shipping industry operates along the insurance market, due to 
the amount of money involved. The prediction of how things may go wrong takes part 
of the mathematic techniques used by the insurance companies. They are based on data 
collected from different sources and time, and generate the probability of an event to 
happen, which is then linked to the consequences of this event, in terms of money 
figures. 
 The multiplication of the probability to happen and the money consequences is 
called ‘risk’ in a straight manner. Therefore, different math techniques have been 
developed to calculate the probability and to assess the consequences, shaping up what 
is called ‘risk management’. The Bayes theorem is instrumental within this whole 
procedure because it handles the conditional probability, or the probability of something 
to happen, knowing that another event has already occurred.  
 In the shipping industry, the risk management has different levels, and it starts a 
way before the ship operation per se. While studying the shipping routes, based on 
forecast market requirements, to link ports and cargo terminals, weather data is analyzed 
as a time series to identify seasonal components, which may be set in terms of wave 
loads or storms intensity. This analysis will make part of the probability to have a 
damage hull and all the consequences, in other words to figure out the risk associated to 
the route.  
 Another risk involved deals to run aground while entering or exiting some 
terminals and ports. Shallow waters require constant chart update because sand or 
bottom obstacles vary in position quite often. Even using port pilots, the probability to 
run aground exists and, in some cases, can damage the hull drastically. In this case, even 
with a certain damage extension, a ship may sail under restraint envelopes till to reach a 
shipyard for repair. 
 The hull structure and related systems (e.g., ballast control, fire control etc.) 
must be monitored to evaluate the probabilities involved. For instance, the hull structure 
is checked in terms of strain evolution (longitudinal and transversally) of the different 
kind of structural components. This strain evolution makes part of probabilistic models 
to assess the hull safety, or how close the actual load condition is to the design or 
licensing limit. As mentioned before, accelerometers and wireless networks also work 
in data gathering to fill up math algorithms used for risk management. 
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 Unfortunately, fire aboard has a not neglected frequency, as an initiation event 
for an accident, and thus, the probability of fire and its progression aboard is taken 
during the risk management. The consequences of a fire while in a port or terminal are 
different from those in the middle of an ocean. 
 The risk management takes care to quantify this set of conditions, which impacts 
the operational costs. Maintenance conditions are also taken by the risk management 
because some spare parts change may occur on route, depending on the difficult or 
importance level. Moreover, some repairs are not allowed while on sailing and must be 
done at a skilled shipyard. 
 One of the forms to assess the maritime risk is to build up a matrix, considering 
the levels of severity (impacts) and the probabilities. The impacts may be from ‘minor’ 
to ‘catastrophic’, and the probabilities may be linked to a frequency of occurrence in 
terms of years. 
 For instance, an event that has a probability to occur at every 10 million years is 
less probable than the one to occur at every 100 years. Thus, a matrix can be colored in 
terms of the acceptance of the risk. Figure 22 shows an example of the risk matrix. The 
figures shown may vary depending on the accumulated data and operational experience, 
among other factors. Grounding and collision are the main accidents on the scene, but 
others exist such as fire and hull failures. The main consequence also regarded is the 
presence of ‘leak’, which may or not occur, with odd environmental aftermaths. As a 
general point of view, the ship must set sail with ‘negligible risk’ area. The acronym 
‘ALARP´ stands for as low as reasonably practical. 

 
Figure 22: example of ship accident risk matrix [32] 
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3.5.7.1 Hazard analysis 
The nuclear and petrochemical industries provide good examples of hazard analysis, 
which are also taken by the shipping case. The handle of dangerous materials, such as 
acids, fuels, explosive gases, and others demand a chain of safety measures to cope with 
the risk which is accepted by national safety authorities. For instance, some ships 
operate with aviation fuel, such as the aircraft carriers. The hazard analysis demands to 
consider the same provisions set for airports added with those from the naval culture or 
requirements, to protect people, hardware, and the environment. Normally, aviation fuel 
vaporizes in conditions different from the crude oil burned in some ship power systems 
and then it requires different kind of stopping valves, instrumentation, and storage tanks 
(e.g., due to corrosion). 
 The hazard analysis classifies the ship areas/conditions into categories linked to 
the safety measures need to follow the legal framework where the ship is registered or 
operates. For instance, while in ports, nuclear propulsion ships are required to maintain 
their nuclear reactors in a hot shutdown condition, which means there is no propulsion 
power, but only the power necessary to operate their safety systems accordingly. In 
addition, some auxiliary systems may be required, external to the ship, to provide heat 
removal from the ship nuclear systems, which is the case of the heating and cooling 
ventilation systems. Another example of hazard analysis focuses the need to maintain 
tanks almost full, rather than operating with intermediate levels. In ships, the half level 
condition normally worsens the ship stability, due to a phenomenon called ‘free water’ 
oscillation. Furthermore, depending on the fluid and its temperature, the half level may 
set an easier vaporization condition, increasing the fire probability. 
 

4 Concluding Remarks 
In this chapter, a general view of the ship design was presented, covering its phases and 
relevant technical issues. The characterization of the ship dimensions and systems, 
along design drawings and materials application, was described in a progressive way. 
As the sections of the chapter were presented, the engineering materials field had been 
expanded in terms of technical figures and details. The focus was to provide a spark to 
the reader about the variety of topics around the ship materials selection and its 
evolution, without the pretense explore all the fields in deep. The data presented came 
from open sources, intending to provide a order of magnitude of the reasoning discussed 
along the text, and they may be seem as mean values. All topics here shown are under 
continuous development, mainly the nuclear examples, and more recently the 
application of Machine Learning and Artificial Intelligence. As a high potential subject 
for technical improvement, the environmental impact reduction with new fuels and 
propulsion systems has its place to catch the general attention. 
 

Acknowledgements 
The author thanks São Paulo University (USP) and Paulista University (UNIP) for all 
their academic and technical support. 
 

Marques, André L. F. (2022) Technologies and Materials Related to Naval and Ocean Engineering pp. 15-50

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 47



References 

[1] Boxer, R. ‘The Portuguese seaborne empire, 1415-1825’. Hutchinson and Co. Ltd, 
1969. ISBN 978-972-44-1602-1.  

[2] https://www.oecd.org/ocean/topics/ocean-
shipping/#:~:text=The%20main%20transport%20mode%20for,transport%20arteries
%20for%20global%20trade, acessed on March 27th 2022. 

[3] https://imo.libguides.com/c.php?g=659460&p=4655524, accessed on March 27th 
2022. 

[4] Foretich, A. Zaimes, G.  Hawkins, T.  Newes, E. “Challenges and opportunities for 
alternative fuels in the maritime sector”. Maritime Transport Research, Volume 2, 
2021, 100033, ISSN 2666-822X, https://doi.org/10.1016/j.martra.2021.100033. 

[5] Anish. In Guidelines. Oct 7th 2019. 
https://www.marineinsight.com/guidelines/fighting-oil-spill-on-ship/. Accessed on 
March 25th 2022. 

[6] https://www.marinha.mil.br/noticias/fragata-liberal-completa-o-41o-aniversario-
participando-da-operacao-amazonia-azul-mar-limpo. Accessed on Jan 25th, 2022. 

[7] McRobbie, L.R. ‘When the British Wanted to Camouflage Their Warships, They 
Made Them Dazzle’. April, 7th, 2016. 
https://www.smithsonianmag.com/history/when-british-wanted-camouflage-their-
warships-they-made-them-dazzle-180958657/. Accessed on Jan 25th 2022. 

[8] https://www.nauticexpo.com/prod/hyundai-heavy-industries/product-31139-
447904.html. Accessed on Jan 25th 2022. 

[9] https://www.sspa.se/naval-technology/hydrodynamics-submarines. Accessed on Jan 
26th 2022. 

[10] https://clickpetroleoegas.com.br/en/navy-initiates-proof-of-sea-of-the-submarine-
riachuelo/. Accessed on Jan 30th 2022. 

[11] https://petrobras.com.br/en/. Accessed on Jan 30th 2022. 
[12] Davis, C. “The underwater drone revolution”. Underwater Imaging. January, 9th, 

2019. https://www.deeperblue.com/the-drones-revolution/. Accessed on Jan 31st 
2022. 

[13] Britannica, T. Editors of Encyclopaedia. "naval architecture." Encyclopedia 
Britannica, April 19, 2018. https://www.britannica.com/technology/naval-
architecture. Accessed on Jan 20th 2022. 

[14] Eyres,D. Bruce, G. Ship Construction (Seventh Edition), 2012. 
https://www.sciencedirect.com/topics/engineering/longitudinal-framing accessed on 
Jan 20th 2022. 

[15] Eckstein, M.  “Navy, Industry Working Through DDG-51 Flight III Detail Design; 
Draft RFP For Ship Construction Released”. https://news.usni.org/2015/11/12/navy-
industry-working-through-ddg-51-flight-iii-detail-design-draft-rfp-for-ship-
construction-released. Accessed on March, 29th 2022. 

Marques, André L. F. (2022) Technologies and Materials Related to Naval and Ocean Engineering pp. 15-50

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 48

https://www.oecd.org/ocean/topics/ocean-shipping/#:%7E:text=The%20main%20transport%20mode%20for,transport%20arteries%20for%20global%20trade
https://www.oecd.org/ocean/topics/ocean-shipping/#:%7E:text=The%20main%20transport%20mode%20for,transport%20arteries%20for%20global%20trade
https://www.oecd.org/ocean/topics/ocean-shipping/#:%7E:text=The%20main%20transport%20mode%20for,transport%20arteries%20for%20global%20trade
https://imo.libguides.com/c.php?g=659460&p=4655524
https://doi.org/10.1016/j.martra.2021.100033
https://www.marineinsight.com/guidelines/fighting-oil-spill-on-ship/
https://www.marinha.mil.br/noticias/fragata-liberal-completa-o-41o-aniversario-participando-da-operacao-amazonia-azul-mar-limpo
https://www.marinha.mil.br/noticias/fragata-liberal-completa-o-41o-aniversario-participando-da-operacao-amazonia-azul-mar-limpo
https://www.smithsonianmag.com/history/when-british-wanted-camouflage-their-warships-they-made-them-dazzle-180958657/
https://www.smithsonianmag.com/history/when-british-wanted-camouflage-their-warships-they-made-them-dazzle-180958657/
https://www.nauticexpo.com/prod/hyundai-heavy-industries/product-31139-447904.html
https://www.nauticexpo.com/prod/hyundai-heavy-industries/product-31139-447904.html
https://www.sspa.se/naval-technology/hydrodynamics-submarines
https://clickpetroleoegas.com.br/en/navy-initiates-proof-of-sea-of-the-submarine-riachuelo/
https://clickpetroleoegas.com.br/en/navy-initiates-proof-of-sea-of-the-submarine-riachuelo/
https://petrobras.com.br/en/
https://www.deeperblue.com/the-drones-revolution/
https://www.britannica.com/technology/naval-architecture
https://www.britannica.com/technology/naval-architecture
https://www.sciencedirect.com/topics/engineering/longitudinal-framing
https://news.usni.org/2015/11/12/navy-industry-working-through-ddg-51-flight-iii-detail-design-draft-rfp-for-ship-construction-released
https://news.usni.org/2015/11/12/navy-industry-working-through-ddg-51-flight-iii-detail-design-draft-rfp-for-ship-construction-released
https://news.usni.org/2015/11/12/navy-industry-working-through-ddg-51-flight-iii-detail-design-draft-rfp-for-ship-construction-released


[16] Mosedale. E. “Is the ship design spiral holding you back?” 
https://blogs.sw.siemens.com/simcenter/ship-design-spiral-simcenter/. Accessed on 
Jan, 25th 2022. 

[17] https://www.cadcrowd.com/3d-models/ship-lines-plan-drafting. Accessed on 
March, 29th 2022. 

[18] Salehi, Hadi & Burgueño, Rigoberto. (2018). Emerging artificial intelligence 
methods in structural engineering. Engineering Structures. 171. 170-189. 
https://doi.org/10.1016/j.engstruct.2018.05.084. 

[19]http://stonemarinepropulsion.com/wp-content/uploads/2021/08/Sonoston-alloy-
NL.pdf. Accessed on Jan 30th 2022. 

[20] Allen T. Busby, J. Meyer, M. Petti, D.” Materials challenges for nuclear systems”. 
Materials Today. Volume 13, Issue 12. 2010. Pages 14-23. ISSN 1369-7021. 
https://doi.org/10.1016/S1369-7021(10)70220-0. 

[21] Jia, L.J. & Ikai, Toyoki & KANG, LAN & Ge, Hanbin & Kato, Tomoya. (2016). 
Ductile cracking simulation procedure for welded joints under monotonic tension. 
Structural Engineering and Mechanics. 60. 51-69. 
https://doi.org/10.12989/sem.2016.60.1.051. 

[22] http://www.ourwaysteels.com/steel-plate-rolling.html, webpage. Accessed on Jan 
15th 2022. 

[23] Koenig, Philip C., and Walter L. Christensen. "Development and Implementation 
of Modern Work Breakdown Structures in Naval Construction: A Case Study." J 
Ship Prod 15 (1999): 136–145. https://doi.org/10.5957/jsp.1999.15.3.136. 

[24] Brown, J. C., et al. “Measurement of Wave-Induced Loads in Ships at Sea [and 
Discussion].” Philosophical Transactions: Physical Sciences and Engineering, vol. 
334, no. 1634, The Royal Society, 1991, pp. 293–306. 
http://www.jstor.org/stable/53773. 

[25] Dymarski, Czesław. (2009). Analysis Of Ship Shaft Line Coupling Bolts Failure. 
Journal of Polish CIMAC. 4. 

[26] Garbatov, Yordan & Rudan, Smiljko & Gaspar, Bruno & Guedes Soares, Carlos. 
(2011). Fatigue Assessment of Marine Structures. 
https://doi.org/10.13140/RG.2.1.3185.0488.  

[27] Wang, X, Kang, J, Kim, Y, & Wirsching, PH. "Low Cycle Fatigue Analysis of 
Marine Structures." Proceedings of the 25th International Conference on Offshore 
Mechanics and Arctic Engineering. Volume 3: Safety and Reliability; Materials 
Technology; Douglas Faulkner Symposium on Reliability and Ultimate Strength of 
Marine Structures. Hamburg, Germany. June 4–9, 2006. pp. 523-527. ASME. 
https://doi.org/10.1115/OMAE2006-92268. 

[28] https://fatigue-life.com/high-cycle-fatigue/. Accessed on March, 29th 2022. 
[29] Zhenghong Fu, Bangjian Yang, Kefu Gan, Dingshun Yan, Zhiming Li, Guoqing 

Gou, Hui Chen, Zhirui Wang,Improving the hydrogen embrittlement resistance of a 
selective laser melted high-entropy alloy via modifying the cellular structures. 
Corrosion Science. Volume 190,2021,109695. ISSN 0010-938X. 
https://doi.org/10.1016/j.corsci.2021.109695. 

Marques, André L. F. (2022) Technologies and Materials Related to Naval and Ocean Engineering pp. 15-50

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 49

https://blogs.sw.siemens.com/simcenter/ship-design-spiral-simcenter/
https://www.cadcrowd.com/3d-models/ship-lines-plan-drafting
https://doi.org/10.1016/j.engstruct.2018.05.084
http://stonemarinepropulsion.com/wp-content/uploads/2021/08/Sonoston-alloy-NL.pdf
http://stonemarinepropulsion.com/wp-content/uploads/2021/08/Sonoston-alloy-NL.pdf
https://doi.org/10.1016/S1369-7021(10)70220-0
https://doi.org/10.12989/sem.2016.60.1.051
http://www.ourwaysteels.com/steel-plate-rolling.html
https://doi.org/10.5957/jsp.1999.15.3.136
http://www.jstor.org/stable/53773
https://doi.org/10.13140/RG.2.1.3185.0488
https://doi.org/10.1115/OMAE2006-92268
https://fatigue-life.com/high-cycle-fatigue/
https://doi.org/10.1016/j.corsci.2021.109695


[30] Arshab, M. ‘Liberty Ships Failures’. Metallurgy & Materials Engineering. Dec, 
25th, 2015. https://metallurgyandmaterials.wordpress.com/2015/12/25/liberty-ship-
failures/. Accessed on Feb 16th 2022. 

[31] Rath, B. and DeYoung, D.  https://www.tms.org/pubs/journals/jom/9807/rath-
9807.html. Accessed on Feb 16th 2022. 

[32] Dasgupta, S. in Marine Safety. https://www.marineinsight.com/marine-safety/risk-
assessment-for-ships-a-general-overview/.  Accessed on March, 25th 2022. 

 

Suggested Reading 

A - 
https://www.academia.edu/41835546/Materials_Selection_in_Mechanical_Design_F
ourth_Edition, which is a book on materials selection from Prof. Michael F. Ashby, 
with several technical charts guiding the selection of different engineering material 
for real applications. 

B - https://www.materials.unsw.edu.au/study-us/high-school-students-and-
teachers/materials-shaped-history, which provides an overview of the history 
evolution of materials processing and its consequences in normal life.A. H. Cheng 
and D. T. Cheng. Heritage and early history of the boundary element method. Eng. 
Anal. Bound. Elem., 2005. ISSN 09557997. doi: 
10.1016/j.enganabound.2004.12.001. 

C - https://lps.library.cmu.edu/ETHOS/article/id/40/, dedicated to the material science 
history, focusing the technology transitions and its aftermaths.A. H. Cheng and D. T. 
Cheng. Heritage and early history of the boundary element method. Eng. Anal. 
Bound. Elem., 2005. ISSN 09557997. doi: 10.1016/j.enganabound.2004.12.001. 

D - https://www.nrl.navy.mil/Our-Work/Areas-of-Research/Material-Science-
Technology/, where examples of laboratory campaigns are shown to develop defense 
hardware related to naval affairs.A. H. Cheng and D. T. Cheng. Heritage and early 
history of the boundary element method. Eng. Anal. Bound. Elem., 2005. ISSN 
09557997. doi: 10.1016/j.enganabound.2004.12.001. 

E - https://www.sname.org/, a broad site covering manifold shipbuilding and design 
issues.A. H. Cheng and D. T. Cheng. Heritage and early history of the boundary 
element method. Eng. Anal. Bound. Elem., 2005. ISSN 09557997. doi: 
10.1016/j.enganabound.2004.12.001. 

Marques, André L. F. (2022) Technologies and Materials Related to Naval and Ocean Engineering pp. 15-50

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 50

https://metallurgyandmaterials.wordpress.com/2015/12/25/liberty-ship-failures/
https://metallurgyandmaterials.wordpress.com/2015/12/25/liberty-ship-failures/
https://www.tms.org/pubs/journals/jom/9807/rath-9807.html
https://www.tms.org/pubs/journals/jom/9807/rath-9807.html
https://www.marineinsight.com/marine-safety/risk-assessment-for-ships-a-general-overview/
https://www.marineinsight.com/marine-safety/risk-assessment-for-ships-a-general-overview/
https://www.academia.edu/41835546/Materials_Selection_in_Mechanical_Design_Fourth_Edition
https://www.academia.edu/41835546/Materials_Selection_in_Mechanical_Design_Fourth_Edition
https://www.materials.unsw.edu.au/study-us/high-school-students-and-teachers/materials-shaped-history
https://www.materials.unsw.edu.au/study-us/high-school-students-and-teachers/materials-shaped-history
https://lps.library.cmu.edu/ETHOS/article/id/40/
https://www.nrl.navy.mil/Our-Work/Areas-of-Research/Material-Science-Technology/
https://www.nrl.navy.mil/Our-Work/Areas-of-Research/Material-Science-Technology/
https://www.sname.org/


 

51 
 

 

Chapter 3 
New Advances in Thermoplastic 

Commingled Composites: Processing and 
Molecular Dynamics 

 
 
 

Chapter details 

Chapter DOI: 
https://doi.org/10.4322/978-65-86503-83-8.c03 
 
Chapter suggested citation / reference style: 

di Benedetto, Ricardo M., et al. (2022). “New Advances in Thermoplastic Commingled 
Composites: Processing and Molecular Dynamics”. In Jorge, Ariosto B., et al. 
(Eds.) Fundamental Concepts and Models for the Direct Problem,  Vol. II, UnB, 
Brasilia, DF, Brazil, pp. 51–75. Book series in Discrete Models, Inverse Methods, 
& Uncertainty Modeling in Structural Integrity. 

P.S.: DOI may be included at the end of citation, for completeness. 

 

 

 

Book details 

Book: Fundamental Concepts and Models for the Direct Problem 
Edited by: Jorge, Ariosto B., Anflor, Carla T. M., Gomes, Guilherme F., & Carneiro, 
Sergio H. S. 

Volume II of Book Series in: 
Discrete Models, Inverse Methods, & Uncertainty Modeling in Structural Integrity 
Published by: UnB City: Brasilia, DF, Brazil Year: 2022 
DOI: https://doi.org/10.4322/978-65-86503-83-8 

https://doi.org/10.4322/978-65-86503-83-8.c03
https://doi.org/10.4322/978-65-86503-83-8


New Advances in Thermoplastic Commingled 

Composites: Processing and Molecular Dynamics 

Ricardo M. Di Benedetto 1*, Anderson Janotti2, Guilherme F. Gomes3, 

Antonio C. Ancelotti Junior4, and Edson C. Botelho5 

 

 
1Materials and Technology Department, School of Engineering, São Paulo State 

University, Guaratingetá, Brazil – ricardo@ntc.eng.br  
2 Department of Materials Science & Engineering, University of Delaware, Newark, USA 

– janotti@udel.edu 
3 Mechanical Engineering Institute, Federal University of Itajubá, Itajubá, Brazil. NTC – 

Composite Technology Center – guilhermefergom@unifei.edu.br  
4 Mechanical Engineering Institute, Federal University of Itajubá, Itajubá, Brazil. NTC – 

Composite Technology Center – ancelotti@unifei.edu.br  
5Materials and Technology Department, School of Engineering, São Paulo State 

University, Guaratingetá, Brazil – edson.botelho@unesp.br 

 

*Corresponding author 

 

Abstract 

This chapter addresses a current and innovative topic related to thermoplastic 

commingled composites. Computational molecular dynamics simulations represent a 

very sophisticated technique for characterizing microstructures, but it is still not widely 

explored in the area of high-performance thermoplastic polymers. The molecular 

dynamics technique evaluates the movements of atoms as a function of time and 

temperature, according to external demands and boundary conditions of the molecular 

system. Based on thermodynamics, atomistic and classical mechanics theories, 

molecular dynamics simulations with empirical potentials aim at (i) the development of 

new polymeric materials, (ii) the optimization of polymer properties, and (iii) the 

characterization of these materials. The molecular dynamics technique provides a 

prediction of mechanical and thermal behavior of high-performance polymeric 

microstructures, reducing the number of tests and experimental practices, which 

increases the operational cost of engineering projects and the characterization of 

structural composite materials. Furthermore, this chapter also includes a scientific and 

technological literature background to demonstrate and highlight the conjuncture 

between thermal processing parameters, thermal degradation kinetics, processing 

optimization, thermal and mechanical characterization techniques. It also includes 

literature and experimental background based on previous studies.   
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1 Introduction 

Interatomic potentials are mathematical functions that describe the interaction between 

pair of atoms or the interaction between groups of atoms, considering the condensed 

phase or systems with very large number of atoms. From this perspective, computational 

simulations using molecular dynamics (MD) with empirical potentials have been used to 

explain and predict the thermal and mechanical behavior of polymeric materials. The 

atomic microstructure is investigated according to the movements of the atoms in three-

dimensional space. 

Typically, polymeric materials display amorphous or semi-crystalline structures, which 

makes it difficult to realistically simulate interatomic movements. The molecular 

structure of thermoplastic polymers is composed of high entropy thermodynamic 

systems. This condition limits the precise determination of the positions of atoms in three-

dimensional space. The validation of the technique for characterizing high-performance 

thermoplastic polymers using MD simulations depends on the level of representativeness 

of the models and the reliability of the theoretical and experimental data. 

MD method is based on mathematical calculations of potential energies. The calculations 

measure the displacement of atoms as a function of time and temperature. Scientific 

studies with an emphasis on MD of polymeric microstructures are promising and have 

attracted the attention of researchers and companies, favoring partnerships and 

technological advances. The use of computer simulations in engineering projects creates 

opportunities for new scientific work in a continuous and integrated way. Computational 

analyzes work together with experimental practices, offering support to companies and 

research centers. In addition to reducing project time and costs, the use of computer 

simulation provides a competitive advantage in the development of new materials and 

products. 

MD simulations that describe the behavior of thermoplastic materials have been an active 

research area with great potential for impact in basic and applied research. These 

simulations can be used to conduct mathematical tests to predict and simulate the material 

behavior. 

 

2 Theorical Background 

2.1 Thermal Processing and Degradation 

Commingled yarns are hybrid structures in which two different materials are mixed to 

form continuous filament tow. This technology provides easier storage and drapability 

[1], due to the ability of textile preforms to conform to the surface of molds. Thus, 

thermoplastic commingled materials allow the preform conformation to make a rigid 

structure [2] under applied temperature and pressure. Thermoplastic commingled 

composites are versatile materials, recyclable, with high performance and significant 

manufacturing costs reduction [2]. Focusing on the overall reduction of production costs, 

the use of thermoplastic commingled composites reduces the weight of components and 

establishes the best characteristics of geometry, materials, and processing parameters [3]. 
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The processing of thermoplastic composites, however, involves thermo-oxidative 

degradation of the matrix during consolidation. The thermal degradation directly affects 

the mechanical properties of the composite structures. Degradation kinetics 

methodologies determine the limits of temperature and time in which the material can be 

processed. Friedman’s isoconversional kinetic model is an example of how to investigate 

the matrix thermo-oxidative degradation. Any variation in processing parameters can 

cause significant changes in the mechanical behavior of these materials [4,5]. 

Friedman’s model [6] calculates the activation energy (𝐸𝑎), defined as the minimum 

energy required for chemical reaction. The pre-exponential factor (𝐴𝛼) is determined by 

the linearization of the degradation degree rate (
𝑑𝛼

𝑑𝑡
), as a function of the temperature 

inverse (1/𝑇) for each degree of degradation (𝛼). Equation 1 allows for calculating the 

variation of the rate constant of a chemical reaction with temperature, in which −
𝐸𝑎

𝑅𝑇
 and 

𝑙𝑛𝐴𝛼 are equivalent to the line’s equation slope and intersection, respectively: 

  

𝑙𝑛 (
𝑑𝛼

𝑑𝑡
) = 𝑙𝑛𝐴𝛼 −

𝐸𝑎

𝑅𝑇
; 

 

Friedman’s method correlates the degradation degree as a function of time for a given 

temperature, according to:  

 

𝛼 = 𝐴𝛼exp (−
𝐸

𝑅𝑇
) 𝑡, 

 

resulting in a time/temperature graph, considering the time and temperature required to 

provide the softening range of the thermoplastic matrix without reaching its degrees of 

temperature onset damage degradation [7]. Thermal degradation must be considered 

when processing thermoplastic composites. To estimate the degree of degradation using 

Friedman's kinetic model, thermogravimetry (TGA) must be performed with at least three 

different heating rates. 

Darcy's law [8] is a constructive equation used to predict how a viscous fluid is able to 

impregnate the reinforcing fibers of the composite material [8]. This period can be 

estimated by the impregnation time 𝑡𝑖𝑚𝑝. Darcy’s law has been used to precisely define 

the soak time (isothermal), defined in Equations 3 and 4, considering the pressure rate  
𝑑𝑃

𝑑𝑥
 

constant:   

 

𝑢𝑝 =  
𝑑𝑥

𝑑𝑡
=

𝐾

𝜂
 
𝑑𝑃

𝑑𝑥
, 

(1) 

(2) 

(3) 
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𝑡𝑖𝑚𝑝 =
𝜂𝐷𝑝

2

2𝐾𝑃
, 

where 𝑢𝑝 is the impregnation velocity of the viscous polymer, 𝐾 is the reinforcing fibers 

coefficient of permeability, 𝜂 is the polymer viscosity, 
𝑑𝑃

𝑑𝑥
 is the pressure gradient, and 𝐷𝑝 

is the impregnation distance related to the thickness of the laminate. Figure 1 represents 

a viscous flow impregnating the reinforcement fibers by external pressure.  

 

Figure 1: Schematic of impregnation under pressure of the reinforcing fibers by a 

viscous flow (adapted from [8]). 

The determination of the processing pressure is usually obtained empirically. Total 

consolidation is considered until there are no more detectable defects and voids within 

the laminate. The consolidation pressure P should be enough to reach these conditions, 

but not allow the polymer matrix to leak beyond the reinforcement fibers out of the metal 

matrix. Finally, the viscosity η of the polymeric matrix can be obtained by rheology 

analysis.    

 

2.2 Statistic Modeling and Soft Computing Techniques  

Multiple regression models (MRM) can be used to describe a studied process or a material 

behavior as a three-dimensional (3D) plane, or response surface. The 3D plane refers to 

independent explanatory variables such as processing time, temperature, and the target 

property. Optimizing the thermal processing of thermoplastic commingled composites 

reduces production costs and optimizes the composite properties. 

MRM was developed to predict a mechanical property as a function of (i) thermal and 

viscoelastic properties of the matrix; (ii) kinetic parameters of degradation, and (iii) 

consolidation parameters. The regression coefficients 𝛽1 and 𝛽2, (Equations 5 and 6) 

indicate the variation in the mean response to each unit of the independent variable 𝑥1, 

when the other variables are kept fixed. 𝑌 is the response-dependent variable [9],[10]:  

(4) 
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𝛽1 =  
(∑𝑥2

2)(∑𝑥1𝑌) − (∑𝑥1𝑥2)(∑𝑥2𝑌)

(∑𝑥1
2)(∑𝑥2

2) − (∑𝑥1𝑥2)2
; 

 

the parameter 𝛽2 indicates the variation in the mean response to each unit of 𝑥2, when 𝑥1 

is kept constant [9], 

 

𝛽2 =  
(∑𝑥1

2)(∑𝑥2𝑦) − (∑𝑥1𝑥2)(∑𝑥1𝑦)

(∑𝑥1
2)(∑𝑥2

2) − (∑𝑥1𝑥2)2
. 

 

The least-squares method (LSM) is a statistical technique used to find the best fit for a set 

of data points, precisely predicting the behavior of dependent variables or responses. 

Based on the MRM and LSM, the maximum likelihood function 𝐿 (Equation 7) must be 

minimized. L represents a function to measure the probability of observing a set of 

dependent variable values [9–12]: 

   

𝐿 =  ∑(𝑌𝑖 − 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝)
2

𝑛

𝑖=1

. 

Another important step of the optimization process refers to variable selection, 

specifically the stepwise method. This statistical tool automatically chooses the best 

predictive variables to fit regression models. Akaike Information Criterion (AIC) is based 

on this fit to estimate the likelihood of the MRM to predict or estimate future values. The 

minimum AIC (Equation 8) defines the variables which were included or removed from 

the model [13],[14], i.e.,  

 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔(𝐿𝑝) + 2[(𝑝 + 1) + 1], 

 

where, 𝐿𝑝 is the maximum likelihood function and 𝑝 the number of explanatory variables.   

Soft computing techniques including artificial neural networks (ANN) and machine 

learning offer new prospects to predict the mechanical behavior of thermoplastic 

commingled composites. Recent studies [15–22] have been used to predict the 

mechanical behavior of structural composite materials by computational modeling [23]. 

ANN technique has been applied to improve the behavior of structural composite 

materials [24], including the design optimization of composite components [25], 

structural behavior of natural fibers reinforced composite [26], recyclability of 

(5) 

(6) 

(7) 

(8) 
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thermoplastics composites [27], and to improve mechanical properties of these materials 

[28],[29]. Systematic and interactive approaches involving composite materials allow to 

achieve the ideal characteristics of the material. 

ANN has been used to (i) investigate mechanical properties of composite materials, (ii) 

properties optimization, (iii) understand the effects of manufacturing parameters, and (iv) 

develop new computational methods for materials characterization. Basically, ANN is a 

computational system arranged of processing elements operating in parallel, whose 

function is obtained according to the network structure, the connection strengths, and the 

processing performed at computing elements or nodes.  

In general, a neural network is a processor with a natural tendency for storing experiential 

knowledge and making it available for practical use. ANN resembles the human brain in 

two respects: (i) knowledge is acquired through a learning process, and (ii) interneuron 

connection forces are used to store knowledge [30]. 

 

2.3  Initiating molecular dynamics in thermoplastic composites 

MD-based on empirical potentials established a new generation of characterization of 

thermoplastic structures. Essentially, MD is a computer simulation method to analyzes 

atomic movements and, thus, predict thermal and mechanical behavior of polymeric 

molecules. The benefits associated with advances in MD for thermoplastic composites 

are promising and attractive for the science and technology of high-performance 

composite materials, potentially reducing the material's development time. The main 

scientific challenge is to establish the atomic and molecular positioning criteria that can 

contribute to a more realistic result of computer simulations.  

MD simulations that describe the behavior of polymeric materials have been an active 

research area with great potential for impact in basic and applied research. Computational 

practice is a procedure that uses advanced software to conduct mathematical tests to 

predict and simulate material behavior. 

The innovation proposed consists of the development of analytical models, experimental 

analyzes, and MD simulations to investigate the thermal and mechanical behavior of 

polymers. MD simulations will be conducted to evaluate intermolecular movements and 

investigate the thermal and mechanical behavior of thermoplastic matrices. The literature 

presents modeling and simulation gaps when thermoplastic composites are involved. This 

topic has raised great scientific interest because of the practical results: (i) assist decision-

making in the selection of polymeric materials, (ii) determine optimal processing 

parameters, (iii) predict the thermal and mechanical behavior of polymers, and (iv) 

optimize the performance of thermoplastic commingled structures. 
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3 Experimental Practices 

This topic involves the experimental results consisting of raw material characterization, 

processing procedures, thermal degradation kinetics, optimization of the material 

properties, and an initial approach to MD simulations applied to thermoplastic 

composites.     

 

3.1  Commingled technology  

The CF/PA commingled tow combines 37 μm PA yarns into 12k 7 μm carbon fibers, as 

shown in the SEM micrography in Figure 2. 

 

 

Figure 2: SEM micrography of CF/PA6 commingled tow to measure fibers and yarn diameters 

(adapted from [7]). 

  

The constituents of CF/PEEK commingled tow are shown in Figure 3. According to the 

SEM micrography, the material is composed by 12k 7 μm carbon fibers and 26 μm PEEK 

yarns.  
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Figure 3: SEM micrography of CF/PEEK commingled tow to measure fibers and yarn diameters 

(adapted from [31]). 

 

3.2  Thermal analysis 

Differential scanning calorimeter (DSC) analysis reveals the phenomena that occur 

during thermal cycles, and it guides the selection temperatures to process CF/PA 

commingled composite. The result of DSC analysis is shown in Figure 4. 

 

Figure 4: DSC thermal cycles of thermoplastic polymer to reveal endothermic and exothermic 

peaks associated to melting point and crystallization (adapted from [7]).   
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The DSC was conducted in two steps. The first cycle erases the thermal history of the 

sample associated with its previous processing [32]. The second cycle allows the 

calculation of more accurate values for melting point (Tm) and crystallization temperature 

(Tc) disregarding the thermal history influence. The melting and crystallization 

enthalpies, ΔHm and ΔHc, were also identified. To process a thermoplastic commingled 

composite efficiently the processing cycle should consider the temperatures Tm and Tc 

and the cooling rate.  

The crystallization degree of semicrystalline polymers should be as high as possible to 

enhance the mechanical and thermomechanical properties of composite structures. 

Therefore, a low cooling rate favors crystalline structure formation, and it can be 

calculated by relating ΔHm and ΔHc.     

 

3.3  Degradation Limits  

Friedman's isoconversional method allows for the prediction, as a function of time and 

temperature, of the degree of degradation and establishes the processing window. 

Graphically, the result of the degradation kinetics study shows the limits of temperature 

and time in which the composite material should be processed (see Table 1).    

 

Table 1:  Thermal degradation kinetics parameters obtained by Friedmann`s isoconversional 

method. 

Material 
Temperature, T (°C) Time, t (min) 

Ea (α=0.05) kJ/mol Molecular Mass (g/mol) 
melt onset melt onset 

PA 220 320 112 4.5 93.70 113 

PEEK 338 550 142 12.3 73.26 228 

 

Figure 5 shows the results of the degradation kinetics analysis for the CF/PA6 

commingled composite. It reveals the relation between the activation energy 𝐸𝑎 and 𝛼 in 

(a) and the limits of degradation according to 𝑇𝑝 in (b). Figure 6 shows the degradation 

kinetics analysis of the CF/PEEK commingled composite. 

 

 

 

 

(Intentionally left blank) 
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Figure 5: Thermal degradation kinetics analysis for CF/PA6. (a) 𝑬𝒂 versus 𝜶. (b) Thermal 

degradation limits plot (Adapted from [31])  

 

 

Figure 6: Thermal degradation kinetics analysis for CF/PEEK. (a) 𝑬𝒂 versus 𝜶. (b) 

Thermal degradation limits plot (adapted from [31]). 
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3.4  Composite Layup and Processing  

The consolidation of thermoplastic commingled composites requires high temperature 

and pressure. A metallic mold with an integrated heating system can be used to fabricate 

the composite material as shown in Figures 7 and 8. 

 

 

Figure 7: Heating system and metallic mold assembly developed to manufacture the thermoplastic 

commingled composites. (A) Metallic mold with heating system used to consolidate the materials. 

(B) Exploded view to show the assembly (adapted from [33]). 

 

 

Figure 8: Integrated temperature control and monitoring systems during the thermoplastic 

composite consolidation.  

 

Next, the thermal processing of the commingled composites was performed. Figure 9 

shows the filament winding process and thermal consolidation using the metallic mold 

with the integrated heating system.     
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Figure 9: Thermal processing of thermoplastic commingled composites. (a) Filament winding to 

construct the laminate layers. (b) Metallic mold used to consolidate the composite. (c) Heating 

system assembly. (d) Hydraulic press used on the commingled composite consolidation (Adapted 

from [33]). 

 

The manufacturing of thermoplastic materials requires a high level of heating control. 

Thus, the thermal inspection was conducted simultaneously with the consolidation as 

demonstrated in Figure 10 (a). A specimen of commingled composite with 10 layers 

(3mm thickness laminate) is shown in Figure 10 (b).  

The optimization of the mechanical and thermomechanical properties of commingled 

thermoplastic composites depends on the appropriate processing cycle that reduces 

process time and cost, but also guarantees a high degree of crystallinity, mainly because 

it is associated with the cooling rate. 

 

 

(a) (b) 

(c) (d) 
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(a) (b) 

Figure 10: Thermal monitoring during processing of thermoplastic commingled composites. (a) 

Thermal inspection. (b) 10 layers laminate manufactured. 

 

3.5  Ultrasound Inspection  

The ultrasound inspection assessed the quality of the composite by performing a surface 

scan. This technique ensures a precise quality inspection in which defects, voids, and 

delamination can be identified. Ultrasonography is also used to determine the minimum 

consolidation pressure, capable of eliminating all voids and air from the interior of the 

material, until the total consolidation of the composite has been concluded.  

As an example,  Figures 11 and 12 present an ultrasound scan using insufficient 

processing pressure. The presence of voids can be seen, indicating that the pressure used 

to fabricate the thermoplastic material was insufficient.    

 

 

 

Figure 11: CF/PA ultrasound scan indicating voids in the laminate when insufficient pressure was 

used.  

 

 

Voids 

di Benedetto, Ricardo M., et al. (2022) Thermoplastic Commingled Composites pp. 51-75

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 64



 

Figure 12: CF/PEEK ultrasound scan indicating voids when insufficient pressure was used. 

 

The presence of voids inside the material represents a high risk of premature failure. This 

defect is therefore associated with insufficient pressure during consolidation. When the 

pressure is correctly adjusted to the material, the ultrasound inspection does not show the 

presence of voids. Figures 13 and 14 are ultrasound inspections with no defects detected 

in the laminate. It served to determine the pressure P=0.30 MPa that is needed to 

impregnate the reinforcing fibers by the molten polymer.       

 

 

Figure 13: CF/PA ultrasound scan with no presence of defects when an appropriate pressure was 

used on fabrication. 

 

 

Voids 

Top  

Base 

di Benedetto, Ricardo M., et al. (2022) Thermoplastic Commingled Composites pp. 51-75

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 65



 

Figure 14: CF/PEEK ultrasound scan with no presence of defects when an appropriate pressure 

was used on fabrication. 

 

3.6  Statistics and Modeling  

3.6.1 Multiple regression and artificial neural network  

A multiple regression model was developed to predict a specific property. The impact 

energy absorption (IEA) capability of thermoplastic commingled composites is an 

extremely important parameter to guarantee high-performance components. The 

regression model was obtained in a previous work of Di Benedetto et al. (2019) [34], and 

can be written as follows (Equation 9): 

 

𝐼𝐸𝐴 =  𝛽0 + 𝛽1 (
−𝐸𝑎

𝑙𝑛(
𝛼

𝐴𝛼
𝑡)

) +𝛽2 (
𝜈𝐷𝑝

2

2𝐾𝑃
); 

 

where 𝛽0, 𝛽1, and 𝛽2 are the regression coefficients.  

The regression model established a relationship between the degradation limits with the 

consolidation parameters. As a result, it predicts the IEA capability of commingled 

composites based on the matrix degradation, the matrix properties, thermal degradation 

kinetics, and the processing parameters.  

Design of experiments (DOE) is a quality tool used to analyze the effect of the processing 

parameters, polymeric matrix properties, and the thermal degradation kinetics, on the 

IEA. The data acquisition obtained according to Equation 9 was used as input for the 

DOE analysis. A Pareto chart is used to evaluate the effect of each variable. The absolute 

values of the standardized effects are shown as a bar graph. Figure 15 is a Pareto chart of 

the IEA of thermoplastic commingled composite.     

Defect free region 

(9) 
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Figure 15: Pareto chart of the standardized effects on IEA revealing the level of the effects and its 

interaction (adapted from [31]).  

 

The Pareto chart exhibits a reference line (𝑡𝑐𝑎𝑙𝑐=2) to indicate which effects are 

statistically significant. According to the results in Figure 15, the impregnation distance 

𝐷𝑝 and temperature 𝑇 are the independent variables that have stronger effects over IEA. 

The matrix viscosity 𝜈 and the interaction between processing temperature 𝑇𝑝 and 

impregnation distance 𝐷𝑝 have similar effects on IEA. Lastly, the consolidation pressure 

𝑃 was the variable with less effect compared to the others. No significant effect on IEA 

was observed in the interaction between all these four parameters. 

Another resource of DOE analysis is the surface response plot. This surface indicates how 

the behavior of the material changes as a function of temperature 𝑇𝑝, pressure 𝑃 and 

impregnation distance 𝐷𝑝. The regression model was applied considering a reduction of 

the impregnation distance as demonstrated by the response surface in the Figure 16.  
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Figure 16: Representative 3D response surface considering the increase of impregnation distance 

𝑫𝒑 (adapted from [31]). 

Technically, the surface response identifies the combination of input variable settings that 

optimize the IEA response. The optimization corresponds to the combination of 𝑃=390Pa, 

𝑇𝑝=250°C, 𝐷𝑝=0.3mm, and 𝜈=2000Pa.s, which provides the maximum IEA value (36.09 

kJ), for example. 

The artificial neural network developed by Di Benedetto, et. al (2021) [35]  was applied 

to Carbon Fiber/PA6 and Carbon Fiber/PEEK specimens subjected to a low-velocity 

impact test (LVI). The goal was to collect data from Equation 9 for the training phase of 

a neural network. Temperature, pressure, impregnation distance, and viscosity were 

selected as input variables. The output of the neural network is then targeted focusing on 

the dynamic impact energy absorption property. 

Figure 17 shows the graphical results of the IEA standard as a function of pressure and 

temperature for fixed values of impregnation and viscosity. Figures 17(a) and (c) show 

the overlapping experimental results and those obtained by ANN. It turns out that the 

planes are practically overlapping. Figures 17(b) and 17(d) show the error obtained, that 

is, the difference between trained (IEATR) and experimental (IEAEXP) data, i.e., IEAE-

IEATR. The global difference for the known data from the neural network is of the order 

of 0.02 kJ (< 1%). 
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(a) Dp = 0.0009; ν = 1.4 (b) Error Dp = 0.0009; ν = 1.4 

  

(c) Dp = 0.0012; ν = 1.4 (d) Error Dp = 0.0012; ν = 1.4 

Figure 17: Graphical results of the IEA standard for trained data known 

(legend: ▬ Experimental ▬ ANN) (Adapted from [35]). 

 

Figure 17 reveals an excellent agreement between the modeled and experimental data. 

Accurate results have been obtained in the testing and validation stages. Therefore, ANN 

has exceptional predictive abilities that can be used in the development of new 

thermoplastic composites with desired mechanical impact properties. 

3.7  Initiating Molecular Dynamics to Thermoplastic Materials 

The application of atomistic molecular dynamics techniques to high-performance 

polymers depends directly on knowing the conformation of the microstructure. The steric 
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hindrance defines free axes of rotation of thermoplastic molecules. The challenge of 

realistically defining the position of atoms imposes specific boundary conditions that 

during the geometry optimization. Figure 18 is an example of a generic polymeric chain 

(n=16) and Figure 19 shows the result of the MD simulation. 

 

 

Figure 18: Molecule geometry optimized by MD simulation considering the effect of steric 

hindrance and distance between atoms.     

 

 

Figure 19: Number of optimization steps in the geometry simulation showing the minimum energy 

state. 

 

From these results, calculation parameters are established to assemble polymeric 

macrostructures with better-defined positions in a 3D space. The combination of MD 

simulation and experimental practices is an innovative approach to high-performance 
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structural composites. However, for the molecular dynamics technique to work as a 

sophisticated technique for characterizing thermoplastic polymers, more precise 

information on the atomistic structure of the composites is a necessary first step. 

For this reason, new studies are being carried out to create parameters of molecular 

positioning in semi-crystalline structures. Therefore, studies are being carried out to 

create new parameters of molecular positioning in semi-crystalline structures. The goal is 

to (i) establish a conformation criterion for macromolecular polymers, (ii) identify, in 

each case, the most stable position of atoms in a polymeric structure through energy and 

force minimization, and (iii) compare potential energy results for each type of 

conformation. 

 

4 Conclusion 

This chapter addressed a design for characterizing composites. The research stages were 

described pointing out the most important scientific findings, including a recent review 

of thermoplastic commingled composites processing and properties. 

The combination of Darcy's law and Friedman's isoconversional method proved to be a 

powerful tool to optimize the performance of thermoplastic composites and, thus, define 

specific parameters to perform thermal consolidation. 

It was concluded that the ANN is an alternative to traditional methods to determine the 

processing parameters for the manufacturing of commingled composite. The use of an 

analytical multiple regression model as a new approach of ANN architecture was a 

promising approach which caused an increase of ANN's reliability to predict composite 

properties. 

Developing a technique for characterizing high-performance polymeric materials by 

simulating molecular dynamics with empirical potentials is the main objective of our 

near-future research. New advances in the molecular dynamics of thermoplastic polymers 

have the potential to contribute to new techniques for characterizing composites, reducing 

operating costs, optimizing structures and materials, and determining their properties. 
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Abstract

A study on the influence of the waving patterns on the mechanical response of
textile composites is presented. Three typical weaving patterns of industrial interest
are explored, as well as a case of cross-ply laminate composite. Homogenization
techniques were employed, with the RVE being subjected to well-known displace-
ment and periodic boundary conditions. Owing to the reduced thickness to span
ratio usually found in engineering applications of textile composites, we proposed a
different set of boundary conditions to disregard repetition along the transverse di-
rection. All boundary conditions were verified to satisfy Hill-Mandel energy equiv-
alence. The engineering constants estimated for the four composites and three sets
of boundary conditions are obtained and compared through anisotropy indices and
the Frobenius norm of the stiffness. The reduced constitutive tensor, used in thin
plate and shell problems, is also derived from their homogenized 3D counterparts
and discussed. The strain fields are also investigated for one textile, and the engi-
neering constants were used in a test case to illustrate the weave pattern influence in
an actual component.

1 Introduction

Fiber-reinforced composites can be roughly divided into two categories when the size
of the fibers and how they are arranged/distributed in the matrix phase are taken into
account: (a) particulate, when the fibers are short enough to disregard its geometry and
spatial orientation, and (b) fiber-reinforced, when the reinforcement phase is continuous
or at least long enough so that its orientation has considerable influence on the overall
mechanical behavior of the component. Other sub-categories can be drawn, however,
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our interest lies in fiber-reinforced composites or, more specifically, composites built by
interlacing bundles of fiber in a repetitive pattern commonly known as textile composites.

In the traditional composite manufacturing processes, fiber-reinforced composites are
manufactured by laminating several layers of unidirectional fiber laminae embedded in
a pre-impregnated matrix material. The effective properties of the composite can be
controlled by changing fiber orientation in a layer, stacking sequence, fiber and matrix
material properties, and constituents volume fraction combination. This method of man-
ufacturing is labor-intensive and does not allow transverse (through-the-thickness) fiber
reinforcement, resulting in poor interlaminar strength [ming Huang, 2000, Sankar and
Marrey, 1997].

As an alternative, textile processes such as weaving, braiding, and knitting can pro-
duce larger volumes of material at faster rates. In these techniques, bundles of fiber are
interlaced following a specific pattern (fig. 1), then impregnated with a suitable matrix
material and cured in a mold to provide the final form. The 2D woven and braided laminae
thus manufactured offer increased through-the-thickness and impact resistance properties
as a consequence of the bundle interlacing [Mazumda, 2002]. Because the interlocking is
in general different in the thickness direction, this kind of structure is sometimes called
2.5D textile structures [Sankar and Marrey, 1997]. These processes allow the manufac-
turing of complex-shaped components as integral units, reducing or eliminating the use
of joints, glues, and fasteners. These advances in manufacturing, however, demand the
development of analytical approaches to predict the performance of the components made
by these processes.

Figure 1: Schematics of woven composites without matrix pockets: (a) plain weave;
(b) 2×2 twill weave; (c) 4-harness satin weave; (d) 5-harness satin weave; (e) 8-
harness satin weave; (f) basket weave (Dixit and Mali [2013]).

Textile composites which in most ways behave like laminates fall into the category
of laminar textiles, while those in which triaxial stresses exist and incorporate weav-
ing along the transverse direction as well. The present study aims at the first category.
We re-examine homogenization procedures used to compute the effective (macroscopic)
properties of woven composites, as well as the nature of the boundary data which may
be assigned to an RVE. The overall effective moduli for linearly elastic RVEs of three
common textile composites are thoroughly studied, under a set of uniform boundary trac-
tion, linear boundary displacements, and periodic conditions. Special attention is given
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to mixed boundary conditions, culminating in a proposal of a new set of boundary condi-
tions to be used with RVE analysis, aiming its usage with thin plate/shell finite element
(FEA) or boundary element (BEA) analysis.

Stiffness constitutive relations for 3D elastic as well as their 2D thin-plate counterparts
for three types of textile composites are analyzed and compared to available results. Av-
erage mechanical constants are retrieved for both cases and discussed. The results show
that the differences in the macroscopic behavior caused by inherent mechanisms associ-
ated with particular weaving patterns are captured using homogenization, which is very
difficult to be distinguished when average field theories are used.

Throughout the text, we assume familiarization with Elasticity Theory, index notation,
as well as knowledge of the essentials of homogenization, RVE analysis, and average field
theory.

2 Modeling Composites Reinforced by Weave Fibers

The modeling of composites reinforced by woven fabrics can be divided into two method-
ologies: analytical or numerical. The analytical approaches are usually based on physical
measurements of the constituents and possibly ruled by some type of averaging calcula-
tion. The importance of analytical solutions lies in their ability to represent the mechan-
ical behavior of the composite and give insights to the project, like bending-extension
coupling magnitudes, overall stiffness, and approximated failure loads. However, they
are limited if the designer wants to explore more complex constructions of fiber and ma-
trix. Furthermore, most analytical forms are based on the Classical Laminate Theory
(CLT). Assumptions of such approach neglect the shear in the thickness direction (out of
plane), which makes the analysis incapable of predicting some effects like delamination.
Computational methodologies are more powerful, can be extended to non-linear phases,
but is generally computer-intensive.

Due to the complex microstructure of woven composites, computational homogeniza-
tion is commonly used for the estimation of their elastic constants. In the present case,
numerical modeling of a RVE is usual because of its ability to capture the effects of com-
plicated textile architectures. If these effects are not precisely represented, the mechanical
properties of the textile composite, which serves as input data for analyzing the response
of the structural components made from this composite, become compromised.

Ideally, a two-step homogenization approach to predict the effective properties should
be used. The first homogenization step (micro-homogenization) deals with determining
the effective properties of tows (bundles) from fiber and matrix properties. The second
homogenization step (macro-homogenization), is actually used to retrieve the effective
properties. In the present work, only the second step will be used, considering that indus-
trial tows used in textile composites are well tested and documented. This approach is by
far the most used by researchers in this field. The other important aspect is the type of
boundary condition which should be used on textiles, also discussed here.

Therefore, it is clear that the homogenization analysis of thin textile composites has
differences if compared to the analysis of a general 3D anisotropic solid, and this is re-
flected in many important contributions in the literature. Barbero et al. [2006] employed
periodic boundary conditions on the homogenization of a plain-weave, comparing the re-
sults with experiments and the CLT approach. The results showed an excellent agreement
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with the experiments, overcoming the CLT procedure, especially on the effective shear
modulus determination. Rao et al. [2008] also applied periodic boundary conditions on
the study of the effect of the textile architecture on its mechanical properties. The au-
thor also studied the influence of debonding between fibers and the surrounding matrix,
by applying a unit-cell along with a cohesive zone model. The approach showed good
agreement with experimental results, especially when debonding is considered. Jacques
et al. [2014] studied a general application of periodic boundary conditions for textiles
and proposed an approach to circumvent the requirement of a periodic mesh by applying
constraints on reference nodes along the boundaries of the RVE. Ullah et al. [2019] imple-
mented a complete computational framework for predicting the elastic behavior of 2D and
3D textiles composites. The implementation employed three boundaries conditions types:
static uniform boundary conditions, periodic boundary conditions, and uniform traction
boundary conditions. Results showed a difference smaller than 5% between the tested
boundary conditions and experimental data. Espadas-Escalante et al. [2017] reached a
distinct result: the effective elastic results differ for textile composites. In this study, the
uniform traction conditions were not adequate to predict E11 and E22 elastic moduli. The
author proposed a set of mixed boundary conditions which were the combination of an
out-of-plane traction condition (not necessarily null) and periodic boundary conditions
for the plane directions. Results for mixed boundary conditions performed better for E11

modulus.
Regardless of the approach employed to predict effective material properties, ana-

lytical or numerical, it must be capable of embodying the particular strain field in the
repeating cell for each pattern, even when they have the same fiber volume fraction. With
average field theories, this will, in general, deliver the same result.

2.1 Analytical approach

Let a point in a three-dimensional medium characterized by its stress-strain state in Voigt
notation (Jones [2018]), i.e.:

σ =


σ11

σ22

σ33

σ13

σ23

σ12

 , ε =


ε11
ε22
ε33
ε13
ε23
ε12

 . (1)

The most general constitutive relation between σ and ε, with the thermodynamic and
tensor symmetry constraints already considered, is the generalized Hooke’s law:

σ = C ε , (2)

where C contains up to 21 different constitutive constants. Laminated composites gen-
erally have a high aspect ratio, allowing to model most structural elements under the
simplifications of plate or shell models. Although very limited for industrial applications,
plate models reduce the equilibrium equations to the point of obtaining simplified analyt-
ical solutions containing essential information regarding the deformation kinematics, like
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in-plane and bending stress and strain. For the sake of simplicity, herein we will consider
only plate models under the linear elastic regime.

The plate’s mid-surface is generally considered as a reference plane, which lies on the
(x1, x2) plane so that the thickness h is measured through the x3-axis, x3 = [−h/2,+h/2].
Among the several laminated plate models proposed, most of the analytical solutions are
based on Classical Laminate Theory (CLT), which employs the classic thin plate kine-
matics. Therefore, it is advisable to recall the main Kirchhoff’s hypothesis for plates:

1. Transverse normal fibers initially straight and perpendicular to the reference surface
remain so after the deformation;

2. Transverse normal fibers inextensible.

As a consequence, transverse shear strains (ε13 and ε23) and the transverse normal
strain (ε33) are neglected, reducing the number of strains to three. The number of non-
null stress follows Hooke’s law, except that the transverse normal stress is ad hoc assumed
zero, characterizing the well-known inconsistency of thin plate theory. The generalized
Hooke’s law (eq. (2)) now reduces to: σ11

σ22

σ12

 =

 C11 C12 C13

C12 C22 C23

C13 C23 C33

 ε11
ε22
ε12

 , (3)

or, for short:

σ = ¯̄Cε , (4)

where ¯̄C corresponds to the reduced constitutive matrix (Jones [2018]).
The plate resultant stresses (stresses by unit length) are evaluated by integrating the lo-

cal stresses throughout the thickness, resulting in the in-plane (extensional or membrane)
and out-of-plane (bending) stresses:

N =

 N11

N22

N12

 =

∫
h

 σ11

σ22

σ12

 dx3 , (5)

M =

 M11

M22

M12

 =

∫
h

 σ11

σ22

σ12

x3 dx3 . (6)

The following additional assumptions are used to include the case of laminated plates
(CLT):

3. The laminas are perfectly bonded;

4. Each lamina is linear-elastic and orthotropic;

5. The strain field is continuous through the plate thickness.
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Now recall that the strain field σ of eq. (3) can also be split into its extensional
(membrane) and bending parts:

ε = εm + x3 κ , (7)

where εm accounts for extension/shear deformations while κ accounts for curvature changes
of the plate. After inserting eq. (7) into eq. (3), the latter can be integrated in the thickness
direction – eqs. (5) and (6) (Reddy [2003]), adding the contribution of each lamina. The
basic resultant stress-strain of the CLT is then obtained:(

N
M

)
=

[
A B
B D

](
εm

κ

)
, (8)

where A, B, and D are the extensional, bending-extension coupling, and bending stiffness
matrices, respectively. The inverse of these coefficients is denoted as a∗,b∗,d∗, respec-
tively, whenever compliance coefficients are needed. Besides using stress-resultants, eq.
(8) must be further distinguished from eq. (3) because it already incorporates Kirchhoff’s
plate model kinematics, so it will be called ABD-matrix.

2.1.1 Ishikawa and Chou model

One of the first approaches to evaluate analytically the stiffness of woven composites that
have been published is the well-known series model presented by Ishikawa [1981], who
provided closed-form solutions for the macroscopic coupling coefficients of the B sub-
matrix. The model is based on Kirchhoff’s plate theory as well, and therefore it is an
interesting method to be compared to other solutions. Here, the effects of temperature
are not considered, although, in the original formulation Ishikawa [1981], the expressions
are complete. A simple comparison example is the expressions for the ABD-matrix in
eq. (8), in terms of engineering constants for a two-lamina cross-ply plate simulating a
plain-weave composite were derived as:

A11 = A22 = h
(E11 + E22)

2
= h

(ELL + ETT )

2 (1− vLTvTT )
, (9a)

A12 = hE12 = h
vLTETT

(1− vLTvTT )
, (9b)

A66 = hE66 = hGLT , (9c)

B11 = −B22 =
(E11 − E22)h

2

8
=

(ELL − ETT )h
2

8 (1− vLTvTT )
, (9d)

D11 = D22 =
(E11 + E22)h

3

24
=

(ELL + ETT )h
3

24 (1− vLTvTT )
, (9e)

D12 =
E66h

3

12
=

vLTELLh
3

12 (1− vLTvTT )
, (9f)

D66 =
E66h

3

12
=

GLTh
3

12
, (9g)

where L and T are the main material directions of the laminae.
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The basic idea of the series model is to neglect the two-dimensional character of the
plate and assume a repetitive occurrence of an alternating two-layer beam cell with length
2a. If the cell is repeated n times, average stress or strain can be retrieved by integration.

Let the model be subjected to a uniform traction N = (N11 0 0)T . The average
curvature can be evaluated as Ishikawa [1981]:

κ̄11 =
1

na

∫ na

0

κ11dx . (10)

This leads to simple expressions for the average values of the compliance coefficients
a∗ and b∗. Considering yet that in a cross-ply laminate, if stacking sequence is inverted
the coupling terms change sign, the average curvature is:

κ̄11 =

(
1− 2

n

)
b∗11N1 , (11)

implying that the corrected compliance bw11 coefficient for a two-layer weaving composite
is:

b∗w11 =

(
1− 2

n

)
b∗11 . (12)

Similar considerations are made for other coefficients, leading additionally to:

a∗w11 = a∗11 ,

d∗w11 = d∗11 .
(13)

The inversion of the abd-matrix, given by eqs. (12) and (13), generates a corrected
ABD-matrix which gives the lower bound of the stiffness:

Dw
ij =

{
d∗ij −

(
1− 2

n

)2

b∗ika
∗
kl

(
b∗lj

)−1

}−1

,

Bw
ij = −

(
1− 2

n

)
(a∗ik)

−1b∗klD
w
lij ,

Aw
ij =

(
a∗ij

)−1
+

(
1− 2

n

)2

(a∗ik)
−1b∗klD

w
kmb

∗
mn

(
a∗nj

)−1
.

(14)

In order to obtain the corresponding upper bound, the average in-plane stresses can
be evaluated considering uniform membrane and bending strains along the length of the
model. For instance (Ishikawa [1981]):

N̄11 =
1

na

∫ n

0

aN1 dx

= A11ε
m
11 + A12ε

m
22 +

(
1− 2

n

)
B11κ11 ,

(15)

and the corrected plate stiffness coefficients follow directly. They represent the stiffness
upper bounds:
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Aw
ij = Aij ,

Bw
ij =

(
1− 2

n

)
Bij ,

Dw
ij = Dij ,

(16)

with the coefficients of the right-hand side calculated from eq. (9). Figure 2 shows the
upper and lower bounds for b∗11 and A11 as functions of the repetition frequency. It must
be noted that, for a plain-weave, n = 2 and the coupling b∗11 vanishes.

Figure 2: Upper and lower bounds of for (a) A11 and (b) b∗11 as in Ishikawa [1981].

2.2 Numerical approach

2.2.1 RVE

The Representative Volume Element (RVE) provides a useful tool to relate the microstruc-
ture and the overall (or effective) properties of a heterogeneous solid (Nemat-Nasser and
Hori [1996], Hill [1963]). RVE-based approaches to classical multi-scale solid mechan-
ics with both macro and micro-scales described in terms of conventional kinematics are
very well understood and lie on solid theoretical grounds set in the works of Hill [1972]
and Mandel [1998]. Therefore, they constitute a particularly well-suited methodology
to be applied in the present context, since the main interest lies in the analysis of the
macroscopic linear elastic constitutive relation for a class of composites.

An RVE must structurally represent the whole solid regarding an average value of
the property P , that is, it must contain an adequate volume of material (or size D) such
as to represent the effective mechanical properties of the material in a statistically ho-
mogeneous way, regardless the size of the material features (λ). As an analogy, fig. 3
illustrates a study of the color perception (property P ) of an image for varying number
of pixels (of size λ) in the RVE of length D sampled from the image. The length D is
conventionally equal to the repeating unit cell (RUC) dimension. Nemat-Nasser and Hori
[1996] claim that the RVE must include the features which have a first-order impact on
the homogenized properties. Therefore, in metallurgical research, for instance, a couple
of microns could be considered a micro-scale, and hundreds of microns could be defined
as a macro-scale or continuum scale. On the other hand, in composite mechanics, the
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RVE should have at least some millimeters to contain enough reinforcements that could
capture properly macroscopic properties. In the general case, it is not possible to establish
a RUC, hence D can be any real number. By regulating the size of the RVE, is expected
that the property P will asymptotically reach a stable value for a computationally accept-
able number of RUCs. The solid is therefore homogenized, hence one can apply the right
techniques to retrieve its overall properties.

Since the present study is focused on composites whose reinforcement phase of the
material is weaved, forming a fabric-like pattern, one could take advantage of the periodic
structure, and represent the RVE by a number of RUCs. In this case, the required number
of RUCs is relatively low, as it will be shown in the following sections. It is important to
note that a homogenization analysis based on RVE is different than what is postulated by
the average field theory. The average field theory is based on the physics and experimental
definition of the overall properties of heterogeneous solids. In a RVE size analysis, on
the other hand, establish relations between the micro-scale and the macro-scale using
some sort of multi-scale perturbation technique. The properties will reach asymptotically
to a macro value, as illustrated in fig. 3. At this point, the number of heterogeneities
categorizes statistically macro-properties, and a procedure can be derived to determine,
for example, the engineering constants of the media.

Figure 3: Exemplification of a RVE size and convergence of an overall property P .

2.2.2 Boundary conditions

The boundary conditions imposed on the RVE play a key role in the analysis. They must
obey minimum requirements in order to ensure energy equivalence between the average
and the local stress and strain states (Nemat-Nasser and Hori [1996]). In most cases, the
typical boundary conditions used in RVE analysis fall into three categories: static uniform
boundary conditions (SUBC), kinematic uniform boundary conditions (KUBC), and pe-
riodic boundary conditions (PBC) (Hazanov and Amieur [1995], Espadas-Escalante et al.
[2017]). In this work, an additional type of boundary condition will be proposed, de-
rived from a combination of the others, herein referred to as mixed boundary conditions
(MBC).

The aforementioned energy equivalence, also known as the Hill-Mandel Principle of
Macro-homogeneity (or just Hill’s energy criteria, for short), must be satisfied by all
boundary conditions and will be explored in the context of static problems under linear
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regime (Hill [1965], Mandel [1998], de Souza Neto and Feijóo [2008]). Denoting the
volumetric average as ⟨·⟩V , the macro-stress and macro-strain defined over a material
sample are:

⟨σij⟩V =
1

|V |

∫
V

σijdV ,

⟨εij⟩V =
1

|V |

∫
V

εijdV .

(17)

Evidently, σij and εij are the stresses and strains at a microscopic level, so that Hooke’s
law must refer to a point x ∈ V:

σij(x) = Cijkl(x)εkl(x) . (18)

At the macroscopic level, the elastic tensor represents an average constitutive relation
in V , and therefore:

⟨σij⟩V = C̄ijkl⟨εkl⟩V , (19)

where the dependence on the size V is in evidence.
Hill’s energy condition requires that the average strain energy density ⟨U⟩ is equiva-

lent to both states. By using eqs. (18) and (19), one has, in the absence of stress rates:

⟨U⟩V =
1

2
⟨εijCijklεkl⟩ =

1

2
⟨⟨εij⟩V C̄ijkl⟨εkl⟩V ⟩ , (20)

or

⟨σijεij⟩V = ⟨σij⟩V ⟨εij⟩V . (21)

Before proceeding into the details of each type of boundary condition, it is important
to prove the relationship between ⟨εkl⟩V and the boundary conditions of the SUBC type,
i.e.:

ui|∂V = εAijxj , (22)

where εAij denotes a prescribed constant strain state, and x corresponds to a position vector.
From the average strain definition (eq. (17)), we have:

⟨εij⟩V =
1

2V

∫
V

(
∂ui

∂xj

+
∂uj

∂xi

)
dV . (23)

For generality, let’s assume that volume V is composed of two subregions of volume V1

and V2 connected by an interface volume V1∩V2, so that V = V1+V2+V1∩V2 as shown
in fig. 4.

Under this volume partition, eq. (23) is rewritten:

⟨εij⟩V =
1

2V

[∫
V

(
∂ui

∂xj

+
∂uj

∂xi

)
dV +

∫
V1∩V2

(
∂ui

∂xj

+
∂uj

∂xi

)
dV

]
, (24)

which can be converted into a boundary-only equation using the divergence theorem:
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Figure 4: Division of a volume V into three parts.

⟨εij⟩V =
1

2V

[∫
∂V

(uinj + ujni) dA+

∫
∂V1∩∂V2

(uinj + ujni) dA

]
. (25)

Now the boundary condition (eq. (22)) can be imposed, resulting in:

⟨εij⟩V =
1

2V

[∫
∂V

(
εAijxjnj + εAijxini

)
dA+

∫
∂V1∩∂V2

(uinj + ujni) dA

]
,

=
1

2|V |

[∫
V

(
∂

∂xj

(
εAijxj

)
+

∂

∂xi

(
εAjixi

))
dV +

∫
∂V1∩∂V2

(uinj + ujni) dA

]
,

(26)
which, after manipulation, simplifies to:

⟨εij⟩V = εAij +
1

2V

∫
∂V1∩∂V2

(uinj + ujni) dA . (27)

The term uinj + ujni in eq. (27) represents the jump in the displacement field along
with the interface between V1 and V2. Whenever the volumes are perfectly bonded, the
boundary integral terms vanishes, resulting in the equivalence known as Average Strain
Theorem, written as:

⟨εij⟩V = εAij . (28)

2.2.3 Static uniform boundary conditions

Once eq. (28) is demonstrated and proved, it is possible to detail the different boundary
condition types. As aforementioned, the Static Uniform Boundary Conditions (SUBC)
is established if the displacements on the boundary are described as in eq. (22). Other
authors, such as Espadas-Escalante et al. [2017] and Shen and Brinson [2006], alterna-
tively named it Uniform Displacement Boundary Condition, as proposed by Hazanov and
Amieur [1995]. Essentially, the SUBC is a kinematically admissible displacement field
that creates a homogeneous strain field. For example, if a pure-extension condition is
imposed on a cube, such as shown in fig. 5, one writes:
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εA =

εA11 0 0
0 0 0
0 0 0

 .

If the global coordinate system is placed at the cube center, it is trivial to write:

u|xi=(a1,0,0)T
= − u|xi=(−a1,0,0)T

= εA11a1 ,

where a1 is the half-length of the cube.

Figure 5: Boundary conditions scheme for the εA state.

Now it is necessary to show that Hill’s energy condition is satisfied for the boundary
condition ui|∂V = εAijxj . The work done by the surface traction ti on the surface ∂V of
the solid is written: ∫

∂V

uitidA =

∫
∂V

uiσijnj dA ,

=

∫
V

∂

∂xj

(
uiσij

)
dV ,

=

∫
V

(
∂

∂xj

ui)σij dV ,

=

∫
V

εijσij dV .

(29)

Alternatively, one can write:∫
∂V

uitidA =

∫
∂V

εAijxjσijnj dA ,

=

∫
V

∂

∂xj

(
εAijxj

)
σij dV ,

=

∫
V

εAijσij dV .

(30)

One can recall the Average Strain Theorem (eq. (28)) and observe that the resultants of
eqs. (29) and eqs. (30) prove the energy equivalence, since:
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⟨εij⟩V σij ≡ εAijσij . (31)

2.2.4 Periodic boundary conditions

Luciano and Sacco [1998] introduced the evaluation concept of the overall properties of a
periodic media subjected to either a mean strain or mean stress field. In a periodic prism
2a1 × 2a2 × 2a3 (see fig. 6), the displacement field on its boundary can be written as:

ui(a1, x2, x3)− ui(−a1, x2, x3) = 2εi1a1, ∀x2 ∈ [−a2, a2],∀x3 ∈ [−a3, a3] , (32a)
ui(x1, a2, x3)− ui(x1,−a2, x3) = 2εi2a2, ∀x1 ∈ [−a1, a1],∀x3 ∈ [−a3, a3] , (32b)
ui(x1, x2, a3)− ui(x1, x2,−a3) = 2εi3a3, ∀x1 ∈ [−a1, a1],∀x2 ∈ [−a2, a2] . (32c)

Equation (32) is known as Periodic Boundary Conditions (PBC). Further details of the
derivation of eqs. (32) are omitted in this text. They can be found, however, in Luciano
and Sacco [1998]. The micro-strains and micro-stresses within the periodic media are
represented by the equations:

εij(x1, x2, x3) = ε0ij + εpij(x1, x2, x3) , (33)

σij(x1, x2, x3) = σ0
ij + σp

ij(x1, x2, x3) , (34)

where ε0ij and σ0
ij represent the mean strains and mean stresses, respectively. εpij and σp

ij are
the V-periodic strain and stresses. Those entities are defined by the following expressions:

ε0ij =
1

V

∫
V

εij(x1, x2, x3)dV = ⟨εij⟩V , (35a)

σ0
ij =

1

V

∫
V

σij(x1, x2, x3)dV = ⟨σij⟩V , (35b)

0 =
1

V

∫
V

εpij(x1, x2, x3)dV , (35c)

0 =
1

V

∫
V

σp
ij(x1, x2, x3)dV . (35d)

Equations (32) establish a relationship between displacements over opposite faces.
Therefore, the displacements are not directly imposed, differently from what eq.(22) pro-
poses. Aiming at their computational implementation, eq.(32a) can be rewritten as:

ui(a1, x2, x3)− ui(−a1, x2, x3) =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

a10
0

 . (36)

The same procedure is applied to eqs. (32b) and (32c) as well. Equation (36) indicates
that opposite faces are subjected to the restrictions defined at the center position of each
one. They produce, however, ambiguities at vertices and along edges, as they can have
over-defined boundary conditions, as clarified by Barbero [2007].
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Considering a periodic body like the one depicted in fig. 6, symmetric edges respec-
tive to the center of the body must be tied. In order to exemplify future computational
implementation, edges parallel to x3 must respect the following condition:

ui(a1, a2, x3)− ui(−a1,−a2, x3) =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

a1a2
0

 . (37)

And vertices such those lying on xi = (a1, a2, a3) and xi = (−a1,−a2,−a3) must be tied
by:

ui(a1, a2, a3)− ui(−a1,−a2, a3) =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

a1a2
a3

 . (38)

Analogous equations can be defined for others vertices and edges.

Figure 6: Definition of geometric entities for the periodic boundary conditions
scheme.

The satisfaction of Hill’s energy condition for this type of boundary condition is not
easily found in the literature. For sake of completeness, a short proof can be derived.
Hazanov and Amieur [1995], among others, showed that the following equivalence holds:

∫
∂V

(
ti−⟨σij⟩nj

)
·
(
ui−⟨εij⟩xj

)
dA = 0 ⇔ ⟨σijεij⟩V −⟨σij⟩V ⟨εij⟩V = 0 , (39)

which can be transformed in a volume integral as:

1

V

∫
V

(
σij − ⟨σij⟩V

)
·
(
εij − ⟨εij⟩V

)
dV = ⟨σijεij⟩V − ⟨σij⟩V ⟨εij⟩V = 0 . (40)

Inserting eqs. (33) and (34) in eq. (40) and expanding the resultant, one obtains:

1

V

∫
V

(
σ0
ijε

0
ij − σ0

ij⟨εij⟩V − ⟨σij⟩V ε
0
ij + σ0

ijε
p
ij + σp

ijε
0
ij + σp

ijε
p
ij+

−σp
ij⟨εij⟩V − ⟨σij⟩V ε

p
ij + ⟨σij⟩V ⟨εij⟩V

)
dV = ⟨σijεij⟩V − ⟨σij⟩V ⟨εij⟩V = 0 ,

(41)
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and, by canceling out the equivalent terms in eq. (41), one can write:

1

V

∫
V

σp
ijε

p
ij dV = 0 . (42)

Another way to see eq. (42) comes up by interpreting it as a simple circular convo-
lution between two periodic signals σ and ε with period V , i.e.

∫
V
σε dV which in this

case, results in a function with the same period. Because the signals are symmetric, the
convolution must be zero.

2.2.5 Mixed boundary conditions

One of the first applications of Mixed Boundary Conditions (MBC) in the context of the
RVE homogenization problem was presented by Hazanov and Amieur [1995], accounting
for both traction (pi) and displacement (ui) boundary values as follows:(

pi − ⟨σij⟩V nj

)(
ui − ⟨εij⟩V xj

)
= 0 , on ∂V , (43)

therefore, combining sets of KUBC and SUBC. It is important to highlight that this type of
boundary condition is limited to elastic materials that show orthotropic symmetry, at most.
Any less symmetric material, i.e., monoclinic or triclinic symmetries, would generate
coupling stresses that would not respect eq. (43). A great advantage of this approach is
to reproduce effectively the boundary conditions from experimental tests, as in Shen and
Brinson [2006], which imposed KUBC in faces perpendicular to the loading and SUBC
on faces parallel to the loading.

Recently, in a general homogenization scheme proposed by Glüge [2013], the RVE
boundary is divided into n parts, each one subjected to an average strain ⟨εij⟩V :

⟨εij⟩V
∫
∂Vn

xjnidA =

∫
∂Vn

ujni dA . (44)

The above equation leads to important remarks:

1. If n → ∞, then u|∂V = εAijxj as in SUBC.

Proof: The integral drops in (44) and it follows that:

⟨εij⟩V xjnidA = ujnidA, in ∂V ,

u|∂V = ⟨εij⟩V xj ,

u|∂V = εAijxj .

(45)

2. If n → ∞, when the faces are mirrored such that nidA
+ = −nidA

−, eq.(44)
corresponds to a PBC.

Proof: Equation (44) is divided into nidA
+ and nidA

−, with position vectors x+
j =

−x−
j , the superscripts meaning opposite sides of an RVE as follows:

⟨εij⟩V x
+
j nidA

+ + ⟨εij⟩V x
−
j nidA

− = u+
i njdA

+ + u−
i njdA

− ,

2⟨εij⟩V x
+
j = u+

i − u−
i .

(46)

This is equivalent to eq. (32).
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3. If n = 1, ∂Vn → ∂V , and eq.(44) represents KUBC. Equation (44) then becomes:

⟨εij⟩V =
1

V

∫
∂V

uinj dA , (47)

which can be shown to correspond to a homogeneous stress field.
In a study focused on textiles made by Espadas-Escalante et al. [2017], the concept

of MBC as a combination of PBC and KUBC is proposed. In the plane directions, the
composite is treated as periodic, while in the out-of-plane direction uniform traction is
imposed. This allows applying a traction-free condition along the out-of-plane direction,
which replicates the plane-stress condition expected in thin structures such as textiles.
Emphasis is given to the fact that ”homogenization is highly dependent of boundary con-
ditions’ choosing for one layer of textile composite”. The most important results can be
numbered as:

• Differences between SUBC and KUBC on E11 homogenization can vary as much
as 200%;

• MBC approach asymptotically PBC as the number of layers is increased in a lami-
nate;

• The out-of-plane E33 seems to be less sensitive than E11 to boundary condition type
(differences of 10%);

• The results showed that SUBC and PBC performed better in comparison to experi-
mental results for in-plane mechanical properties.

3 A New Set of Boundary Conditions

The study of Espadas-Escalante et al. [2017] motivated the implementation of a different
set of MBC. Since PBC and SUBC deliver better results when compared to experimental
data, the basic idea is to mix PBC for the in-plane degrees of freedom and SUBC for
the out-of-plane degrees of freedom, trying to extract the best of both sets of boundary
conditions. This proposal will be referenced as MBC* along with this chapter.

Considering again a prism 2a1 × 2a2 × 2a3 with a centered coordinate system, the
degrees of freedom in the 1-2 directions are specified as proposed by Luciano and Sacco
[1998], while for direction 3, SUBC is used. Each face is identified by its relative position:
West, East, North, South, Upper, and Lower, as in fig.7. Naturally, for the degrees of
freedom in the plane 1-2 the stress and strain fields admit the distribution given by eqs.
(33) and (34), repeated below for convenience. No a priori assumptions are made for the
strain and stress fields along the out-of-plane axis (x3).

εij(x1, x2, x3) = ⟨εij⟩V + εpij(x1, x2, x3) , for i = 1, 2 , (48a)

σij(x1, x2, x3) = ⟨σij⟩V + σp
ij(x1, x2, x3) , for i = 1, 2 , (48b)∫

V

εpij(x1, x2, x3) dV = 0 , (48c)∫
V

σp
ij(x1, x2, x3) dV = 0 . (48d)
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Figure 7: Face notation for the proposed set of boundary conditions.

Therefore, one has on the West and East faces:
u1(a1, x2, x3)− u1(−a1, x2, x3) = 2εA11a1 , ∀ x1 ∈ (−a1, a1) ,

u2(a1, x2, x3)− u2(−a1, x2, x3) = 2εA21a1 , ∀ x2 ∈ [−a2, a2] ,

u3(a1, x2, x3) = −u3(−a1, x2, x3) = εA3jxj , ∀ x3 ∈ [−a3, a3] ,

(49)

and on the North and South faces:
u1(x1, a2, x3)− u1(x1,−a2, x3) = 2εA11a2 , ∀ x1 ∈ [−a1, a1] ,

u2(x1, a2, x3)− u2(x1,−a2, x3) = 2εA21a2 , ∀ x2 ∈ (−a2, a2) ,

u3(x1, a2, x3) = −u3(x1,−a2, x3) = εA3jxj , ∀ x3 ∈ [−a3, a3] ,

(50)

while on the Upper and Lower faces:
u1(x1, x2, a3)− u1(x1, x2,−a3) = 2εA11a2 , ∀ x1 ∈ [−a1, a1] ,

u2(x1, x2, a3)− u2(x1, x2,−a3) = 2εA21a2 , ∀ x2 ∈ [−a2, a2] ,

u3(x1, x2, a3) = −u3(x1, x2,−a3) = εA3jxj , ∀ x3 ∈ (−a3, a3) .

(51)

By analyzing the proposed boundary conditions in terms of the Average Strain The-
orem, the volume average is carried out to the boundary by the divergence theorem as
follows:

⟨εij⟩V =
1

|V |

∫
V

εij dV ,

=
1

2|V |

∫
V

(∂ui

∂xj

+
∂uj

∂xi

)
dV ,

=
1

2|V |

∫
∂V

(
uinj + ujni

)
dA .

(52)

The boundary can be divided into six parts, according to the colored faces of fig. 7:

∂V = ∂V e + ∂V w + ∂V n + ∂V s + ∂V u + ∂V l (53)

hence:
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⟨εij⟩V =
1

2|V |

{∫
∂V e

(
ue
in

e
j + ue

jn
e
i

)
dA+

∫
∂V w

(
uw
i n

w
j + uw

j n
w
i

)
dA+ . . .∫

∂V u

(
uu
i n

u
j + uu

jn
u
i

)
dA+

∫
∂V l

(
ul
in

l
j + ul

jn
l
i

)
dA

}
,

=
1

2|V |
{
Ψw/e +Ψn/s +Ψu/l

}
.

(54)

On the West and East faces, noting that ne = −nw:

Ψw/e =

∫
∂w/e

{
(ue

i − uw
i )n

e
j + (ue

j − uw
j )n

e
i

}
dA . (55)

Noting also that ue
i = ui(a1, x2, x3) and uw

i = ui(−a1, x2, x3), by using the boundary
conditions of eq. (49):

Ψw/e = 2

∫
∂w/e

2ε11a12ε21a1
2ε3ixi

 [
ne
1 ne

2 ne
3

]
dA , (56)

and observing that ne = [1 0 0]:

Ψw/e = 4

∫
∂w/e

ε11a1 0 0
ε21a1 0 0
ε3ixi 0 0

 dA . (57)

Since the third line requires a particular approach, one writes it separately. The first
step is to split the expression into three integrals, written by:∫

∂w/e

ε3ixidA =

∫
∂w/e

(
ε31a1 + ε32x2 + ε33x3

)
dx2 dx3 ,

= ε31a1(4a2a3) + ε32
x2
2

2

∣∣∣∣a2
−a2

· 2a3 + ε33
x2
3

2

∣∣∣∣a3
−a3

· 2a2 ,

= ε31a1(4a2a3) .

(58)

One notices that the last two terms of the second line vanish because x2
2

2

∣∣∣a2
−a2

=
x2
3

2

∣∣∣a3
−a3

=

0. The eq. (57) can be rewritten as follows:

Ψw/e =

ε11 0 0
ε21 0 0
ε31 0 0

 2|V | , (59)

where |V | = 8a1a2a3. Taking similar steps foΨn/s and Ψu/l, we arrive at:

Ψn/s =

0 ε12 0
0 ε22 0
0 ε33 0

 2|V | , (60)
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Ψu/l =

0 0 ε13
0 0 ε23
0 0 ε33

 2|V | . (61)

Now eqs. (59), (60), and (61) can be inserted into the expression for ⟨εij⟩V (eq. (54))
and resulting in:

⟨εij⟩V =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 = εAij , (62)

which proves that the Average Strain Theorem holds for the eqs. (49)- (51).
In order to verify if this set of boundary conditions complies the Hill’s energy con-

dition, one follows the approach introduced by Hazanov and Amieur [1995]. It is worth
noting that eq. (39) is automatically satisfied if ui = ⟨εij⟩V xj on ∂V and this is readily
verified for u3. Nonetheless, for the remaining degrees-of-freedom, further investigation
must be performed. Firstly, one rewrites eq. (40) for u1 and u2, and using the divergence
theorem, obtaining (Hazanov and Amieur [1995]):

1

V

∫
V

(
σ1j − ⟨σ1j⟩V

)
·
(
(ε1j − ⟨ε1j⟩V

)
dV = 0 , (63a)

1

V

∫
V

(
σ2j − ⟨σ2j⟩V

)
·
(
(ε2j − ⟨ε2j⟩V

)
dV = 0 , (63b)∫

∂V

(
t3 − ⟨σ3j⟩V nj

)
·
(
(u3 − ⟨ε3j⟩V xj

)
dA = 0 . (63c)

As already mentioned, considering the third equation in eqs. (49)-(51) on any of the
boundary surfaces, u3 = ⟨ε3j⟩xj and eq. (63c) vanishes automatically, in view of eq.
(62). For u1 and u2, the same steps applied to prove Hill’s criteria for periodic boundary
conditions can be used, along with the stress and strain fields of eq.(48), leading to a
similar result of eq. (42) as follows:

1

V

∫
V

σp
ijε

p
ij dV = 0 , i = 1, 2 .

4 Evaluation of Effective Elastic Properties

The basic procedure to evaluate the effective elastic constants is well known (Zohdi
[2002]). Essentially, eq. (19), repeated below for convenience, must be solved for RVE
subjects to any of the boundary conditions discussed in the previous sections:

⟨σij⟩V = C̄ijkl⟨εkl⟩V . (64)

Now if the local stress field σ can be numerically calculated through either a FE or
a BE analysis, so is ⟨σ⟩V , and eq. (64) provides six equations. One way to overcome
the insufficient number of equations is by solving the RVE problem for other types of
boundary conditions. This will provide the necessary equations to recover all entries of C̄
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in the macroscopic constitutive relation of eqs. (64). Given the dimensions of C̄, applying
six independent strain states will suffice (see fig. 8):

ε1 =

εxx 0 0
0 0 0
0 0 0

 , ε2 =

0 0 0
0 εyy 0
0 0 0

 , ε3 =

0 0 0
0 0 0
0 0 εzz

 ,

ε4 =

 0 εxy 0
εxy 0 0
0 0 0

 , ε5 =

 0 0 εxz
0 0 0
εxz 0 0

 , ε6 =

0 0 0
0 0 εyz
0 εyz 0

 .

(65)

The final system of linear equations can be derived as:


⟨σ1⟩6×1

⟨σ2⟩6×1

⟨σ3⟩6×1

⟨σ4⟩6×1

⟨σ5⟩6×1

⟨σ6⟩6×1


V

=



[C]6×6 [0]6×6 . . . . . . . . . [0]6×6

[0]6×6 [C]6×6 [0]6×6 . . . . . . [0]6×6
... [0]6×6 [C]6×6 [0]6×6 . . . [0]6×6
...

... [0]6×6 [C]6×6 [0]6×6 [0]6×6
...

...
... [0]6×6 [C]6×6 [0]6×6

[0]6×6 . . . . . . . . . [0]6×6 [C]6×6




⟨ε1⟩
⟨ε2⟩
⟨ε3⟩
⟨ε4⟩
⟨ε5⟩
⟨ε6⟩


V

, (66)

where ⟨σk⟩ and ⟨εk⟩, k = 1..6 are the average stress and strain states in Voigt notation.
Equation (66) can be optimized for computational implementation. Starting with the vec-
torization of each [C] sub-matrix:

[C]36×1 = [M ]−1
36×36 [⟨σ⟩V ]36×1 , (67)

with M = [M1
ab . . .M

k
ab]

T
k=1..6, where k is one of the strain cases in eq.(65), and Mk

ab is
the concatenated matrix (6 lines × 36 columns):

Mk
ab =

{ [
⟨εk⟩1 ⟨εk⟩2 . . . ⟨εk⟩6

]
, if a = b

[0 0 0 0 0 0] , if a ̸= b
, (68)

or in matrix representation:

Figure 8: Visualization of the strain states εi in eqs. (65) for the particular case of
constant strains.

da Rocha, Jonas T., et al. (2022) Weaving Patterns on Mechanical Response of Composites pp. 76-119

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 96



Mk
ab =



⟨εk⟩1×6 [0]1×6 . . . . . . . . . [0]1×6

[0]1×6 ⟨εk⟩1×6 [0]1×6 . . . . . . [0]1×6
... [0]1×6 ⟨εk⟩1×6 [0]1×6 . . . [0]1×6
...

... [0]1×6 ⟨εk⟩1×6 [0]1×6 [0]1×6
...

...
... [0]1×6 ⟨εk⟩1×6 [0]1×6

[0]1×6 [0]1×6 [0]1×6 [0]1×6 [0]1×6 ⟨εk⟩1×6


. (69)

Redundant equations can possibly be eliminated to account for the various symmetries
of C̄. Alternatively, constraints can be used as well. The engineering constants can now
be retrieved by inverting the stiffness matrix obtained by the solution of eq. (67), S̄ = C̄−1

as follows:

S̄ =


1/E1 −ν21/E2 −ν31/E3 η1,23/G23 η1,13/G13 η1,12/G12

−ν12/E1 1/E2 −ν32/E3 η2,23/G23 η2,13/G13 η2,12/G12

−ν13/E1 −ν23/E2 1/E3 η3,23/G23 η3,13/G13 η3,12/G12

η23,1/E1 η23,2/E2 η23,3/E3 1/G23 µ23,13/G13 µ23,12/G12

η13,1/E1 η13,2/E2 η13,3/E3 µ13,23/G23 1/G13 µ13,12/G12

η12,1/E1 η12,2/E2 η12,3/E3 µ12,23/G23 µ12,13/G13 1/G12

 . (70)

4.1 Fiber volume correction

In computational modeling of a textile composite, it is common to allow a thin layer of
matrix material on the top and bottom sides of the RVE, as shown in fig. 9). This measure
helps to avoid mesh generation issues (see, for instance, Long and Brown [2011]). As a
result, the actual fiber volume fraction of the computational model is lowered and the ho-
mogenization process is affected. To correct this effect, Barbero’s methodology (Barbero
et al. [2006]) is followed in this work.

The correction is based on three fiber volume fractions: the overall, the mesoscale,
and the tow fraction, denoted as Vo, Vg, and Vs, respectively. Vo is the ratio between the
dry fiber volume and total (after curing) composite volume. The Vg measure is defined
as the volume occupied by the strands with impregnated resin in the cured composite, or
alternatively, in the computational representation of the tows. Finally, Vs is the volume
fraction inside the strand. Vs is generally high (larger than 0.8), however, it is hard to
be obtained experimentally. Barbero et al. [2006] introduce the following relationships
among the volume fractions:

Vs =
V0

Vg

. (71)

Vg is obtained computationally while the Vo is an experiment value expected to be
known. Furthermore, Barbero et al. [2006] suggest the following volume fraction correc-
tion for the Young modulus:

E =
Vg

V α
g

Eα ; (72)
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with the superscript α meaning the value in the FEM model. Aiming at analyzing the
stiffness matrix altogether, this correction is applied over the reduced constitutive tensor:

C̄ =
Vg

V α
g

C̄α . (73)

The approach is straightforward and corrects undesired effects on the final homog-
enized tensor. The issues do not appear in experimental values validation, since only
common engineering constants are generally corrected and they are obtained from the
main diagonal of the compliance tensor. Thus, caution is advisable when interpreting
coupling coefficients. A deeper investigation of this correction and its influence on the
stiffness/compliance tensors is out of the scope of this text.

Figure 9: Typical extra layer of resin added by computational tools.

4.2 Principal directions of anisotropy

Rand and Rovenski [2007] introduced a straightforward methodology for defining the
principal directions of an anisotropic material based on a bulk modulus tensor and a de-
viatoric modulus tensor. These are also contractions of the stiffness tensor, and are given
by the following definitions:

• Bulk modulus tensor

K =

K11 K12 K13

K12 K22 K23

K13 K23 K33

 , Kij =
3∑

k=1

Sijkk . (74)

• Deviatoric modulus tensor

L =

L11 L12 L13

L12 L22 L23

L13 L23 L33

 , Lij =
3∑

k=1

Sikjk . (75)
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The principal directions of K coincide with the principal directions of anisotropy of
the material. In order to ensure a canonical system, the eigenvalues λK

i of K (or λL
i of

L) must be ordered λK
3 > λK

2 > λK
1 , so that the strongest material direction will be

oriented in the 3-axis, while the and the weakest remains in the 1-axis. Furthermore, a
necessary (but not sufficient) condition for two materials to be considered the same is the
invariants of K and L being the same. Consequently, the eigenvalues of these tensors can
develop a suitable metric to compare the effects of the distinct boundary conditions on
the homogenization results. There are a total of six invariants are associated with K and
L tensors that can be used for expedite comparisons between two anisotropic materials.
They are written as follows:

IK1 = λK
1 + λK

2 + λK
3 IL1 = λL

1 + λL
2 + λL

3

IK2 = λK
1 λ

K
2 + λK

1 λ
K
3 + λK

2 λ
K
3 IL2 = λL

1λ
L
2 + λL

1λ
L
3 + λL

2λ
L
3

IK3 = λK
1 λ

K
2 λ

K
3 IL3 = λL

1λ
L
2λ

L
3

5 Numerical Results

In this section, several results obtained through homogenization considering the bound-
ary conditions described in the present chapter will be presented and discussed for a set
of selected composites. For each case (composite + boundary condition set), the homog-
enized stiffness matrix is determined. Some metrics using these tensors are calculated so
as to allow a better analysis of the differences that each set of boundary conditions may
produce.

In view of the over-determined system of eq. (67) and the numerical nature of its
solution, the C̄ tensor may not result perfectly symmetric. This was avoided by enforcing
its symmetry before calculating other results, that is:

S̄−1 = C̄
.
=

1

2
(C̄T + C̄) , (76)

Some indices are determined as a direct comparison among the resulting C̄ would
be cumbersome and not quite objective. Therefore, the present work used the following
indicators to compare the different stiffnesses:

1. Two anisotropy indices: the universal elastic anisotropy index (Au), and Zener’s
anisotropy index (Az) following Ranganathan and Ostoja-Starzewski [2008];

2. The Frobenius norm of the stiffness matrix;

3. The invariants of K and L, regarding the principal planes of anisotropy (subsection
4.2);

4. Classical Laminate Theory (CLT) comparison through the reduced constitutive ten-
sor (de Vargas Lisbôa and Marczak [2017]);

The universal elastic anisotropy index (Au), the Zener’s anisotropy index (Az), and
the Frobenius norm (Fr) are calculated as follows:
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Au(C̄) = 5
GV

GR
+

KV

KR
− 6 , (77)

where

9Kv = (C̄11 + C̄22 + C̄33 + 2(C̄12 + C̄23 + C̄13) ,

15Gv = (C̄11 + C̄22 + C̄33)− (C̄12 + C̄23 + C̄13) + 3(C̄44 + C̄55 + C̄66)
, (78)

and

Az(C̄) =
2C̄44

C̄11 − C̄12

, (79)

Fr(C̄) =
√
tr(C̄C̄) . (80)

For comparisons with CLT, eq. (3) is used. Given the kinematic assumptions of thin
plate theory and σ33 = 0, a reduction of the 6 × 6 constitutive tensor can be derived by
adjusting the remaining stiffnesses as follows:

¯̄Cij = CIJ − CI3C3J

C33

, (81)

where {I, J} = {1, 2, 6} and I = i + max (3(i− 2), 0), the later also valid when upper
and lower i are replaced for j. Evidently, ¯̄C = ¯̄S

−1
.

The results section will be divided into two sections. In the first one, one studies
a simple [0/90]s cross-ply laminate and uses the advantage of its simplicity to analyze
it under the context of the CLT. In the second section textile composites manufactured
with typical weaving will be analyzed and compared with experimental results from the
literature [Scida et al., 1998]. In order to calculate Au, Az, and Fr from experimental data
to be used as reference values, the compliance matrix is calculated from eq. (70) using
the measured engineering constants.

The mechanical and the geometric properties of the composites analyzed throughout
this section are listed in tables 1 and 2, respectively.

Table 1: Material properties used.

Material E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

E-glass 73 73 30.4 30.4 0.2 0.2
Epoxy 3.2 3.2 1.16 1.16 0.38 0.38

Vinylester derakane 3.4 3.4 1.49 1.49 0.35 0.35
E-glass/Vinylester, Vs = 0.8 57.5 18.8 7.44 7.26 0.25 0.29

E-glass/Epoxy, Vs = 0.8 59.3 23.2 8.68 7.60 0.21 0.32
E-glass/Epoxy, Vs = 0.75 55.7 18.5 6.89 6.04 0.22 0.34
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Table 2: Geometric properties of the analyzed composites.

Material E-glass/Vinylester E-glass/Vinylester E-glass/Epoxy E-glass/Epoxy

Weave class [0/90]s Plain weave 2/2 twill weave 8-harness satin
Strand width (mm) 0.20 0.60 0.83 0.60
Strand thickness (mm) 0.20 0.05 0.09 0.09
Unit-cell thickness (mm) 0.88 0.10 0.2275 0.18

FVF†
Strand (Vs) 1.00 0.80 0.75 0.80

Composite (Vo) 0.26 0.55 0.38 0.52
Meso-Scale (Vm) 0.26 0.687 0.507 0.65

† Fiber volume fraction

5.1 Cross-ply laminates

In this section, results for the [0/90]s cross-ply laminate (see figure 10) are discussed. The
material and geometric properties used in this case are listed in tables 1 and 2, respectively.
Since the geometry of the problem was generated in the TexGen software [Lin et al., 2011,
Long and Brown, 2011], the input parameters of TexGen are shown in table 3, for the sake
of reproducibility.

Table 3: TexGen weave parameters for the top layers of the [0/90]s cross-ply lami-
nate.

Material N. Layers Warp/Weft Yarns Yarn Spacing (mm) Yarn Width (mm) Fabric. thk.

E-glass/Epoxy 2 5 0.5 0.2 0.4

Figure 10: Simplified [0/90]s cross-ply laminate.

5.1.1 Homogenized stiffness

The C̄ matrix evaluated for each case of boundary conditions discussed in sections 2.2.2
and 3, namely SUBC and PBC, will be herein referenced by the corresponding super-
scripts. The proposed set of mixed boundary conditions described in section 3, MBC*,
will be assessed in the context of both, the 3D C̄ and thin structures such as plate/shell
using ¯̄C. Therefore, the raw results of the symmetrized stiffness obtained for the cross-ply
[0/90]S laminate are:
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C̄SUBC =


15525.50 3256.47 3585.68 0.70 0.03 −0.01
3315.44 15426.91 3612.21 0.61 0.07 0.01
3585.76 3485.87 9505.93 0.35 −0.03 −0.01
1.43 0.25 0.23 2307.38 −0.01 −0.02
−0.01 0.10 −0.06 −0.01 2671.86 0.17
−0.01 −0.01 −0.01 −0.04 0.48 2508.81

 , (82a)

C̄PBC =


15343.92 3240.38 3527.00 0.20 0.01 −0.01
3240.34 15334.77 3527.50 0.18 0.00 0.01
3526.94 3527.50 9101.15 0.16 −0.03 −0.02
0.20 0.18 0.16 1944.53 0.01 −0.00
0.00 0.00 −0.03 0.01 2255.10 0.12
−0.00 0.01 −0.02 −0.00 0.12 2255.68

 , (82b)

C̄MBC∗
=


15351.59 3238.43 3548.45 0.20 0.02 −0.01
3238.39 15342.42 3548.96 0.17 0.02 0.00
3548.39 3548.95 9425.97 0.15 −0.03 −0.03
0.20 0.17 0.15 1944.53 0.01 −0.00
−0.00 0.00 −0.06 0.01 2352.61 0.18
−0.01 0.01 −0.03 −0.00 0.43 2306.12

 . (82c)

5.1.2 3D anisotropy and engineering constants

Once the homogenized, matrices given by eqs. (82) are generated, the anisotropy indica-
tors are computed along with the engineering constants for comparison purposes. Table 4
summarizes these calculations for an E-glass/vinylester cross-ply laminate.

Table 4: Cross-ply E-glass/vinylester composite

b.c. E11 E22 E33 ν13 ν12 Au Az Fr

SUBC 13.9 13.8 8.15 0.32 0.138 1.53 0.437 25703.14
MBC∗ 13.8 13.7 8.07 0.32 0.136 1.84 0.388 25414.39
PBC 13.7 13.7 7.76 0.33 0.134 1.94 0.373 25261.47

If the Fr norm is considered, and assuming it can give us at least a weak indication of
the composite stiffness, the results in Table 4 shows that:

Fr

(
C̄SUBC

)
> Fr

(
C̄MBC∗)

> Fr

(
C̄PBC

)
. (83)

Espadas-Escalante et al. [2017] conducted a similar study with a mixed boundary condi-
tion consisting of a combination of the PBC and the uniform traction boundary conditions
(UTBC), here referred to as MBC**. The results showed that:

Fr

(
C̄SUBC

)
> Fr

(
C̄PBC

)
> Fr

(
C̄MBC∗∗)

> Fr

(
C̄UTBC

)
, (84)
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suggesting that the MBC∗∗ combination of UTBC and PBC produced a resulting C̄ stiffer
than C̄UTBC . On the other hand, our MBC∗ proposal, combining SUBC and PBC, pro-
duced a C̄ less stiff than C̄SUBC . These conclusions highlight that combinations of dis-
tinct boundary conditions have the potential to represent better actual stiffness, as these
combinations allow the generation of intermediary strain fields, particularly for more
complex fiber distributions.

The PBC infers a 3D infinite domain. Despite being valid for large 3D bodies, in
textile composites or shell-like geometries this set might not be accurate in the out-of-
plane direction. Furthermore, the SUBC imposes a direct strain state along the boundary,
which can be seen as an upper bound limit of the elastic properties. Consequently, one
expects that the MBC should generate results with intermediary stiffness between the
SUBC and the PBC.

Table 5 presents a comparison between the IKi and ILi for the boundary conditions
sets evaluated. As mentioned in section 4.2, a necessary condition to claim that two
anisotropic materials behave identically is that their invariants IKi and ILi must be equal.
This implies that the main planes of anisotropy have the same spatial orientation. Table
5 shows clearly that the three sets of boundary conditions generate similar results. The
small differences appear to be a consequence of the local strain fields generated in the
boundary condition application, which is also reflected in the numerical values of the
engineering constants (Table 4).

Table 5: Invariants of K and L for the cross-ply E-glass/vinylester composite.

b.c. IK1 IK2 IK3 IL1 IL2 IL3

SUBC 6.13× 104 1.24× 109 8.30× 1012 5.54× 104 10.1× 109 6.05× 1012

MBC∗ 6.08× 104 1.22× 109 8.10× 1012 5.33× 104 9.35× 109 5.37× 1012

PBC 6.04× 104 1.20× 109 7.90× 1012 5.27× 104 9.12× 109 5.16× 1012

A direct comparison of other 3D homogenized compliance entries is presented in
Table 6 for completeness. In particular, values for out-of-plane compliance are provided
for reference, as these are not commonly found in the literature.

Table 6: Other entries for 3D homogenized compliance

Model S̄13 S̄32 S̄63 S̄12 S̄33 S̄66

SUBC −2.34 · 10−5 −2.32 · 10−5 −2.67 · 10−10 −9.93 · 10−6 1.23 · 10−4 4.33 · 10−4

MBC∗ −2.36 · 10−5 −2.37 · 10−5 −4.79 · 10−9 −9.87 · 10−6 1.24 · 10−4 5.14 · 10−4

PBC −2.44 · 10−5 −2.45 · 10−5 −5.54 · 10−9 −9.77 · 10−6 1.29 · 10−4 5.14 · 10−4

5.1.3 2D anisotropy and engineering constants

After reducing the C̄SUBC , C̄PBC , and C̄MBC∗ homogenized matrices (eq. (81)), their
CLT counterparts are obtained as follows:
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¯̄C
SUBC

=

14172.94 1947.22 0.96
1947.22 14101.87 0.32
0.96 0.32 2307.38

 (85a)

¯̄C
MBC∗

=

14015.78 1902.40 0.15
1902.40 14006.21 0.12
0.15 0.12 1944.53

 (85b)

¯̄C
PBC

=

13977.11 1873.35 0.14
1873.35 13967.55 0.12
0.14 0.12 1944.53

 (85c)

It is worth highlighting that the tensor reduction disregards the following entries of
the homogenized 3D stiffness matrix due to the kinematic hypotheses of Kirchhoff plate
theory: 

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C56 C55 C56

C61 C62 C63 C64 C65 C66

 (86)

Consequently, some of the entries in eqs. (82) responsible for the asymmetry are not
considered.

It is interesting to note that one can retrieve the effective engineering constants for
the composite either from the inverse of eq. (70) combined with any of the eqs. (82) or,
alternatively, from the elementary relations of mechanics of composite materials (Jones
[2018], Nettles [1994]), fed by the inverses of the eqs. (85). In both cases, the equations
are the same, provided the {I, J} → {i, j} index change is performed and the correct
matrices are used. Therefore, to retrieve the effective properties from the CLT (reduced)
matrices, we have:

E11 =
1
¯̄S11

E22 =
1
¯̄S22

G12 =
1
¯̄S33

ν12 = −
¯̄S12

¯̄S22

(87)

In Table 7, the effective properties are computed from eqs. (87) using ¯̄Sij from the
inverses (85) are compared. The ROM acronym refers to the values obtained using the
rule of mixtures (Jones [2018], Nettles [1994]). It is clear that the different calculations
of the reduced stiffness matrix produced a consistent agreement for the elastic moduli.
Another comparison of the values in Table 7 is provided in fig. 11, where E11 of the
various formulations are plotted along with the bounds described in section 2.1.1. One
observes that for a cross-ply laminate (N = 2) the homogenized values agree with the
upper bound of Ishikawa [1981].
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Table 7: Effective engineering constants for cross-ply E-glass/vinylester composite.

b.c. E11 E22 G12 ν12

SUBC 13.90 13.83 2.307 0.1374
MBC∗ 13.76 13.75 1.945 0.1357
PBC 13.73 13.72 1.945 0.1340

ROM 13.39 13.39 2.05 0.118

Figure 11: Comparison of the elastic moduli obtained by the various formulations
and the bounds proposed by Ishikawa [1981].

5.2 Textile composites

In this section, the homogenization process is conducted for some weave composites typ-
ically found in the industry. The geometry was also generated in a commercial textile
composites simulation software (TexGen) and the results are compared to experimental
and numerical evaluations from literature. Later, the homogenized stiffness matrix is re-
duced to CLT and also compared. The cases are analyzed and the corresponding fiber
volume fractions are:

1. Plain Weave E-glass/Vinylester (Vs = 0.8);

2. 2/2 twill weave E-glass/Epoxy (Vs = 0.75)

3. 8-Harness Satin Weave E-glass/Epoxy (Vs = 0.8)

The weave patterns studied are diagrammed in fig. 12 and the corresponding geome-
tries generated by TexGen are shown in fig. 13. The weaving parameters used to generate
these models are listed in Table 8 and were retrieved from Scida et al. [1999]. The stiff-
ness matrices were corrected in order to simulate the real fiber volume fraction of the
composite, as described in section 4.1, eq. (73).
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Table 8: TexGen input parameters used.

Material Weave class Strand
width
(mm)

Comp.
thick-
ness
(mm)

Yarn
Spacing
(mm)

V α
g Vg/V

α
g

E-glass/Vinylester Plain weave 0.6 0.1 0.625 0.589 1.165
E-glass/Epoxy 2/2 twill weave 0.83 0.2275† 1 0.498 1.017
E-glass/Epoxy 8-Harness Satin Weave 0.6 0.18 0.8 0.526 1.235
† The total thickness of the composite is 0.2275 mm. However, the fabric thickness which is
actually inserted in TexGen is 0.18 mm. Hence, the fabric thickness is corrected by adding
an additional layer of matrix material.

Figure 12: Weave pattern schemes used to generate the three weave composites stud-
ied.

Figure 13: RVE geometries generated for each pattern of Fig. 12.

5.2.1 Homogenized stiffness

In this subsection, the 3D homogenized (non-contracted) stiffness matrix computed for
each of the three textile composites will be discussed. For short, they will be distinguished
by their names attached to the C̄ matrix. They are:
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C̄SUBC
plain =


28874.13 6117.78 6305.27 −18.19 −481.47 732.65
6478.04 29131.20 6312.37 759.37 1.27 −4.18
6305.42 5584.47 13194.71 12.05 −0.56 18.27
−47.26 634.76 0.54 2721.56 5.10 −10.19
−481.44 −1.84 −0.59 2.74 2983.75 −17.24
988.30 −9.13 26.10 −7.48 −31.46 4775.66

 (88a)

C̄PBC
plain =


28331.60 6452.85 6197.92 −30.53 −457.13 957.37
6453.30 28634.90 6211.23 465.35 −4.90 7.81
6197.87 6210.75 13084.94 0.92 −0.58 30.03
−30.52 465.35 0.93 2772.56 1.67 −10.37
−457.13 −4.90 −0.58 1.67 2771.43 −30.76
957.37 7.83 30.05 −10.38 −30.76 4876.75

 (88b)

C̄MBC∗

plain =


28433.07 6382.58 6218.58 −12.93 −425.32 965.06
6382.95 28736.06 6231.57 540.20 1.89 2.27
6218.54 6231.17 13149.13 2.16 2.04 29.91
−41.71 432.58 −1.67 2450.17 1.75 −12.08
−425.34 1.89 2.02 0.84 2892.14 −25.63
965.06 2.27 29.92 −6.21 −25.63 4877.89

 (88c)

for the plain weave;

C̄SUBC
twill =


22170.91 4914.31 5076.26 −5.64 −194.87 289.69
5192.57 22055.12 5080.02 311.95 0.86 −7.25
5075.87 4633.46 10108.11 4.63 0.37 10.33
−17.74 261.84 −0.20 2076.20 5.42 −2.96
−194.42 −2.72 0.26 2.48 2224.88 −3.69
418.73 −12.08 15.33 −1.86 −10.68 3470.17

 (89a)

C̄PBC
twill =


21837.35 5160.93 5015.48 −13.78 −188.56 398.70
5160.86 21993.03 5020.53 189.97 0.77 −8.24
5014.96 5020.10 10029.43 0.31 −0.19 15.17
−13.77 189.98 0.32 2090.10 2.94 −3.50
−188.57 0.76 −0.20 2.94 2089.89 −9.37
398.71 −8.23 15.19 −3.50 −9.37 3504.09

 (89b)

C̄MBC∗

twill =


21915.77 5121.05 5028.02 −6.63 −178.92 402.97
5120.99 22076.02 5033.40 220.81 3.25 −9.55
5027.62 5033.08 10078.52 2.14 0.85 16.21
−18.22 180.12 −0.64 1870.07 3.05 −4.16
−178.93 3.22 0.77 2.11 2155.16 −7.72
402.99 −9.54 16.22 −1.93 −7.72 3505.08

 (89c)
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for the 2/2 twill weave, and

C̄SUBC
satin =


27304.15 5970.20 6365.65 −10.42 −157.92 202.39
6286.58 27858.86 6370.29 239.53 −0.02 4.42
6364.15 5909.39 12948.78 5.73 −1.05 7.11
−17.03 179.75 0.00 2786.00 1.67 −3.91
−157.59 −0.62 −0.14 0.78 2940.36 −12.73
293.66 −1.20 9.81 −2.32 −10.03 4159.94

 (90a)

C̄PBC
satin =


26809.47 6210.06 6264.62 −11.56 −158.35 269.87
6211.52 26985.12 6273.02 161.25 −1.54 2.28
6259.36 6266.59 12817.02 1.49 −1.49 10.61
−11.37 162.08 1.63 2685.45 0.51 −2.77
−158.34 −1.56 −1.54 0.51 2684.54 −8.53
269.90 2.32 10.66 −2.77 −8.58 3992.46

 (90b)

C̄MBC∗

satin =


26899.39 6179.88 6285.15 −15.72 −151.36 274.57
6181.20 27078.99 6294.05 85.15 1.01 1.05
6281.49 6289.15 12902.98 7.00 −0.82 10.68
−16.82 155.13 −0.10 2430.36 0.62 −3.52
−151.82 1.04 0.11 0.46 2843.23 −6.85
274.58 1.07 10.72 −0.88 −6.92 3993.26

 (90c)

for the 8-harness satin weave.

5.2.2 3D anisotropy, engineering constants, and comparison with literature

At this point, having the 3D C̄ matrix for each weave pattern as given by eqs. (88)-(90),
the effective material properties can be computed, as well as the anisotropy indicators.
Without the imposition of any type of constraints, as implemented here, the C̄ matrices
are allowed to result fully anisotropic. That is, no effort was made to try to frame the
resulting matrices into any specific material symmetry. Tables 9, 10, and 11 list all 9
effective material properties so obtained for the three weave composites under each type
of boundary condition, as well as similar values from the literature, when available. In
Tables 10 and 11, the starred values come from the analytical calculations of Scida et al.
[1999], not experimental values.

Table 12 summarizes the anisotropy indicators for all three weave composites sub-
jected to each of the three boundary conditions studied. Finally, Tables 13, 14, and 15
list the calculations of the invariants of K and L for each weave pattern. The effective
engineering constants are compiled in Tables 13, 14, and 15 for each textile analyzed.
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Table 9: Effective material properties comparison for E-glass/vinylester plain-weave
composite.

b.c E1 E2 E3 G12 G23 G31 ν13 ν23 ν12
SUBC 25.18 25.81 11.06 4.74 2.70 2.97 0.42 0.35 0.13
PBC 24.66 25.12 10.87 4.84 2.76 2.76 0.41 0.41 0.13

MBC∗ 24.78 25.52 10.92 4.84 2.44 2.88 0.41 0.41 0.13

Barbero et al. [2006] 24.44 24.53 10.25 5.51 3.15 3.16 0.38 0.38 0.13
Scida et al. [1999] 24.8 24.8 8.5 6.5 4.2 4.2 0.28 0.28 0.11

Table 10: Effective material properties comparison for 2/2 twill E-glass woven fab-
ric/epoxy composite.

b.c E1 E2 E3 G12 G23 G31 ν13 ν23 ν12
SUBC 19.92 19.93 8.29 3.46 2.07 2.22 0.44 0.39 0.13
PBC 18.91 19.10 8.17 3.50 2.01 2.01 0.43 0.43 0.14

MBC∗ 19.00 19.92 8.21 3.49 1.87 2.15 0.43 0.43 0.13

Scida et al. [1999] 19.2 19.2 10.92* 3.6 3.78* 3.78* 0.305* 0.305* 0.13

Table 13: Invariants of K and L for the plain weave composite.

b.c. IK1 IK2 IK3 IL1 IL2 IL3

SUBC 1.08× 105 3.82× 109 4.36× 1013 9.22× 104 2.76× 109 2.65× 1013

PBC 1.08× 105 3.79× 109 4.31× 1013 9.09× 104 2.68× 109 2.55× 1013

MBC∗ 1.08× 105 3.80× 109 4.34× 1013 9.08× 104 2.68× 109 2.55× 1013

Table 14: Invariants of K and L for the 2/2 twill weave composite.

b.c. IK1 IK2 IK3 IL1 IL2 IL3

SUBC 8.43× 104 2.32× 109 2.07× 1013 6.99× 104 1.58× 109 1.15× 1013

PBC 8.43× 104 2.32× 109 2.07× 1013 6.92× 104 1.56× 109 1.12× 1013

MBC∗ 8.44× 104 2.33× 109 2.08× 1013 6.91× 104 1.55× 109 1.12× 1013

Table 15: Invariants of K and L for the 8-harness satin weave composite.

b.c. IK1 IK2 IK3 IL1 IL2 IL3

SUBC 1.06× 105 3.65× 109 4.09× 1013 8.81× 104 2.52× 109 2.32× 1013

PBC 1.04× 105 3.56× 109 3.95× 1013 8.55× 104 2.38× 109 2.12× 1013

MBC∗ 1.05× 105 3.58× 109 3.99× 1013 8.56× 104 2.38× 109 2.14× 1013
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Table 11: Effective material properties comparison for E-glass eight-harness satin
weave/epoxy composite.

b.c E1 E2 E3 G12 G23 G31 ν13 ν23 ν12
SUBC 23.81 24.59 10.65 4.16 2.79 2.94 0.44 0.39 0.13
PBC 23.36 23.54 10.47 3.99 2.69 2.69 0.42 0.42 0.13

MBC∗ 23.46 23.6 10.54 3.99 2.43 2.84 0.44 0.39 0.13

Scida et al. [1999] 25.6 25.6 15.65* 5.7 5.42* 5.42* 0.283* 0.283* 0.13

Table 12: Anisotropy indicators for the weave composites analyzed.

Plain weave 2/2 twill weave 8-harness satin weave
b.c. Au Az Fr Au Az Fr Au Az Fr

SUBC 3.26 0.241 39597 3.24 0.243 34788 3.00 0.263 35800
PBC 3.22 0.253 39081 3.25 0.251 34578 3.05 0.261 35071

MBC∗ 3.40 0.222 39189 3.43 0.223 34678 3.14 0.235 35183

5.2.3 2D anisotropy and engineering constants

¯̄C
SUBC

plain =

28874.13 6297.91 6305.35
6297.91 29131.20 5948.42
6305.35 5948.42 13194.71

 (91a)

¯̄C
PBC

plain =

28331.60 6453.07 6197.89
6453.07 28634.90 6210.99
6197.89 6210.99 13084.94

 (91b)

¯̄C
MBC∗

plain =

28433.07 6382.77 6218.56
6382.77 28736.06 6231.37
6218.56 6231.37 13149.13

 (91c)

for the plain weave;

¯̄C
SUBC

twill =

22170.91 5053.44 5076.07
5053.44 22055.12 4856.74
5076.07 4856.74 10108.11

 (92a)

¯̄C
PBC

twill =

21837.35 5160.93 5015.48
5160.86 21993.03 5020.53
5014.96 5020.10 10029.43

 (92b)

¯̄C
MBC∗

twill =

21915.77 5121.02 5027.82
5121.02 22076.02 5033.24
5027.82 5033.24 10078.52

 (92c)
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for the 2/2 twill weave, and

¯̄C
SUBC

satin =

27304.15 6128.39 6364.90
6128.39 27858.86 6139.84
6364.90 6139.84 12948.78

 (93a)

¯̄C
PBC

satin =

26809.47 6210.79 6261.99
6210.79 26985.12 6269.80
6261.99 6269.80 12817.02

 (93b)

¯̄C
MBC∗

satin =

26899.39 6180.54 6283.32
6180.54 27078.99 6291.60
6283.32 6291.60 12902.98

 (93c)

for the 8-harness satin weave, noting again that the symmetry was enforced before the
reduction of the stiffness tensors.

Now the stiffness given in eqs. (91), (92), and (93) can be inverted to easily calcu-
late the engineering constants in order to verify how our results compare with the ones
obtained by Scida et al. [1999], as well as the value values obtained using ROM (Jones
[2018], Nettles [1994]). The homogenized engineering constants are listed in Tables 16,
17, and 18. It is interesting to note that even properties not directly affected by the reduc-
tion C̄ → ¯̄C, such as E11, change their values despite the expression for its evaluation
being the same in both, 3D and CLT.

Table 16: Effective engineering constants for the plain weave composite.

b.c. E11 E22 G12 ν12

UDBC 27.28 27.74 4.75 0.21
PBC 26.61 27.15 4.84 0.22
MBC∗ 26.76 27.29 4.84 0.22

ROM 27.18 27.18 4.05 0.11
Scida et al. [1999] 24.8 ±1.1 24.8 ±1.1 6.5 ±0.8 0.11 ±0.01

Table 17: Effective engineering constants for the 2/2 twill weave composite.

b.c. E11 E22 G12 ν12

SUBC 20.96 20.33 3.46 0.22
PBC 20.56 20.76 3.49 0.23
MBC∗ 20.66 20.87 3.49 0.23

ROM 18.76 18.97 2.48 0.12
Scida et al. [1999] 19.2 ±1.1 19.2 ±1.1 3.6 ±0.1 0.13 ±0.005
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Table 18: Effective engineering constants for the 8-harness satin weave composite.

b.c. E11 E22 G12 ν12

UDBC 25.93 26.48 4.15 0.22
PBC 25.35 25.54 3.98 0.23
MBC∗ 25.46 25.66 3.99 0.23

ROM 25.74 25.74 3.74 0.12
Scida et al. [1999] 25.6 ± 0.2 25.6 ± 0.2 5.7 ± 0.3 0.13 ±0.005

Finally, the same exercise made for the cross-ply laminate in fig. 11 can be repeated
for all three textile composites, to visualize where E11 is placed relative to the analytical
bounds described in section 2.1.1. These results are plotted in fig. 14. The textile compos-
ites analyzed here (plain, 2/2 twill, and 8-harness satin) do not have the same material/Vo

combinations, and therefore the bounds, as well as the value predicted by ROM, are dif-
ferent for each one. It is clear, however, that the difference of moduli for the boundary
conditions may reach 3-4%.

Figure 14: Comparison of the elastic moduli obtained by the various formulations
and the bounds proposed by Ishikawa [1981] for (a) plain weave; (b) 2/2 twill weave,
and (c) 8-harness satin weave.

5.3 Stress and strain fields

In order to provide an idea of how the different weave patterns influence the stress and
strain distribution, figs. 15, 16, and 17 show the stress plot of these configurations for
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each boundary condition studied under ε1 strain state. The finite element mesh of the
matrix phase is not plotted for clarity. Only the σ13 component is shown, but it suffices
to evidence how the patterns command differently the deformation mechanism of each
composite. Although not shown here, patterns of composite with the same fiber/matrix
material composition and fractions will respond differently, and the particularities of each
deformation mode cannot be captured by average field theory approaches. RVE homoge-
nization equipped with a proper set of boundary conditions seems to be the only method
able to reproduce the internal mechanism created by each particular bundle disposition,
and each one reflects differently on the C̄ and ¯̄C matrices. And as a consequence, on the
effective mechanical properties as well. This is further evidenced in figs. 15, 16, and 17
by noting the distinguished stress concentration along the fiber bundles for each type of
composite.

Figure 15: σ13 stress/strain response for the plain weave composite under ε1 strain
state, for all boundary conditions studied.

Figure 16: σ13 stress/strain response for the 2/2 twill weave composite under ε1 strain
state, for all boundary conditions studied.
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Figure 17: σ13 stress/strain response for the plain weave composite under ε1 strain
state, for all boundary conditions studied.

5.4 Overall mechanical response

Aiming at inciting further investigations on the influence of the homogenization and the
various boundary conditions on the overall response of a mechanical component, this
section presents a simple exercise based on the simulation of a cantilever plate subjected
to end moment (Fig. 18). This case emulates a bending-governed problem which can be
analyzed using conventional thin plate/shell finite element based on the reduced matrices
given in eqs. (91)-(93). The data used for this problem is L = 300 mm, w = 100 mm,
and h = 1 mm, with a unit moment at the end, M = 1 N mm.

The plots of transverse displacement are shown in figs. 19, 20, and 21 for all three
types of textiles studied here. It is evident that the boundary conditions used in the homog-
enization influence the results, particularly in the case of the 2/2 twill weave. However,
the important aspect seems to be the weaving pattern, subject of future investigation, as
they could not be compared here due to the difference in material composition, geometry,
and fiber fraction of the three textiles studied.

Figure 18: Cantilever plate problem.
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Figure 19: Transverse displacement (u3) responses of the cantiler plate. Shell finite
element results with plain weave properties (91).

Figure 20: Transverse displacement (u3) responses of the cantiler plate. Shell finite
element results with 2/2 twill weave properties (92).
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Figure 21: Transverse displacement (u3) responses of the cantiler plate. Shell finite
element results with 8-harness satin weave properties (93).

6 Conclusions

This article discussed some numerical modeling possibilities for the retrieval of the ho-
mogenized constitutive matrices of composite textiles whose fiber phase is built through
weaving patterns of fiber tows embedded in a linearly elastic matrix phase.

Although the essentials of homogenization via RVE analysis are well understood for
simple multi-scale analysis, we showed that the boundary conditions imposed on the RVE
may have non-negligible reflexes on the results. In particular, repetitive cells may need
other sets of boundary conditions than the uniform displacements commonly employed.
We also identify that the usual periodic boundary conditions are not suitable for thin
textile composites as plates and shells, as the periodic restrictions along the transverse
directions are not the same as the in-plane ones. Aiming at such structures, we proposed
a new set of mixed boundary conditions and proved that it complies with the Hill-Mandel
criteria.

A second aspect explored in the present study refers specifically to the homogenized
constitutive matrices used in the modeling of thin structures. In general, these matrices
are computed as suggested by the classical laminate theory, departing from the values of
the moduli of the constituents. Because the formulas based on the average field theory
cannot take into account the specific weaving pattern of each textile, these formulas are
not able to distinguish the variations in stiffness that arise from the different types of
interlacing. In such cases, a homogenization approach becomes imperative, altogether
with a proper set of boundary conditions. A number of anisotropy indicators were used to
compare objectively the variations in the stiffness coefficients for each type of boundary
condition. We have shown that the methodology used was able to estimate both 3D and 2D
constitutive matrices as well as they are compared to each other and to available results.

da Rocha, Jonas T., et al. (2022) Weaving Patterns on Mechanical Response of Composites pp. 76-119

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 116



References

E. Barbero, J. Trovillion, J. Mayugo, and K. Sikkil. Finite element modeling of plain
weave fabrics from photomicrograph measurements. Composite Structures, 73(1):41–
52, 2006.

E. J. Barbero. Finite element analysis of composite materials. CRC press, 2007.

E. de Souza Neto and R. Feijóo. On the equivalence between spatial and material volume
averaging of stress in large strain multi-scale solid constitutive models. Mechanics of
Materials, 40:803–811, 2008.
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Abstract 

This chapter focuses on presenting some concepts about auxetic structures. These 

models are known to have a negative Poisson’s ratio, making them have some 

improved properties over conventional structures. The auxetics can be constructed 

with auxetic materials or conventional ones if they adopted the appropriate 

configuration to generate this behavior. Some configurations (reentrant, double 

arrowhead, chiral and rotated squares) will be presented in this work and will also 

be shown the manufacture via 3D printing of auxetic models. The additive 

manufacturing is a process widely used in the manufacture of auxetics. The 

application and the optimization of some of these structures will be related. It is 

expected that at the end of the chapter, the reader will be familiar with auxetic 

structures. 

Keywords: Auxetic Structures; Poisson’s ratio; Optimization; Additive Manufacturing; 

Surrogate Modeling; Design of Experiments. 

 1 An Overview of Auxetic Structures 

 The relationship between transversal and longitudinal strain is given by 

Poisson’s ratio. This property is influenced by the atomic density of the materials, that 

is, the denser the atomic density, the higher its Poisson’s ratio tends to be. For example, 

the Poisson’s ratio of gold is higher than that of steel.  Furthermore, analyzing  some   

crystalline  structures such  as  centered cubic face (CCF), hexagonal closed packed 

(HCP), body centered cubic (BCC) and diamond cubic (DC) it is  possible to notice that 
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the structures with  higher  atomic density also have higher Poisson’s ratio, i.e. vfcc > 

vhcp > vbcc > vdc.  

 The materials or structures that presents negative Poisson’s ratio (NPR) are 

known as auxetics, that is, they expand in the transverse direction when are pulled in the 

vertical direction. This behavior is different from  conventional  materials (steel, carbon, 

rubber, wood) that have to  compress in the transverse direction during a longitudinal 

tensile load to compensate the loss of density.  The discovery of  auxetic behavior in  

some materials caused several research  to be done seeking to understand its properties, 

and many things were discovered.  However, much research still needs to be done 

today. 

 Most of the auxetic materials shown in literature are polymeric, which makes 

these materials less  resistant to mechanical stresses.  One way around this problem is to 

construct structures  with conventional  materials so that it  has auxetic behavior. This is 

possible because of the configuration in which the  structure is constructed, using some 

unit cells that provide the negative Poisson’s ratio, such as: reentrant, double-V, 

perforated models.  Each of these models has its advantages and disadvantages and the 

choice by one of them is depending on the application of the structure, the tools 

available for manufacture, the material to be used and so on. 

 It is also possible to construct composite auxetics using the joining of  auxetics 

and  non-auxetics materials for the development of the structure. The great advantage of 

this technique is to be able to join the properties of two (or more)  different materials to 

arrive at  better properties of the model.  The research found in literature using  these 

multi-material auxetics can be divided into 4 groups: modification of the lamination 

angle; produce auxetic structures using auxetic matrix; explore and evaluating the 

properties of these structures and design and build auxetics composites.  

 The auxetic models has better performance than conventional ones in several 

applications, such as more efficient and resistant filters [Quisse et al., 2016], special 

prosthetic materials [Vinay et al., 2019], improved protective equipment [Duncan et al., 

2018] and medical implants of expandable stents [Gat et al., 2015]. The high energy 

absorption and fracture resistance of the auxetics makes them suitable for defense 

applications, for example, body armour [Linforth et al., 2020], shock-absorbing 

equipment [Duncan et al., 2016] and packaging materials [Tomazinziz et al., 2019]. 

Other's properties of auxetic are the increased shear modulus and indentation resistance 

[Evans et al., 2000], higher energy absorption capabilities [Scarpa et al., 2003], and 

better fracture toughness [Lakes and Elms., 1993]. The applications of this type of 

structure are diverse and many studies have been carried out in recent years covering 

several areas such as aerospace [Lira et al., 2011] and medical: smart bandages [White, 

2009], dilators [Evan et al., 2000], antenna [Gupta and Gupta, 2005], and protective 

pads [Yang et al., 2016].  

 Figure 1a shows the application of auxetics in ballistic/fragment impacts 

[imbalzano et al., 2017]. Military cars are subject to passing through uneven terrain and 

with fragments of war products. In this way, these cars are subject to various impacts on 

the bottom and the use of auxetics to absorb energy from these impacts can protect the 

car and the people who are driving.  Figure 1b shows the use of auxetics within a wing 

profile [Wu et al., 2019]. This can be used to absorb energy and control the level of 

vibration, for example. Finally, Figure 1c shows a medical application of auxetics [Mir 

et al., 2014]. It is known that the vascular system of the body shows anisotropic 

behavior, whereas the conventional coronary stents have isotropic properties. This 
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results in a mismatch between anisotropic-isotropic properties of the stent and arterial 

wall, and this in turn is not favorable for mechanical adhesion of the conventional 

coronary stents with the arterial wall. It is believed that an auxetic coronary stent with 

inherent anisotropic mechanical properties and negative Poisson's ratio will have good 

mechanical adhesion with the arterial wall. 

 

 

 
(a) 

 

 

 
 

(b) 

 
(c) 

Figure 1: Auxetic application in (a) fragment impact protection [Imbalzano et al., 2017], (b) energy 

absorption in a wing [Wu et al., 2019] and (c) medical stent [Mir et al., 2014]. 
 

1.1 Poisson's ratio in the Mechanic of Materials 

 The relationship between longitudinal and transverse strain is given by Poisson’s 

ratio (Equation 1).  In  conventional  structures, the deformations have contrary signs, 

obtaining the positive Poisson’s ratio. In auxetics, the strain has the same signal 

generating  NPR. 

𝜈 = −
휀𝑥

휀𝑧
= −

휀𝑦

휀𝑧
 (1) 

where ν is the Poisson's ratio, ԑx, ԑy and ԑz are the strains in the x, y, and z direction, 

respectively. This property influence on the behavior of the structures and several  

studies were done to understand the points of improvement and the points of worsening 

in the model.  For example, Guo et al. [2020] studied the deformation behaviors and 

energy absorption of auxetic lattice cylindrical structures under axial crushing load. The 

author compared  auxetic cylindrical structures with conventional cylindrical structures 
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to analyze  which one had  the best performance, concluding that  the structures  with  

negative Poisson’s ratio had better performance. 

 The Poisson’s ratio of isotropic materials depends of the modulus of elasticity 

(E), the shear modulation  (G)  and the bulk modulus (K), as shown in Equation 2 and 3. 

Combining the Equation 2 and 3, it is possible to find the Equation 4 that represent the 

relation between G and K.  Notice how the  Poisson’s ratio influences these properties 

and, consequently, the mechanical performance of these structures. Thus, the study of 

auxetics is of great importance to the scientific community. It is important to note that 

for anisotropic materials it is necessary to specify several elastic constants depending on 

the structural characteristics of the crystal. 

G = 
𝐸

2(1+ 𝜈)
                                                                    (2) 

  K = 
𝐸

3(1−2𝜈)
                                                                   (3) 

2𝐺

3𝐾
 = 

1−2𝜈

1+𝜈
 (4) 

 

 In most known  materials, bulk modulus (K) is larger than shear modulus (G). 

Thus, one can make  the implication presented in  Equation 5.  Moreover, a necessary 

condition to obtain the NPR is that the shear modulus is larger than the buckling 

modulus, both of which must be positive. For the G in Equation 2 to  be positive, we  

have that  the Poisson’s ratio  must  be greater than -1 and for K to be positive in 

Equation 3,  the Poisson’s ratio must be less than 0.5. Thus, the Poisson’s ratio varies 

within this  interval and the graph in Figure 2 can be constructed to show the restriction 

impost in Equation 5. 

 

2 

3
 ≤

1−2𝜈

1+𝜈
                                                                    (5) 

 

 

Figure 2: graphical relationship between v and 
𝟏−𝟐𝝂

𝟏+𝝂
. [Francisco et al., 2021] 
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 The Figure 2 shows that the Poisson’s ratio gets smaller and smaller when the 
2𝐺

3𝐾
 

ratio increases. This ratio tends to infinity when the  Poisson’s ratio is trending to -1,   

on the other hand,  the Poisson’s ratio restriction being less than 0.5 prevents the values  

G and K to be negative.  It is important to remember that this relationship applies to  

auxetic materials. For auxetic structures, calculations depend on the configuration 

adopted and the material used. Going further, it is worth remembering that to  construct 

auxetic structures, it can be used auxetic or conventional  materials,  provided that the  

correct configuration for  the construction of the model is adopted. The focus of this 

chapter is not to demonstrate the formulas for calculating the Poisson’s ratio, but it is 

important to make it clear that the isotropic or anisotropic behavior of the material has a 

great influence on this parameter. 

1.2 Natural and non-natural auxetic materials and structures 

 Materials with  negative Poisson’s ratio can be metallic [Ren et al., 2016], 

Ceramic [Hu et al., 2020], polymeric [Sahra and Dhanasekar, 2017], composite [Li et 

al., 2020].  Some examples of natural auxetic material are like α-cristoblaite [Evans et 

al., 1991], pyrolytic graphite [Voigt et al., 1966], some biological tissues [Lees et al., 

1991] and crystalline cellulose [Yao et al., 2016], in a defined form, and α-quartz. While 

some materials have natural auxetic characteristics, others need to be modified to 

achieve these characteristics. Foam's materials, for example, exhibit conventional 

behavior, however, it is possible to obtain auxetic behavior by processing the material in 

the correct way [Najarian et al., 2018]. 

  Auxetics foams  are constructed from  the compression of a  piece of foam in  all 

three directions and are subjected to  temperature above the softening point of the 

material.  After this process,  they are removed and cooled to ambient temperature until 

they are removed from the mold. For polyester foams, Lakes and Roderic [1987] 

reported that a compression factor between 1.4 and 4 is sufficient to generate auxetic 

behavior in the structure. On the other hand, for reticulated metal foams, it is not 

necessary to use high temperatures. 

 

2 Types of Cellular Auxetic Structures 

 Structures with negative Poisson’s ratio can be constructed with conventional 

materials since the adopted configuration is suitable to generate an  auxetic behavior.  

Some of these settings,  which are recognized in literature and have already been used in  

several articles published around the world,  will be shown in this section.  However, it 

is important to note that there are several other  existing models. 

 Additive manufacturing is a great ally in the manufacture of auxetics structures, 

as these often have complex configurations to be manufactured by conventional 

processes.  Meena and Singamneni [2021] used the 3D printing technique to develop a 

novel hybrid auxetic structures for improved in-plane mechanical properties. The 

authors reported that the manufacture of this new part by a process other than 3D  

printing would  make  the cost of manufacturing the company unfeasible its production. 

  Several models have been created over the years through diverse different 

methodologies, for example: rotational structures [Grima et al., 2016]. , topology 

optimization [Gao et al., 2019], and taking inspiration from nature [Ren et al., 2018]. 

Some of the most famous auxetics configurations are re-entrant hexagonal honeycombs 
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[Liu et al., 2016], double arrowhead honeycomb [Wang et al., 2018], chiral [Zhang et 

al., 2018]. When additive manufacturing is used to manufacture  structures, the print 

parameters influence the  properties of the models.  In addition, the material used  also 

has great influence, Johnston and Kazanci [2021] carried out an analysis to know how 

three different material configurations effect the responses of three different cellular 

geometries and proved  that  the material really has great impact  structural responses. 

 

2.1 Re-entrant models 

 Gibson et al. [1982]  were the pioneers to  study reentrant models,  they studied 

analytically the mechanic properties of a reentrant structure and performed  

experimental tests to validate the result. The authors developed models representing  the 

mechanical properties of the structure  in terms of bending, elastic buckling, and plastic 

collapse.  The  reentrant hexagonal model  studied is shown in Figure 3. The value of  

the 𝜃 angle  that makes the structure to  be considered conventional or auxetic, i.e., if  𝜃 

value is positive, the structure is conventional if  the value is negative, there is an 

auxetic structure.  

 

Figure 3: Design parameters of the reentrant auxetic unit cell. 

 Auxetic structures, in general, are periodic structures, that is, they have a  unit 

cell that repeats itself throughout  the model. Thus, you can analyze only one cell and 

extrapolate the results to the  entire  structure. Gibson et al. [1982]  developed analytical 

models for the  cell shown in Figure 3, the  authors considered that each part of the  cell 

can be considered  a  bar and that an external force caused a deformation in the 

structure. They found Equations 1 to 4 that describe, respectively, modulus of elasticity 

in the direction of force, modulus of elasticity in the direction transverse to force, 

Poisson's ratio and the shear modulus of the structure. 

𝐸1 =  
𝐾𝑓(

𝑏
𝑙 + 𝑠𝑒𝑛𝛳)

ℎ𝑐𝑜𝑠³𝛳
 

 

(1) 

𝐸2 =  
𝐾𝑓𝑐𝑜𝑠𝛳

ℎ (
𝑏
𝑙 + 𝑠𝑒𝑛𝛳) 𝑠𝑒𝑛²𝛳

 
 

(2) 
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𝜈12 =  
𝑠𝑒𝑛𝛳(

𝑏
𝑙 + 𝑠𝑒𝑛𝛳)

𝑐𝑜𝑠²𝛳
 

 

(3) 

𝐺12 =  
𝐾𝑓(

𝑏
𝑙 + 𝑠𝑒𝑛𝛳)

ℎ (
𝑏
𝑙

)
2

(1 +  
2𝑏
𝑙

) 𝑐𝑜𝑠𝛳

 

 

(4) 

 The v21 can be found by the E1ν21 = E2ν12 which is valid when one has the 

symmetric stiffness matrix.  Two considerations  were made by Gibson et al. [1982]  

during   the development of the analytic  models: bars deform only along their axis with 

no change in angle and the structure is under stretching efforts in vertical directions.  the 

force exerted due to the applied stress σ2 is given by Equation 5 and the P component of 

w that acts along the diagonal bar is given by Equation 6. 

 

                                               w = h∙(lsin∙θ + b) cosθ        (5) 

                                           P = h∙σ2∙(l∙sinθ + b)cosθ        (6) 

 Knowing that the deformation of the structure is directly proportional to the 

applied force, we have that P = Ksδ, where Ks is a tension constant. The deformation   

can be  calculated by dividing equation 6 by tension constant, as shown in Equation 7, 

which, divided by length l, gives the strain given by Equation 8. Moreover, the 

relationship between the deformation, given by Equation 8,  and the stress σ2 is known     

as Hooke's law and is given by Equation 9. 

 

𝛿 =  
ℎ𝜎2(𝑙𝑠𝑒𝑛𝛳 + 𝑏)𝑐𝑜𝑠𝛳

𝐾𝑠
 

(7) 

휀2 =  
ℎ𝜎2(𝑙𝑠𝑒𝑛𝛳 + 𝑏/𝑙)𝑐𝑜𝑠𝛳

𝐾𝑠
 

(8) 

𝐸2 =  
𝐾𝑠

ℎ(𝑙𝑠𝑒𝑛𝛳 + 𝑏/𝑙)𝑐𝑜𝑠𝛳
 

(9) 

 Gibson et al. [1982] also made the calculations to find the deformation  in 

direction 1, obtaining Equation 10.  Thus, it is possible to find the Poisson’s ratio by 

dividing the equation 8 by Equation 10.  The Equation 11 shows the model for Poisson's 

ratio. 

 

휀1 =  
ℎ𝜎2𝑠𝑒𝑛𝛳𝑐𝑜𝑠𝛳

𝐾𝑠
 

 

(10) 
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𝜈12 =  −
𝑠𝑒𝑛𝛳

𝑠𝑒𝑛𝛳 +
𝑏
𝑙

 
 

(11) 

 It is important to note that the Poisson’s ratio of this model depends on the 

parameters 𝜃, b and l.  These three parameters are  fundamental to define the auxetic 

behavior of the  structure and, consequently,  its mechanical properties. 

2.2 Double-V models 

 Larsen et al. [1996] was one of the pioneers studying  double arrowhead 

structures.   Auxetic structures are periodic (repeat the same unit cell) and so  the   study 

of only one cell is sufficient to understand the behavior of the whole model. The 

parameters of a  double-V cell is shown in  Figure 4, It takes 3 cell parameters to build 

the model: two angles (𝜃1 and 𝜃2) and the length l. 

 

Figure 4: design parameter of the double arrowhead auxetic unit cell. 

                 Qiao and Chen [2014] studied the double-V model analytically. The structure 

was subjected to a  uniform stress σ∞ which corrects a  vertical force equal to Pa = 

2∙σ∞∙lb∙, where b is the dimension out of the plane of the structure.  Some boundary 

conditions  were  adopted  for the development of  the analysis: the point C is 

constrained in all degrees of freedom and the point A is constrained to rotation and 

horizontal displacement (this implies in a reaction force Fa and reaction moment Ma 

when σ∞  is applied).  The Equation 12 and 13 shows the normal strains in x and y 

directions, when 𝑢𝑦
𝐴 is the vertical displacement of point A and 𝑢𝑥

𝐵 is the horizontal 

displacement of point B. 

휀𝑦 =  
𝑢𝑦

𝐴 ∙ 𝑠𝑖𝑛𝜃1 ∙ 𝑠𝑖𝑛𝜃2

𝑙 ∙ sin (𝜃1 − 𝜃2)
 

(12) 
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휀𝑥 =  
𝑢𝑥

𝐵

𝑙
 

(13) 

  The relationship between equations 12 and 13 gives us the Poisson’s ratio that is 

shown in Equation 14. It is also possible to calculate the modulation  of elasticity,  as  

shown in Equation 15 and 16, where 𝐸𝑠 is the Young's modulus of the solid material 

and I is the second moment of inertia. 

𝜈𝑥𝑦 = − 
휀𝑥

휀𝑦
=  

1

𝑡𝑎𝑛𝜃1 ∙ 𝑡𝑎𝑛𝜃2
  

(14) 

𝐸𝑦 =
𝜎∞

휀𝑦
=  

3𝐸𝑠𝐼

𝑏𝑙3
𝛼(𝜃1, 𝜃2) 

(15) 

𝛼 =  - 
4(𝑐𝑜𝑠𝜃1−𝑐𝑜𝑠𝜃2)

𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2
−

(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2−1)²(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2−3)

𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2(𝑐𝑜𝑠𝜃1−𝑐𝑜𝑠𝜃2)
+

(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2+3)(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2−1)

𝑐𝑜𝑠𝜃1−𝑐𝑜𝑠𝜃2
 (16) 

             It is noticed that 𝜃1 and 𝜃2 angles have influence on the  Poisson’s ratio value, 

the higher the angles, the lower the Poisson’s ratio. This is because the angle interferes 

with the deformation capacity of the structure, that is,  depending on  the values of 𝜃1 

and 𝜃2 , the structure will be able to deform more or less. Similarly, the angles also 

affect the modulation of elasticity, in addition, the length l also has influence.  

2.3 Rotating squares and Rectangle models 

 Grima and Evans [2000] were the pioneers studying  the rotating squares and 

rectangle models.  The authors verified that this type of structure would have the 

Poisson’s ratio equal to -1.  In addition, they developed an analytic study to show the 

equations that govern the structure.  The relationship between the deformation and the 

stress found by them is shown in Equation 17, being S the compliance matrix of the 

structure. 

|

휀1

휀2

𝛾12

| = |
𝑆11 𝑆12 𝑆13

𝑆21 𝑆22 𝑆23

𝑆31 𝑆32 𝑆33

| •  |

𝜎1

𝜎2

𝜏12

| 

 

 

 

(17) 

S = |

1

𝐸1

−𝑣21

𝐸2
0

−𝑣12

𝐸1

1

𝐸2
0

0 0 0

| 

 

 The authors also found the equation representing the young modulus of the 

structure and it is shown in Equation 18, where θ is the angle shown in Figure 5, l is the 

length of the squares and kh is the rotational stiffness constant. 
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𝐸1  =  𝐸2  =  
8𝑘ℎ

𝑡²(1 −  𝑠𝑖𝑛𝜃)
 

(18) 

 

 

Figure 5: Auxetic model proposed by Grima and Evans: overview and details. [Grima and Evans, 

2000] 

 Grima et al. [2007] continued studies in rotating squares to assess whether semi-

rigid structures would also have an auxetic behavior. The authors developed an  analytic 

study based on the model shown in Figure 6.  Equations  19-39 shows the  behavior of 

the model. 

 

Figure 6: Variables used in the model proposed by Grima et al. [2007] 

 

𝜈12  =  𝜈21  =   −𝑐𝑜𝑡𝑔(
Ψ1

2
)𝑡𝑎𝑛(

Ψ2

2
)[ 1 +  4(

𝐾Ψ

𝐾∅
)]−1 (19) 

 𝐸1  =  𝐸2  =  
8𝐾Ψ(𝐾∅ + 2𝐾Ψ)

𝑙𝑑
2 𝑧(𝐾∅ + 4𝐾Ψ)

 · 
𝑠𝑖𝑛(

Ψ2
2

)

𝑠𝑖𝑛(
Ψ1

2
)𝑐𝑜𝑠²(

Ψ2
2

)
 (20) 
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𝐺12  = 𝐾∅  
1

𝑧
[𝑙𝑑 𝑠𝑖𝑛 (

Ψ

2
)]−2 (21) 

 

where ld is the length of AC or BD (diagonal of the square) in figure 6, the rotational 

stiffnesis given by Kφ and K∅ that restrain changes to the angles φ and ∅, respectively, 

and z is the thickness in the third direction of the squares. Thus, it is  possible to 

calculate the Poisson’s ratio, the modulus of elasticity and the shear modulation by the 

following equations: 

 

𝜈12  =  𝜈21  =   −[ 1 +  4(
𝐾Ψ

𝐾∅
)]−1 (22) 

𝐸1  =  𝐸2  =  
8𝐾Ψ(𝐾∅ + 2𝐾Ψ)

𝑙𝑑
2 𝑧(𝐾∅ + 4𝐾Ψ)

 · sec² (
Ψ

2
) (23) 

𝐺12  =  
𝐾∅

𝑧𝑙𝑑
2 [𝑠𝑖𝑛² (

Ψ

2
)]−1 (24) 

 

The off axis elastic moduli at an angle ζ around the third direction are given by Grima et 

al. [2007] by Equation 25, 26 and 27. where m = cos(ζ) and n = sin(ζ). 

 

1

𝐸1
𝜁 = 

𝑚4

𝐸1
 + 

𝑛4

𝐸2
 – m²n² (2·

𝜈12

𝐸1
 - 

1

𝐺12
) (25) 

𝜈12
𝜁

 = 𝐸1
𝜁
 [(𝑚4 +  𝑛4)

𝜈12

𝐸1
 – m²n²( 

1

𝐸1
 +  

1

𝐸2 
 - 

1

𝐺12
) (26) 

1

𝐺12
𝜁  = 

𝑚4 + 𝑛4

𝐺12
 + 2m²n² ( 

2

𝐸1
 +  

2

𝐸2 
 + 

1

𝐺12
 +  

4𝜈12

𝐸1
) (27) 

 

2.4 Chiral Models 

 It is said that an object is chiral when there is no possibility of it to be 

superimposed on its mirrors image. The chiral models rotate when  they receive 

compressive force,  causing auxetic  behavior to be evidenced.  The movement of this 

type of  structure while  receiving a load is like what happens with transmissions and 

crankshaft [Necemer et al., 2020]. Prall and Lakes [1997] studied this type of structure 

through analytical  and experimental analyses for strain in plane.  The equations found 

by then that represent the deformations of the structure are shown in equations 28-30.  

Furthermore, the parameters used by the authors  are shown in Figure 7. 

 

e = r · sinφ (28) 
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𝑒1 =  𝑟 · 𝜑 · 𝑐𝑜𝑠𝜃 (29) 

𝑒2 =  𝑟 · 𝜑 · 𝑠𝑖𝑛𝜃 (30) 

 

 

 

Figure 7: Geometry of a hexagonal chiral lattice. [Prall and Lakes, 1997] 

where φ is the angle of applied deformation in the structure. The r·sinφ ~ r·φ can be 

made because the structure is subjected to small  deformations.  The Equation 31 shows 

the calculus of φ by the elementary beam theory, where t is the thickness of the 

structure, d is the width of the structure, E is the material Young's modulus and T is the 

applied load in the system. 

φ  = 
2𝐿𝑇

𝐸𝑡³𝑑
                                                                    (31) 

 

 The authors concluded that the deformations ε1 and 휀2 can be given by Equations 

32 and 33, respectively.  Furthermore, the  Poisson’s ratio is given by the relationship  

between  the longitudinal  and transversal deformed, as shown in Equations 34 and 35. 

 

휀1= φ ·
𝑟

𝑅
                                                                    (32) 

휀2= φ ·
𝑟

𝑅
 (33) 

𝜈12 = - 
𝜀2

𝜀1
                                                                    (34) 

𝜈21  = - 
𝜀1

𝜀2
                                                                    (35) 

 

 3 Auxetic Structures in Engineering 

 This section will  be responsible for  showing how  auxetics structures  are used 

within engineering. For this, it will be shown a way of manufacturing some models and 

then  will be reported on  some utilizations of  this type of structure.  It is important to 
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note that there are several auxetic models and various applications  of these models, it is 

not possible to exemplify all the possibilities here and only a few will be shown next. 

3.1 Fabrication of auxetic models 

 Auxetic structures usually have a complex shape, which makes it difficult to  

manufacture. However, the advancement of additive manufacturing has  greatly 

facilitated the development of these structures and has been  widely used  by many  

authors around  the world.  The author of this  chapter manufactured three auxetic  

structures,  using 3D  printing, to exemplify the construction of these models. The 

structures that will be shown here were manufactured via  3D printing on the 

Ultimaker® 2+ printer using Polylactic acid (PLA) filament with a diameter of 1.75mm. 

The printing temperature and the build plate temperature is equal to 200°C and 60C°, 

respectively. The print speed, the layer height and the infill density are equal to 55mm/s, 

0.4mm and 20%, respectively. Several materials can be used for manufacturing, 

however, in this section, polylactic acid (PLA) was used which is  a polymer widely 

used for the manufacture of these models . 

For  the example  of this section, it was used the  auxetic model shown in figure 

3 and 4, respectively. In addition, three auxetics structures were constructed:  reentrant 

tube, reentrant beam, and double-V beam.  The initial values of the design parameter for 

the reentrant beam are equal to 16mm, 8mm and 60° for the base length, oblique length 

and angle of the unit cell, respectively. Thus, the author adopted seven cells in the 

horizontal, three in the vertical direction and 30mm of death.  The same parameters of 

the  unit cell   were used to construct the reentrant tube,  the other parameters of the tube 

are shown in table 1. 

 
              Table 1: Design parameter adopted for the tube manufacturing. 

Variable Symbol Unit Value 

Angle 𝛼 degrees 60 

    Oblique length l mm 8 

Horizontal length b mm 16 

Height of Tube H mm 83.2 

Diameter of Tube D mm 91.68 

Height of Cell Unit h mm 13.85 

N° of horizontal cell Nc - 24 

N° of vertical cell Nh - 6 

For the double-V model, the design parameters are shown in Figure 4 (angle 𝜃1 , 

angle 𝜃2 , and oblique length l).  The values adopted to build the structure are 𝜃1 equal 

to 60°, 𝜃2 equal to 30° and oblique length l equal to 30mm. Thus, it will be adopted 

three cells in horizontal and four in vertical direction. All the models were designed in a 
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software CAD and transferred to the Ultimaker Cura to set the print paramenters. Figure 

8 shows the manufacturing process of the three models constructed and the final 

structure. 

  

 

 

 

  

Figure 8: Manufacturing process and the final structures studied in this chapter. 

3.1.1 Experimental Results of Auxetic Structures 

 The three structures proposed in this chapter were subjected to a compression 

test. Figure 9 shows the compression test carried out on the auxetic tube from the initial 
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experiment (t=0s) until the end time (t = 140s).  The maximum load reached was 3254 

N and the mass of the structure is equal to 84.3g. Figure  10 shows the deformation of 

the part during the experimental test for the reentrant beam, the maximum load obtained 

by the structure  was 12467N and has a  mass of 70g.  Finally, Figure  11 shows   the 

deformation of the double-V structure during the compression test, the maximum load 

reached was 2100N and the mass  of the structure was 116g.  The table 2 compiles these 

results. 

Table 2: Experimental results of the auxetic structures studied in this chapter. 

Structure Maximum load (N)       Mass (g) Load-mass ratio (N/g) 

Reentrant tube 3254 84.3 38.6 

Reentrant beam 12467 70 178.1 

Double-V beam 2100 116 18.1 

 Table 2 shows that the reentrant beam is the structure that  gets the major 

maximum load and is the lightest  structure of the  three studied.  However, the choice 

for one of them depends on  the application and  manufacturing process available. 

Furthermore, further tests should be performed to evaluate other  responses together 

with the maximum compression load supported. It is important to note that all  these 

parts were  manufactured using the same printing parameters and the same material. 

 

 

 

 

 

(INTENTTIONALY LEFT BLANK) 
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t = 0s 

 

t = 20s 

 

t = 40s 

 

t = 60s 

 

t = 80s 

 

t = 100s 

 

t = 120s 

 

t = 140s 

Figure 9: Performance of auxetic reentrant tube in compression tests. 
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(a) t = 0s 

 
(b) t = 20s 

 
(c) t = 40s 

 
(d) t = 60s 

 
(e) t = 80s 

 
(f) t = 100s 

 
(g) t = 120s 

 
(h) t = 140s 

Figure 10: Performance of auxetic reentrant beam in compression tests. 
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Figure 11: Performance of auxetic double-V beam in compression test. 
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3.2 Auxetic Structures Applied in Engineering 

 The idea of applying auxetics structures in engineering is not something recent, 

as it had its beginning around the 1970s. However, the difficulty of manufacturing these 

structures caused the studies not to prosper at that time. Today, additive manufacturing 

has been a great ally of the manufacture of auxetics structures, as it facilitated the 

manufacture of these models. Thus, several auxetics configurations began to appear and 

several applications for these models were studied, some of these applications will be 

shown in this section. 

 Foser et al. [2018] evaluated whether the use of auxetic foam in sport helmet 

was feasible. The author's objective was to study whether the use of this foam would 

improve its linear impact acceleration attenuation. Figure 12 shows the helmet used by 

the author. Furthermore, the author compared the results of the auxetics model with 

conventional ones, showing that auxetics have superior performance, i.e., Gadd severity 

index reduced by 11% for frontal impacts (39.9J) and 44% (24.3J) for side impacts. 

Thus, it was possible to verify that auxetics structures could be used for protection both 

in the sports industry and in other areas.  

 Shah et al. [2022] carried out a finite element analysis of the ballistic impact on 

auxetic sandwich composite human body armour. The authors analyzed with several 

different types of projections, comparing the responses of the auxetic structure with 

conventional structures. The author concluded that the indentation resistance improved 

with the auxetic armour and deformation in auxetic armor was observed greater for each 

of the cases when compared to the conventional armor, due to higher energy absorption. 

Thus, it is perceived that the investment in auxetics structures for protective equipment 

is valid and very important to improve the safety of current protective equipment. 
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Figure 12: Foam inserts: (a) foreheads, (b) right side and (c) left side [Shepherd et al., 2020]. 

 The automotive industry is increasingly seeking to build light, comfortable and 

safe cars. The need for economical cars makes the reduction of their weight one of the 

main objectives in the design of automobiles. In addition, safety is also a very important 

item and the construction of a crash box (integral component for ensuring the safety of a 

car which serves as an energy absorbing member) should cause the car to absorb some 

of the energy in case of frontal collision during car accidents. Wang et al. [2018] 

analyze the application of auxetic structures to design jounce bumpers, this study was 

able to improve the noise, vibration, and harshness performance of the automobile. 

Zhou et al. [2016] carried out a multi objective optimization of an auxetic structure 

focused on building a crash box with auxetic structures and improving the collision 

performance of the car. 

 Other studies have also been done seeking to optimize the energy absorption of 

some components to increase car safety. Gao et al. [2018] studied a cylindrical auxetic 

structure in a novel crash box, compared with conventional models, the auxetic structure 

has lower peak crushing force and higher energy absorption. Lee et al. [2019] compared 

auxetic and conventional structures in development of a crash tube, and the performance 

of auxetic structures was superior to conventional structures. Thus, it can be noted that 

the use of auxetic structures in protective equipment is of great interest to the world 

scientific community. 

 Another much explored feature of auxetic structures is the damping mechanism. 

Chen et al. [2020] studied the damping mechanism of CFRP three-dimensional double-
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arrow-head auxetic structures. The author manufactured the structure in carbon fiber 

reinforced polymer (CFRP) and submitted it to compressive loading-unloading tests and 

sine sweep frequency experiments. The author compared the performance of the 

construction structure with a conventional structure, and the auxetics obtained better 

results, i.e., excellent comprehensive characteristics of light weight, high specific 

strength and high damping performance. The structure tested by the author is shown in 

Figure 13. This better damping capability makes these structures can be applied in 

conditions that need to reduce the vibration level or reduce vibration transmissibility. 

 

 

Figure 13: Deformed photograph of the 3D DAH structure during compression. [Chen et al., 2020] 

 

 Budarupu et al. [2016] studied the design concepts of an aircraft wing using 

morphing airfoil with auxetic structures. The authors evaluated the aerodynamic forces 

that appear on the flight during the flight to use as a contour condition. The advantages 

of the morphing airfoil with auxetic structure are (i) larger displacement with limited 

straining of the components and (ii) unique deformation characteristics, which produce 

a theoretical in-plane Poisson's ratio of – 1. The structure used by the author is shown in 

Figure 14. It is possible to notice that auxetics structures can be applied in various 

situations and that their use can generate several advantages over conventional 

structures. 
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Figure 14: Airfoil with auxetic structure of (a) elliptical cells and (b) circular cells used by 

Budarupu et al. [2016]. 

 Several other authors have published studies focused on the application of 

auxetic structures in real problems. Günaydin et al. [2019] used the anti-tetrachiral and 

reentrant models to study the deformation mechanism of these structures. The authors 

concluded that the auxetic models have higher performance in crush absorption than 

conventional ones thanks to its high shear strength, i.e., auxetics have better 

performance to be applied in automotive bumpers, for example. Figure 15a shows the 

application studied by Lee et al. [2019] He evaluated the performance of auxetic 

structures manufactured via additive manufacturing with SUS316L under low impact 

condition, concluding that these structures have better performance than conventional 

structures to absorb impact energy. 

 Figure 15b shows the model of the study conducted by Chang et al. [2017] 

which aimed to use auxetics structures to protect concrete structures against impact and 

blast loadings. The authors carried out two experimental tests: drop weight impact and 

filed blast test. The results showed that the plate made with auxetic structure absorbed 

19.1% more energy than the plate built with conventional structures. This work showed 

the importance of the study of auxetic structures applied to protection systems. Figure 

15c shows a new shock absorbing uniaxial graded auxetic damper developed by Al-

Rifaie and Sumelka [2019]. The authors conducted several tests and found that this 

structure is applicable in various situations, such as: blast resistant doors; blast resistant 

for retrofitting sensitive buildings; elevator (absorbing unexpected crash of elevators or 

cable failure in multi-story buildings); crash energy absorbing system in motor vehicles 

front bumpers; and many other possible applications. 

 Finally, Figure 15d shows the fuselage sections with negative Poisson's ratio 

structure insert below the cargo floor studied by Wang et al. [2021]. The author studied 

the use of these structures in the aircraft fuselage to assess the energy absorption 

capacity during a crash landing.  They concluded that these structures have better 

energy absorption performance than conventional structures and that they have potential 

in improving the crashworthiness behavior of aircraft. 
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(a) 

 

(b)  

 

(c) 

 

(d) 

Figure 15: Examples of auxetic applications: (a) automotive bumpers [Lee et al., 2019] (b) 

protective systems against impact [Chang et al., 2017] (c) shock absorbing [Al-Rifaie and Sumelka, 

2019] and (d) aircraft’s fuselage [Wang et al., 2021].  
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4 Optimization of Auxetic Structures 

 Auxetic structures can be applied in various situations and the optimization of 

these models for each of the applications is very important. Optimization can be mono 

objective, when there is only one objective, or multi-objective when you want to 

optimize multiple responses simultaneously. This second methodology is more real, 

because the structures are subjected to several loads simultaneously during their 

operation. In this section, a methodology called parametric optimization will be shown. 

4.1 Parametric optimization in Auxetic Structures 

 Parametric optimization is a methodology used to find the best design variables 

of a given structure. In this section, we will demonstrate a parametric optimization study 

of a reentrant beam. For this, we first need to figure out which variables are important to 

the problem, so that we will use them to get our goal. Thinking of a reentrant cell, 

equations 1-11 can be used to describe the structure analytically. Moreover, it is 

perceived by equation 11 that the Poisson’s ratio of the structure depends on b (length 

of the horizontal bar), l (length of the oblique bar) and 𝜃 (angle between these bars). 

 From the moment we find which design variables are important for the analysis, 

it is necessary to find out in which range is the optimal point. This is a very difficult 

task and can be done in two ways: using the experience of the designer or doing an 

exploratory analysis. Generally, when the designer knows very well the behavior of the 

structure, he can deduce within what range the design parameters can stay to achieve 

good results. If you do not have this knowledge, exploratory analysis is the best option. 

Exploratory analysis consists of performing some experiments to find the intervals of 

the design parameters that best generate results.  

 In the present study, a reentrant beam was constructed as shown in the 

compression tests in Figure 10. A numerical model representing the structure was 

constructed and validated with experimental data. From this, some simulation was 

performed with different configurations to understand at which intervals we could find 

the optimal point, so the length of the oblique bar will vary between 6mm to 10mm , the 

length of the horizontal bar will vary between 14mm to 18mm,  and the angle α ( α = 90 

- 𝜃) will vary between 50° to 70°. From this interval, you can use a statistical technique 

called response surface methodology to create a series of experiments. The design of 

experiments and the experimental results are shown in Table 3. The answers of interest 

are Poisson's ratio (v), Failure load (Qu), Buckling load (λ), Natural frequency (ωn) and 

Mass (M). 
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Table 3 –  Design of experiment considering three manufacturing (design) factors. 

 Variables  Responses 

Exp. α(°) b(mm) l (mm)  ν QU (N) λ (N) ωn (Hz) M(g) 

1 50 14 6  -1,24 19350 101100 342,4 57,42 

2 70 14 6  -1,98 18330 110900 332,0 57,42 

3 50 18 6  -1,25 17990 133200 320,2 66,42 

4 70 18 6  -2,00 16200 129700 294,9 66,42 

5 50 14 10  -1,38 7643 32390 125,2 74,70 

6 70 14 10  -2,59 7989 44350 146,1 74,70 

7 50 18 10  -1,39 9422 37650 132,1 83,70 

8 70 18 10  -2,61 8366 45240 137,8 83,70 

9 50 16 8  -1,33 13800 58830 202,5 70,56 

10 70 16 8  -2,35 9191 67770 204,2 70,56 

11 60 14 8  -1,77 12260 60390 204,1 66,06 

12 60 18 8  -1,78 12290 62650 193,9 75,06 

13 60 16 6  -1,61 17640 104100 356,2 61,92 

14 60 16 10  -1,89 8564 39200 134,1 79,20 

15 60 16 8  -1,78 12570 62040 199,8 70,56 

16 60 16 8  -1,79 12280 60660 195,4 71,22 

17 60 16 8  -1,78 12350 60510 195,9 70,77 

18 60 16 8  -1,77 12790 63620 203,9 70,35 

19 60 16 8  -1,77 12630 62050 199,6 70,78 

20 60 16 8  -1,78 12410 60540 195,7 70,99 

 

 From the results shown in Table 3 it is possible to find regression models that 

represent each of the answers of interest. The models are shown in Table 4 and, to 

verify that these models are reliable, the adjusted R² parameter is analyzed, as shown in 

table 5. 

Table 4:  Regression coefficients for fit regression model. 

Response X1      X2 X3 X1
2 X2

2 X3
2 X1X2 X1X3 X2X3 C 

M  2,25 4,32       0,066 

ν 0,0681  0,1385 0,0006  0,0078  0,0059  -2,537 

λ -5297 14153 -48851 47  3264   -1398 343939 

ωn -3,19 -18,02 -231,2   8,15  0,389 1,809 1589 

Qu -81,3 -1477 -8769   223,1   176,4 74049 
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Table 5: Model Summary for fit regression model. 

Response S R2 (adj) 

M 0,198716 99,92% 

ν 0,019170 99,76% 

λ 4334,500 97,87% 

ωn 9,363410 98,37% 

Qu 785,6230 95,30% 

 

 The Table 5 shows that the adjustment of the data to the models was high, all 

above 95%, so it can be concluded that the models are representing the data well. Other 

statistical analyses can be done to verify which factors are important to the model, for 

example, however this will not be done here, because the focus is to show the process of 

optimizing an auxetic structure. Thus, the models shown in Table 4 will be used as the 

objective function of the optimization process and the range of variation of the variables 

will be the constraints. Equation 36 shows the compression performance optimization 

design and Figure 16 the Pareto’s front for this problem. 

 

      min F(X)={- 𝑄𝑢 , - λ, v } 

                                      subject to:   

                           14 ≤ b ≤ 18 [mm] 

                           6 ≤ l ≤ 10 [mm] 

                          50 ≤ α ≤ 70  [°] 

                           

(36) 

 

Figure 16: Pareto’s front for Poisson’s ratio, failure load and critical buckling load of reentrant 

auxetic beam. 
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It is perceived by Figure 16 that it is not possible to improve all responses 

simultaneously, that is, to decrease the Poisson’s ratio, both the failure load and the 

critical buckling load will also decrease. All red dots on the chart are great points and 

can be chosen. In this work, we used the TOPSIS criterion to decide which point of the 

chart will be chosen, this criterium choose the point farthest from the worst result and 

the closest to the best result. The chosen point is shown in Table 6 and Figure 17 shows 

the optimized structure and the initial structure. The results obtained with this 

configuration compared to the initial configuration are shown in Table 7.  

 
Table 6 - Optimum configuration for compression performance of reentrant auxetic beam. 

Configuration 

θ (°) 70 

b (mm) 16 

l (mm) 6 

 

 

(a) 

 

(b) 

Figure 17: The (a) Initial and (b) optimized reentrant beam structure. 

 

Table 7: Comparison between the initial and the optimized reentrant beam structure results 

(compression performance). 

Response 
Initial structure 

results 

Optimized structure 

results 
Improvement 

Qu (N) 12570 17160 26.75% 

λ (N) 62040 108500 42.82% 

ν -1.78 -1.99 10.55% 

𝜔n (Hz) 199.80 312.88 36.14% 

M (g) 70.56 61.92 12.24% 

 

 Similarly, the model can be optimized to improve the modal performance of the 

structure. The goal may be to maximize natural frequency and minimize Poisson’s ratio 

and mass. The minimization in this case is to decrease the mass value and to leave the 

structure with a more pronounced auxetic behavior. The maximization of the natural 

frequency aims to remove the frequency of the vibration frequency structure of most 
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mechanical equipment. Thus, optimization can be represented in Equation 37. It is 

noticed that the restrictions are the intervals defined for each of the variables and Figure 

18 shows the Pareto chart for the three responses simultaneously and Table 8 shows the 

optimal point chosen by the TOPSIS criterion. 

 

      min F(X)={- 𝜔𝑛 , v, M } 

                                      subject to:   

                           14 ≤ b ≤ 18 [mm] 

                           6 ≤ l ≤ 10 [mm] 

                          50 ≤  α ≤ 70  [°] 

                                

(37) 

 

Figure 18: Pareto’s front for Poisson ratio, natural frequency, and mass of the reentrant auxetic 

beam. 

 

Table 8: Optimum configuration for modal performance of reentrant auxetic beam. 

Configuration 

θ (°) 70 

b (mm) 14 

l (mm) 6 

 

 It is perceived by figure 18 that it is possible to increase the natural frequency 

and reduce the mass, as they are inversely proportional parameters. However, this 

condition implies increasing the Poisson’s ratio, as they are conflicting objectives. Thus, 

by the TOPSIS criterion, the point marked a yellow star was chosen on the chart that 

corresponds to the point shown in Table 8 and the Table 9 shows the comparison 

between the initial and the optimized configuration. Figure 19 shows the initial and 

Francisco, Matheus B., et al. (2022)Auxetic Structures: Optimization,Additive Manufacturing pp. 120-153

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 148



optimized structure, while the table shows the comparison of the results between the 

structures. 

 

 

(a) 

 

(b) 
Figure 19: The model of (a) initial and (b) optimized auxetic beam structure for modal 

performance. 

Table 9: Comparison between the initial and the optimized auxetic beam structure results (Modal 

performance). 

Response 
Initial structure 

results 

Optimized structure 

results 
Improvement 

Qu (N) 12570 18330 31.42% 

λ (N) 62040 110900 44.06% 

ν -1.78 -1.98 10.10% 

𝜔n (Hz) 199.80 332.10 39.83% 

M (g) 70.56 57.42 18.62% 

 

5 Concluding Remarks 

 The chapter focused on showing the reader what auxetic structures are. It has 

been reported that these structures have negative Poisson coefficient and that there are 

several improved properties because of this characteristic. These structures can be 

constructed with auxetic or conventional materials, and the configuration adopted is 

fundamental for this behavior. Some unit cells have been shown and the choice to adopt 

any of them depends on the application of the structure and manufacturing processes 

available. 

 This chapter also showed the manufacture of a reentrant girder through additive 

manufacturing. This process facilitated the development of new structures with negative 

Poisson coefficient, because it removed the manufacturing difficulty that exists through 

conventional processes, such as machining, for example. This structure was submitted 

to a compression test and the results were shown so that the reader has knowledge of the 

performance of this structure. 

 Finally, it proved to be a way to optimize an auxetic model, reaching the optimal 

parameters of structure construction. The results obtained from the optimal model were 

compared with the initial model to verify the improvement of the structure. This 

methodology proved very propitious to perform the parametric optimization of 
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structures with negative Poisson coefficient and the techniques used here can be applied 

in other structures as well. 
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Abstract

Titanium alloys are well-known by their excellent corrosion resistance and high
strength-to-weight ratio. The aerospace industry has been taking advantage of those
properties and enhancing them with novel manufacturing techniques such as Addi-
tive Manufacturing (AM). However, the naval and offshore industry has very limited
use of those benefits. This is mainly due to technical limitations such as small-scale
parts and low deposition rates of the most common AM processes. This work presents
a review of the state-of-the-art in AM and its applications, in which relevant publica-
tions related to this important area of investigation are considered. Initially, titanium
is described as the main alloy. The Laser Engineered Net-Shape (LENSTM), Elec-
tron Beam Additive Manufacturing (EBAM@) and Wire Arc Additive Manufacturing
(WAAM) processes are presented. Given that WAAM offers potential solutions for
size and deposition rates with design challenges and new materials for component
fabrication, at the end of the chapter, applications from the naval and offshore areas
where this method is used are shown.

Keywords: Titanium alloys; additive manufacturing; naval and offshore industry; aerospace com-
ponents; WAAM

1 Introduction

Titanium alloys are recognized by their excellent mechanical and chemical properties such as
excellent corrosion resistance, good fatigue performance and low modulus (high flexibility). Sev-
eral examples of Ti-alloys applications are aircraft components, automotive, chemical processing
equipment, biomedical industries and more recently in naval applications. During titanium pro-
cessing, an inert atmosphere or vacuum is required, and this condition among others becomes tita-
nium a material of high cost. Therefore, certain applications have limitations to use this material
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(Lütjering and Williams [2007]). To justify the inherent cost of titanium, features and character-
istics of novel techniques as additive manufacturing (AM) need to be deeply understood to take
advantage of the processing methods and the resultant material properties.

Additive manufacturing of titanium alloys has several applications as mentioned before. How-
ever, the focus has been in the aerospace industry and more specifically for military applications.
A common limitation for AM is the part size. Most AM techniques focus on small processing
chambers to produce small parts. The naval industry is characterized by large-size components,
but it has been working gradually to use parts made by AM (Ziółkowski and Dyl [2020]). The
global market is increasing the use of additive manufacturing technology and the titanium demand.
Figure 1 shows the US market projection until 2028. Therefore, it is important to understand ma-
terial processing conditions, microstructure, and performance correlation (Londono [2019]).

Figure 1: U.S. AM Metal Market (Grand View Research Inc [2021])

This chapter discusses additive manufacturing technology in general and focuses on laser en-
gineered net-shape (LENSTM), electron beam additive manufacturing (EBAM@) and wire arc ad-
ditive manufacturing (WAAM). Titanium alloys will be the main material, but other materials will
be also analyzed. The discussion will also include specific applications on aircraft, naval and
offshore components.

2 Titanium Alloys

Elemental titanium is hexagonal closed packaged structure (HCP) also known as α phase. P63/mmc

is the space group symmetry with number 194. As an allotropic metal, titanium transforms at
882◦C to body-centered cubic structure (BCC) also known as β phase. Im3Ìm is the space group
symmetry with number 229 (Lütjering and Williams [2007]). Figure 2 shows those 2 crystal
structures with lattice parameters and the most close-packed slip planes.

The α phase has a c/a ratio of 1.587 which is lower than the ideal of 1.633. It makes the prism
slip planes more packed than the basal slip planes. The β phase to the right of Figure 2 shows a
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Figure 2: Crystal structure of phase (left) and β phase (right) (Londono [2019])

lattice parameter of 0.332 nm which is at 900◦C (Lütjering and Williams [2007]). The Youngâ
modulus in single crystals of α is from 100 Gpa with a stress axis perpendicular to the c-axis and
145 Gpa with a stress axis parallel to the c-axis. This fact shows the high elastic anisotropy of
pure titanium at room temperature. The Youngâs modulus in single crystals of β phase can not be
measured due to the instability of that phase at room temperature. The β phase can be stable at
room temperature just by addition of alloying elements (Londono [2019])

2.1 Alloying elements

The purpose to add another element to titanium is to stabilize either α phase or β phase. This
is achieved by changing the position of the α/β transformation temperature. Figure 3 shows
schematic diagrams of the most common alloying elements of titanium. Al, O, N and C are α
stabilizers. It means they rise the α/β transformation temperature. Al is the most common α sta-
bilizer due to its high solubility. Oxygen content can affect the strength of titanium and it is used
to define different grades of commercially pure (CP ) titanium. Other elements as B and Ge can
stabilize α phase, but their solubilities a lower and can form intermetallic compounds (Lütjering
and Williams [2007]). The alloying elements that stabilize β phase can be isomorphous which
means they are miscible at all compositions or eutectoid that basically means they are not miscible
at all compositions and can form other phases. Examples of β isomorphous stabilizers are V and
Mo. Vanadium being used in the most common Ti-alloy Ti-6Al-4V.

Fe, Cr and Si are common β eutectoid stabilizers. There are some other elements as Zr and
Sn that are considered neutral. α titanium alloys are common in the chemical and processes
industry where corrosion resistance and ductility are required. On the other hand β titanium
alloys are largely utilized in biomedical applications due to their biocompatibility and low modulus
(Chen et al. [2020]). However, it is important to mention that most of the commercial alloys are
multicomponent. Ti-6Al-4V is the best example of a multicomponent alloy and it is known as the
âworkhorseâ of the titanium industry with more than 50% of the total titanium usage of the world
(Inc [2022]).

2.2 Alloy classification

Titanium alloys are classified based on the metallurgy. In other words, it is based on the final
microstructure. There are alpha (α), near alpha, alpha + beta (α+β) and beta (β) titanium alloys.
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Figure 3: Schematic alloying elements effect on titanium (Lütjering and Williams
[2007])

Each different microstructure offers different properties for different specific applications. Alpha
and near alpha alloys have low and medium strength, which increases with the addition of inter-
stitial elements or impurities such as Oxygen, Nitrogen or Carbon (Londono [2019]). The ASTM
classify the commercially pure titanium alloys by CP Grade X́́ . Where the grade is a number that
indicates the oxygen content 0.18 wt% to 0.4 wt% for grades from 1 to 4 (NeoNickel [2022]).
Table 1 shows the classification of titanium alloys with some examples.

Table 1: Commercial titanium classification

Titanium Classification Titanium Grades
Alapha (α) CP Grades 1,2,3,4
Near - alapha (α) Ti-5Al-2.5Sn, Ti-3Al-2.5V
Alapha + Beta (α+β) Ti-6Al-4V, IMI 685, IMI 834, Ti-811
Beta (β) Beta 21S, Beta C, Ti-6246, Beta CEZ

The near-alpha alloys are mostly alpha, but with small amount of beta phase (2-5 vol.%)
(Lütjering and Williams [2007]). These alloys are as alpha good for corrosion resistance applica-
tions, but the small amount of beta phase controls the recrystallization of α grains upon annealing.
The α + β alloys have both phases, but β is present in a larger proportion than in the near α alloys.
These alloys are heat treatable which means higher strength and hardness than α or near α alloys.
However, creep strength and cold formability are not as good as for α alloys. These alloys are also
classified by their microstructure into fully lamellar, equiaxed and bi-modal. The detailed descrip-
tion of those microstructures can be found in (Lütjering and Williams [2007]). Finally, β alloys
are rich in β phase and are heat treatable to reach very high strength. However, fatigue strength
and ductility in the heat-treated condition are low. Alloys such as Beta 21S and Beta C are mostly
used in aerospace applications.

3 Additive Manufacturing

In general terms, additive manufacturing (AM) can be defined as a process where a heat source
melts added material to a substrate. The heat source is in relative motion respect to the substrate
to build the computer aid designed shape of the deposition. In Figure 4, common heat sources
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are presented (e.g., laser, electron beam and plasma). Also, all feedstocks are showed (e.g., wire,
powder bed and powder blown) Collins [2003].

Figure 4: Schematic one pass of AM (Adapted from Collins [2003])

In addition, AM systems can be defined by the atmosphere where the process is occurring (e.g.,
inert gas, vacuum, and gas shield). AM technology has a strong influence on material properties
due to the processing conditions such as heat source power, atmosphere, deposition speed among
others. The microstructure is defined by heat transfer, fluid dynamics, phase transformations and
the thermophysical properties of the material. Knowing the microstructure evolution in AM is
very important to determine the properties of the material (Mendoza et al. [2019]). AM is a
process that involves a condition that is far from thermodynamical equilibrium due to the rapid
solidification. This factor leads to a lower solute partitioning compared with other manufacturing
techniques (Collins et al. [2016]).There are several studies regarding the microstructure evolution
of AM (Thijs et al. [2010] and Kriczky et al. [2015]). Some other studies have been focus on the
molten pool modeling to predict the experimental microstructure evolution Peyre et al. [2008] and
Rolchigo et al. [2017]). AM offers the research advantage of produce graded compositions within
the same sample. This is achieved by using elemental powder blends in a system with multiple
hoppers (Collins [2003] and Gong et al. [2017]).

The grain size in any microstructure is important for the resultant mechanical properties. There
are many efforts to study the effect of alloying elements on grain size (Bermingham et al. [2008]).
In 2001, a model was developed to predict the grain size refinement based on constitutional under-
cooling and nucleant particles (Easton and St. John [2001]). Alloying elements such as boron (B)
(Bermingham et al. [2008]) and beryllium (Be) (Bermingham et al. [2009]) acting as good grain
refiners. All these efforts were focused on casting titanium alloys, but the fundamentals were ex-
trapolated to additive manufacturing on titanium alloys for alloying elements such as molybdenum
(Mo) (Mendoza et al. [2019]) and tungsten (W) (Mendoza et al. [2017]). More recent research re-
vealed the grain refiner power of lanthanum oxide (La2O3) (Ng et al. [2022]) and an hydrogenation
treatment on wire arc additive manufacturing (WAAM) (Xiaolong et al. [2022]).

Texture in additive manufacturing has been reported by many researchers in several alloys,
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including Ti-alloys (Banerjee et al. [2006]). Build orientation can affect the mechanical properties
as reported by Simonelli (Simonelli et al. [2014]). In addition, many researchers have demon-
strated how the processing parameters of additive manufacturing such as energy density or travel
speed determine the microstructure (Hrabe and Quinn [2013]). In the classical understanding of
solidification in AM, a <001> growth direction has been reported to be parallel to the maximum
gradient of temperature (Mendoza Londono [2016]). This preferential direction on solidification
(i.e., texture) creates the intrinsic anisotropy of some additive manufactured Ti-alloys. However,
the common columnar microstructure in AM can be modified to equiaxed by the addition of al-
loying elements (Collins et al. [2016]) or by further heat treatments (Qi et al. [2021]).

4 Laser Engineering Net-Shaping (LENSTM)

In 1997, this technology was licensed by Optomec Inc. It was originally developed by Pratt
Whitney and Sandia National Laboratories (Mudge and Wald [2007]). The heat source in this
technique is a laser and the regulated flow of mass is controlled by a powder feed system. Argon
gas atmosphere is used as protection and keeps oxygen content lower than 10 ppm in the glove
box (Obielodan and Stucker [2012]). Several advantages of this technique include less machin-
ing required to the final component, it can repair or manufacture new components and different
elements can be used at the same time (e.g., compositionally graded parts) (Mendoza Londono
[2016]). Figure 5 shows the typical process lay-out.

Figure 5: Schematic representation of LENSTM process (Collins [2003])

In 2001 was reported the thermodynamic enthalpy of mixing as a key factor determining the
compositional homogeneity and microstructure Schwendner et al. [2001]. Laser power and hatch
width are LENSTM parameters that can be modified independently to control the resultant mi-
crostructure of the deposited material. However, it was previously and conveniently demonstrated
that all LENSTM parameters are related to the total contribution of input energy. Therefore, travel
speed, laser power, hatch width and layer thickness can be represented by a single term called
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energy density Sears [2002]. This term can be used to understand the resultant mechanical prop-
erties of the deposited material. In fact, at certain level of energy density the deposited material
or component will show equivalent mechanical properties to a conventionally forged material of
the same composition Collins [2003]. As an example the critical energy density for IN 690 N2 is
165 Wh/in3 Sears [2002]. Timetal 21S (also known Beta-21S) is a β type titanium alloy with
composition Ti-15Mo-2.7Nb-3Al-0.2Si in Wt.%. 15Mo was replaced by 9.4Cr which is the equiv-
alent amount required to stabilize β phase in the same proportion than the 15Mo. Cr was selected
because its enthalpy of mixing (∆ Hmix) with titanium is -32 kJ/mol compared with -16 kJ/mol
for Ti-Mo. This replacement of alloying element demonstrated that the total input energy (energy
density) can be altered by the enthalpy of mixing. In this specific case the higher exothermic
enthalpy of mixing of Ti-Cr reduced the critical energy density by ∼ 3kJ/in3 Collins [2003].

4.1 Discontinuities in LENSTM deposits

Very acceptable processing parameters on LENSTM have been determined by trial-and-error ap-
proach. However, several work has been done to establish the relationship between the resultant
microstructure of deposited material and the processing parameters Kobryn et al. [2000] This un-
derstanding is very important for the process control and design. Discontinuities include porosity,
lack of fusion between layers and unmelted particles. Porosity is caused by entrapment of gas
from either the powder feed system or from the powder particles. The porosity reported is nearly
spherical in shape and did not have any preferential location Kobryn et al. [2000].In general terms,
the porosity will decrease inasmuch the power increases and it is related with the fact that more
power is more energy available to melt the same amount of powder. However, a reduction of
porosity because of a higher travel speed is not as intuitive as for the power supply. The explana-
tion reported Kobryn et al. [2000] for this behavior is the reduction of delivered powder due to the
augmented travel speed.

The entrapped gas bubbles come from the powder system or the powder itself as mentioned be-
fore. However, a very high input energy on a small area of material can produce a keyhole Courtois
et al. [2014]. This physics phenomena results in a very deep and narrow shape of the molten pool
and that shape makes more difficult to gas bubbles to escape from the solidification front. High
levels of input energy can also contribute to molten pool instabilities and create spheroidization of
the liquid metal, also known as balling effect Gu et al. [2013]. This balling effect can induce more
porosity Attar et al. [2014]. Figure 6 shows a pore in a SEM image (a) and a schematic molten
pool with entrapped gas bubbles (b).

Lack of fusion between layers is due to not enough energy to melt the previously deposited
layer or the substrate for the first layer. This can be caused by low energy density or an excessive
powder feed rate Liu et al. [2021]. It is also known that the substrate acts as a heat sink and
according to Kobryn et al. thin substrates dissipate heat faster than thick substrates. This condition
leads to thin substrates to show more lack of fusion compared to thick substrates (Kobryn et al.
[2000]).

As mentioned at the beginning of this section all processing parameters in LENSTM can be
represented by the energy density term (Collins [2003]). This term is defined by Equation 1.
Here ρ is the laser power, ν is the travel speed, tthickness is the layer thickness or spacing and
tthickness width is the distance between passes (Mendoza et al. [2017]). The energy density is
proportional with the grain width on the columnar morphology in LENSTM depositions. Higher
energy density values will produce larger molten pools, which in turn implicates lower cooling
rates (Mendoza et al. [2017]). Figure 7 shows this trend for the Ti-W system.

ρenergy =
p

ν · tthickness · tthickness width
. (1)

Mendoza, Michael Y., et al. (2022)Additive Manufacturing TiAlloys Aerospace,Naval,Offshore pp. 154-183

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 161



Figure 6: Pore in a Ti-alloy (a) and pores in molten pool (adapted from (Liu et al.
[2021])

Figure 7: Grain width trend with energy density (a) and cooling rate (b) (Mendoza
et al. [2017])

The energy density is a critical manufacturing factor for the homogeneity and resultant prop-
erties of any AM deposition. There are other examples on how the energy density can determine
not just the grain size, but also the porosity, lack of fusion and in some cases unmelted particles.
Backscatter electron micrographs in Figure 8 show large field view of the xz plane of two different
energy densities (high and low) depositions made using LENSTM technology for a fixed compo-
sition of Ti-15Mo Mendoza et al. [2019]. By these two images, the sample with energy density of
7.4 MJ/in3 (8b) shows less unmelted particles, less lack of fusion and a very high compositional
homogeneity. On the other side, the sample with energy density of 2.4 MJ/in3 (8a) shows a lack
of fusion in almost all layers and in some cases as large as 500 µm. The unmelted particles of
Mo are easy to visualize in the backscatter electron micrographs because the average atomic mass
determines the contrast on those images. Therefore, the brighter regions are Mo rich zones and
darker gray regions are rich in titanium.
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Figure 8: Micrographs of Ti-15Mo at 2.4 MJ/in3 (a) and 7.4 MJ/in3 (b) (Mendoza
et al. [2019])

4.2 Residual stress

Dwell times between individual layer deposition is very common technique in additive manufac-
turing to allow additional colling time. The accumulation of residual stress in AM has several
similarities with the welding process since both are a layer-by-layer deposition. In 1997, it was
reported that reducing input energy leads to a lower workpiece distortion in welding Michaleris
and DeBiccari [1997]. Later in 2003, it was reported that pre-heating the weld region can reduce
the net distortion Deo and Michaleris [2003]. In a similar manner for additive manufacturing, pre-
heating the bulk substrate can lead to a reduction of the residual stress and total distortion on the
deposited material Jendrzejewski et al. [2004]. Additive manufacturing involves the deposition of
multiple layers to build a component in larger dimensions compared to welding or laser cladding.
Therefore, dwell times and path planning are important factors to determine the resultant residual
stress and workpiece distortion. Decreasing dwell time between passes reduces the residual stress
in deposited Co-based Stellite SF6 alloy Jendrzejewski and Śliwiński [2007]. Different position
paths affect the residual stress and distortion in AISI 1117 C- Mn steel Nickel et al. [2001] and in
AISI 316 austenitic stainless steel Mercelis and Kruth [2006].

In a more recent work in additive manufacturing, the dwell time and material selection were
studied Denlinger et al. [2015]. In-situ measurements of temperature and distortion were per-
formed in Ti-6Al-4V, and Ni-Cr-Mo solid solution strengthened Inconel@625. This research work
also compared one alloy with a solid-state allotropic transformation (Ti-6Al-4V) and another one
that does not (Inconel@625). Three different dwell times were used with the same input energy
for both alloy systems Denlinger et al. [2015]. This study showed that increasing the dwell time to
allow additional cooling time resulted in a reduction of residual stress in Inconel@625. However,
for the Ti-6Al-4V alloy, increasing the dwell time resulted in an augmented level of residual stress.
Figure 9 shows the above-mentioned trend.

There are two main mechanism for the residual stress accumulation in additive manufacturing.
The first mechanism is thermal stress due to the strong gradient of temperature between subsequent
layers of deposition. These temperature gradients generate residual stress in the vertical direction
predominantly. The second mechanism is the phase transformation due to solidification, and it has
a preferential residual stress generation in the horizontal direction. In addition, additive manufac-
tured Ti-6Al-4V at certain critical energy density value suffers a solid phase transformation. This
transformation from β phase to a martensitic α′ phase also induce residual stress on the deposited
material Yakout et al. [2020].
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Figure 9: Variation of residual stress with dwell time for 6 cases (Denlinger et al.
[2015])

In 2021, researchers worked on a study where the laser power and travel speed were fixed
to evaluate the influence of laser scan strategies on residual stress. Four different strategies were
used with 2 continues over the sample and the other 2 using small islands with alternating patterns
Strantza et al. [2021]. They found very large residual stresses on the order of 1/2 to 3/4 of yield
strength of additive manufactured Ti-6Al-4V with a concept laser equipment. The non-continuous
or island strategies resulted in more residual stress specially at the extreme edges of the deposited
material. On the other hand, a reduction of the residual stress was observed in the continuous scan
strategy with a rotation of 90◦C per layer. They suggest Strantza et al. [2021] that scan strategies
allowing faster cooling rates are responsible for higher residual stress on deposited material. In
addition, in the island strategy, those near to the edges show even faster colling rates producing
even more residual stress.

4.3 Grain size, morphology, and texture

In additive manufacturing in general, the heat source melts the incoming material. For the LENSTM

specific case, the laser melts the powder metal creating a molten pool on a substrate. This molten
pool experiences a very rapid colling of 104-106 K/s Strantza et al. [2021]. This unique condition
leads to a unidirectional solidification of columnar grains (prior β grains for Ti-alloys). The sub-
strate is acting as a strong heat sink promoting the vertical growth. Therefore, the columnar grains
are a result of epitaxial growth from the bottom of the molten pool in direct contact with the sub-
strate. Several examples of columnar grains are Ti-Mo system Mendoza et al. [2019] Ti-6Al-4V
system Kelly and Kampe [2004] and Ti-Cr system Zhang et al. [2010]. Figure 10 shows an optical
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micrograph of a columnar morphology of a LENSTM Ti-W sample.

Figure 10: Optical micrograph of Ti-6W alloy.

Equiaxed grains are also observed in AM deposited material. Normally, they develop at the
top region of deposition. This phenomena occurs because the substrate acting as a heat sink at the
bottom is less effective at the top. Unmelted particles at the top surface and the lower temperature
gradient induce nucleation of new grains (Liu et al. [2021]). The columnar to equiaxed transition
(CET) can also be achieved by a β annealing treatment after deposition (Zhu et al. [2015]) or
adding alloying elements among others (S.Tamirisakandala et al. [2005]).

Regarding adding alloying elements to transform the morphology from columnar to equiaxed
and reduce the grain size, there are many research publications about the topic. Many of them
are focus on cast alloys and not in additive manufacturing. However, the factors affecting the
grain size such as inoculants, cooling rates and compositional effects can be considered in AM.
Recent work on grain refinement was considering the effect of the growth restriction factor as a
thermodynamic parameter defining grain size. Equation 2 defines the growth restriction factor
Q, where m is the slope of the liquidus line, c0 is the solute concentration and k is the partition
coefficient.

Q = mc0(k − 1) =
d∆Tc

dfs
. (2)

The differential term to the right is expressing the concept of the growth restriction factor
as the rate of development of constitutional supercooling (∆Tc) relative to the rate of solid de-
velopment (fs). Boron (B) acting as a grain refiner was reported on Ti-6Al-4V and Ti-6242
(S.Tamirisakandala et al. [2005]). Similar studies applying the growth restriction factor of boron
reported same results on as-cast commercially pure titanium (Bermingham et al. [2008]). The
refiner power of boron was also noted in the review paper by Collins et al. analyzing the boron
modified TNZT alloy (Collins et al. [2016]). The explanation for this phenomena is that boron
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solute is rejected in front of the solid-liquid interface. That boron rich region is undercooled and
restricts the growth of any preexistent nuclei and promotes the activation of new nuclei.

Based on solute contributions and nuclei effects on grain size Easton & St. John developed
a semi-empirical relationship to assess the grain refinement on Al and Mg alloys (Easton and St.
John [2001]). The general relationship is expressed in Equation 3:

d = a+
b

Q
, (3)

where d is grain diameter, a is the y-intercept defined in Equation 4, b is the slope defined in
Equation 4 and Q is the already defined growth restriction factor:

a =
1

(ρ · f)1/3
(4)

b = b1 +∆Tn, (5)

in Equation 4, ρ is the density of nucleant particles and f is the activated fraction of particles.
This equation shows that a is inversely proportional to the maximum number of activated nuclei.
For Equation 5, the term ∆Tn is the necessary undercooling to activate nucleation and b1 is a
constant. Therefore, the slope b basically represents the undercooling necessary to activate nucle-
ation, higher values of b lead to lower potency of nuclei. Easton & St. John demonstrated the
applicability of this concepts (equation) on Al and Mg alloys. However, ulterior studies (Banerjee
et al. [2006]) demonstrated the extended applicability of the same concepts on Ti-alloys. All this
work was based on as-cast Ti-alloys. Only in 2017, Mendoza et al. reported that despite the out of
thermodynamical equilibrium condition of AM, it is possible to predict in some degree the grain
refiner power of alloying elements by utilizing these concepts on additive manufacturing and more
specifically of LENSTM technology on titanium alloys (Mendoza et al. [2017]). Figure 11 shows
three backscatter micrographs of average compositions of 5, 13 and 25 pct on the Ti-W system.
The features in all micrographs are very similar with prior β grains with alpha laths inside the
grains. However, the grain size was clearly reduced by the tungsten (W) additions (Mendoza et al.
[2017]).

Figure 11: Backscatter micrographs of Ti-W system (Mendoza et al. [2017])

These results summarize the grain refiner power of tungsten as an alloying element with a high
growth restriction factor of about 22.6 C0. Later in 2019, same authors applied the same concept
in AM with an alloying element with a very low growth restriction factor of 6.5C0 (molybde-
num). Figure 12 shows backscatter micrographs of a compositional gradient sample deposited
with LENSTM at locations of 0.9, 2.8 and 8.2 wt.% of Molybdenum (Mo). In this case, the prior
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β grain size of the titanium alloy was not reduced by the Mo additions and the morphology was
in fact columnar over the entire sample. These two higher (Ti-W) and lower (uTi-Mo) bound
scenarios of grain refiners based on growth restriction factor sggest the applicability of the ther-
modynamical concepts on additive manufacturing.

Figure 12: Backscatter micrographs of Ti-Mo System (Mendoza et al. [2019])

Tedman et al. worked with powder additions of W, Mo and Nb to assess their efficacy as nucle-
ant particles in titanium alloys. The samples were deposited using wire arc additive manufacturing
(WAAM), a technology that will be described in a further section in this chapter. They found that
particles surviving the melting process are acting as potent nucleation points for β crystals. The
alloying elements acting as inoculants suffer partial dissolution and enrich the surrounding liquid.
That solute enrichment raised the equilibrium liquidus temperature and lead to preferential crys-
tal growth or solidification upon the surface once the cooling process starts (Tedman-Jones et al.
[2019]). They call that process as âdissolutional supercoolingâ which basically applies the same
concept of constitutional undercooling at the solidification front analyzed previously in the Ti-W
system (Mendoza et al. [2019]). They call that process as âdissolutional supercoolingâ which ba-
sically applies the same concept of constitutional undercooling at the solidification front analyzed
previously in the Ti-W system (Mendoza et al. [2019]). Other efforts were focus on evaluating
grain size and morphology for three different Ti-alloy systems. The idea was to compare non-
growth restricting solutes or nucleant particles in a Ti-6Al-4V alloy, containing growth restricting
solutes, but non-nucleant particles in a Ti-3Al-8V-6Cr-4Mo-4Zr alloy and the last system was
containing all the previous growth restricting solutes and including nucleant particles in a Ti-3Al-
8V-6Cr-4Mo-4Zr + La2O3. The results on first system were large grain size and a combination of
columnar and equiaxed grain morphology. The second system refined the grain size by 55% but
did not show a significant columnar to equiaxed transition (CET). However, the last system with
the La2O3 additions (nucleant particles) refined the grain size over 85% and produced a clear zone
of equiaxed grains at the top of each layer (Bermingham et al. [2019]).

In 2022, efforts to improve the understanding of solute and nucleant particles were focus
on aluminum alloys, but using alloying elements as Si, Cu and Ni (Tan et al. [2022]). They
concluded that despite the rapid solidification in AM, a high enough solute concentration is still
necessary to create the constitutional undercooling which in turn induce heterogenous nucleation
(grain refinement). In addition, it was demonstrated that additions of strong nucleant particles as
lanthanum hexaboride (LaB6) (Tan et al. [2022]) and high melting point yttria (Y2O3) particles
(Wang et al. [2021]) highly increases th2e grain refinement in their AM depositions.

Regarding texture, there is a large number of researchers reporting the <001> texture which is
concordant with the greatest temperature gradient in the vertical direction (z axis). Ni based alloy
IN738LC made by selective laser melting shows the characteristic <001> texture (Kunze et al.
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[2015]). It is also the case for Ti-alloys (Qiu et al. [2015]). However, additions of Zn, Mg and Ti
in cubic systems as Al-alloys can deviate the <001> texture to be <110> (Collins et al. [2016]).
In a more recent approach for an additive manufactured Ti-6Al-4V study, it was demonstrated
that the scanning strategy can modify texture and microstructure (Quintana et al. [2020]). This
phenomena could be related to different thermal cycles allowing different cooling rates affecting
solidification and texture.

5 Electron Beam Additive Manufacturing (EBAM@)

Electron beam additive manufacturing technique is a metal 3D printing process launched by Sci-
aky Inc. in 2009. The system uses an electron beam as the heat source and a wire is fed into the
electron beam to create the molten pool in a vacuum chamber. The vacuum chamber is a require-
ment for the electron beam and also provides a non-reactive environment for the deposition of high
purity materials (Mendoza Londono [2016]). In general, wire feed systems as EBAM@ are suit-
able for large-scale volumes due to its high deposition rates (Frazier [2014]). This technique can
produce high quality structures, up to 19 inches length, made of Titanium, Nickel-based alloys,
and tantalum among others in days (Inc [2022]). The original purpose to develop EBAM@ was
for aerospace applications. However, it is now beneficial for a wide range of industries and appli-
cations where reducing cost and time is top priority. Some examples of EBAM@ applications are
Oil & gas equipment, turbine blades for energy production, medical equipment, industrial pump
components and marine propulsion. Figure 13 shows a schematic view of the EBAM@ technology.
A unique advantage of EBAM@ is the dual wire feed system that allows to combine two different
metals or alloys to create a specific custom alloy. In addition, it is also possible to change the
mixture ratio of the wire feed to create a graded part as in LENSTM. After the part is completed,
a heat treatment, machining and final inspection is performed. (Inc [2022]).

Figure 13: Schematic view of the EBAM@ technology (Inc [2022])

Discontinuities in EBAM@ are similar as in LENSTM including porosity and lack of fusion
between layers. However, porosity is less, and unmelted particles are not present because EBAM@

does not operate with powder. Wire systems have higher deposition rates which represents deposi-
tion of larger objects that are ideal for large mechanical systems as air frame structures or aircraft
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engines. It can be equipped with multiple nozzles with different metals in a single electron beam
gun to create custom alloys.

Regarding the residual stress in electron beam additive manufacturing, it is governed by tem-
perature gradients and phase transformations during solidification as described in section 4.2. In
EBAM@, the deposition rate is higher compared with LENSTM which leads to lower dwell time.
The direct implication of less time between layers was described as material dependent as illus-
trated in Figure 9 comparing Ti-6Al-4V with Inconel@625 in section 4.2. Grain size, morphology
and texture is equivalent to the described in section 4.3 for LENSTM, but due to the larger scale
volume and speed of deposited material, it needs to consider different thermal cycles. Hayes et al.
shows a good example of microstructure features under EBAM@ (Hayes et al. [2017]).

In general, both technologies are applying the same principles with small differences that can
affect the resultant properties of the deposited material. It is important to mention that on average,
AM-Grade Ti-6Al-4V powder is 141% more expensive than the AM-Grade Ti-6Al-4V wire. The
use of metallic powder also represents a higher safety concern because breathing in fine particles,
such as titanium or nickel, can be harmful (Inc [2022]).

6 Wire Arc Additive Manufacturing (WAAM) and Marine Applications

As described in section 1, titanium and its alloys are used due to their excellent corrosion re-
sistance in aerospace, chemical and power plants among other industries, but it is generally used
little to build ships. In 2002, Nippon Steel corporation completed all-titanium ships in cooperation
with shipbuilders (Kimura et al. [2002]). The critical question is how additive manufacturing and
specifically titanium alloys can contribute to marine or naval applications. The industrial marine
environment is dominated by complex and ever larger components when compared with other in-
dustries (e.g., aerospace industry). It is also a harsh and corrosive environment for systems such as
offshore platforms and various ship classes (Strickland [2016]). Wire arc additive manufacturing
(WAAM) is another AM technique with additional capabilities to manufacture large-scale compo-
nents. WAAM has a much higher deposition rate than other AM techniques (e.g., LENSTM and
EBAM@) making it suitable for marine applications (Wang et al. [2012]). In this section, wire arc
additive manufacturing technique is described with an emphasize in marine applications.

6.1 Wire arc additive manufacturing

This is a metallic 3D printing machine, where metallic wires are the feeding material, and the heat
source is an electric arc. The protective environment depends on the type of arc welding. The orig-
inal idea of WAAM was in 1925 with a simple arc welding to deposit ornaments (Ralph [1925]).
After about one century of development, WAAM becomes suitable for new applications. In this
process a wire is fed into an electric arc and melted with the substrate or the previous deposited
layer. The efficiency of the material is near to the 100% because there is not powder handling and
not unmelted particles. The cost associated with WAAM is around one order of magnitude less
when compared with laser-based powder processes. Discontinuities in WAAM are basically the
same as those in EBAM@), considering that both techniques are using a wire feedstock. The high
deposition rate of WAAM allows the manufacture of very large-scale components. However, some
drawbacks such as low density due to violent melt pool interaction, poor surface quality and less
dimensional accuracy (Rosli et al. [2019]). Figure 14 shows a WAAM system integrated with a
MIG/MAG at the welding institute (TWI). In addition, due to the size and speed of depositions the
dwell time is less between layers, and it has been reported with different effects on residual stress
depending on material (section 4.2). However, due to the large heat source, a high tensile residual
stress might be induced (Lin et al. [2021]). The WAAM systems can be divided into three main
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systems and a fourth one designed for titanium alloys. In general, they are based in traditional
welding methods such as gas metal arc welding (GMAW), gas tungsten arc welding (GTAW) and
plasma arc welding (PAW). Robotic welding systems are the based to integrate these three simple
configurations (Lin et al. [2021]). The selection of material and welding technology are driven by
the user application. For instance, if quality and process stability are a priority, GTAW should be
preferred over GMAW. On the other hand, GMAW is preferred if the priority is high deposition
rate (Cunningham et al. [2018]). However, the PAW system offers good quality and high deposi-
tion rate, but with higher initial cost. Several metals and alloys have been used for WAAM process
such as steels, stainless steel, nickel-based alloys, aluminum alloys and titanium alloys. The last
alloys system has superior properties (Lin et al. [2021]) and is the focus of attention for metals
in additive manufacturing in different industries such as aerospace, military and weapons, marine
and shipbuilding. However due to the high cost of titanium, the applicability is limited in several
industries.

6.1.1 GMAW based WAAM system

Gas metal arc welding is a welding process where an electric arc is created between the substrate
(workpiece metal) and the electrode (consumable wire). The wire is fed continuously and melted
in a molten pool protected by a shielding gas (e.g., argon helium etc.). The Figure 15 shows
the configuration of the GMAW-WAAM integrated system. The current and voltage are the key
parameters to control the GMAW-WAAM system because it controls the input energy. Due to
the nature of the heat source high thermal inputs are received by the wire and substrate. This
leads to unwanted deformations resulting in dimensional tolerances of ±1 mm (Prado-Cerqueira
et al. [2017]). In order to remove the non-suitable surface finish, the company FRONIUS GmbH
patented the cold metal transfer technique (CMT) (Office) [2022]). In CMT, the current intensity
and voltage are controlled to transfer metal to the molten pool and retracting the electrode at very
short intervals to produce a clean, splatter-free deposition. The process integrates the movement
and deposition of material in four phases described in detail by (Prado-Cerqueira et al. [2017]).

6.1.2 GTAW based WAAM system

Gas tungsten arc welding is a process where a non-consumable tungsten electrode provides the
heat, and an independent wire is fed to produce the deposited material in the molten pool. In
this technique the wire feed orientation has a strong influence on the transfer material and quality
of the deposit. Front, back and side feeding are normally used, but front feeding is the regular
orientation for Ti-alloys and Fe-Alloys (Shen et al. [2016]). Figure 16 shows the configuration
of GTAW-WAAM system. This configuration has a gas lens to guarantee the shielding gas is in
laminar flow to reduce oxidation. It is very important for titanium alloys due to the high reactivity
with oxygen at high temperatures. Normally, a tracing shielding device is used to protect titanium
alloys and that will be discussed in a subsequent section (Pan et al. [2018]).

GTAW-WAAM has the capability to manufacture compositionally graded materials as with
(LENSTM) or (EBAM@) technologies (Shen et al. [2016]). For this objective, two different wire-
feed systems can provide different metals or alloys to the molten pool. The deposited material
composition can be controlled by adjusting the wire-feed rate independently just as in blown
powder systems. Preheating the substrate and placing suitable tracing shielding help to control
the interlayer temperature and reduce oxidation, especially critical for titanium alloys (Pan et al.
[2018]).
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Figure 14: WAAM system used at TMI (Office) [2022])

6.1.3 PAW based WAAM system

Plasma arc welding is a process where a plasma is used to transfer an electric arc to a work piece
or parent material. Then the metal to be welded is melted by the intense heat generated by the
electric arc. Plasma is defined as a gas that was heated to a very high temperature and ionized
to make it electrically conductive (Mannion and Heinzman [1999]). The torch in PAW has a
tungsten electrode with a copper nozzle for the plasma. They create a pilot arc that is transferred
to the metal to be welded. The arc energy in plasma welding can reach three times the GTAW (Pan
et al. [2018]).

Plasma gases are usually argon, and the torch system has also a secondary gas source that can
be helium, hydrogen, and argon to play the shielding role. The distance from workpiece to the
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Figure 15: Schematic GMAW-WAAM integrated system (Rosli et al. [2019])

Figure 16: Schematic GTAW-WAAM integrated system (Pan et al. [2018])

tungsten electrode tip (stand-off distance) is not as critical as in GTAW due to the cylindrical and
focus arc shape of PAW (Mannion and Heinzman [1999]). Therefore, the arc transfer is gentle and
consistent to produce high quality deposits of material. The stability of the electric arc reduces
the arc wander effect which is a deflection of the arc that can lead to lack of fusion imperfections
(Mannion and Heinzman [1999]). The Table 2 shows a basic comparison of these three WAAM
systems.

6.2 WAAM systems to manufacture titanium-alloy components

As mentioned in section 6.1.2 Titanium and its alloys are very reactive with oxygen at elevated
temperatures. Several researchers reported severe oxidation on WAAM Ti-based components
(Bermingham et al. [2018]). That reactivity produces oxides that embrittle the deposited mate-
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Table 2: Comparison of WAAM systems (Lin et al. [2021])

WAAM systems Deposition rate (kg/h) Stability Cost Heat input Thermal efficiency
GMAW-based 3-4 Splash Low High 84%
GTAW-based 1-2 Good Low Low 67%
PAW-based 2-4 Good High High 47%

rial, making the WAAM system not very suitable for Titanium alloys. To prevent oxidation on
titanium some researchers have been used a closed chamber filled with inner gas (Alonso et al.
[2019]). However, the chamber adds several limitations to the manufacturing process. First, the
chamber restricts the size of the components to be smaller than the chamber itself. The robot arm
movement is also restricted which affects the direction and rate of deposition. Therefore, the use
of chambers to manufacture titanium alloys is not very practical for large-scale or ultra-large-scale
parts as required for the naval industry (Lin et al. [2021]).

To eliminate the closed chamber requirement several efforts, propose the use of tracing shield-
ing devices (Lin et al. [2021]). This device is usually fixed to the torch and provides a focalized
distribution of inert gas to cover only the latest deposited region to prevent the oxidation. Figure
17 shows trace shielding designs for the basic WAAM systems. The tracing shielding device has
been a custom-made feature added only to fit specifical needs in a particular application.

Figure 17: Tracing shielding design for WAAM (Lin et al. [2021])

The grains size as described in section 4.3 with (LENSTM) deposits is governed by epitaxial
growth which is inherent to any AM technique. In this case, several hybrid WAAM systems have
been designed to promote grain refinement on titanium alloy deposits (Lin et al. [2021]). Martina
et al. proposed one of those hybrid-WAAM systems with a preheating of deposited layer during the
deposition of the next layer. This modification resulted in a good refinement of the prior β grains
and a columnar to equiaxed transition (CET). This custom-adapted process is named inter-pass
rolling (IRWAAM) (Martina et al. [2015]).

6.3 Naval and Offshore applications

Titanium is considered an optimal material for the excellent corrosion resistance in sea water.
However, due to cost and other manufacturing considerations it is not widely used in the naval
and offshore industry. During more than 50 years offshore steel structures were designed with
corrosion allowance and not considering for a real corrosion protection (Kimura et al. [2002]). In
1997, the only corrosion allowance idea is abandoned and new methods to offer certain degree of
corrosion protection are proposed. The titanium-clad steel covering on the piers (splash and tidal
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zones) of the Trans-Tokyo Bay (TTB) (i.e., Aqua-Line) was one of the first corrosion protection
methods implemented on offshore infrastructure (Kimura et al. [2002]). Covering existing steel
pipe piles with 0.5 mm thick titanium sheet has been a work performed for many years at Nip-
pon Steel Nagoya works. Shipyards in Japan use titanium to manufacture several parts such as
exhaust cooling pipes, mufflers, fire-fighting sea water guide pipes and valves, ladders, shafts and
propellers due to corrosion resistance or weight reduction (Kimura et al. [2002]).

The naval industry is characterized by a very specific operating conditions of equipment and
machinery. For instance, ships have unique operational requirements of reliability and safety. The
original equipment manufacturer or local authorities imposed quantity and type of spare parts to
be on board (Kostidi and Nikitakos [2018]) for safety reasons. Spare parts inventory is necessary
to avoid or reduce breakdowns or ship downtime. If a damage in the ship appears, the spare part
needs to be used to continue normal operation. However, if the spare part is not in stock, a request
needs to be sent to the land office. From this perspective additive manufacturing could be used on
board to manufacture spare parts on demand, reducing the spare part inventory and consequently
the cost.

In 2015, the container shipping company MAERSK reported the installation of 3D print-
ers (AM) on board to fabricate spare parts (Kostidi and Nikitakos [2018]). In addition, the US
navy has implemented the installation of 3D printers (AM) for afloat manufacturing of spare parts
(Strickland [2016]). The benefits from this approach can improve operational efficiency in areas
of spare parts and tooling. However, there are some technical concerns regarding the static envi-
ronment that those AM techniques require for quality of deposited or printed material (Strickland
[2016], Kostidi et al. [2021]).

Queguineur et al. made an evaluation of wire arc additive manufacturing (WAAM) on large-
scale components for naval applications (Queguineur et al. [2018]). Their objective was to study
the processing parameters optimization associated with the mechanical properties of stainless steel
(AISI 316L) and copper-aluminum alloy (Cu-8Al-2Ni-2Fe) with a GMAW-WAAM system. They
demonstrated that GMAW-WAAM technology is an alternative to cast products for the naval in-
dustry in terms of mechanical and corrosion results for the AISI 316L. The Cu-Al alloys showed a
slight decrease in mechanical behavior compared with as cast products (Queguineur et al. [2018]).
However, this result only represents that further research needs to be addressed to better implement
AM technology in naval applications.

The current use of additive manufacturing or 3D printing in the naval industry, is limited to
auxiliary components for ships. Those components or spare parts are engines, heat exchangers,
valves, pumps and propellers (BAYRAMOÄLU et al. [2019]). In Netherlands, the association of
RAMLAB, Promarin, Autodesk, Bureau Veritas and Damen shipyard manufactured the worldâs
first-class 3D-printed ship propeller, named as WAAMpeller. Figure 18 shows the successful
implemented WAAMpeller by RAMLAB. The WAAMpeller has a diameter of 1.3 m, weight of
180 kg and was manufactured to drive a Stan Tug 1606 (Ziółkowski and Dyl [2020]. The whole
manufacturing process was supervised and certified by Bureau Veritas. The used material was an
aluminum, nickel, and bronze alloy.

A recent effort on AM propeller was reported to use a numerical approach to design a hollow
blade that was also fabricated to correlate the optimization process (Muller et al. [2019][2019]).
The process of producing a hollow blade is very difficult to conventional foundry process and
offers the option to control thickness in different sections of the hollow blade (See Figure 19).
This concept could lead to a reduction of initial raw material and an augmented hydrodynamic
performance compared with solid propellers (Muller et al. [2019][2019]).

The study reported an improvement of the hydrodynamic performance by reducing cavitation
and mass reduction of 23% in air and 36% in water (Muller et al. [2019] [2019]). Other benefits
presented were the reduction of underwater radiated noise at higher frequencies where cavitation
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Figure 18: WAAMpeller (BAYRAMOÄLU et al. [2019])

Figure 19: Hollow blade (Muller et al. [2019] [2019])

is the main contributor. In the offshore industry, marine risers are often subjected to structural
and functional requirements. The failure of those components can imply severe environmental
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and economic impacts. Marine risers are subjected to corrosion attack due to hydrogen sulphide,
Chlorides, and carbon di-oxide gases. At the same time, they are also under continuous environ-
mental loads; wind, waves, current, ice, and impacts. Because of the above, the innovation in
conventional design of the marine risers is a challenge because of the increase of the water depth
on offshore production, especially in sensitive zones as the weld on the thick forged ends, counter-
bored riser pipe, and cladding along with the critical locations, e.g. of susceptible zones can be
observed in Figure 20.

Figure 20: Example of tensions of risers at top and bottom, and external enviromen-
tal loads(Bai and Bai [2005])

Among those, the risers in some cases must withstand pressures over 20,000 psi (137,89 MPa)
and temperatures exceeding 176◦C. Sandwich composite risers can be an alternative to those chal-
lenges, but delamination can be a threat to their use under the combination of thermal and me-
chanical loads. Under high temperature and pressure effects (HTHP) thermal stresses occur at the
metal and ceramics bonding interface due the differences of their thermal expansion, this can lead
to a crack formation and delamination in the interface. Functionality Graded Materials (FGM) are
designed to overcome this damages because they possess no distinct material interfaces. FGM

′
s

are produced by several AM techniques, the WAAM technique was used in the work of Chan-
drasekaran et al. [2022], where a test specimen was produced composed by Duplex stainless steel
and Carbon Manganese Steel as can be observed in Figure 21.

This composition is chosen based on the functional requirements without compromising the
strength criteria. Tension test, and X-Ray computed Tomography analysis where performed. The
X-Ray Computed Tomography showed that the WAAM process is acceptable for part fabrication.
From the mechanical properties, it is seen that the yield and ultimate strengths of FGM are higher
by 11.16% and 24.75%, respectively, in comparison with that of the standard X52 steel used
in marine risers. The toughness, strength ratio, and ductility ratio are also higher for the FGM
samples, while Modulus of Elasticity and Poisson

′
s ratio values are in the same range as X52 steel.

Other potential application is the case of offshore wind applications, where the same benefits of
WAAM technique can be applied to overcome monopile residual stress derived from corrosion-
fatigue, improving by this technique the fatigue life (Ermakova et al. [2019]).
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Figure 21: Sectional view showing the region where the mechanical properties are
determined (along the longitudinal axis of the FGM marine riser), Chandrasekaran
et al. [2022]

7 Concluding Remarks

Additive manufacturing techniques (i.e., 3D printing) are growing in different industries. How-
ever, the Naval and Offshore industry is characterized as conservative to changes and the major
development of AM has been in the aerospace and automotive sectors. The knowledge generated
by those sectors and the most recent implementation of that technology in the naval and offshore
industry can reveal the benefits and challenges. WAAM and titanium alloys for the those industry
is still a new topic and there are several technical challenges such as oxidation protection, distor-
tion control and static environment. Regarding ship propellers and offshore systems such as risers
and offshore wind platforms there is a wide opportunity to explore materials and design in WAAM
systems to reduce cost and improve hydrodynamic and mechanical performance.
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Abstract
Fatigue can be understood as a process of progressive localized plastic strain

that occurs in a material subject to cyclic stresses and strains at high stress con-
centration locations, whose concentration can cause cracks and culminate in the
material’s fracture. The fatigue process begins with the appearance of the crack,
later on with growth, and finally propagation. The study of this phenomenon can
be divided into the function of the material life in low and high cycle fatigue, but
some studies address problems in the ultra-low and high number of cycles. This
chapter addresses aspects of low cycle fatigue, as it is a relatively unexplored area
and for which there are few references. Therefore, the main objective of this text
is to describe the main aspects of low cycle fatigue, presenting diverse applications
and potential problems in the context of fatigue behavior of materials. For this con-
tribution, a review of the technical literature will be presented, considering relevant
publications in the last decade. The text overview considers experimental and numer-
ical aspects, fatigue damage, fracture behavior, thermomechanical fatigue, as well
as real cases describing how a low-cycle fatigue problem can be defined and the
way to approach it through the use of engineering tools found in the literature. Even
though the low-cycle fatigue approach and analysis technique covers all engineer-
ing, the purpose of this chapter will be on marine and ocean engineering. Several
cases described in the reviewed works will be addressed, where problems related to
welded structures, turbines, pipelines, risers, mooring chains, floating systems, and
wind platforms are presented, situations related to marine and offshore equipment
will also be described, showing how low cycle fatigue can present itself in the various
situations above, considering that low-cycle fatigue problems can cause structures
to fracture, which could consequently cause serious injuries to life and marine envi-
ronment. At the end of the chapter, potential applications and problems where this
phenomenon can appear will be presented.

Keywords: Low Cycle Fatigue, Review, Potential problems
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1 Introduction

In the context of mechanical engineering and the study of material fractures, the assessment of
the fatigue phenomenon becomes fundamental. Fatigue can be found in countless situations, from
traditional problems of component failures in aircraft, vessels, onshore and offshore systems, civil
structures, piping systems and various equipment. Fatigue-related problems can be approached
from an experimental or numerical point of view (Beesley et al. [2017]; Han et al. [2018]; Li
et al. [2021]), depending on the technological resources and infrastructure available for the study.
Fatigue fracture can be produced from mechanical failures, related to the type of loading or for
other reasons, such as metallographic defects, temperature effects, corrosion, among others (Shar-
ifi et al. [2016]); Hou et al. [2021]); Lee et al. [2020]; Li et al. [2021]; Jiang and Yang [2020];
Orlando et al. [2021]; Zhang et al. [2021]; Gemilang et al. [2021]).

The fatigue phenomenon can be described as a process of plastic strain, which is located in
certain regions of the material and progresses along the rupture surface, when a material is sub-
jected to localized strain and cyclic stresses, with the strain concentration it can cause cracks and
culminate in the fracture of the material, requiring the presence of three factors simultaneously:
dynamic stresses, tractive stresses and plastic strain (Jia and Ge [2019]). It is possible to affirm that
the fatigue process starts with the appearance of the crack (onset or nucleation), later on it propa-
gates (appearance of typical marks â beach lines) and finally the rupture. In general, the study of
this phenomenon can be divided as a function of material life in low and high cycle fatigue.

The main motivation for the production of this work is to be able to gather scientific contri-
butions related to low cycle fatigue in a concentrated way, material that can become a source of
research for students and researchers interested in the subject. The identification of phenomena
related to fatigue problems in naval structures, naval systems and artifacts, equipment, among oth-
ers, as well as the description of how to approach the problems and all this described in a single
text, was also an inspiration and a challenge for the authors.

The pricipal objective of the text is to carry out a literature review, describing the state of
the art in the context of studies related to low cycle fatigue, which have been published in recent
decades in high-impact scientific vehicles. Identifying applications from different areas of knowl-
edge, experimental and numerical methodologies as well as procedures are also objectives of this
chapter.

The bibliographical research is based on an exploratory search, in which works published
from the 2010s until the present time were considered, the articles have been resumed in Table 1,
which address different aspects and applications where low cycle fatigue is present. The research
sources are mostly scientific articles published in highly relevant scientific journals that address
topics related to: welded join, risers problems and wind turbines, among others. The texts were
analyzed chronologically, making a description of their contents, identifying the main aspects,
mainly methodological aspects, technical support and laboratory infrastructure (in the case of
experimental work), techniques and procedures adopted, as well as the results obtained. An item
was also structured with a description of potential problems which can be addressed through the
use of low cycle fatigue.

As a final product, a friendly text was obtained, which addresses the issues in a clear and
direct way, based on friendly writing, maintaining scientific rigor. This text can become a source
of research for students and researchers, especially those starting in this area of knowledge and
who need to find information related to the topic in a concentrated way in a single source.
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2 Research related to Low Cycle Fatigue - LCF

Research on Low Cycle Fatigue (LCF) focuses on works done from 2010 until the present. Since
the topic of fatigue encompasses a vast number of cases, the specific objective of this book is
related to the phenomenon presented only in naval structures and systems. We can distinguish
different types of research in LCF, some of the most characteristic are described below:

Ligaj and Szala [2012] proposed calculation formulas in high and low cycle ranges of differ-
ent metal alloys, those formulations consist of three methods expressed from stress, strain and a
hybrid method (Stress-strain). They performed comparative analyzes of C45 steel, using loading
programs; two-level and multi-level. The problems analyzed by the researchers finds applica-
tions on the analysis of naval structures and increases the ranges of analysis methods found in the
previous literature.

Wahab et al. [2013], proposed the use of Continuum Damage Mechanics (CDM) theory for
the analysis of high and low cycle fatigue. Then they apply this theory to a simple case such
as two plates joined using resin and to a friction fatigue problem, those problems were modeled
in ANSYS with the objective of predicting the fracture initiation time. The low cycle fatigue
initiation model is based on accumulation of plastic deformation, while for high cycle it is based
on the release of energy by plastic deformation.

Benoit et al. [2014] presented an experimental system that includes the effect of temperature
at the beginning of the fatigue fracture in low cycle problems, the analysis uses stainless steel as
material containing 18% Cr and welded test bodies. The study is used image correlation analysis to
obtain the deformation gradient of the test bodies. The analysis of the results were complemented
with the use of finite element analysis tools and observation of the fractured surfaces. Finally, they
proposed an energy model of micro-fracture growth.

Sharifi et al. [2016] presented a three-dimensional analysis of a low cycle problem found in
the cylinder head of an internal combustion engine, the fracture initiatives in the accommodation
of the intake and exhaust valves. The study focuses on simulating the durability tests of the
failed component, as well as the evaluation of the fatigue of low cycle.The analyses consider
five operating speeds of the engine, 750, 1650, 2075, 2350 and 2600 rpm. The cylinder head
is exposed to multi-axial cyclic loads. Low cycle failure theories such as critical plane theory
and accumulated damage are used to predict the fatigue. Numerical models corroborated that the
problem can be analyzed as an LCF phenomenon. The analyses founded that the sector where
the valves are accommodated to the cylinder head, which are exposed to high temperatures during
engine operation, are the critical areas prompt to LCF.

Amirinia and Sungmoon Jung [2017] studied the buffeting response from three hurricane tur-
bulence models which generated LCF damage in turbine tip blade and tower, this work is described
in section four. Hamidi Ghaleh Jigh et al. [2019] studied an aluminum foam subjected to com-
pression by means of the finite element method using representative volumetric elements, together
with the above, a series of experiments were carried out applying static loads that caused localized
plastic deformation, which leads to low cycle fatigue. This made possible to develop an algorithm
that calculate the low cycle fatigue models. The material used was aluminum AA6101-T6, the
static load experiments were carried out according to the ISO 13314 standards. The numerical
results were compared with the experimental results.

Lee et al. [2020] worked on the study of LCF in offshore oil pipelines caused by external
loads. Most of the damage in pipelines occurs in the weld bands, where are presented geometric
discontinuities. Along with this, external offshore loads such as currents, swells, and platform
movements can cause significant plastic deformation and fractures in a low cycle fatigue regime.
ASME 2007 Div. 2 adopts S - N curve for joint fatigue evaluation, in this work were carried out an
extension methodology of the S - N curve to evaluate the LCF. However, there is a limitation when
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describing the behavior of materials when they leave the elastic range of the material because most
of the materials in engineering exhibit hardening or softening when subjected to cyclical loads. In
this work, they propose an optimized prediction method which was validated with real fatigue data
obtained from welds belonging to pipelines used in the industry. It should be noted that this book
presents a new problem that could generate Low cycle Fatigue in this type of structure.

Gemilang et al. [2021] studied fatigue phenomenon in anchor chains of offshore platforms,
the authors proposed that the traditional system of S - N curves does not really predict the fatigue
life behavior of these chains. In this way, they propose a fatigue criterion based on critical mul-
tiaxial planes for anchoring chains that considers the damage produced by cyclical plasticization
and medium load effects. To develop these criteria, they used finite element models of the critical
points of the chains to obtain the multiaxial critical plane. The results are correlated by the con-
ventional fatigue curves. As a case study, the simulation of the mooring chains of an FPSO was
used, which shows that the effect of medium tension load significantly reduces the fatigue life of
the mooring chains, while the effect of plasticity inducing damage is more limited. The fatigue
damage using the proposed technique is significantly higher than the traditional approach using
the S - N curves.

There are more complex systems to be analyzed in the naval area, this is the case of offshore
wind turbines, as the case analyzed by Xu et al. [2021], which studied the bearing system to
support the Nacelle of a 5MW offshore wind turbine, these systems are subjected to aerodynamic
and hydrodynamic loads at the same time. Load analysis used time domain series of velocity
values to establish the loads for which this component is subjected in an offshore wind turbine,
various algorithms (Gumbel’s algorithm, rainflow counting algorithm and S - N curves) are used to
generate fatigue life load damage. To complete the study, he compared these loads for six types of
supports: Onshore, monopile, ITI System(details about this system can be found in Jonkman and
Matha [2011]), Tension Leg Platform (TLP), Spar and Semi-submersible. The results of the study
show that the dynamics of the wind turbine is directly related to the bearing that allows the Yaw
movement of the Nacelle and also that the subcomponents must be taken into consideration for
this type of calculation since they also may present low cycle fatigue problems.Another problem
present in naval and offshore systems are probabilistic loads, represented by irregular and / or
âstrangeâ waves, for this reason a probabilistic study of low cycle fatigue becomes an interesting
problem to be studied.

In Song et al. (2021) CDM combined with the cyclic plasticity model is used to evaluate the
Low Cycle Fatigue failure of a 10CrNi3MoV steel and its undermached welding. Numerical anal-
ysis using the finite element method and supported by ABAQUS is performed. The results make
it possible to estimate the fatigue life for both the base material and the undermached welding.

The work of Jiang et al. [2022] presents a model of low cycle fatigue life (ProbLCF-VA), to
describe the dispersion of the initiation of fractures by LCF in homogeneous materials subjected
to cyclic or random loads. This model can be implemented to estimate probabilistic cumulative
damage for a given load history consisting of variable cyclical loads, or to predict the probabilistic
onset of the LCF crack, if distributional estimate of a random load spectrum are available. The
proposed model describes certain predominant effects such as the interaction of loads and the
contributions of small cycles, which are very commonly observed in fatigue tests with cyclic
loads of variable amplitude but which can hardly be described by other models with physical and
mathematical fundaments.

As well as the previous cases there are other studies that illustrate low cycle fatigue, the fol-
lowing table aims to classify the different types of approaches of the studies in LCF to date (See
Table 1).

Morales, Leonel L. D., et al. (2022) Low Cycle Fatigue: Naval, Offshore Engineering pp. 184-208

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 188



Table 1: Description of revised works

Author Year Research type Material Experimental Loads
involved in Study

Ligaj and Szala
[2012]

2012 Analytical C45 Steel -

Wahab et al. [2013] 2013 Analytical - FEA - -
Benoit et al. [2014] 2014 Experimental 18% Cr Steel Thermal and mechanical
Sharifi et al. [2016] 2016 Analytical - FEA - -
Beesley et al. [2017] 2017 Experimental 18% Cr Steel Thermal and mechanical
Amirinia and Sung-
moon Jung [2017]

2017 Analytical Structural
Compo-
nents(Composite
fiberglass materi-
als)

Mechanical

Cahı́s et al. [2018] 2018 Analytical - FEA - Experi-
mental

PC-r5, PC-r45
Steels

Mechanical

Hamidi Ghaleh Jigh
et al. [2019]

2019 FEA - Experimental PC-r5, PC-r45
Steels

Mechanical

Jiang and Yang
[2020]

2020 Experimental AH32 steel Mechanical

Lee et al. [2020] 2020 Analytical - Experimental API 5L X65
pipeline Steel-
Sainless Steel 304

Mechanical

Zhang et al. [2021] 2021 Experimental Steel with
JQMG50-6
welding wire

Mechanical

Xu et al. [2021] 2021 Analytical - FEA QT-800 Dynamical
Aero/Hydrodynamic

Shaohu et al. [2021] 2021 Analytical - FEA - Experi-
mental

PC-r5, PC-r45
Steels

Mechanical Internal pres-
sure and bending

Orlando et al. [2021] 2021 FEM-Experimental-Time do-
main measurement

- Dynamical, non-stationary
and stationary

Gemilang et al.
[2021]

2021 Experimental - FEA R4 steel grade for
simulation

Dynamical, hydrodynamic

Song et al. [2021] 2021 Experimental - FEA 10CrNi3MoV
steel and its
undermatched
weldments

Mechanical

Hou et al. [2021] 2021 Experimental K4750 Ni-Based
superalloy

Thermo Mechanical

Jiang et al. [2022] 2022 Analytical - Mechanical

3 Fundamental concepts and categories of fatigue

Situations involving fatigue are highly complex and require a deep understanding of the cause of
the failure, in the case of naval artefacts and offshore structures, other variables appear that make
the problem even more difficult to be addressed. One way to predict fatigue failure is to carry out
the life estimate while still designing mechanisms or components. The main methods of studying
fatigue are the stress life method (S - N) and the strain life method (ε − N). A brief description
of these methods is provided below. The stress life method is the oldest and most used, indicated
for high cycle fatigue where the deformation is predominantly elastic. It is based on the stress
curve versus the number of cycles of the component, considering the fatigue life to total failure.
In general is used the Basquin equation for description of fatigue life. (Equation 1) Cui [2002]
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σa =
E ·∆εe

2
= σ′f · (2Nf )b, (1)

where E represent Young’s modulus, ∆εe is the elastic strain, σ′f is the fatigue strength coefficient,
N is the number cycles to failure, b is the fatigue strength exponent.
J. Kohout [2001] proposed an expression to describe fatigue for low and high number of cycles,
the function has the following form (Correia et al. [2017]):

σ = σ∞

[
N + B

N + C

]b
, (2)

where a and b are Basquin paranmeters, σ∞ is the fatigue limit, B (Equation 4) is the number
of cycles corresponding to the intersection of the tangent line of the finite life region and the
horizontal asymptote of the ultimate tensile strength, and C (Equation 5) is the number of cycles
corresponding to the intersection of the tangent line of the finite life region and the horizontal
asymptote of the fatigue limit Correia et al. [2017]. An equivalent equation when considering the
ultimate tensile (σ1 strength) is:

σ = σ1

[
1 + N /B

1 + N /C

]b
, (3)

B = β ·C, (4)

C = 107 · 1− α
α− β

. (5)

The expressions for α and β are defined as:

α =

(
σc
σ∞

)1/b

, (6)

β =

(
σ1
σ∞

)1/b

, (7)

where is σc is the fatigue limit for a pre-defined number of cycles (107).
On the other hand, the strain life method is more complex, indicated for low and high cycle fatigue,
with plastic and elastic strains. It is based on the strain life curve by the number of cycles of the
component, considering the fatigue life until crack nucleation. The contributions of elastic and
plastic strains are shown in the following equations:

∆εe
2

=
σ′f
E
· (2Nf )b, (8)

∆εp
2

= ε′f · (2Nf )c. (9)

Where ∆εe is the elastic strain amplitude, ε′f is the fatigue strength coefficient, E is the elastic
modulus, Nf is the number of cycle to failure, ∆εp is the plastic strain amplitude, ε′f represents
the fatigue ductility coefficient, b is the fatigue strength exponent and c is the fatigue ductility
exponent Correia et al. [2017], Cui [2002].

Combining Equation 8 and 9 and considering the superposition of elastic and plastic resis-
tance, an expression is obtained to estimate life in the high and low cycle ranges:

∆εT
2

= εa =
∆εe

2
+

∆εp
2

=
σ′f
E
· (2Nf )b + ε′f · (2Nf )c. (10)
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When the effects of mean stress or mean strain are included, the following equation is used:

∆ε

2
=

(σ′f−) · (2Nf )b

E
+ ε′f · (2Nf )c, (11)

where σm is the mean stress, being positive for tensile values and negative for compressive values.

3.1 Fatigue failure categories

Fatigue failure found in engineering materials is a direct function of the type of load and conditions
under which the phenomenon occurs. Sharma et al. [2020] presents a classification of the types of
fatigue failure that happens in materials used in engineering (See Figure 1).

Figure 1: Types of fatigue failure (Adapted from Sharma et al. [2020])

Considering the classification of mechanical fatigue, Neville and Sachs [2020] present three
categories, High Cycle Fatigue (HCF), Low Cycle Fatigue (LCF) and Very Low Cycle Fatigue
(VLC). A brief description of these categories is given below. The High Cycle Fatigue (HCF)
occurs when failure takes more than 104 cycles. According to the literature, constituting a sig-
nificant percentage of all fatigue failures. Components or mechanisms that suffer fatigue failures
in this category can take more than 105 cycles, in some cases reaching hundreds of millions of
cycles from the beginning of application of force to the final failure. Situations in which high cy-
cle fatigue failure occurs are common in several areas of engineering and are widely addressed in
the literature. Low Cycle Fatigue (LCF) is when the failure takes less than 104 cycles, in general,
this type of failure presents itself in a range around 25 cycles from the initial application of force
to the final failure. Failures in this category are not very common in industrial equipment, from
the point of view of stresses, it can be seen to involve situations in which loads are significantly
higher than high cycle failures. Very Low Cycle Fatigue (VLC) occurs less than 10 cycles after
charging begins. On the other hand, there are indications that the applied force was slightly less
than the force causing the failure. Very High Cycle Fatigue (VHCF) is can be found in situations
where the fatigue life is greater than 107 cycles. Industrial equipment failures in this category are
not very common, however the phenomenon is seen more often than low-cycle fatigue cases. This
category has very particular aspects, which differ from HCF and LCF, especially regarding plastic
strain levels. The term âinfinite lifeâ is usually used when a component has such a long fatigue
life that it will not fail due to this phenomenon. In carbon steels, the number of cycles considered
as infinite life must be greater than 106. On the other hand, finite life means that the component
will fail due to fatigue in a certain number of cycles. Figure 2 shows a schematic figure with the
ranges of the categories described.
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Figure 2: General ranges of fatigue stress cycles (Adapted from Neville and Sachs
[2020])

4 Description of Low Cycle Fatigue problems in offshore engineering

This section presents a description of specific jobs in the context of offshore engineering to which
low cycle fatigue is applied. The contribution made by Amirinia and Sungmoon Jung [2017] is
described, in which the problem of a wind turbine is addressed. Another work described is the
publication by Gemilang et al. [2021], where the problem of estimating the life of mooring chains
of an FPSO is investigated and finally the paper by Song et al. [2021], where the problem of
predicting the life of an undermached welding is studied.

One of the concerns in some structural analyses in LCF are the effect of climate change over
offshore structures, specially because the increment of hurricane events in places where offshore
wind turbines are installed or future develoment of OWT projects could be implemented. LCF
analysis can be evaluated to determine the structural integrity during this extreme events, the work
of Amirinia and Sungmoon Jung [2017] adress this issue, where three hurricane turbulence models
where considered to describe the energy amount which can affect the turbine during those short
periods.

Those wind turbulence spectrums are described as a superposition of eddies. Big eddies, which
represent small wave numbers or low frequencies, supply the most energy content of the turbulent
flow. In contrast, small eddies with high wave numbers in high frequencies dissipate the gained
energy. The three models are:

Kaimal model (Kaimal et al. [1972]):

nSu
σ2u

=
21.6f

(1 + 33f)5/3
. (12)

Model A:

nSu
σ2u

=
1

β
X

p1f
2 + p2f + p3

f3 + q1f2 + q2f + q3
. (13)

Where
√
β = σ/u∗is the turbulence radio, u∗ represents the friction velocity, and qiand pi are
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constants proposed by Yu et al. [2008].
Model B:

nSu
σ2u

=
16.66f

1.72 + 237.24f5/3
. (14)

Where f = nz/Uz is the normalized frequency, n is the frecuency, Suis the spectral density
of the longitudinal velocity fluctuation at height z, and σ is the standar deviation of longitudinal
velocity fluctuation.

The effect of those models where studied over the structure at the tower and blade of the wind
turbine.Buffeting response over the cited components is the main studied effect in this work.

The Buffetting load can be defined as the dynamic amplification of the structural response
of the turbulent component of the wind and the impulsive action of periodic gusts (A. Pipinato
[2022]).

Wind load on the wing turbine tower is given by:

Fwind(z,t) =

 ~fD(z)
~fL(z)
~Ma(z)

+

fD(z, t)

fL(z, t)

Ma(z, t)

 = ~f +Bfv + Cacṙ +Kaer. (15)

Where ~f = [fD(z, t), fL(z, t),Ma(z, t)]
T are quasi-static forcesBfv are Buffeting forces,Cacṙ

and Kaer are self exited forces, u and w are longitudinal and and lateral fluctuating parts of the
wind, r and rẤare structural position and velocity vectors.

v(z, t) = [u/Uw/U ]T . (16)

and
~f = [~fD(z), ~fL(z), ~Mα(z)]T . (17)

The therm Bfv in the Equation 15 denotes the buffeting force and can be expressed as:

Bf (z)v(z, t) =
ρU2D

2
[2XDu

~CDu(t) + (CD − ~CL)XDwW (τ)]. (18)

Due to wind fluctuations the therms u and w can be expressed as the convolution integrals:

Bf (z)v(z, t) =
ρU2D

2

∫ t

−∞
IDu(t− τ)u(τ) + IDw(t− τ)w(τ)dτ. (19)

Where IDu and IDw are the aerodynamic impulse functions in along wind and across wind direc-
tions respectively. The effects over the tower and blade tip of the three models for different wind
speeds can be described in figure 3 A and B, which describes the moments at those sections.

Those moments generated displacements as can seen in figure 4 A and B. With the above
information the low cycle fatigue analyses can be adressed, indicating very large loads in a short
period.The fatigue load over the structure can be represented as Miners Rule:

DI =

j∑
i=1

ni
Ni
. (20)

εa = εa,e + εa,p =
σf
E

(2Nf )b + εf (2Nf )c. (21)

Here the equation represents the LCF in the wind turbine steel tower. The LCF can affect the
fiberglass material of the blade structure, conventional test-load method and simplified load stress
method are the most common fatigue models for blades, the Coffin Mason ε-N curve describes the
LCF fatigue load during hurrican at 5 A and B for fiberglass.
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Figure 3: Mean of maximum (a) tower buffeting fore-aft base moments and (b) blade
root edge-wise buffeting moment for different wind speeds at 10 m height (Amirinia
and Sungmoon Jung [2017])

Figure 4: Mean of maximum (a) tower tip buffeting displacements and (b) blade
tip displacements for different wind speeds at 10 m height(Amirinia and Sungmoon
Jung [2017])

Figure 5: (a) Coffin-Manson ε-N curve and (b) fiberglass σ-N curve (Amirinia and
Sungmoon Jung [2017])

Since the mean wind speeds and turbulence intensities of various models were identical, the
mean load and accordingly the mean damage index caused by fatigue were almost the same; how-
ever, different turbulence spectrums resulted in different damage indices in buffeting responses.
Authors considered 2 h of hurricane load on the wind farm location, and presented tower base
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buffeting damage indices, where the spectrums Model A and Model B have average 53% smaller
and 12% larger damage indices compared to Kaimal (Kaimal et al. [1972]) models.Also, the au-
thors shows the blade root damage indices for different wind speeds and hurricane categories
where spectrum Model A and Model B resulted in 96% smaller and 24% larger damage indices
compared to Kaimal (Kaimal et al. [1972]) model.

Finally the authors stated that further Research is needed to address lateral fluctuation compo-
nents of Model B and investigate the responses such as tower side to side moment, blade flap-wise
moments, and damage indices correlated with lateral components.

In Gemilang et al. [2021]) low cycle fatigue is addressed, applied to an offshore mooring
chain. In the study, a multiaxial fatigue approach was carried out, since the effects of the stress-
strain state are neglected in a traditional approach, as is the case with the (S - N) method. The
chain geometry was defined in accordance with the requirements stipulated by the International
Association of Classification Societies (IACS), using R4 steel grade material for its manufacture.
The numerical solution, using the Finite Element Method (FEM), was carried out with the aid
of the commercial software ABAQUS, being modeled the problem in a simplified way, taking
advantage of the symmetry presented by the geometry of the chain. The model called Mono-
Rampi, based on bilinear isotropic hardening to derive the mechanical properties of the material,
is developed. From the model, it is possible to establish a prediction of the elastoplastic behavior
of the material, through a stress-strain curve, as shown in the Figure 6.

Figure 6: Stress strain curve for bilinear monotonic material model under mono-
tonic loading (Gemilang et al. [2021])

To evaluate the cyclic behavior of the material, the Chaboche constitutive model in linear is
used, based on combined isotropic-kinematic hardening, which allows to obtain the behavior of
the material for low cycle fatigue. The material response is shown in Figure 7.

To achieve the objectives of the study, the fatigue model based on the critical plane, proposed
by Smith-Watson-Topper (SWT) was used. In this method, the fatigue damage is assessed directly
in terms of local strains and stresses under progressive loading cycles. The SWT model can be
written as follows:

SWT = σn,max
∆εn

2
, (22)

where SWT is the damage parameter, σn,max is the maximum normal stress and ∆εn is the normal
strain range perpendicular to the critical plane during one cycle.

From Equation 23, a relationship is established which allows estimating the life until failure
of the material. The formula based on the SWT model has the following form:
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Figure 7: Evolution of the stresses with the number of cycles for Chaboche cyclic
material model under cyclic loading (Gemilang et al. [2021])

SWT = A1N
a1
f +A2N

a2
f , (23)

where Nf represent the number of cycles to failure, the constants A1, A2, a1, a2 are material
characteristic, determined by calibration tests from experimental data.

Figure 8: Fatigue life of mooring chains for the SWT (Gemilang et al. [2021])

Gemilang et al. [2021] perform simulations to estimate loads of the mooring line of an FPSO,
in a given configuration, for different sea conditions. They make a prediction of low cycle fatigue
life, considering the critical plane, the effects of cyclic plasticity and the mean load.

In the work by Song et al. [2021] Continuous Damage Mechanics combined with the cyclic
plasticity model is used to evaluate the Low Cycle Fatigue failure of a 10CrNi3MoV steel and its
undermached welding. The investigation takes an experimental and numerical approach, using the
constitutive Lemaitre-Chaboche model with kinematic hardening. Hysteresis loops are obtained,
evaluating the evolution of the maximum and minimum stress, as well as the accumulative plastic
strain per cycle for different stress levels obtained. The material used in the investigation was
quenched and tempered, and the V-groove joints were fabricated using the Single Pulse Gas Metal
Arc (SPGMAW) welding process. Cylindrical specimens were used, which were subjected to
a heat treatment to eliminate potential residual stresses. Tests were carried out to estimate the
Low Cycle Fatigue (LCF) life, for which an Instro testing machine equipped with strain gauges
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was used. The commercial program of Finite Element Analysis (FEA) ABAQUS, was used for
the numerical analysis, being implemented a routine to describe the yield surface, considering
nonlinear isotropic and kinematic hardening. The yield surface can be represented by the following
expression:

f(σ − α) =

√
3

2
(S − αdev)) : (S − αdev), (24)

where, σ is the stress tensor, αdev is strands for the deviatoric part of the back stress tensor and S
is the deviatoric stress tensor.

Song et al. [2021], establish that the evolution of damage, under cyclic loading, can be mea-
sured through the variation of the Young’s modulus, for this a relationship between elasticity,
plasticity and damage is proposed, through the following expressions:

Di = 1− Ei
E′
, (25)

where, Di represents the ith cycle, E′ is the initial Youngâs modulus, and Ei is the apparent
Youngâs modulus of the ith cycle.

Di = 1− ∆wi
∆w0

, (26)

where ∆wi the apparent hysteresis energy density of the ith cycle, ∆w0is the hysteresis energy
density after cyclic softening.

The initiation of damage for ductile materials subjected to LCF is related to the cyclic hystere-
sis energy which can be represented as follows:

N0 = c1 ·∆wc20 , (27)

where N0 refers to the number of cycles of the damage initiation and ∆wi is the hysteresis energy
density of the stabilized cycle. The parameters c1, c2 are the material constants, which are fitted
from the experimental tests. The linearized Equation 27 can be written as:

log(N0) = c2log(∆w0) + log(c1), (28)

here, N0 stands for the numbers of the cycle before hysteresis loop stabilization according to
experimental data.

Another important aspect to be described is the damage evolution, in this study a relationship
based on the plastic hysteresis energy density is proposed, represented by the following equation:

dD

dN
=
c3∆w

c4

L
, (29)

where ∆w is the average of the plastic hysteresis energy density of the stabilized cycle. The
constants c3 and c4 represent the material properties. L is the characteristic length associated with
an integration point.

Analogously to the initiation of damage, it is possible to obtain the parameters c3 and c4,
through the following expression:

log(Ne) = log(
L

c3
∆D)− c4log(∆w). (30)

After obtaining the constants c3 and c4, by means of a curve fitting, it is possible to obtain a
final fatigue life equation

Nf = c1 ·∆wc20 +
L

c3 ·∆wc4
· 1

(1− c4)
. (31)
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The comparisons of the experimental and numerical results of the first hysteresis cyclic stressâstrain
curves of 0.6% and 0.8% are shown in Figure 9 for the metal base and Figure 10 for undermatched
welds. The stable hysteresis loop at half-life cycle from the strain range from 0.6% to 1.2% for
base metal and weldments is presented in Figure 11. The fatigue life prediction performed by
Song et al. [2021] can be seen in the Figure 12.

Figure 9: Experimental and simulation comparisons for metal base (10CrNi3MoV
steel) (Adapted from Song et al. [2021])

Figure 10: Experimental and simulation comparisons for undermatched welds
(Adapted from Song et al. [2021])

5 Identification of new potential problems in Low Cycle Fatigue

One of the main purposes of this review is search for novel problems related to LCF in Ocean
Engineering, two cases are described above, this work doesn’t intend to give a solution, the authors
are working in the analyses of those issues and pretend to give more details in future works.
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Figure 11: Experimental data and simulation results of hysteresis loops at the half-
life cycle for specimens (Adapted from Song et al. [2021])

Figure 12: Fatigue life prediction of different materials (Adapted from Song et al.
[2021])

5.1 Problem for an Offshore structure: Internal Oceanic Waves (IOW)

The potential problems associated to LCF in offshore systems are intrinsically dependent on the
characteristics of oceanic environment forcings. In this context, (IOW) represent the most ener-
getic high-frequency event in coastal oceans, as well as in ocean basins. The amplitude of typical
IOWs can reach tens of meters, acting as an important generation mechanism for currents and
turbulence (Pomar et al. [2012]). The IOWs develop in the density gradient of the permanent
thermocline, the lower limit of the oceanic mixture layer.

The main generating mechanism of these waves is the tidal current excitation over the deep
oceanâs density structure. For this reason, they are commonly called internal tides (Apel et al.
[1995]). Oceanic thermoclines occur at varying depths (usually between 20 and 600 m), with
density gradients of the order of 10−2 to 10−3 kg/m3/m, generating Brunt-Väisälä periods of the
order of 100 to 300 s. The combination of high fundamental periods with low vertical velocity
gradients means that the Richardson numbers of these environments can frequently exceed the unit
by far.

The interactions between the moving thermocline and the topographic irregularities of the
continental shelf can cause resonant effects or the eventual break of internal tides. This gives rise to
another type of oscillatory phenomenon, with frequencies close to those of Brunt-Väisälä waves,
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so-called internal solitary waves (ISWs). ISWs are characterized by being nonsinusoidal and
nonlinear and by presenting themselves in the form of isolated groups of complex shape, generated
periodically according to the internal tides. These groups generally present 3 to 12 ISWs with
decreasing amplitudes (Apel [2002]), as descripted in Figure 13. Garrett and Munk [1979] provide
an extensive review of the physical properties of internal oceanic waves.

Figure 13: Typical horizontal dimensions associated to the groups of ISWS ( Apel
[2002])

Unlike internal tides, ISWs generate short waves (wavelengths varying from 102 to 103 m)
that sharply alter the free-surface roughness, allowing their detection by Synthetic Aperture Radar
(SAR) satellite images. In Figure 14 Jackson and Apel [2004] illustrate how widely distributed
this phenomenon is, being especially relevant in regions where the existence of expressive astro-
nomical tides and extensive continental shelfs are combined.

Figure 14: Localization of observed OIW and ISW making use of SAR satellite im-
ages( Jackson and Apel [2004])

In the sense of achieving a better understanding about the formation and propagation of ISWs
packets, as well as to describe its vertical velocity structure, computational fluid dynamics technics
represent a powerful tool. Figures 15 were obtained using a set of computational models developed
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under the Delft3D platform in the works of Molinas [2020] and Molinas et al. [2020] and represent
a hypothetical situation that resembles the typical characteristics of the ISWs packets that are
formed on the Amazon continental shelf (a worldwide hotspot for this phenomenon). Figure 15
(panel A) illustrates the surface signature of two consecutive ISWs packets moving away from
their formation zone in the shelf break (propagation to the right). The panel B of the same figure
highlights the crests and troughs of the nine ISW that form the packet to the left in the panel A.

Figure 16 shows the vertical structure of the horizontal currents associated to the passage of
one these ISWs packets. In comparison with Figure 15, it is important to notice that every water
surface crest in Figure 15 corresponds to a thermocline trough in Figure 16 (black lines represent
isopicnal surfaces). Antagonistic behaviors occur above and below the pycnocline.

Figure 15: Surface signature of the passage of two consecutive ISWS packets (Moli-
nas [2020] and Molinas Molinas et al. [2020])

In the upper layer (0 to 140 m depth), water surface crests (pycnocline troughs) correspond
to regions where the horizontal currents achieve their maximum velocities (up to 40 cm/s in the
first wave of the packet), coinciding with the direction of wave propagation. Water surface troughs
(pycnocline crests), for instance, represent regions of minimum velocities, still in the direction of
wave propagation but with intensities below 10 cm/s.

In the bottom layer (140 to at least 600 m depth), water surface crests (pycnocline troughs)
correspond to regions of minimum horizontal currents, achieving values of -10 cm/s, thus in the
opposite direction of wave propagation. Water surface troughs (pycnocline crests), for instance,
represent regions of local maximum velocities, still in the direction of wave propagation but with
intensities in the order of 10 cm/s.

This complex 2DV patterns of oscillatory horizontal velocities area capable of generating
major load on structures, especially in what concerns LCF, in the case of risers, flexibles, and
mooring systems those waves can potentially produce phenomenon associated to Vortex Induced
Vibration (VIV). In general, what we expect is the generation of nearly 10 cycles per semidiurnal
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Figure 16: 2DV structure of the horizontal current velocities associated to the pas-
sage of a ISWS packet (Molinas [2020] and Molinas et al. [2020]).

tide, what would represent a basis of 7,300 cycles per year or more than 200,000 cycles if we
consider a 30-year lifetime for a structure.

5.2 Problem for an Offshore structure: fatigue damage at the touchdown

In ocean engineering, various risers are crucial in the oil and gas (O&G) production systems,
conveying the multi-phase flows from the seabed to the floating platform. As a result, the marine
risers often need to suffer from complex excitations, including the wave-frequency (WF) responses
and low-frequency (LF) drift of the vessel, vortex-induced motion (VIM), and VIV. In addition,
the seabed and internal flows could also impact the behavior of the riser. Therefore, there would be
plenty of sources for fatigue damage of risers. The fatigue damage at the touchdown zone (TDZ)
of the steel catenary riser (SCR) is critical and has recently been paid much attention.

As the O&G exploitation steps into deeper water, the application of SCR becomes wider due to
its excellent combined performances of reliability and economy. However, as illustrated in Figure
16, the touchdown point (TDP) between the riser and seabed is found to be more susceptible to
appear stress concentration which leads to fatigue damage. According to the subsea survey by
remote operating vehicles (ROV), the trench will be generated beneath the SCR with a depth of
several riser diameters due to the riser-soil interaction.

Langner Langner [2003] investigated this self-trenching phenomenon of an SCR at the TDP of
soft seafloor. By comparing the fatigue damages with rigid seafloor, the curved trench was found
to reduce the fatigue risk at the TDP. The riser-soil interaction model, Randolph and Quiggin
[2009] proposed a non-linear hyperbolic function to model the seabed resistance forces due to the
penetration. With such a function, the high stiffness on reversal forces due to the small cyclic
displacements, and the asymptotic behavior with limiting penetration and uplift resistance, can be
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captured in the analysis of riser-soil interaction.
To deal with the conventional linear soil model, Hejazi and Kimiaei [2016] introduced the

âequivalent linear soil stiffnessâ instead of the complex and time-consuming nonlinear riser-soil
interaction model. The stress ranges corresponding to different SCRs were compared between the
proposed linear soil model with equivalent stiffness and the nonlinear soil model. A simplified
hyperbolic formulation of the equivalent linear stiffness was provided, which was noted insuffi-
cient in considering abundant geometrical parameters, irregular motions at different sea states, and
trench formation. To improve the efficiency, Qu [2015] proposed a simplified approach to deduce
the dynamic responses of the SCR by the dynamic amplification factors (DAFs). Meanwhile, the
performance of this approach was found dependent on the fitness of DAF evaluation. Therefore,
sensitivity studies were conducted to provide quantitative guidance in estimating DAFs and other
parameters.

In view of the limitations of linear riser-soil interaction (RSI) model, many research deter-
mined to develop the nonlinear RSI model. Wang et al. (Song et al. [2021], Wang et al. [2013])
introduced a TDZ element into the riser-soil interaction simulation to improve the accuracy of the
fatigue analysis at the TDZ.

The influences of seabed stiffness, soil suction forces, mudline shear strength and trench depth
were investigated on the fatigue damage, applying the linear hysteretic riser-soil interaction model
with TDZ element. As a result, the large seabed stiffness and mudline shear were found harm to
the fatigue life of the SCR, while the large soil suction and trench depth were found in favor of
the fatigue life. Later, Wang et al. [2013] conducted a large-scale model test of a truncated SCR,
where the two-dimensional (2D) in plane motion was imposed at the upper truncated point of the
SCR and its impacts on the fatigue damage were investigated.

In the tests, both the in-plane and out-of-plane VIV was induced by the 2D motion, while
their influences on the fatigue damage were found dependent on the amplitude and period of the
motion. Three critical locations of maximum fatigue damage were concluded by the model tests,
namely the TDP, upper sag-bend and top of the SCR.

Similarly, Yuan et al. [2021]carried out experiments to investigate the riser-soil interaction at
the TDZ, considering the VIV of the SCR. Both the length and depth of the trench was shown
to enlarge with severe heave excitation, while the heave level had less influence on the trench
location. Meantime, the VIV was exhibited to make the trench depth growing more smoothly.
To predict the fatigue damage of SCR coupling with in-line (IL) and cross-flow (CF) VIV, Wang
et al. [2014] further established a time domain approach based on the Euler-Bernoulli equation
with empirical hydrodynamic coefficients input.

The previous mentioned (Wang et al. [2015]) riser-soil interaction model was adopted in the
simulations which investigated the effects of IL and CF VIV on the fatigue damage of the SCR
along the TDZ. Regarding the impacts of trench formation on fatigue damage in the TDZ, Shiri
[2014] revealed that the final fatigue damage was independent on the order of the applied waves
and the number of the applied wave cycles, given initially created trench. Also, the peak fatigue
damage was no longer controlled by the maximum shear force once a trench was created initially.

Substantially, the fatigue of SCR is caused by the cyclic elastic-plastic-damage of the structure.
To investigate the constitutive behavior of a next-generation SCR material, i.e. X100Q, Devaney
et al. [2018] employed experimental and numerical methods, respectively, which captured the two-
stage fatigue damages, namely the early-stage microcracking damage and the secondary damage
accumulation. Integrating the low-Cycle fatigue (LCF) and high-Cycle fatigue (HCF) models, the
effects of strain range on the damage evolution was predicted successfully.

Also, the interdependency was revealed between the material degradation induced by fatigue
damage and the cyclic plasticity at the weld for a range of load cases. To clarify the influences
of trench on fatigue damage at the TDP, Shoghi and Shiri [2019] investigated the dependency of
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fatigue damage on the variable TDZ in the trench, due to the low-frequency drift of the vessel
using both analytical and numerical approaches. The peak fatigue damage was found decreased in
the far offset zone (FOZ), while increased in the near offset zone (NOZ), as illustrated in Figure
17.

Figure 17: The schematic view of the SCR considering soil-riser interaction

Also, the fatigue damage variation due to the trench effect was found dependent on the direc-
tion of the predominant fatigue sea states and the low-frequency excursion of the vessel.

6 Concluding Remarks

This chapter presents an updated compilation of works related to Low Cycle Fatigue and its ap-
plication in the context of naval and offshore engineering. A series of contributions published
in important scientific journals and relevant congress proceedings were described. The text was
structured in a friendly way and an easy-to-understand language so that it can contribute, espe-
cially for researchers who wish to start studies in the context of Low Cycle Fatigue. Furthermore,
a review of theoretical aspects was carried out, fundamentally softening numerical and experimen-
tal aspects. The identification of potential problems related to Low Cycle Fatigue, in the context of
offshore structures, were presented, in order to encourage the investigation and approach of these
and other issues related to the main theme of the text.

Fatigue failure of marine structures can cause catastrophic social,environmental, and economic
damage. Studying novel problems related to LCF in naval and offshore structures can avoid po-
tential accidents and improve safety in those systems. Future works aim to study the potential of
IOWs effects on naval and offshore structures, especially risers, umbilical, and mooring systems.
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Abstract

This chapter presents a comprehensive framework for the numerical modeling
of crack crowth in single crystal turbine blades with thermal barrier coatings for
large deformations. The first part presents a generalized numerical model where
phase transformation is coupled with mechanics for the life-time estimation of ther-
mal barrier coating (TBC) systems. That framework considers the oxidation induced
stresses generated in a TBC which is the prime factor that can lead to failure. The
second part considers the behavior of the substrate material which is a single crys-
tal where a thermodynamically consistent constitutive model based on micromorphic
continua is presented in order to simulate the regularized fatigue crack growth.

Keywords: turbine blade ; damage mechanics; cleavage, large deformations

1 Introduction

The inlet temperature of a jet engine determines its performance. Higher temperatures provides
increased power and improved efficiency. In that sense, the turbine section of the engine where the
highest temperatures are read is under severe thermo-mechanical loads and the life time estimation
of its components such as turbine blades is of great importance. Mechanical properties of single
crystals are strongly anisotropic and nonlinear. The cooling systems on the turbine such as ther-
mal barrier coatings and cooling holes bring certain complexity to the constitutive and numerical
modeling.

Depending on its service temperature and substrate material, modern turbine blades may come
both with or without a coating. A TBC mainly serve as a protective system against extreme tem-
peratures in order to improve the lifetime of the substrate material which is generally a single
crystal superalloy. Since the performance of the gas turbines improves by increasing inlet tem-
perature, a significant amount of research has been conducted focusing on the development of
coated systems (Jones [1996]). Deposited on the surface of a substrate material, a TBC system
is composed of two layers; a layer bonding the top-coat material to the metallic substrate and a
protective top-coat (DeMasi-Marcin et al. [1990]). The top-coat (TC) material is usually a ceramic
based material deposited on the bond-coat (BC), which provides the thermal insulation property
to the system. In this work, the top-coat is assumed to be produced by electron beam physical va-
por deposition (EB-PVD) method providing a structurally more flexible protective ceramic layer
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Figure 1: Gas turbine blade with TBC where a thermally grown oxide is developed
in the structure.

due to the porous and columnar microstructure. That morphological structure further provides
high strain compliance which improves the resistance of the coatings against failure and spallation
(Vaidyanathan et al. [2000]).The metallic bond-coat acts as an intermediate layer which provides
bonding and decreases the material mismatch in the case of thermal expansion. During the ser-
vice life a third layer is generated between TC and BC due to the oxidation of the BC which is
called thermally grown oxide (TGO) (Fig. 1). That extra layer is formed due to the chemical reac-
tion created by inward transportation of oxygen anions and outward transportation of aluminium
cations from BC. Due to the significant change in the volume of the oxide, internally high stresses
are generated between BC and TC, which act as the prime failure mechanism of the TBC systems
(Miller [1995]).

Considering TGO as a growing new phase in the TBC system, numerical modeling of the
whole structure includes coupling of various phenomena. This multiphysics nature involves me-
chanical, chemical and thermal processes. There are several attempts in the literature where the
growth of the TGO is modeled as a new phase in the system (Chang et al. [1987] Cheng et al.
[1998] He et al. [2000, 2003] and Xu et al. [2003]). Lately, failure of the system due to chemo-
thermo-mechanical nature of the problem is also studied for finite deformations (Evans et al.
[2008] Ammar [2010], Loeffel et al. [2013] and Al-Athel et al. [2013]). Considering the growth
of TGO, this works follows the theoretical framework presented in the authors previous modeling
attempt where phase transformation is coupled with mechanics is developed for the life-time esti-
mation of TBC systems and a modified version of the Allen-Cahn type phase field approach (Sait
et al. [2020]). Despite the advances made in the simulation of the oxide growth and oxidation-
induced stresses in the structure, less progress is made in modeling the damage evolution and
failure simulation of TBCs. In that sense, this work introduces the continuum damage mechanics
into the coupled model where a strain based damage variable is defined which directly contributes
to the stretching tensor.

Considering the substrate material as a single crystal superalloy, modeling of anisotropic be-
havior and complex microstructure becomes essential. Apart from the TBC systems where crack
initiation and the local failure of the TBC systems can be considered as the end of life time, inves-
tigation of crack propagation is more important for the substrate, since a crack may develop but
not advance around a cooling hole. Therefore consideration of crack growth modeling becomes
a necessity. In single crystals cracking is observed on slip systems in specific crystallographic
planes following an intense shear activity under monotonic or cyclic loading conditions (Aslan
et al. [2011]). In the literature, there are many modeling attempts where damage localization takes
place on crystallographic planes coupled with inelastic deformations (Flouriot et al.,Parisot et al.,
Musienko and Cailletaud). However, conventional strain based approaches are not able to capture
mesh independent localised crack thickness, since a material length scale is not introduced to cap-

Azlam, Özgür (2022) Modeling of Damage in Turbine Blades for Large Deformations pp. 209-230

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 211



ture the size-dependent phenomenon. At this front, initial modeling attempts introduces a length
scale is in the plasticity theory (Aifantis [a,b]). The proposed approach is further extended in sev-
eral works (de Borst and Muhlhaus, de Borst et al., Borst and Pamin [1996]) and established as
so-called gradient plasticity theories (Engelen et al., Geers [a,b]). The author of this chapter also
contributed this field introducing micromorphic approach to damage mechanics in several works
(Aslan and Forest [2009], Aslan et al. [2011], Aslan and Bayraktar [2020],Aslan and Bayraktar
[2021]). This chapter further develops the gradient damage approach for finite strains and presents
the capability of the model for crack growth.

All the presented theories within the chapter are implemented for the commercial finite ele-
ment program Abaqus/Standard by writing a user-element subroutine (UEL).

2 Numerical Modeling of TBCs

2.1 Kinematics

Considering a continuous and smooth function x = χ(X, t) which maps the motion of a material
point of body B from reference configuration denoted by X to the spatial point xof the configura-
tion at time t; the deformation gradient, the velocity, the velocity gradient and the Jacobian read
the following:

F = ∇χ, v = χ̇, L = grad(v) = ḞF−1, J = detF (1)

Following The Kröner’s decomposition (Kröner [1959]), the deformation gradient can be de-
composed multiplicatively as

F = FeFi (2)

where Fe represents the elastic distortion which includes the stretch and rotation and Fi is the
inelastic distortion due to plasticity and damage. Then the velocity gradient is decomposed in the
following form.

L = Le + FeLiFe−1 (3)

where,

Le = ḞeFe−1, Li = ḞiFi−1
(4)

The right polar decomposition of Fe gives,

Fe = ReUe (5)

where Ue is right stretch tensor and Re is rotation tensor . The right elastic Cauchy-Green
tensor is defined as,

Ce = (Ue)2 = FeTFe (6)

For the strain measure Hencky’s strain is adopted,

Ee = ln(Ue) (7)

Following the decomposition given in equation (2), the Jacobian can also be decomposed as,

J = JeJ i, Je = detFe > 0, J i = detFi > 0. (8)
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The elastic and inelastic stretching and spin tensors are,

De = symLe, Di = symLi (9)

We = skewLe, Wi = skewLi (10)

and the plasticity is assumed as irrotational

Wi = 0 (11)

The rate of inelastic deformation gradient would be

Ḟi = DiFi (12)

The total stretching tensor can be decomposed additively into its elastic, and inelastic parts:

D = De + Di (13)

Eq. (13) is further formulated separately for each layer which considers the plasticity and
damage in the inelastic part. Inelastic stretching tensor can be split additively as follows:

Di = Ds + Dp + Dd (14)

where Ds introduces the volumetric swelling, Dp is due to the viscoplastic deformation and
Dd represents the stretching due to damage. Following the work of Sait et al. [2020] the swelling
Ds due to oxidation is defined as,

Ds = φ̇S (15)

where φ is the variable for phase field, defining the TGO as a new phase, and S is the volu-
metric swelling strain tensor defined using normal, βl, and inplane, βt, growth parameters and n
is the surface normal to the interface profile as follows.

S = βln⊗ n + βt(1− n⊗ n) (16)

Dp is composed of inelastic stretching of the bond-coat and the TGO in the interface:

Dp = (1− φ)Dp
bc + φDp

ox (17)

where Dp
bc and Dp

ox are plastic stretching tensors for BC and the TGO respectively. For both
the oxide and the bond-coat material (i = bc, ox) the plastic stretching is

Dp
i =

√
3

2
Np ˙̄εpi (18)

where the plastic flow direction is determined from,

Np =
Dp
i

|Dp
i |

(19)

and the evolution equation for ˙̄εpi

˙̄εpi = ε̇0〈
σ̄ − Yi
Si
〉
1/m

(20)
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Figure 2: Lateral and transverse cracks in the system and spallation of the top-coat
due to coalescence of the cracks.

where ε̇0 is the reference strain rate, Y is the plastic threshold, m is the rate sensitivity parameter
and σ̄ is equivalent stress which is going to be defined in the next section. In the same spirit; the
damage stretching is defined as

Dd = ˙̄εdNd (21)

where ˙̄εd and Nd are the equivalent damage strain rate and damage flow direction respectively
and,

Nd = n⊗ n (22)

Considering the experimental observations in the literature (Walter et al. [2000a]), the damage
is accumulated in the interface region and also in the columnar structure of the top coat (see Fig.2).
Therefore, an opening mode of fracture where n is a predefined unit vector normal to the damage
plane is adopted. Finally evolution equation for the damage variable can be chosen similar to
plasticity as

˙̄εd = ε̇0〈
σ̄d − Y d

Sd
〉
1/m

(23)

2.2 Balance Equations

The presented model considers several physical phenomena bringing new degrees of freedoms and
balance equations which are strongly coupled. Neglecting inertial effects in the body, the balance
of linear momentum can be expressed as,

Div(TR) + b = 0 (24)

where TR and b are the 1st Piola-Kirchhoff stress tensor and the body force vector respec-
tively. The first Piola stress becomes,
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TR = JTF−T (25)

The Mandel stress is defined in the intermediate configuration as,

Me = CeTe (26)

The second Piola stress can be expressed as,

Te = Fe−1Fe−TMe (27)

Finally, the Cauchy stress can be computed using the equation below.

T = J−1FeMeFeT (28)

In this study, the moving phase is modelled as variation of a continuous model proposed by
Allen-Cahn, which is an extension of the Cahn-Hilliard model (Cahn and Hilliard [1958]) used
for the description of two-phase domains. Thermodynamical considerations of the approach is
presented in the previous work (Sait et al. [2020]) and shall be excluded here for the sake of
clarity.

For the normalized concentration of species c ( for 0 ≤ c ≤ 1) and the modified phase field φ
(for 0 ≤ φ ≤ 1) balance equations are defined as,

ċ = Div
(
M∇(

∂ψ0(c, φ,Ee)
∂c

)
)

(29)

βφ̇ = Div(α∇φ)− ∂ψ0

∂φ
(30)

where ψ0,M, α and β represent the free energy density, the mobility tensor, a tensorial and
a scalar phase field parameter, respectively. Additionally, an auxiliary equation is defined with
a scalar parameter π which provides the gradient of tr(Ee) term that takes place in the coupled
equations.

P = πtr(Ee) (31)

where P is the auxiliary field variable, and Ee is the elastic strain tensor.

2.3 Specialization of the Constitutive equations

Following the Allen-Cahn definition of total free energy density, ψ is given by,

ψ(Φ) = ψ0(Φ) +
1

2
∇φ.(α∇φ) (32)

Considering the isotropy of the material, the free energy density can be defined in terms of
Φ(Ee, ν, c, φ,∇φ) (see Sait et al. [2020]) and a specific form of free energy density as a combina-
tion of mechanical and phase field parts for isothermal analysis can be written as,

ψ0(Φ) = ψM (φ,Ee) + ψφ(φ, c) + ψP (φ,Ee, c) (33)

with mechanical part of the free energy density defined as,

ψM (φ,Ee) = G(φ)|Ee|2 +
1

2
[K(φ)− 2

3
G(φ)]tr(Ee)2 (34)
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Considering G(φ) and K(φ) as the shear and the bulk modulus of the two phase material.
Their dependency on the phase field parameter is chosen as a linear function:

K(φ) = Kbc(1− φ) +Koxφ (35)

G(φ) = Gbc(1− φ) +Goxφ (36)

The phase field part is adopted from Kim et al. [1998],

ψφ(φ, c) = φ2(3− 2φ)ψ1(c) + [1− φ2(3− 2φ)]ψ2(c) + χφ2(1− φ)2 (37)

ψi(c) =
1

2
ki(c− ci)2 (i = 1, 2) (38)

where c1 and c2 are the maximum and minimum normalized concentration of species in the
domain and k and χ are material phase parameters. The coupled term in the free energy density is
formulated as,

ψP (φ,Ee, c) = −cmaxK(φ)P (c− c0) (39)

here cmax reads the maximum oxygen concentration in the alumina (see Grimes and Lagerlo
[1998]).

Using the free energy function, following state relations can be derived:

Te = 2
∂ψ(Φ)

∂Ce , η = −∂ψ(Φ)

∂ν
, µ =

∂ψ(Φ)

∂c
, E =

∂ψ(Φ)

∂∇φ
, P =

∂ψ(Φ)

∂φ
−Me : S (40)

with thermodynamic force P and energetic constitutive response function Ã.

Ã(Φ) = −∂ψ(Φ)

∂φ
(41)

Ã(Φ) = (3φ− 2)(ψ1 − ψ2)− 2χφ(1− φ)(1− 2φ)− (Kox −Kbc)(c− c0)cmaxP (42)

E = 2(α∇φ) (43)

P = Me : S + Ã(Φ) (44)

where λ is the lamé constant and 1 is the identity tensor. The chemical potential µ can be
calculated from the free energy function as:

µ = k1(c− c1)φ2(3− 2φ) + k2(c− c2)(1− φ2(3− 2φ))− cmaxK(φ)P (45)
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Mandel Stress Me, thermodynamic force Ã(Φ), E and P can derived in the following form,

Me = 2GEe + λtr(Ee)1 (46)

The deviatoric part of the Mandel Stress becomes,

Me
0 = Me − 1

3
tr(Me)1 (47)

The plastic flow direction Np is assumed to be colinear to the Mandel stress Me and codirec-
tional for both phases.

Np =
Me

0

|Me
0|

(48)

The equivalent tensile stress is defined as,

σ̄ =

√
3

2
|Me

0| (49)

In a similar fashion, equivalent damage stress can be determined from the projection of the
Mandel stress:

Nd =
Me

|Me|
(50)

σ̄d = |n ·Me · n| (51)

The material softening due to damage evolution is satisfied from the decay of the threshold
values. A generalized form is provided below:

Y (ε̄d) = Y0 − g(ε̄d) (52)

here Y0 is the initial value for the plastic or damage threshold and g is a softening function
depending on ε̄d. In this work, for the sake of simplicity, a linear softening is adopted for both
plastic and damage thresholds and the g function reads:

g(ε̄d) = Hε̄d (53)

where H is the softening modulus. Above framework is also adopted for topcoat where φ = 0
at all times which boils down the model into an elastoviscoplastic response with damage softening.
Note that damage normal vector n is defined as normal to the sinusoidal interface for bond coat
and normal to the columnar structure for the top coat (see Fig.2.).

2.4 Numerical Results and Discussion

Implementation of the model is carried out by using User Element subroutine (UEL) in ABAQUS
software. Two-dimensional quadrilateral elements with four nodes and bi-linear shape functions
are implemented for the plane-strain analysis. A total of five degrees of freedom (displacement
(u1 and u2), the normalized concentration of species (c), the phase field variable (φ) and the me-
chanical coupling term P ) are defined implemented at the element level.

Fig. 3. presents the numerical model problem analysed for the diffusion-deformation problem.
The geometry is a two-layer solid medium created with a 150µm top-coat and a bond-coat with
equal thicknesses. The problem is assumed to be isothermal at 1200oC. The phase field and
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Table 1 - Model Parameters
TC (EB-PVD) BC (FeCrAlY) TGO (Al2O3) Unit

G 15.68× 103 92.31× 103 132.0× 103 MPa
K 19.27× 103 200.0× 103 273.0× 103 MPa
Sα 7.0× 101 5.0× 102 1.0× 103 MPa
S0 2.0× 101 - - MPa
h 9.0× 103 - - MPa
m 0.25 0.4 0.4 -
ε̇0 0.5× 10−10 1× 10−4 1× 10−4 -
M22 2× 10−17 2× 10−17 2× 10−17 m5.s.mol/J
α22 3.62× 10−7 3.62× 10−7 3.62× 10−7 J/m
β 0.95× 106 0.95× 106 0.95× 106 J/m3

χ 3.92× 10−1 3.92× 10−1 3.92× 10−1 -
k1, k2 6.0× 103 6.0× 103 6.0× 103 J/mol.m3

c1 0.14 0.14 0.14 -
c2 0.90 0.90 0.90 -
βl - - 1.4× 10−1 -
βt - - 1.6× 10−3 -
cmax - - 0.8× 105 mol/m3

π C - - 1× 10−1 -
Y 1.55× 102 8.2× 102 8.2× 102 MPa
H −1× 103 −1× 103 −1× 103 MPa
ε̇0 1× 10−4 1× 10−4 1× 10−4 -
m 0.2 0.2 0.2 -

the concentration variables are set as φ = 1 and c = 0.92 at the top line and φ = 0 and c =
0.12 at the bottom. No flux boundary condition is applied on the left and right edges of the
medium.A hyperbolic tangent transition function is defined for the interface and 2µm transition
length is chosen for the hyperbolic tangent transition function. This length is in accordance with
the mesh sizes in the interface region of our finite element model (see Kim et al. [1998] and Ammar
et al. [2009]). Mechanical boundary conditions are as shown in Fig. 3. The right boundary is
constrained to remain vertical to mimic the continuity of the sinusoidal pattern in the system. The
mesh used has a minimum size of 0.5µm as concluded in the previous work (see Saeidi et al.
[2018]). The material parameters used in the analysis are presented in Table 1.

Figure 4. presents growing TGO as a new phase after 100 hours of oxidation. The growing
oxide layer creates high internal stresses which cause plasticity and damage. As it is clearly shown
in Figure 5. damage evolution takes place both in TC and BC. Since the damage is confined within
in the damage plane, crack propagation is parallel to the columns of ceramic top coat and it is along
the interface in the TGO region. Apart from damage strain, the internal compressive stress also
causes plastic deformation in TC, TGO and BC regions (see Fig. 6.). Those numerical results are
in good agreement with the literature (Tortorelii et al. [2003] and Walter et al. [2000b]).
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Figure 3: Finite element model of the model problem and mechanical BCs.

Figure 4: Maps for growing TGO as a new phase. After 10 hrs (left), 100 hrs. (right)
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Figure 5: Maps for accumulated damage on TC and BC, after 10 hours (left), 100
hours. (right)

Figure 6: Distribution of accumulated plastic strain and stress in vertical direction
for TC and BC
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3 Modeling of Crack Growth for Single Crystals

3.1 Kinematics

Considering the same configuration presented in section 2.1, elastic and inelastic part which con-
stitutes the plastic deformation and damage in a crystal can be expressed as follows:

F = FeFi (54)

Figure 7 represents such a deformation for inital and final configurations for a crystal.

Figure 7: Decomposition of the deformation gradient.

However, for the sake of simplicity and the clarity of the proposed theory, the plastic part of
the deformation gradient is neglected throughout this work. Then the deformation gradient reads

F = FeFd (55)

Fd represents the local deformation due to damage generated in the material. Note that Fd is
invariant with respect to rigid body motions that are carried by Fe. In the view of Eq. (3) and (4),
the velocity gradient can be decomposed in the following form:

L = Le + FeLdFe−1 (56)

where,

Le = ḞeFe−1, Ld = ḞdFd−1
(57)

and the jacobian can also be decomposed as

J = JeJd, Je = detFe > 0, Jd = detFd > 0. (58)

The elastic and inelastic stretching and spin tensors are

De = symLe, Dd = symLd (59)

We = skewLe, Wd = skewLd (60)

and damage evolution is assumed irrotational,

Wd = 0 (61)
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Figure 8: Schematic representation of the cleavage and two accommodation systems
to be associated to the crystallographic planes.

the rate of inelastic deformation gradient would be

Ḟd = DdFd , Fd(X,0) = 1 (62)

The damage stretching tensor is defined as

Dd =
∑

δ̇sN
d
s , (63)

where δ̇s is the damage rates initiated at each damage system which is a scalar internal variable
and Nd

s is the damage flow direction tensor.

The damage evolution is a combination of following crystallographic contributions:

ḞdFd−1 = Dd =

Nd
planes∑
s=1

δ̇scns ⊗ ns + δ̇s1ns ⊗ ls1 + δ̇s2ns ⊗ ls2 (64)

where δ̇sc δ̇
s
1 and δ̇s2 are the strain rates for mode I, mode II and mode III crack growth, re-

spectively and Nd
planes stands for the number of damage planes which are fixed for a given crystal

structure. The direction of the cleavage damage is defined by the opening δs of crystallographic
cleavage planes with the normal vector ns. Other damage systems must be introduced for the
inplane accommodation along orthogonal directions ls1 and ls2, (Fig. 8) and they are only activated
if the cleavage damage is initiated. Finally, three damage criteria associated to one cleavage and
two accommodation systems take the following form:

fsc = |ns ·Me · ns| − Y s (65)

f si = |ns ·Me · lsi | − Y s (i = 1, 2) (66)

where Y is the damage threshold and the scalar damage is simply the accumulation of damage
generated in all systems.

ḋ = |δ̇sc |+ |δ̇s1|+ |δ̇s2| (67)

The correspond equivalent stresses projected on to the damage system becomes:

σ̄s = Me : Ns (68)
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Figure 9: Mesh dependency observed in crack growth simulation of a CT specimen.

Ns
c = ns ·Me · ns , Ns

i = ns ·Me · ls (69)

Finally, the scalar damage rate is defined as

ḋ =
∑
|δ̇s| (70)

Considering the damage flow similar to Eq. (23), (52) and (53), damage in a single crystal
based on slip systems can be fully modelled. However, it clearly shown in the literature that such
an approach creates mesh dependent results and the ellipticity is lost and the problem becomes
ill posed when localisation starts (Aslan and Forest [2009], Aslan et al.). Figure 9. shows such a
mesh dependent solution for different mesh sizes yielding different localization bands.

In order to eliminate such a dependency, regularization of the damage fields is required. In
that perpective, micromorphic approach will be introduced into the model in the next section.

3.2 Micromorphic Variable χd

Following the work of the work of Aslan and Forest (Aslan and Forest [2009]), the micromorphic
counterpart of the damage variable d is chosen as χd for the purpose of mathematical regular-
ization as an additional kinematical degree of freedom. χd is defined as a positive valued scalar
variable which constitutes a subset of micromorphic continuum named as microdamage contin-
uum. The details of the theory and thermodynamical considerations are deeply discussed by Aslan
and Bayraktar [2020] and Aslan and Bayraktar [2021].

In the scope of this work the free energy is taken as a quadratic potential as a function of
elastic strain, Ee, damage, d, microdamage, χd and its gradient,∇χd.

ψ(Ee, d,χd,∇χd) = µ|Ee0|2 +
1

2
κ(trEe) +

1

2
B(d−χd)2 +

1

2
β|∇χd|2 (71)
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Where µ, κ,B and β are positive material constants. Following Aslan and Bayraktar [2020]
and applying the method of virtual power, a generalized balance equation can be derived as fol-
lows:

Divb = β∆χd (72)

where b is the generalized traction which yields into the Helmholtz equation:

χd− β

B
∆χd = d (73)

Finally the modified damage criterion for linear softening becomes:

Y (d) = Y0 +B(d−χd)−Hd (74)

The semianalytical solution for Eq.73 is sinusoidal with a wave length of

ω = l

√
H

(B −H)
(75)

where

l2 =
β

B
(76)

3.3 Numerical Results and Discussion

As presented in the previous section implementation of the model is carried out by using User
Element Subroutine (UEL) in ABAQUS software with same element properties with one exception
that in addition to the displacement degrees of freedom (u1 and u2), microdamage variable χd is
defined as a nodal degree of freedom of the finite element formulation. The parameters used in the
simulations are provided in Table 2.

As a 2D regularization example, a plate under uniaxial tension with a horizontal cleavage plane
is investigated (see Fig. 10.). In order to trigger localization, an initial geometric defect is created
on the left edge and a displacement boundary condition is applied in order to create tension. The
wave length of the localisation band is manipulated by the varying values of β. FEA results show
that localization path is in good agreement with with the orientation of the cleavage plane and the
size of the localization band is controlled by l in Eq. (75)

Figure 10. also demonstrates the mesh independency of the size of the damage band with a
constant parameter set with varying mesh densities. Results clearly show the successful regular-
ization and mesh independency.

Similar regularized damage bands can be obtained on a rotated plane. In order to demonstrate
the capability of the model a 2D block with a the cleavage plane oriented at 25 degrees from
the horizontal axis is analysed with a central defect. FEA results show that localization path is
successfully matching with the orientation of the predefined cleavage plane and the size of the
localisation band is also successfully controlled throughout the crack (see Fig. 11).

As a final example, the CT specimen shown in Figure 9 is simulated with the regularized
model. With a changing β parameter, the damage band is managed to be controlled for a growing
crack under monotonic loading (see Figure 12.). The same example is also adopted for a cyclic
loading case (see Figure 13.) where the model shows a great potential to simulate crack bifurcation
and branching seen in the experiments done by Marchal [2006].
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Figure 10: Regularized damage bands in varying sizes manipulated by the parame-
ter β.

Figure 11: Regularized damage fields for a o25 rotated damage plane.

Table 2 - Model parameters for regularized damage model
µ (Pa) κ (Pa) β (Pa) B (Pa) Y0 (Pa) H (Pa)
70.0E9 150.0E9 1.8E3 6.0E9 200.0E6 1.0E9
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Figure 12: Regularized crack growth in a CT specimen for β (top) and 2β (bottom).
Field variable d

Figure 13: Qualitative comparison between the successive crack bifurcations in a
CT specimen (Marchal, 2006) and the numerical simulation showing the crack bi-
furcation and branching through 111 planes. Field variable d.
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4 Concluding remarks

In this chapter a comprehensive framework for the numerical modeling of damage in single crystal
turbine blades with thermal barrier coatings for large deformations is presented. In the first part a
finite element based phase-field model coupled with damage mechanics in the finite strain frame-
work for oxidation of TBC systems is demonstrated. The phase field approach and mechanics are
fully coupled within the model, where the thermodynamic consistency is also ensured. Presented
numerical results show that the successful coupling of oxidation and mechanics where damage is
initiated by internally generated stress due to the growing oxide. The proposed damage model for
TBC systems is able to capture crack growth both in TC and BC in accordance with the experi-
mental results demonstrating a great potential for predicting the lifetime of TBC systems.

The model proposed for single crystal substrate is specifically adopted to capture the dam-
age initiation and propagation on the predefined slip planes of the crystallographic structure. The
mesh dependency of the model is eliminated through the implementation of micromorphic theory.
Presented numerical results demonstrate that the proposed approach is suitable for large deforma-
tions and can provide damage initiation and growth in various orientations. Definition of damage
planes in accordance with the crystallography of the material enables the model to simulate crack
bifurcations and branching observed in the experiments in the literature.
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Abstract 
 During the 8th outage of the Angra 2 power plant, the expansion joints of the 
containment penetration JMK05D0201 (LCQ50) were found distorted. The cause was 
an inadvertent over pressurization made during monthly tests to verify the set 
pressure.  To leave the damaged expansion joint installed, Eletronuclear conducted 
an elastic-plastic analysis which has demonstrated its integrity.  Eletronuclear 
decided to keep it in place and cover it with an expansion joint designed to resist all 
loads predicted in the original design specification. This new design is a two-sided 
(bipartite) bellows with longitudinal field welds. This chapter presents the fatigue and 
stress analysis of the bipartite overlapping expansion joints considering the loads 
defined in the design specification. 

Keywords: expansion joints; stress analysis; fatigue, mechanical penetrations.  

 

1 Introduction 
In nuclear power plants expansion joints, also known as bellows, are frequently 
mounted in penetrations of the metal containment whose function is to maintain the 
sealing of the reactor building in case of an accident due to loss of primary refrigerant 
(LOCA – Loss of Coolant Accident).  The joints are designed to absorb the pressure 
stresses and thermal displacements from the heating and cooling that occur during the 
operation of the systems where they are installed. The project also includes other loads, 
such as pressure tests, seismic movements, and LOCA. 
During the Angra 2 outage held in 2010, the penetration expansion joints JMK05D0201 
(LCQ50) were found distorted, as shown in Figure 1. The cause of the observed 
deformation was excessive over-pressurization that was inadvertently imposed on the 
joints during the tests performed periodically to verify their water tightness. As this 
request was not foreseen, compression instability and subsequent buckling, known in 
the specialized literature as squirm, of the part occurred. 
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The evaluations carried out by the construction and engineering teams concluded that 
replacing the distorted joints with new ones would be extremely complex. Thus, 
Eletronuclear decided to leave them in service, and install another expansion joint 
overlapping each of them, designed to resist the same loads specified in the original 
design. The new configuration, installed in 2011, is a double joint, formed by two 
similar pieces, connected using a longitudinal weld performed during its assembly in the 
field. 

 

Figure 1 - Distorted penetration expansion joints (LCQ50) of the steam generator purge 
system 

The expansion joints under study belong to the steam generator purge system (LCQ). In 
each of its loops, this system has two joints connected to the penetration (or nozzle) of 
the containment shell, one on the side of the reactor building, the UJA, and the other in 
the annulus, the UJB observed in Figure 2 and 3. A fixed point inside the containment 
isolates the pipe joints from the purge system. As the double pipe, called the guard pipe, 
which protects containment in case of breakage of the process line, is fastened directly 
at the fixed point, there is no load transfer generated by the movements of the 
containment to the pipe. 
In this work, the stress and fatigue analysis is carried out to demonstrate that the 
configuration with the overlapping joint is adequate from the structural point of view. 
The evaluation is made by comparing the permissible limits of the codes and standards 
with the values calculated using loads of the original design, which are the internal 
pressure and thermal displacements in normal/abnormal operating conditions, the 
pressure during periodic tests, and displacements caused by LOCA and during the 
earthquake of safe shutdown plus burst pressure wave.  In the present case, the ASME 
code Section III Subsection NB, and the standard AD-2000/B13 were adopted for stress 
and fatigue checks, respectively. 
The stresses and deformations were determined by the finite element method, with the 
analyses made in ANSYS and conducted in an elastic regime for the operation load 
cases, and elastoplastic for tests and accidents. The model uses shell elements to 
simulate the joint, the tube between the bellows, and the double guard pipe. Contact 
elements are used to simulate the interaction between bellows. 

Suanno, Rodolfo, Maneschy, José E. (2022)                                  Stresses Expansion Joints in Penetrations pp. 231-259

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 233



 

Figure 2- Penetration of the steam generator purge system (UJA building) 

 

Figure 3- Penetration of the steam generator purge system (UJB building) 

2 Original and overlapping expansion joint 
The original configuration of the JMK05D0201 penetration expansion joint is universal, 
with one layer, without reinforcement, five convolutions in each bellow, and consisting 
of two joints connected by a cylindrical section tube, as illustrated in Figures 4 and 5. 
The joint was built to specification and manufactured from stainless steel 
X10CrNiNb18 9 (1.4550). 
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Figure 4- Original expansion joint 

 

Figure 5 – Original expansion joint. Convolution geometry detail (dimensions in mm) 

The overlapping expansion joint is bipartite, consisting of two identical half parts, 
which are connected by longitudinal welding made during assembly in the field. The 
representations in Figure 6 show the geometric details of the piece. The specifications, 
standards, and material for its manufacture are the same as the original joint. 

3 Finite element model 
As mentioned in Section 1, in each loop of the steam generator purge system there are 
two expansion joints, one attached to the inner side of the containment in the reactor 
building (UJA), and on the outside side, in the annulus (UJB). The loads on the joints 
are the internal pressure between them and the guard pipe, the thermal displacements of 
operation transmitted by the guard pipe, and the movements imposed by the 
containment nozzle during tests and accidents. For all these loadings the influence of 
the flexibility of the region between the fixed point and the expansion joint is negligible. 
Consequently, only one of them will be modeled since the interest is on the stresses 
acting in the expansion joint and guard pipe in the overlapping region. 
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Figure 6 - Overlapping expansion joint (dimensions in mm) 

 

Two finite element models were developed, one to simulate the original joint alone and 
the other to represent the original joint plus the overlapping. The expansion joint and 
guard pipe are modeled by SHELL281 shell elements (quadratic interpolation function) 
of the ANSYS program. By simplification, the part of the guard pipe that extends from 
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the expansion joint to the supports (fixed point on one side and containment nozzle on 
the other), is modeled with PIPE16 beam elements. The transition between the shell and 
beam elements that simulate the continuity of the guard pipe is done with rigid 
elements. Finite element models for both configurations are shown in Figures 7 through 
11. 

 

Figure 7- Original expansion joint 

 

Figure 8- Original expansion joint. The transition between shell and bar elements with 
rigid elements 
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Figure 9- Original and overlapping expansion joints 
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Figure 10 – Original expansion joint and overlapping joint (general and sectional views). 
The transition between shell and bar elements with rigid elements 

 

Figure 11- Sectional view and thickness of the original and overlapping expansion joints 

3.1 Material properties 
The original and overlapping joints are constructed with stainless steel X10CrNiNb18 9 
(1.4550). The mechanical properties obtained from DIN 17440 07/85 and MTS 
107.01.R2 for the various operating temperatures are shown in Table 1, with Rm tensile 
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strength, Rp0.2, and Rp1.0 the yield limits at 0.2% and 1.0% of strain, Sm the intensity of 
design stresses as defined in the ASME Code, E the modulus of elasticity and α the 
coefficient of thermal expansion. 

Table 1 - Properties of steel X10CrNiNb18 9 (1.4550) 

 

The stress versus strain curve for elastoplastic analysis is determined by the Ramberg-
Osgood equation, whose plastic portion is given in the form 

     𝜀
𝜀𝑜

= 𝛼 � 𝜎
𝜎𝑜
�
𝑛

     (1) 

with σ the actual stress, σo the reference stress, usually the yield limit, ε and εo the actual 
and reference plastic deformations, this last equal to σo/E. The α and n parameters are 
material constants obtained by the best adjustment of the real stress-strain curve 
obtained from the tensile test. 
The stress-strain relationships for the material with the characteristics of Table 1 at 
temperatures of 30°C, 80°C, and 116°C are shown in Figure 12. 

 
Figure 12 – Stress-strain curves for steel X10CrNiNb18 9 (1.4550) 

3.2 Boundary conditions 
Because the expansion joint located in the reactor building is anchored at both ends, one 
at the fixed point and the other welded on containment, Figure 2, movements are 
prevented in all directions. In the annulus, the joint is welded to containment at one end 
and guided (free axial displacement) through the auxiliary building on the other, Figure 
3. The anchors are modeled as shown in Figure 13, which shows rigid elements coupled 
to the nodes of the shell elements at one end of the expansion joint to a node at the 
central axis of the model, which is clamped in all directions. 
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Figure 13 - Restrictions to displacements representing the anchorage in penetration in 
the containment 

3.3 Basic loads 
The load cases for the analysis of the expansion joint are the same as the original joint 
design and are shown in Table 2.  Thermal displacements in the joint associated with 
the operating levels (B1+B2) are imposed by the guard pipe each time the purge system 
enters service. For the other levels, which depend on the movements of the containment 
during the pressure tests or accident events, the loading is defined by the axial and 
lateral displacements transmitted by penetration. 

Table 2 - Description of load cases 

Classification Level Loading Cases Description 
      
Operation B1, B2 1- Envelope normal operation/upset 
      
Test P 1-First Containment test 
    2-Periodic Leak Tightness Containment test 
      
Fault S 1- LOCA corresponding to the highest pressure 
    2- LOCA corresponding to the highest temperature 
    3- Earthquake – SSB (SSE+BWP) – Safe Shutdown 

Earthquake + Burst Pressure Wave 

Table 3 summarizes data taken from IWKA reports, and represents all load cases 
considered, inside (UJA-reactor building) and outside (UJB-annulus building) 
containment, in the original design of the expansion joints. The columns list for each 
load level the temperature, pressure range (pi=inside pressure, po=outside pressure), 
axial (δa), and lateral (δl) displacements respectively.  The highlighted rows represent 
the envelope loading conditions for each load case.  It is important to note that the load 
case P1 (First Containment Integrity and Leakage test) will not be considered in this 
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analysis because it is performed only at the commissioning phase of the plant and 
therefore will not be repeated. 

 

The internal pressure for the original expansion joint is considered applied in the 
volume between the expansion joint and the guard pipe.  For the overlapping expansion 
joint the internal pressure is applied in the volume between the overlapping expansion 
joint and the guard pipe once this case considers that the original expansion joint is no 
longer tight, and the overlapping expansion joint will perform its function. Table 4 
shows the envelope loading conditions for the joints located in the reactor building and 
annulus. 

 

4 Results of the analysis 
The methodology adopted here is to apply the loadings from the original design to the 
two finite element models, one for the original expansion joint and the other for the 
overlapping plus original joint. Thus, one can compare the stresses and deformations of 
each case and, from there, evaluate the changes that the modification introduces in the 
design configuration. 
The elastic linear analysis for the operating conditions (B1+B2) is conducted assuming 
two load cases acting separately: i) internal pressure; ii) thermal displacement 
transmitted by the guard pipe. The respective stress intensities, calculated by the Tresca 
criterion, are determined along the path shown in Figure 14, created to represent 
important quantities in the two finite element models. 
The stress intensity due to internal pressure in both models is calculated for the upper 
(TOP), middle (MIDDLE), and lower (BOTTOM) fibers, the first case is presented in 

Table 3 – Load cases for the expansion joints 

Table 4 – Envelope Loading Conditions for each load case for the expansion joints 
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Figure 15. The meridional and circumferential stresses in a convolution are obtained in 
these three fibers, with the result for the upper fiber indicated in Figure 16. 
The stress intensity for the upper fiber caused by the thermal displacement induced by 
the guard pipe for the operating condition (B1+B2) is illustrated in Figure 17, with the 
meridional and circumferential stresses in a convolution presented in Figure 18. 
Additionally, Figure 19 shows the stress intensity and deformations for thermal 
displacement along with a convolution for the overlapping plus original expansion joint. 
An elastoplastic analysis is performed for the other loading conditions (Test-P2, LOCA-
S1 and S2, and SSB-S3). The stresses and deformations in the two finite element 
models are obtained by simulating the properties of steel in the plastic phase with Eq. 
(1) and considering the material properties of Table 1. 
First, the stress intensity for the upper, middle, and lower fibers for the two models in 
the P2-Test condition is calculated. According to Table 4, initially, the external pressure 
of 0.5 bar is applied and then the displacements of the containment in the axial and 
lateral directions, whose values are 21.5 mm and 1.8 mm, respectively. The meridional 
and circumferential stresses for the fibers along a convolution path and their strains 
(total and plastic strains) are also determined. Because of the available space, the results 
are shown in the table in the next section and are not plotted. 
Figure 20 shows the stress intensity in the three fibers for the LOCA-S1 load case 
(maximum external pressure). According to Table 4, the internal pressure of 3.0 bar is 
applied, then the external pressure of 4.6 bar, and, finally, the axial and lateral 
displacements of the containment, equal to 44.0 and 16.8 mm, respectively. The 
meridional and circumferential stresses for the fibers along a convolution are indicated 
in Figure 21 and the total and plastic deformations in these directions are shown in 
Figure 22. 
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The determination of the stress intensity, meridional and circumferential stresses, and 
total and plastic strains for the LOCA-S2 load case (maximum temperature) is made 
initially with the application of the internal pressure of 3.0 bar and then with axial 
displacements of 60.6 mm and lateral displacements of 8.4 mm imposed by 
containment. These same amounts are found for the SSB-S3 case when the safe 
shutdown earthquake and pressure waves (SSE+BPW) are superimposed. First, the 
internal pressure of 3.005 bar is applied, and then the displacements of the containment 
in the axial directions, equal to 15.6 mm, and lateral, equal to 0.5 mm. The results are in 
the tables shown in the next section. 
 

Figure 14 – Path (CONVOL_1) used to represent the meridional and 
circumferential stresses 
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Figure 15– Original & Overlapping + Original Expansion Joints- Stress Intensity 
–TOP – Load case B1+B2 – Internal Pressure 
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Figure 16– Original & Overlapping + Original Expansion Joints - Stress Intensity 
–BOTTOM – Load case B1+B2– Internal Pressure 
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Figure 17– Original & Overlapping + Original Expansion Joints - Meridional and 
Circumferential Stress – TOP – Load case B1+B2– Internal Pressure 
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Figure 18– Original & Overlapping + Original Expansion Joints- Stress Intensity 
–TOP – Load case B1+B2 – Thermal Displacement 
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Figure 19– Original & Overlapping + Original Expansion Joints - Meridional and 
Circumferential Stress – TOP – Load case B1+B2– Thermal Displacement 
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Figure 20– Overlapping + Original Expansion Joints - Stress Intensity and Strain 
Intensity – TOP, MIDDLE, BOTTOM – Load case B1+B2– Thermal 

Displacement 
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Figure 21– Original & Overlapping + Original Expansion Joints - Stress Intensity– 
TOP, MIDDLE & BOTTOM – Load case S1 – Internal Pressure Followed by 

External Pressure + Containment Axial and Lateral Displacements 
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Figure 22– Original & Overlapping + Original Expansion Joints - Circumferential 
and Meridional Stresses– TOP, MIDDLE & BOTTOM – Load case S1 – Internal 

Pressure Followed by External Pressure + Containment Axial and Lateral 
Displacements 

Suanno, Rodolfo, Maneschy, José E. (2022)                                  Stresses Expansion Joints in Penetrations pp. 231-259

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 252



 

Figure 23– Original & Overlapping + Original Expansion Joints - Circumferential and 
Meridional Total Strains and Plastic Strains– TOP, MIDDLE & BOTTOM – Load 

case S1 – Internal Pressure Followed by External Pressure + Containment Axial and 
Lateral Displacements 
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5 Stress and fatigue analysis 
The stress analysis of the overlapping expansion joint for the operation case (B1+B2) 
was performed considering the rules of the ASME Code Section III NB-3200. Although 
this type of verification has not been adopted for the original joint, since the usual is to 
design it according to the criteria of AD- 2000/B13, here we opted for detailed stress 
analysis.  This alternative gave greater consistency to the structural design of the new 
piece and facilitated its approval with regulatory agencies in Brazil and Germany. For 
the other load cases, the qualification of the overlapping joint was by comparison 
between the results found in its analysis and the original joint. 
Expansion joints are used to add flexibility to piping systems. They must withstand 
internal pressure and, at the same time, be able to absorb, for example, thermal 
movements.  The latter are typically in the form of axial deflections or rotations and, in 
some cases, lateral displacements at the extremities. Because displacements depend on 
the number of times the system heats up and cools, the joint should be designed against 
fatigue. 
Joints when requested by internal pressure are subjected to circumferential and 
meridional stresses. These stresses are called primary, a term used by the ASME code to 
describe the stresses arising from the external loading, which must satisfy the 
equilibrium conditions, and which are not self-limiting, that is, once a limit value is 
reached, plastic flow or collapse occurs. Primary stresses differ from secondary stresses, 
which in turn have their magnitude reduced as the piece deforms. As secondary stresses 
are self-limiting, they cause fatigue but do not contribute to the fracture. 
In general, expansion joints are analyzed in an elastic regime, even when subjected to 
high stresses. This is possible because a significant portion of the stresses are secondary 
and therefore can exceed the yield limit without material failure. The fatigue curves of 
the ASME Section III code, for example, show values that exceed yield resistance and 
are therefore deformation curves versus the number of cycles. Thus, although the stress 
calculated in the elastic regime is not real, it serves as a measure of the strain imposed 
on the component. 
Tables 5 through 10 summarize the results for each of the load cases analyzed in the 
previous section. The terms that appear in the columns of the tables are identified as: 
S_CIR_MAX  Maximum circumferential stress (MPa) 
S_CIR_MIN   Minimum circumferential stress (MPa) 
S_MER_MAX  Maximum meridional stress (MPa) 
S_MER_MIN  Minimum meridional stress (MPa) 
S_INT_MAX  Maximum stress intensity (MPa) 
ET_CIR_MAX  Maximum circumferential total strain (%) 
ET_CIR_MIN  Minimum circumferential total strain (%) 
ET_MER_MAX  Maximum meridional total strain (%) 
ET_MER_MIN  Minimum meridional total strain (%) 
ET_INT_MAX  Maximum total strain intensity (%) 
EP_CIR_MAX  Maximum circumferential plastic strain (%) 
EP_CIR_MIN   Minimum circumferential plastic strain (%) 
EP_MER_MAX  Maximum meridional plastic strain (%) 
EP_MER_MIN  Minimum meridional plastic strain (%) 
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Table 5 – Summary of the Maximum/Minimum Circumferential and 
Meridional Stresses, Maximum Stress and Strain Intensity for Load case B1+B2 

- Internal Pressure 

 
S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)

TOP 20.711 -5.62 61.824 -57.003
MID 15.228 -6.924 3.588 -4.077
BOT 29.509 -25.246 57.044 -65.747

S_INT_MAX(MPa) ET_INT_MAX(%)
TOP 61.824 0.04
MID 16.22 0.011
BOT 65.747 0.043

S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)
TOP 23.598 7.716 57.902 -54.606
MID 26.635 -0.529 3.891 -3.833
BOT 42.859 -16.611 55.725 -50.12

S_INT_MAX(MPa) ET_INT_MAX(%)
TOP 62.501 0.041
MID 26.963 0.018
BOT 55.725 0.036

ORIGINAL EXPANSION JOINT

OVERLAPPING+ORIGINAL EXPANSION JOINT

Table 6 – Summary of the Maximum/Minimum Circumferential and Meridional 
Stresses, Maximum Stress and Strain Intensity for Load case B1+B2 - Thermal 

Displacement 

S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)
TOP 39.819 -80.091 175.795 -189.658
MID 58.382 -42.908 3.969 0.507
BOT 115.547 -94.224 197.516 -170.681

S_INT_MAX(MPa) ET_INT_MAX(%)
TOP 190.481 0.124
MID 58.382 0.038
BOT 197.516 0.128

S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)
TOP 76.667 -65.608 204.21 -204.714
MID 127.792 -109.596 8.858 4.174
BOT 178.917 -161.994 222.42 -189.968

S_INT_MAX(MPa) ET_INT_MAX(%)
TOP 244.154 0.159
MID 127.792 0.083
BOT 222.42 0.145

OVERLAPPING+ORIGINAL EXPANSION JOINT

ORIGINAL EXPANSION JOINT
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S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)
TOP 109.12 -57.001 197.901 -199.475
MID 41.275 -54.978 1.248 -5.916
BOT 123.347 -139.8 201.49 -207.454

ET_CIR_MAX(%) ET_CIR_MIN(%) ET_MER_MAX(%) ET_MER_MIN(%)
TOP 0.041 -0.057 0.2 -0.191
MID 0.041 -0.057 0.019 -0.02
BOT 0.041 -0.057 0.151 -0.162

EP_CIR_MAX(%) EP_CIR_MIN(%) EP_MER_MAX(%) EP_MER_MIN(%)
TOP 0.033 -0.042 0.106 -0.098
MID 0.021 -0.03 0.013 -0.015
BOT 0.009 -0.018 0.068 -0.079

S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)
TOP 85.529 -35.008 193.348 -194.055
MID 92.504 -111.072 2.866 -8.799
BOT 177.763 -189.879 199.447 -203.317

ET_CIR_MAX(%) ET_CIR_MIN(%) ET_MER_MAX(%) ET_MER_MIN(%)
TOP 0.112 -0.135 0.233 -0.239
MID 0.112 -0.135 0.05 -0.052
BOT 0.111 -0.135 0.145 -0.16

EP_CIR_MAX(%) EP_CIR_MIN(%) EP_MER_MAX(%) EP_MER_MIN(%)
TOP 0.08 -0.093 0.142 -0.144
MID 0.066 -0.08 0.037 -0.039
BOT 0.051 -0.068 0.069 -0.085

ORIGINAL EXPANSION JOINT

OVERLAPPING+ORIGINAL EXPANSION JOINT

Table 7 – Summary of the Maximum/Minimum Circumferential and Meridional 
Stresses and Strains for Load case P2  

S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)
TOP 95.2 -176.752 216.864 -252.585
MID 54.979 -73.253 16.233 -9.503
BOT 179.024 -140.07 257.957 -216.651

ET_CIR_MAX(%) ET_CIR_MIN(%) ET_MER_MAX(%) ET_MER_MIN(%)
TOP 0.258 -0.114 0.324 -0.99
MID 0.26 -0.07 0.027 -0.082
BOT 0.261 -0.07 0.825 -0.316

EP_CIR_MAX(%) EP_CIR_MIN(%) EP_MER_MAX(%) EP_MER_MIN(%)
TOP 0.255 -0.06 0.227 -0.871
MID 0.232 -0.044 0.02 -0.075
BOT 0.209 -0.029 0.721 -0.22

S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)
TOP 63.697 -164.054 233.535 -238.65
MID 99.05 -129.686 17.622 -7.141
BOT 213.449 -215.978 245.587 -234.766

ET_CIR_MAX(%) ET_CIR_MIN(%) ET_MER_MAX(%) ET_MER_MIN(%)
TOP 0.516 -0.301 0.613 -1.077
MID 0.517 -0.302 0.143 -0.199
BOT 0.519 -0.302 0.68 -0.473

EP_CIR_MAX(%) EP_CIR_MIN(%) EP_MER_MAX(%) EP_MER_MIN(%)
TOP 0.488 -0.255 0.503 -0.959
MID 0.467 -0.237 0.124 -0.186
BOT 0.447 -0.22 0.587 -0.376

ORIGINAL EXPANSION JOINT

OVERLAPPING+ORIGINAL EXPANSION JOINT

Table 8 – Summary of the Maximum/Minimum Circumferential and Meridional 
Stresses and Strains for Load case S1  

Suanno, Rodolfo, Maneschy, José E. (2022)                                  Stresses Expansion Joints in Penetrations pp. 231-259

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 256



 

S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)
TOP 86.096 -153.483 223.175 -227.011
MID 57.223 -42.412 10.927 -0.473
BOT 168.3 -150.65 230.614 -223.124

ET_CIR_MAX(%) ET_CIR_MIN(%) ET_MER_MAX(%) ET_MER_MIN(%)
TOP 0.215 -0.134 0.613 -0.753
MID 0.216 -0.134 0.066 -0.08
BOT 0.217 -0.134 0.593 -0.481

EP_CIR_MAX(%) EP_CIR_MIN(%) EP_MER_MAX(%) EP_MER_MIN(%)
TOP 0.208 -0.134 0.508 -0.644
MID 0.186 -0.112 0.06 -0.072
BOT 0.165 -0.09 0.499 -0.389

S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)
TOP 54.912 -134.506 221.804 -217.793
MID 111.14 -92.424 8.216 -1.778
BOT 210.961 -199.017 222.535 -220.61

ET_CIR_MAX(%) ET_CIR_MIN(%) ET_MER_MAX(%) ET_MER_MIN(%)
TOP 0.482 -0.376 0.838 -0.893
MID 0.483 -0.376 0.195 -0.202
BOT 0.484 -0.376 0.567 -0.481

EP_CIR_MAX(%) EP_CIR_MIN(%) EP_MER_MAX(%) EP_MER_MIN(%)
TOP 0.444 -0.35 0.729 -0.786
MID 0.425 -0.328 0.18 -0.186
BOT 0.407 -0.306 0.481 -0.395

ORIGINAL EXPANSION JOINT

OVERLAPPING+ORIGINAL EXPANSION JOINT

Table 9 – Summary of the Maximum/Minimum Circumferential and Meridional 
Stresses and Strains for Load case S2  

S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)
TOP 43.084 -89.158 156.929 -162.339
MID 44.265 -35.463 4.853 -1.946
BOT 110.502 -93.911 172.046 -160.585

ET_CIR_MAX(%) ET_CIR_MIN(%) ET_MER_MAX(%) ET_MER_MIN(%)
TOP 0.038 -0.026 0.116 -0.14
MID 0.038 -0.026 0.012 -0.013
BOT 0.039 -0.026 0.115 -0.092

EP_CIR_MAX(%) EP_CIR_MIN(%) EP_MER_MAX(%) EP_MER_MIN(%)
TOP 0.025 -0.015 0.04 -0.061
MID 0.017 -0.009 0.008 -0.008
BOT 0.008 -0.003 0.044 -0.024

S_CIR_MAX(MPa) S_CIR_MIN(MPa) S_MER_MAX(MPa) S_MER_MIN(MPa)
TOP 29.829 -68.497 157.956 -158.092
MID 91.725 -80.838 7.851 -3.891
BOT 153.62 -143.882 167.866 -160.582

ET_CIR_MAX(%) ET_CIR_MIN(%) ET_MER_MAX(%) ET_MER_MIN(%)
TOP 0.087 -0.073 0.147 -0.152
MID 0.087 -0.073 0.031 -0.03
BOT 0.088 -0.073 0.109 -0.093

EP_CIR_MAX(%) EP_CIR_MIN(%) EP_MER_MAX(%) EP_MER_MIN(%)
TOP 0.05 -0.042 0.069 -0.076
MID 0.042 -0.032 0.021 -0.02
BOT 0.033 -0.023 0.045 -0.03

ORIGINAL EXPANSION JOINT

OVERLAPPING+ORIGINAL EXPANSION JOINT

Table 10 – Summary of the Maximum/Minimum Circumferential and Meridional 
Stresses and Strains for Load case S3  
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The permissible stresses for case B1+B2 are obtained from Table 1 and the stress limits 
for the corresponding temperature are those of ASME code Section III NB-3200, [1], 
shown in Table 11. 

Table 11 – Admissible Stress for Primary and Secondary stresses  

 
The current stresses calculated according to ASME Section III NB-3200 and the 
respective stress limits are compared in Table 12. It is observed that the primary and 
secondary stresses meet the criteria of the code. 

Table 12 – Comparison between Primary and Secondary Acting Stress and Admissible 
Stress 

 
In fatigue analysis, only the operating conditions (B1+B2) are considered, since the 
number of cycles for the other conditions (P1, P2, S1, S2, S3) is very low. The stresses 
due to internal pressure and thermal displacements were obtained by elastic analysis and 
are shown in Tables 5 and 6. 
Fatigue analysis is performed based on effective total strain range curves versus cycles 
obtained by numerous tests conducted by joint manufacturers. The AD-2000/B13 
establishes the correlation 

    𝑁 = � 10
2.𝜀𝑎𝑔𝑒𝑠

�
3.45

   for 500≤N≤106   (2) 

where N is the number of cycles to failure and εages is the strain. The allowable number of Nallow 
cycles is 

    𝑁𝑎𝑙𝑙𝑜𝑤 ≤ 𝑁
𝑆𝐿

      with 𝑆𝐿 = 5.0    (3) 

Where SL is a safety factor adopted for cases in which there are no fatigue test results in 
the installed joint, as is the situation of Angra 2. 
From Table 6 the maximum total deformation intensity is 2εages=0.159%.  As the 
longitudinal weld of the overlapping joint was manufactured during assembly in the 
field, an additional safety factor of 4 is employed.  By replacing these values in the 
previous formula, we reach the allowable number of stress cycles Nallow equal to 2686 
cycles. 
It is noted that the calculated number is much higher than expected to occur during the 
remaining life of the plant.  The qualification of the modified configuration for the other 
load cases (Test-P2, LOCA-S1 and S2, and SSB-S3) was made by comparing the results 
obtained for the models with the original joint and those with the overlapping joint. 

Stress Category Admissible Stress (MPa) T=80°C

Pm = Primary Membrane Sm=145.50
PL+Pb = Primary Local + Bending 1.5 Sm=218.25

P+Q = Primary + Secondary 3.0 Sm=436.50

Stress 

Category

Acting Stress (MPa) 

Original expansion 

joint

Acting Stress (MPa) 

Original expansion 

joint

Admissible Stress 

(MPa) T=80°C

Pm 16.2 27.0 Sm=145.50
PL+Pb 65.7 62.5 1.5 Sm=218.25
P+Q 197.5 244.1 3.0 Sm=436.50
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Tables 7 to 10 show that even if there is an increase in plastic strain for the new 
configuration, these values are close to 1%, with a total strain value equal to 1.077% 
(load case S1). 

6 Conclusions 
This chapter presents the stress and fatigue analysis of the modification performed in 
the original expansion joint of the Angra 2 steam generator purge system. The 
amendment, which consisted of installing an overlapping joint capable of resisting all 
originally planned loads, was adopted to circumvent the problems arising from 
replacing the deformed joint with a new one. 
Two finite element models were developed, one to simulate the original joint and the 
other to represent the original plus the overlapping joint.  The analyses were performed 
under an elastic regime for the operation condition (internal pressure and thermal 
displacements) and elastoplastic for the test and accident cases (earthquake and LOCA). 
The overlapping joint was qualified for the operation loads (B1+B2) comparing the 
current stresses with the limits of the ASME Code Section III NB-3200. For fatigue 
analysis, the AD  2000/B13 procedure was followed. For the other requests (Test-P2, 
LOCA-S1 and S2, and SSB-S3) the structural qualification was made by comparing the 
results of both models, using the value of the calculated plastic deformation. 

References 

ASME Section III Rules for Construction of Nuclear Power Plant Components, ASME 
B&P Vessel Code, American Society of Mechanical Engineers. New York, 2010. 
AD 2000-MerkBlatt B13 - Single-ply bellows expansion joints. 
ANSYS 12.1® - User manual. 
DIN 17440 07/85 Stainless steels; technical delivery conditions for plates, hot-rolled 
strip, wire rods, drawn wire, bars, forgings, and semi-finished products. 
MTS 107.01.R2 – Material Test Sheet 
IWKA reports 501.02-300155/300156 – Bellows Design 
Ramberg, W.; W. R. Osgood. Description of Stress-Strain Curves by Three Parameters. 
NACA TN 402, National Advisory Committee for Aeronautics, 1943. 
Kraftwerk Union, Angra 2 BRA 011RSB Rohrdurchfuhrung Auslegungsblatt fur 
Kompensatoren ABK, V 245/134/82, Seite 13.1/13.2. 
Suanno, R., Fatigue and Stress Analysis of the Bipartite Overlapping Expansion Joints 
of the Containment Penetration JMK05D0201 (LCQ50) – Eletronuclear internal report 
BQ/2/LCQ50/110114 
Suanno, R., Maneschy, J.E., Francioni, M., Stress Analysis of the Bipartite Overlapping 
Expansion Joints of the Containment Penetration – Angra 2.  Proceedings of the ASME 
2012 Pressure Vessels & Piping Division Conference, PVP2012-78840, Toronto, 
Ontario, Canada. 

Suanno, Rodolfo, Maneschy, José E. (2022)                                  Stresses Expansion Joints in Penetrations pp. 231-259

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 259



 

260 
 

 

Chapter 10 
Leak-Before-Break Technology for 

Piping in Nuclear Industry 

 
 
 

Chapter details 

Chapter DOI: 
https://doi.org/10.4322/978-65-86503-83-8.c10 
 
Chapter suggested citation / reference style: 

Maneschy, José E. (2022). “Leak-Before-Break Technology for Piping in Nuclear 
Industry”. In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models 
for the Direct Problem,  Vol. II, UnB, Brasilia, DF, Brazil, pp. 260–276. Book 
series in Discrete Models, Inverse Methods, & Uncertainty Modeling in Structural 
Integrity. 

P.S.: DOI may be included at the end of citation, for completeness. 

 

 

 

 

Book details 

Book: Fundamental Concepts and Models for the Direct Problem 
Edited by: Jorge, Ariosto B., Anflor, Carla T. M., Gomes, Guilherme F., & Carneiro, 
Sergio H. S. 

Volume II of Book Series in: 
Discrete Models, Inverse Methods, & Uncertainty Modeling in Structural Integrity 
Published by: UnB City: Brasilia, DF, Brazil Year: 2022 
DOI: https://doi.org/10.4322/978-65-86503-83-8 

https://doi.org/10.4322/978-65-86503-83-8.c10
https://doi.org/10.4322/978-65-86503-83-8


Leak-Before-Break Technology for Piping in 
Nuclear Industry 

José Eduardo Maneschy  
 

JEM Consultoria. E-mail:emanesc@gmail.com 

Abstract 

 Leak-Before-Break (LBB) concept is applied in the nuclear industry to eliminate 
from the piping design the postulated guillotine breaks. The adoption of this 
technology allows to design mechanical component and supports without the high 
dynamic loads which results from the pipe rupture. This chapter shows how thermo-
hydraulics, material science, and elastic-plastic fracture mechanics are employed to 
apply the LBB technology to eliminate rupture from a large primary loop piping. 

Keywords: LBB; guillotine break; fracture mechanics; leak rate 

1 Problem Description  
The concept of leak-before-break (LBB) in piping has been used in the nuclear industry 
since the mid-1980s. The basic idea of the LBB is to perform an analysis to demonstrate 
that leakage through a circumferential crack (or flaw) is detected by the leakage 
monitoring system and the plant is shutdown before the unstable crack growth. The 
LBB demonstration involves some engineering disciplines, highlighting thermo-
hydraulics, materials science, and fracture mechanics. 
Historically, the LBB concept was developed to eliminate double-ended guillotine break 
loss-of-coolant accident (LOCA) from the structural design. LOCA is postulated to 
occurs in primary loop piping and other high energy lines, those with operating 
temperature or pressure greater than 200oF or 275 psig, respectively. Once the LBB is 
demonstrated these ruptures are excluded from the design basis and the dynamic 
stresses resulting from LOCA are not considered in the structural analysis of the 
mechanical components. As a result, it is no longer necessary to design the reactor 
vessel internals and nozzles, primary loop equipment and supports, and piping against 
these dynamic loads. 
Another advantage of applying LBB is that pipe-whip restraints and jet-impingement 
shields, both required to protect critical equipment from the dynamic effects of the 
postulated rupture, could be removed. As the costs of these protection elements are 
high, and in some cases their existence makes it difficult or even impossible to inspect 
components in service, the removal or non-installation of these restraints and shields is 
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highly desirable not only for economic reasons, but also, to reduce the radiation dose 
received by maintenance personnel. 
The most common approaches to apply LBB are those based on the J/T methodology or 
on the limit load theory. The two mandatory technical references for LBB analysis in 
Brazil and U.S. are NUREG-1061 [1984] and SRP 3.6.3 [1987]. In 2007, SRP 3.6.3 was 
issued with no significant change in calculation procedures compared to the original 
edition. LBB is demonstrated when all requirements in these documents are met. 
In this chapter, the LBB concept is used to eliminate from the design of the primary 
loop the postulated guillotine break. In Figure 1, the segment of one reactor coolant loop 
piping (the hot leg) is schematically represented with a circumferential crack in the 
region adjacent to the weld, subject to axial loads P and moment M resulting from 
normal operating (pressure, deadweight, and thermal expansion) and accident 
conditions (basic design earthquake, DBE). The geometric characteristics of the pipe are 
the outside diameter, Do, equal to 33.9 inches and the thickness, t, of 2.45 inches, which 
is manufactured from SA-351 CF8A cast stainless steel. The weld is constructed with 
stainless steel SFA-5.4 (SMAW for filler) and SFA-5.9 (GTAW for root pass). 
 
 
   

 

 

 

 

 
Figure 1: Segment of the pipe and section where the break is postulated 

2 Step-by-Step or the Application of LBB 
As established in NUREG 1061 and SRP 3.6.3, to demonstrate the LBB requirements 
are met, the following seven steps are considered: 
1 - Show that the piping is not susceptible to degradation in service such as high or low 
cycle fatigue, stress corrosion cracking, erosion, damage caused by water hammer, etc. 
An assessment must be prepared to demonstrate that the integrity of the piping during 
plant lifetime will not be affected by any type of degradation. 
2 - Obtain the tensile and fracture properties of the base and weld metals, given by the 
stress and strain curve and the J-integral versus crack extension (J-R) curve), both 
estimated using the actual information of the piping materials or, in the absence of 
these, in similar data found in the literature. The properties are established assuming 
that the material is thermally aged, that is, its original characteristics are modified 
(reduced toughness) by the effect of the operating temperature. 
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3 - Determine the loads (axial force and moment) for leak rate analysis and crack 
stability. In the first case algebraic combination is used for normal operating loads. The 
crack stability check is performed with the sum of the absolute values of the normal 
operating and accident (DBE) operating loads. 
4 - Postulate the through-wall circumferential flaw in the section of the piping with the 
highest stress in conjunction with the most unfavorable tensile and fracture material 
properties. Several sections of piping must be analyzed because the critical location is 
not always the point of the highest stress. 
5 - Multiply by 10 the leakage monitoring system capability. Typically, plants have 
monitoring systems that detect leaks of less than 1.0 gpm (gallon per minute) in no more 
than one hour. 
6 - Perform leak rate analysis for cracks subject to normal operating loads. In this step, 
the flaw under this condition will open and produce the leakage detected by the 
monitoring system. The leakage crack size is multiplied by 2.0. 
7 - Use elastic-plastic fracture mechanics based on the J/T method to verify if the 
previously obtained crack is stable under normal operating combined with accident 
loads. If this requirement is met the guillotine break will not occur. Alternatively, 
depending on the toughness of the material, the analysis may be conducted by limit load 
theory. 
The safety coefficients for leakage (10, step 5) and crack size (2, step 6) aim to cover 
the uncertainties inherent in the formulations used in the calculation of the leakage 
crack size (step 6) and critical crack size (step 7). 
The main aspects of LBB that is covered in this chapter are crack stability analysis (step 
7), material characterization (step 2) and leakage analysis (step 6). 

3 Crack Stability Analysis 
In LBB applications the circumferential through-wall flaw is subject to extreme stresses 
in which the normal operating and accident loads are superimposed. In this condition, as 
the plastification level is expressive, the analysis is carried out in an elastic-plastic 
regime. Depending on the toughness of the material, the J/T approach, developed in 
NUREG/CR-3464 [1983], is the most used technique for checking the crack stability. 
The analysis using the limit load theory is described in Section 6. 
J-integral and tearing modulus T are quantities that represent the potential for crack 
extension. When applied J is smaller than JIc, defined as J at flaw initiation, crack 
growth does not occur. On the other hand, when J is equal to or greater than JIc, stable 
tearing is initiated. In this situation, the J/T method is adopted to determine when the 
defect becomes unstable, that is, the instant associated with the pipe rupture. The 
correlation between the J and T is  

2
f

E
da
dJT

σ
=  (1) 

with dJ the increase in J to an amount of crack extension da, σf  the flow stress, assumed 
as the average between the yield and ultimate strength of the material, Sy, and Su, 
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respectively, and E is the modulus of elasticity. The crack instability occurs when the 
applied tearing modulus is greater than the material tearing modulus Tmat,   

matTT >           (2) 

with Tmat obtained experimentally.  
The J-integral, the parameter that indicates the driving force that extends the crack, is 
calculated using the General Electric and Electric Power Research Institute (GE/EPRI) 
scheme. The total value of J is the sum of the elastic Je and plastic Jp components. For 
pipe with circumferential through-wall flaw subject to combined axial load P and 
moment M, Zahoor [1989] defines the following equations 
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with R the mean radius of the pipe and t the thickness, θ half-angle of flaw (in radians) 
illustrated in Figure 1, Po the reference load, assumed the value in which the pipe 
section is fully plastic, and α and n the constants of the Ramberg-Osgood stress and 
strain curve, written as  
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with σ  and ε  true stress and strain, σo the reference stress, usually assumed the yield 
stress, and εo the reference strain, equal to σo/E. 
The correction factors ft and fb are functions of crack size and type of load; the 
dimensionless function h depends on the component and crack geometry, type of load, 
and constant n from the Ramberg-Osgood equation. Values of ft, fb, and h, shown in 
Figure 2, are found in Zahoor [1989]. 
To determine the applied tearing modulus, T, two solutions are calculated for J. One, 
with flaw length a, and other with a+∆a, where ∆a=R∆θ and ∆θ commonly assumed to 
be 0.01θ. Thus, from Equation (1) 
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adaa E
a

JJ
T

σ∆
−

= +
 (5) 

4 Material Properties 
Fracture properties are given in terms of the J-R curve, which indicates the materials 
resistance to stable crack growth. The correlation between the J-integral of the material, 
Jmat, and the crack extension, ∆a, is expressed as 
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Figure 2: Values of ft , fb, and h as a function of through-wall circumferential crack 

 

m
mat acJ ∆=           (6) 

with c and m constants obtained by experiments. Instability is achieved when the J 
increase exceeds the corresponding increase in toughness. This establishes the ductile 
failure criterion (ductile tearing failure mode) as T > Tmat, where the materials tearing 
modulus is, as in Equation (1), 
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The properties of base metals and welds of the pipe analyzed in this chapter consider the 
fracture toughness modeled by Equation (6), with the data from the J-R curves shown in 
Table 1 and represented in Figure 3. All information are for thermally aged materials 
available in NUREG/CR-4513 [1994] for base metal and NUREG/CR-6428 [1996] for 
weld. 

Table 1 − Fracture properties for aged material (minimum values) 

(1) Properties at 550oF    (2) Properties at 617oF 

 
Figure 3: J-R curve for aged material (minimum values at 550oF) 

The GE/EPRI scheme requires, in addition to fracture properties, that the stress and 
strain curve of the material be represented by the sum of the elastic and plastic 
deformation portions given by the Ramberg-Osgood as presented in Equation (4). 
Values from this curve are shown in Table 2 and in Figure 4. As in the previous case, 
the properties are for thermally aged materials and were taken from the NUREG/CR-
6142 [1994] and NUREG/CR-4513 [1994]. 

 

 

 JIc 
in-lb/in2 

c 
in-lb/in2 m 

Base metal (SA 351-CF8A)(1) 1500  5660 0.34 

Weld metal (stainless steel)(2) 228 3813 0.64 
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Table 2 − Tensile properties for aged material 

 

 

 

 
 

 (1) Properties at 550oF (SA 351-CF8A)   (2) Properties at 617oF (stainless steel) 

 
Figure 4: Stress and strain curve for aged material (SA 351-CF8A at 550oF) 

5 Leak Rate Analysis 
In accordance with step 6 of Section 2 of this chapter, the LBB application requires that 
a correlation be established between the flow rate, Q, and the through-wall crack size, θ 
/π, for the piping under normal operating loads. Based on this result it is determined the 
crack that will open to produce a leakage capable of being detected by the plant 
monitoring system. 
Leak rate is obtained by two analyses, the first using elastic-plastic fracture mechanics 
to calculate the crack opening area, COA. Once COA is found, thermo-hydraulic 
analysis is performed to determine leak rate through the crack. 
Several computer programs are available for leak rate analysis. Among them, SQUIRT, 
from the U.S. Nuclear Regulatory Commission (NRC), PICEP owned by EPRI, and 
proprietary softwares developed by reactor vendors such as Westinghouse, Framatome, 
and Mitsubishi. The PICEP [1992] is widely used for LBB applications in the nuclear 
industry and is adopted in the present analysis.  

 
E 

ksi 
σo 
ksi 

Su 
ksi α n 

Base metal (min.)(1) 24940 21.78 64.82 1.28 5.9 

Base metal (avg.)(1) 24940 25.80 79.86 0.45 5.9 

Weld metal (min.)(2) 25215 47 60 - - 
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In PICEP, the conditions for the fluid are subcooled water, saturated or superheated 
steam, with leak rate dependent on pressure, temperature, and on the morphology of the 
crack (e.g., surface roughness, straight or sinuous flow path, friction factor). The PICEP 
leak rate model is based on the Henry-Fauske equations [1970; 1971] for the two-phase 
fluid through long channels. The program calculates the crack tip opening displacement, 
COD, using the GE/EPRI scheme. The implemented formulas for COD are 
compilations of the solutions obtained by the finite element method for axial loads, pure 
bending, and for the combination between them [Zahoor 1989]. The crack area through 
which leakage occurs is estimated by assuming elliptical, diamond, or circular shaped 
openings when viewed from the pipe surface. Analytical and experimental results 
suggest that the ellipse shape is the most suitable for LBB applications. 
The PICEP was validated by comparing its results with those of numerous experiments 
carried out by the NRC (NRC Degraded Piping Program) and EPRI in the U.S., and by 
others in Canada, Italy, and Japan. In addition, PICEP results were compared with those 
provided by software such as the mentioned SQUIRT. 
For the leak rate analysis, thermo-hydraulic conditions related to the normal operation 
of the plant are used. The behavior of the material is represented by the Ramberg-
Osgood equation, Equation (4), with its properties given in terms of the average values. 
This is a conservative option because it leads to leaks that produce larger crack opening 
angles. 

Following step 5 of Section 2, the normalized crack length, θ /π, is obtained with the 
minimum detectable leakage from the monitoring system (e.g. 1.0 gpm) multiplied by 
10. The use of this safety factor minimizes any errors that may be introduced into the 
model adopted to characterize the crack. 

6 Example 
In this study, the LBB is verified for a pipe subjected to the loading shown in Table 3. 
The postulated through-wall circumferential flaw is in the base metal, in one of the 
critical sections, which were selected from the material properties and stresses acting on 
the pipe. The values of P and M in Table 3 are given by the structural analysis of the 
piping, with P being the axial reaction forces, including the pressure load, and M is the 
applied moment, calculated as the square root of the sum of squares of each of the 
bending and torsion moments. Leakage analysis combines pressure, weight, and thermal 
loads by the algebraic sum. Stability analysis combine these loads plus DBE by the 
absolute sum. 

Table 3 − Loads at piping critical section 

     Leakage analysis 
 Stability analysis  

 P 
(kips) 

M 
(in-kips) 

P 
(kips) 

M 
(in-kips) 

1500 18713 1838 21327 
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For the leak rate analysis, it is assumed that the through-wall circumferential flaw is 
caused by fatigue and has an elliptical shape. In this type of degradation, the crack is 
straight along the entire pipe thickness. PICEP recommends that leakage and flaw 
morphology be characterized by surface roughness equal to 0.00157 inches, pressure 
loss coefficient of 0.61, and the ratio of crack inlet area to exit area be 1.0. Initial fluid 
conditions are subcooled water, internal pressure of 2250 psia, and temperature of 
620oF. Average material properties are given in Table 2 and normal operating loads 
(pressure, weight, and thermal) in Table 3. 
The result for the leak rate analysis in terms of the flow rate, Q, and the half-normalized 
flaw angle, θ /π, is represented in Figure 5 for the base metal at one critical location. 
Leakage monitoring systems installed in the plants have the sensitivity to measure flow 
rates above 0.01 gpm, with 1.0 gpm being the typical number for LBB applications. 
From step 5 of Section 2, the leakage crack size is found using a safety factor of 10. 
Thus, with 10 gpm on the curve in Figure 5, θ /π is equal to 0.0695 (12.5 degrees). 

In LBB applications, several sections of piping must be analyzed, as the largest θ /π 
does not necessarily occur where the stresses for the normal operating condition are the 
highest. This is because the lower the stress, the higher the crack size to maintain 
constant flow. Consequently, loads lower than those for P and M in Table 3 produce a 
curve more to the right than shown in Figure 5 which, for a fixed value of Q (e.g., 10 
gpm), allows to obtain θ /π greater than 0.0695. Furthermore, other factors, such as the 
toughness of the material, influence the result and only a complete analysis determines 
the most critical section. 
For the stability analysis, and according to step 6 of Section 2, the leakage crack size 
associated with the detectable leak rate (θ /π = 0.0695) is multiplied by 2.0. Therefore, 
the stability is verified for θ /π equal to 0.139. In this example, by hypothesis, applied J 
is greater than JIc, and thus the crack extension occurs. The J/T method is implemented 
with the minimum material properties from Tables 1 and 2 and with the combination of 
normal operating and accident loads (pressure, weight, thermal, and DBE) from Table 3. 
With Equations (3) and information from Zahoor [1989], the total value of J is equal to 
607.9 in-lb/in2. From Equation (1) the applied T is 3.02. Combining Equations (6) and 
(7), the material tearing modulus, Tmat, is equal to 26. As T is smaller than Tmat, the flaw 
postulated in the SA 351-CF8A base metal is stable, that is, the failure by ductile tearing 
does not occur. The graphical representation of the method is in Figure 6. 
Considering now the flaw is in the stainless steel weld and is subjected to the loads from 
Table 3 and conditions identical to those in the previous example. Although the flaw is 
in the weld, the tensile properties of the base metal control fracture. This, θ /π, applied 
J, and T remain the same (the values of J and T in the weld are smaller than in the base 
metal). The only changes are in the fracture properties of the materials, Table 1 and 
Figure 3, now those from the weld. Using the same calculation procedure, the Tmat, is 
equal to 28. As T is smaller than Tmat, the flaw postulated in the stainless steel weld is 
stable, with a safety coefficient slightly higher than that of the case of crack in the base 
metal. The results for both cases are shown in Table 4. 
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Figure 5: Leakage and through-wall crack size in the base metal 

 
Figure 6: Analysis of crack stability in the base metal (θ /π =0.139) 
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Table 4 – Crack stability analysis (J/T method) 

Through-wall 
crack location 

T 
 

Tmat 
 T

Tmat

 
     Base metal 3.02 26 8.6 

     Weld metal 3.02 28 9.3 

 
Another aspect of LBB that should be discussed is that when the toughness of base and 
weld metals are very high, it is mandatory to verify whether the failure can occur by a 
mechanism other than ductile tearing. One possibility to investigate is plastic collapse, a 
situation in which the straight section of the pipe becomes completely plastic before 
fracture. The appropriate theory for this analysis is the limit load. 
The limit load theory considers that failure occurs when the stress due to external loads 
on the section is equal to the flow stress, σf. This indicates that the toughness of the 
material is high enough to ensure that the failure mode is controlled by tensile 
properties. A detailed description of the analytical procedure to determine the critical 
crack length based on the limit load theory is available in the ASME code XI Appendix 
C (2010). The basic equations are 

[ ]θβσ sinsin22 2 −= tRM fo  (8) 












−−=

f

mP
σπ

θπβ 1
2  (9) 

with β, the angular location of the neutral axis in the cracked pipe, whose original 
position is changed by the presence of the crack, and Pm and Mo being the membrane 
stress and moment applied at the time of plastic collapse. The other quantities have 
already been defined. 
The stability analysis is conducted with the minimum tensile properties of Table 2 and 
the normal operating loads combined with the accident loads shown in Table 3. To find 
the critical crack size a spreadsheet is used to solve Equations (8) and (9) 
simultaneously. The results for the base and weld metals are presented in Table 5, where 
the leakage crack size and critical flaw size are compared. Since the ratio between these 
quantities is greater than 2.0, step 6 of Section 2 is met and failure by plastic collapse 
does not occur. 

Table 5 – Crack stability analysis (limit load method) 

 
Through-wall crack 

location 

θ /πQ 
Leakage crack size  

θ /πcr 
Critical crack size  

Q

cr

πθ
πθ

/
/

 
      Base metal 0.0695 0.366 5.3 

      Weld metal 0.0695 0.412 5.9 
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As the numbers in Tables 4 and 5 show, the margins for limit load are smaller than 
those of the J/T method and, in this situation, the most likely failure mode is plastic 
collapse. 
These results agree with what exist in most practical situations, in which for LBB 
applications in stainless steel pipes, whose toughness is high, the crack stability is 
controlled by plastic collapse (limit load theory). If, on the other hand, the steel is 
ferritic, or even austenitic operating at temperatures where the toughness may not be as 
elevated (about 300oF), the stability is controlled by the ductile tearing (J/T method). 

7 Further Remarks 
The LBB procedure described in this chapter follows NRC documents originally 
published in the mid-1980s. Nevertheless, the basis established at that time remains 
valid for recent LBB applications, as are noticed for several plants in U.S., such as 
Surry 1 and 2 in 2019, D.C. Cook 1 and 2 in 2018, and Turkey Point 3 and 4 in 2018. In 
Brazil, Angra 1 adopted the same LBB procedure for the reactor coolant loop primary 
piping in 2010, and for the accumulator and surge lines, predicted to be implemented in 
2022. 
Although no modifications have been made to the calculation procedures, further 
refinements should be incorporated to demonstrate the feasibility of LBB. Some of 
these refer to the use of programs to determine leak rate considering a) probabilistic 
simulations or realistic models of the crack morphology; b) inclusion of dynamic effects 
and/or cyclic loads in the characterization of materials; and b) effects of residual stress 
in the calculation of crack opening displacement [Rahman 1997] and [NUREG/CR-
6765 2001].  
It should be noted that from the early 2000s, when primary water stress corrosion cracks 
(PWSCC) were detected in the Alloy 82/182 bimetallic weld that connect the ferritic 
components with those fabricated with stainless steel, the LBB procedures started to 
consider other important aspects, mainly those related to the leak rate analysis. For 
example, the leakage crack size for PWSCC at Alloy 82/182 weld calculated using the 
default values from PICEP is 28% greater than the number determined for fatigue. 
However, published data from 2003 provides a higher value for the crack size, with the 
crack half-angle for PWSCC 69% greater than the value obtained for the fatigue case. 
The discrepancy is explained by differences in the morphology of the cracks, which in 
case of PWSCC have lower surface roughness and sinuous path, as opposed to fatigue, 
which are straight through the thickness. In NUREG/CR-6765 [2001] and in Rudland 
et. al. [2003] there is a detailed description of how to include the effects of these 
parameters in the analyses. 
As a result, in cases where LBB is applied to dissimilar metal welds the PWSCC crack 
size associated with detectable leakage is larger than that determined for fatigue. For the 
same conditions as the example shown here, the size of the circumferential through-wall 
crack postulated for the stability is θ /π equal to 0.235, against 0.139, the number 
calculated for fatigue. 
In step 1 of Section 2 it is stated that NUREG 1061 and SRP 3.6.3 requires that the 
piping candidate to LBB should not be susceptible to degradation, such as PWSCC. In 
nuclear plants it is demonstrate that the integrity of the piping during lifetime is not 
affected by the PWSCC if a mitigative measure is implemented. The choice of the 
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industry are repairs, as those named mechanical stress improved process (MSIP) or 
structural weld overlay (SWOL), both adopted to provide a PWSCC resistant barrier to 
the Alloy 82/182 original welds. These mitigative repair process are applied to convert 
tensile residual stress in the inside surface of these welds into compressive residual 
stress field, thereby minimizing the probability to have initiation or propagation of 
PWSCC at the Alloy 82/182 material.    
LBB can also be conducted in the form of boundary analysis curves approach. In this 
cases curves which correlate loads under normal operating and accident conditions are 
obtained to meet the required crack stability margin for specified leak rate, pipe, and 
material. Data presented in this format is very convenient during early plant design 
when the results of the piping layout is still preliminary, or stress analysis are not yet 
known. Later in the design phase, with P and M available, it is easy to verify for which 
combinations of the stresses the LBB is demonstrated. An example of boundary analysis 
curves in terms of the normal operating stress, σop, and maximum stress σop+σDBE, the 
superposition of normal and accident (DBE) stresses, involves the following steps: 
a) For a stress under normal operating condition calculate the leak rate Q and crack size 
θ /πQ curve. Repeat this analysis for various σop values; 
b) If the plant monitoring system detects 1.0 gpm, and considering the margin of 10, 
obtain, for each level of σop, the leakage crack size for 10 gpm. Repeat this step to 
generate the curve σop and θ /πQ; 
c) For a value of the stress under normal and accidental operating conditions use the 
limit load method to calculate the critical crack size. Repeat this analysis for various 
stress values to obtain the curve correlating the maximum stress σop+σDBE and θ /πcr;  

d) Combining steps b) and c), and with θ /πQ equal to half of θ /πcr, determine the 
envelope curve σop and σop+σDBE. 
Figure 7 schematically represents each of the previous steps and illustrates how the 
envelope curve for LBB validation is obtained. A numerical example is in Figure 8, 
which is a bounding analysis curve for a 12 inches pipe diameter, 1.312 inches 
thickness, forged stainless steel SA-376 TP316, operating at 653oF and 2235 psig. LBB 
is demonstrated if the normal operating and maximum stresses, determined from the 
piping stress analysis, and represented by the various points σop and σop+σDBE, as 
presented in the figure, fall below or at the curve. 

8 Conclusions 
The example shows an application in the nuclear industry of LBB for a piping, the hot 
leg from the primary loop. The pipe is fabricated with a cast stainless steel, and it is 
assumed that the postulated through-wall circumferential crack caused by fatigue is 
located at the base metal or weld. 
For each crack, two types of analyses are performed: a) leak rate analysis; and b) crack 
stability analysis. In the first case, the crack size associated with the detectable leak rate 
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Figure 7: Schematic representation to determine the boundary analysis curve 

 
Figure 8: Typical boundary analysis curve for LBB validation  

is obtained. Once this size is determined, the stability of the crack is verified, using the 
J/T method (ductile tearing) or the limit load theory (plastic collapse). 
As the toughness of materials from the primary loop piping is high, the most frequent 
failure mode is plastic collapse. However, for cracks in ferritic or austenitic steels where 
toughness is reduced by thermal aging, failure by ductile tearing is more likely, 
especially with the system operating close to 300oF. 

θ /πcr 

σop 
Q 

θ /πQ 

θ /πQ Q=10gpm 

σop 

σop+σDBE 

σop  σop+σDBE 

a) b) 

c) d) 
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When the feasibility of LBB is demonstrated, postulated break loads (LOCA) are 
eliminated from the design basis. The advantage of LBB is that components such 
reactor vessel internals and nozzles, primary loop equipment and supports, and piping 
need not to be designed to withstand LOCA loads. As an added benefit, pipe-whip 
restraints, and jet-impingement shields, both installed to protect critical equipment from 
the dynamic effects of the postulated breaks, are not necessary. 
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Abstract 

 The fatigue control of Nuclear Power Plants (NPP) operating in Brazil is performed 
through different procedures. In a first analysis, the occurrence of thermal transients is 
observed. If an unspecified transient occurs, a detailing of the event is carried out with the 
aim of reducing it to design values. At the same time, an automatic transient monitoring 
system will show the consequences of the transient that has occurred, as well as fatigue 
monitoring at selected locations. The Angra NPP were designed to operate during a period of 
40 years of service. It should be noted that the Angra NPP is expected to operate for another 
20 years of service. The new 60-year operational limits can be obtained by following the 
United States Nuclear Regulatory Commission (USNRC) regulations or through German 
standards (KTA). Fatigue control at Angra NPP is done by controlling the number of 
transients and/or the cumulative fatigue usage factor (CUF), not necessarily in that order. 

Keywords: Thermal Stratification; Fatigue Monitoring; EAF Environmentally Assisted 
Fatigue; Fen Environmental Correction Factor; TLAA Summary from NUREG and KTA 

1 Introduction 
Fatigue analysis is performed to ensure the safe operation of components subject to 
cyclic transients, such as those generated by events where temperature changes occur 
(heating/cooling, safety injection, etc.), and are known as design transients.  
The design transients were obtained by defining a conservative occurrence for the 
magnitude and frequency of most events expected to occur in a Nuclear Power Plant. A 
catalog of allowable design limits for 40 years of operation was provided by the NSSS 
Vendor (Nuclear Steam Supply System). 
Based on these events, the fatigue analyzes obtain the so-called cumulative fatigue 
usage factor (CUF), whose limit corresponds to 1.0. It is considered that values greater 
than 1.0 would be the beginning of a crack in the material of the pipes and components 
and it is intuitive to realize that if the number of observed design transients is less than 
the allowable limit, the CUF will not be exceeded. 
At the Angra NPP, an automatic event counting system is used and employs the 
operating parameters generated (temperature, pressure, flow, valve position, pump 
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condition, etc.) by the existing instrumentation in the plant, and through appropriate 
algorithms, and based on the actual transients that have occurred, calculate the 
cumulative fatigue usage factor at a specific location. 
The Angra NPP were designed to operate during a period of 40 years of service 
(40 Years of Operation). However, the Angra NPP should operate for additional periods 
of 20 years of service. This new period is known as 60-Year Transient Projected Cycles. 
In the 1980´s, it was discovered in Japan that the fatigue life that occurs in severe 
environments could be reduced. 
New tests carried out at the Argonne National Laboratory (ANL), O.K. Chopra and A. 
Sather [1990], showed that the fatigue effects in a water environment, at the nominal 
temperature at full power, are significantly greater than the effects of fatigue in air 
environment, where the fatigue curves were developed.  
The Angra NPP use the fatigue curves of the ASME III code [1989] and also the 
German standards, Nuclear Safety Standards Commission (KTA) [1996]. The current 
design fatigue curves of the ASME Code were based primarily on strain–controlled 
fatigue tests of small polished specimens at room temperature in air.  
Using the current version of the ASME code requires the application of a penalty, which 
was called Environmental Fatigue Correction Factor (Fen), detailed in NUREG-1801, 
Rev. 2 [2010]. It should be noted that this penalty reduces fatigue life as it increases the 
cumulative fatigue usage.  
Thus, to compensate for the increase in the CUF, which is limited to 1.0, the fatigue 
analyzes must necessarily be revised. After reviewing the analyses, new transient limits 
should be considered as admissible values.  An example of this threshold reduction is 
the Plant Heat up event, with a reduction from 200 (40 years of operation) to 150 (60-
year transient projected cycles). 
The procedures applied at the Angra NPP to control fatigue are presented next. 
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2 Operational Transient Monitoring 

2.1 Observation of Operational Temperature Transients and Thermal 
Stratification Phenomenon 

Temperature transients that occur during the operation of a Nuclear Power Plant are 
observed through thermocouples installed on the external surface of the pipes, in 
various cross sections, M. Cisternas [2009]. 
Two typical thermocouple configurations are used in Angra NPP: 

 
Figure 1: Typical configurations of thermal monitoring 

The temperature difference between the hot water (top) and cold water (bottom) in a 
piping is known as thermal stratification (Figure 2). 

 
Figure 2: Thermal stratification 

Thermal stratification can be divided into three types: 
a) Global Stratification: Global bending effects in the piping system that can 

produce modified piping thermal expansion moments remote from the regions 
affected by the stratification. That is, can produce pipe bending and can cause 
the piping to exceed the thermal displacements considered in the original design. 

b) Local stresses at the region of stratification related to there being a non-linear 
stress distribution around the circumference of a piping system. That is, local 
stratification causes an increase in thermal stresses on the tube wall and a 
consequent reduction in fatigue life. 

c) Transient and / or steady through wall stress (currently defined by ∆T1 and ∆T2 
in the code). These stresses would also not be uniform around a piping system 
for stratified conditions. This item will be detailed in section 3.2 
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2.2 Temperature Stratification in the Hot-Leg of the Reactor Coolant Line at the 
Angra NPP 

Temperature stratification occurs in the hot-leg of the Reactor Coolant Line (RCL) 
during normal operation due to the outsurge flow of the hot water of the Pressurizer into 
the Hot Leg of the RCL. 
Thus, it is important to know the behavior of temperatures inside the pipe. 
At the Angra NPP, thermal stratification is observed through thermocouples installed on 
the external surface of the pipes. 
Data acquisition is performed by a software, FieldChart Novus Version 2.0.3.1. [2013], 
that allows to display the data in digital and graphic format, in batches or in real time, 
and in real time trend and historic trend views. The software allows to zoom, 
superimpose and link graphs, and print or export all data. 
Figure 3 shows Hot Leg location. 

 
Figure 3: Hot leg location 
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Figure 4 shows temperature data for a section of the hot leg of the Reactor Coolant 
Line, located next to the Pressurizer Surgeline. 

 
Figure 4: Data temperature at Hot Leg Location 

Figure 5 shows temperature of the thermocouples installed on the external surface of the 
pipe. 

 
Figure 5: Temperature on the external surface of the pipe at hot leg location 

Figure 6 shows the internal points where the temperature is unknown. The transfer of 
temperatures from the external surface to the internal points of the pipe is carried out 
using the Boundary Elements Method, M. Cisternas at al. [1987]. 

 
Figure 6: Internal points of the pipe where the temperature is unknown  
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Table 1 shows the temperature in the internal points using the Boundary Elements 
Method. 

Table 1: Temperature in the Internal Points using the Boundary Elements Method. 

 
Note: The expected value in normal plant operation is around 325.1 °C. This shows that 

the tube working stratified, presents values observed above those expected in 
normal plant operation. 

The current Section–III design fatigue curves of the ASME Code [1989], were based 
primarily on strain–controlled fatigue tests of small polished specimens at room 
temperature in air. The Angra NPP use the fatigue curves of the project following this 
methodology, which correspond to the ASME III code, year 1989 and also to the 
German standards, Nuclear Safety Standards Commission (KTA) [1996]. 
The ASME Code fatigue evaluation procedures are described in NB-3600, “Piping 
Design,” and NB-3200, “Design by Analysis”. For each stress cycle or load set pair, an 
individual fatigue usage factor is determined by the ratio of the number of cycles 
anticipated during the lifetime of the component to the allowable cycles. Fatigue design 
curves defines the allowable number of cycles as a function of applied stress amplitude.  
The CUF is the sum of the individual usage factors, and ASME Code Section III 
requires that at each location the CUF must not exceed 1. 

2.3 Effects of Thermal Stratification 
The effects of stratification are considered by determination of piping bending moments 
due to stratification and by calculating additional local stresses due to a non-linear 
temperature difference across the pipe diameter. 
In a stratified section, there may be stresses developed even if the piping section is free 
to expand. The nonlinear top-to-bottom temperature distribution in a pipe produces a 
non-uniform stress distribution around the pipe circumference. The stresses have the 
same characteristics as a non-linear through wall stress distribution in that they will not 
result in gross thermal displacement of the piping system and contribute only to fatigue. 
If a piping program is being used to perform stress analysis, this additional stress may 
be transformed on equivalent ∆T1. 
The additional stresses due to through wall thermal gradients should also determine for 
each loading condition. Thermal transients produce large ∆T1 and ∆T2 stresses, and 
gross structural discontinuities Ta - Tb axial stress that shall be considered. However, 
there can be also be some through-wall temperature differences that occur with steady 
stratification that cannot be neglected. 

Cisternas, Miguel (2022) Fatigue Control in Angra Nuclear Power Plants pp. 277-310

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 283



Once these moments, piping parameters and / or local stresses are determined, the 
piping fatigue analysis can proceed using the methods commonly used for piping 
analysis. The code allowable for primary stress intensities should be unaffected by 
thermal loading. The service Level A/B stress intensity ranger shall be evaluated per 
NB-3650 of section III of the ASME code. Eletronuclear uses Finite Element Program 
KWUROHR and Finite Element Program PIPESTRESS. More detailed analysis may be 
conducted using the rules of NB-3200, where the stresses at multiples locations around 
the circumference of a component may be considered. Eletronuclear uses Finite Element 
Program ANSYS. 

2.4 Temperature Gradients ∆T1 And ∆T2 and Range of Average Temperature on 
Gross Structural Discontinuities Ta (Tb) 

The temperature distribution in the radial thickness of the pipe varies from the inner 
surface to the outer surface. This variation in temperature or distribution along the radial 
thickness of the tube is known as the thermal gradient. Figure 7 shows a temperature 
distribution t as a function of the radial thickness a: 

 
Figure 7: Temperature distribution in the thickness of the pipe 

According to the ASME III code, the thermal gradient can be decomposed into three 
different parameters, ∆T1, ∆T2 and Ta-Tb, where ∆T1 represents the temperature 
difference between the outer surface and internal tube, based on an equivalent linear 
distribution: 

 

 
(1) 

 

 
(2) 
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∆T2 represents the temperature difference between the surface and the equivalent linear 
distribution: 

 

 
(3) 

Ta-Tb or Ta (Tb) represents the average temperature on the tube wall: 

 

 
(4) 

 

 
(5) 

2.5 Contribution of Thermal Stratification in ASME NB-3653.2 
 - No terms are added in equation 10 of ASME NB-3653.2. 
 - Term added in Equation 11 of ASME code NB-3653.2, Structural Integrity 

Associates, 2008. 

 

(6) 

Where:  

 Eα = modulus of elasticity (E) times the mean coefficient of thermal 
expansion (α), both at room temperature 

 |∆T3| = Top Temperature - Bottom Temperature 
 

2.6 Contribution of Thermal Stratification in ASME NB-3200 
 - No contribution to the term Sn = primary + secondary stress intensity; 

Equivalent to value calculated by equation 10 of ASME NB-3653.2. 

 - Contribution is added to term SP = peak stress intensity; Equivalent to value 
calculated by equation 11 of ASME NB-3653.2. 
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2.7 Unspecified thermal stratification in the Main Feedwater line of the Angra 
Nuclear Power Plant 

The occurrence of unspecified thermal stratification was observed in the Main 
Feedwater line (figure 8) of the Angra NPP. 

 
Figure 8: Main feedwater line of Angra NPP 

Figure 9 shows a graph with the temperature values observed in the thermocouples 
installed in the Main Feedwater line of the Steam Generator, M. Cisternas [2009]. 

 
Figure 9: Temperatures observed in a cross section of the main feedwater line 

Note: Observed temperature transients are not included in the NSSS vendor transient 
catalog with the same frequency and magnitude. 
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2.8 Evaluation of Plant Data 
During the Start-up or Reactor Trip (no cooldown) of a Nuclear Power Plant, the supply 
of steam generators occurs at low feedwater mass flow rates, and significant 
stratification of fluid temperatures in the steam generator feedwater nozzles has been 
detected. This stratification leads to undesired temperature gradients which in turn lead 
to strain and hence stress in the nozzle material. This all contributes to accelerated 
fatigue and possible shortening of the life of the component. For this reason, it has 
become necessary to change the feeding procedure to reduce thermal loading on the 
steam generator feedwater nozzles. 
After observing unexpected temperatures, it is necessary to perform an evaluation of the 
plant data. At least three distinct regions can be seen; 
 - Near constant temperature difference 
 - Near constant mean temperature difference with mild fluctuations, and 
 - Fluctuations and increase in temperature difference coupled with fluctuations 

in mean absolute temperature 
The three distinct regions can be seen in figure 10: 

 
Figure 10: Evaluation of plant data 

If stratification is present, it is preferable that the temperature difference remains as 
small and constant as possible. Fluctuations in temperature differences result in 
fluctuations in strains, stresses and finally fatigue. 
Change the feeding procedure: Continuous feeding rather than intermittent feeding is 
preferable. A constant and inevitable stratification temperature difference in the main 
feedwater line during Start up or Reactor Trip (no cooldown) is to be expected. 
Impact on pipes and components: Needs to be investigated.  
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2.9 Verification of the Occurrence of Thermal Stratification Phenomenon 
In 1988, the USNRC (Nuclear Regulatory Commission) issued bulletin 88-08 advising 
about the occurrence of thermal stratification in lines connected to the Reactor Coolant 
Lines (RCL) of Nuclear Power Plants. In addition, bulletin 88-11 notifies that the 
Pressurizer Surge line should include thermal stratification loading in the fatigue 
analysis to verify for unexpected thermal movements that could cause the closing of the 
gap between the surge line and the supports provided against pipe whip restraints. 
Many plants started commercial operation or were conceived before 1988, and only new 
reactors were designed to prevent this new load case. The other plants, had a high cost 
to include the thermal stratification loading, as a case of normal operation. 
The following figure 11 shows the Angra NPP primary circuit, Finite Element Program, 
KWUROHR system [2014]. 

 
Figure 11: Angra Nuclear Power Plant primary circuit 

 
Unexpected temperature transients were observed in loops 1 and 4 of the Main 
Feedwater line. In this chapter, the analysis will be concentrated on loop 4. 
The displacement of the nozzle of loop 4, where it is connected to the Main Feedwater 
line, was obtained from the thermal analysis of the Angra NPP Reactor Coolant Line 
(RCL).  
Figure 12 presents the finite element model of Angra NPP Reactor Coolant Line: 
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Figure 12: Finite element model of Angra NPP RCL 

 
The results of the displacements of the connection between the nozzle of the Steam 
Generator loop 4 (nodal point 815) and the Main Feedwater line, obtained from the 
primary circuit model, are presented below in table 2: 

Table 2: Displacement of the nozzle RCL/main feedwater line at loop 4 of Angra NPP. 

 
 
The GAP adopted by the NSSS vendor for the installation of the Pipe Whip Restraints 
type support was 41 mm. 
However, the finite element model that includes the main feedwater line shows that a 
higher value would be needed, and is shown in Figure 13. 
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Figure 13: Finite element model of Angra NPP to RCL plus main feedwater line 

 
The results of the displacements of the nodal point 478 of the Main Feedwater line 
besides Pipe Whip Restraints location are presented below in table 3: 

Table 3: Displacement of the nodal point 478 of the main feedwater line. 
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The Angra Steam Generator including the connection to the Main Feedwater line are 
presented in figure 14, that shows the location of the Pipe Whip Restraints (PWR) 
support: 

 
Figure 14: Pipe whip restrain location 

 
After detecting unexpected temperature transients in the Main Feedwater line, the pipe 
and nozzle inspections were performed. Tests were also carried out with penetrating 
liquid at the welds. No damage to the pipe and nozzle welds were identified. Figure 15 
shows inspection of the Pipe Whip Restraints (located on the wall) of the Main 
Feedwater line. 

 
Figure 15: Inspection in main feedwater line and pipe whip restrain support 
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Figure 16, shows the top view of the original configuration of the Pipe Whip Restraints 
(PWR) support. 

 
Figure 16: original configuration of the pipe whip restraints 

 
Inspection of Pipe Whip Restraints showed that they had been affected by excessive 
movement of the Main Feedwater line.  
In other words, the GAP between the line and the wall, where the PWR is located, has 
closed, causing a permanent deformation of the PWR-type support. The same effect was 
seen in another loop. 
Figure 17 shows the top view of the Pipe Whip Restraints with permanent deformations. 

 
Figure 17: deformed pipe whip Restraints (top view) 

 
Finding: For this discovery, in Angra NPP, Pipe Whip Restrains supports installed 
beside the Main Feedwater line may be characterized as similar to bulletin 88-08. 
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A Comparison of deformed structure x Stress analysis with the ANSYS finite element 
system, [2017], considering stress distribution for 20 mm displacement is presented in 
figure 18, W. Menezes [2018]. 

 
Figure 18: Deformed structure (Ovalization) x ANSYS model 

 
In the cold shutdown mode of operation, the observed GAP is approximately 30 mm as 
shown in figure 19. 

 
Figure 19: Top view of PWR in cold mode 

Summary: 

 a) Actual GAP plus deformed model by Ansys = 50 mm.  
 b) Theoretical GAP required by calculation is 53 mm 
 c) The last inspection accomplished that the PWR was not fully deformed. 
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Conclusion: There was still energy in the pipeline trying to move towards the PWR.  
 
Note: This location was not included in the check of support clearances performed 
during first hot and cold plant conditions. 
 
Solution: Is required a Pipe Whip Restraints support with smaller dimensions, so that 
the Main Feedwater line does not have movement restrictions when it is in operation. 
 
The new adopted Pipe Whip Restraints support is shown below in figure 20, W. 
Menezes [2018]. 

 
Figure 20: New pipe whip restraints  

 
It can be noted that at Angra NPP, the phenomenon of thermal stratification was not 
included in the transient catalog provided by the NSSS vendor, with the magnitude that 
was observed. Therefore, the Main Feedwater line had to change the operating mode to 
reduce the number of monitored transients. 
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3 Automated Fatigue Monitoring 

3.1 Fatigue Monitoring System in Angra NPP 
An automated fatigue monitoring system is used to track the fatigue condition of Angra 
nuclear power plants over time.  
The fatigue monitoring system performs an incremental analysis, in that all results are 
cumulative, reflecting all input files processed since monitoring began. As each new 
data file is input and processed, the results are updated to reflect the entire input history. 
This approach imitates the fatigue behavior of plant components, which gradually 
accumulate fatigue usage as they experience the various events and transients that occur 
during plant life.  
The fatigue monitoring system allows to review the fatigue status of the plant, from the 
start of monitoring to the current date, in terms of plant cycles and fatigue usage factors. 
The staff of the plant can also sharpen focus down to a particular plant event or 
transient, to investigate the cause of each increment of usage. The fatigue monitoring 
system database for each plant unit maintains an extensive history of plant data and 
other computed parameters, to provide system engineers with the data they need to 
evaluate unusual transients or to justify alternate fatigue evaluations. 

3.2 Automated Cycle Counting (ACC) 
Automated Cycle Counting (ACC) analyzes the Angra NPP input data to recognize 
patterns, and uses those patterns to identify when recordable plant events occur. Each 
time an event is identified, the fatigue monitoring system records all the relevant 
parameters and stores it in the List of Events. It is possible also maintain the list by 
manually adding, editing, or deleting events. 
The fatigue monitoring system is able to correctly model and analyze fatigue for all 
known types of Angra NPP under a wide range of operating procedures and Tech-Spec 
requirements, FSAR, [2020]. 

3.3 Plant Operating Data 
The fatigue monitoring system requires data collected by plant instrumentation devices 
and are listed below, C. Carney et al. [2001]: 
 - Piping and components temperature 
 - Piping and components pressure 
 - Valve position (Open/Closed) 
 - Pump status (Stop/Run) 
 - Component flow 
 - Nuclear Power 
 - Component signal (Off/On) 
 - Component level (0 to 100%) 
 - Reactor Trip signal (normal/TRIP) 
 - Manual Reactor Trip signal (normal/TRIP) 
 - Turbine Trip signal (normal/TRIP) 
 - Manual safety injection signal (Off/On)  
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3.4 Cycle Counting Summary 
The fatigue monitoring system performs the identification, recording and monitoring of 
traceable plant events. The cycle counting summary shows automated cycle counting 
events occurred during a report period (based on the events’ end times).  
The following reactor coolant system transients are automatically monitored in 
Angra NPP: 
- Accumulator safety injection 
- Auxiliary spray during cooldown 
- Control rod drop 
- High head safety injection 
- Inadvertent reactor coolant system depressurization 
- Inadvertent safety injection 
- Inadvertent Auxiliary spray 
- Large step load decrease with steam dump 
- Loss of load 
- Loss of power 
- Operating basis earthquake 
- Pressurizer cooldown 
- Partial loss of reactor coolant flow 
- Primary side hydrostatic test 
- Primary side leakage test 
- Plant heat up and cooldown 
- Residual heat removal operation during cooldown 
- Reactor trip from full power 
 Case A - with no inadvertent cooldown 
 Case B - with cooldown and no safety injection actuation 
 Case C - with cooldown and safety injection actuation 
- Refueling 
- Step load increase and decrease of 10 percent of full power 
- Turbine roll test 
- Unit loading and unloading between 0 and 15 percent of full power 
Automated Cycle Counting of the fatigue monitoring system identify a new event 
whenever the event’s initiation conditions are met. Once an event is identified, it will 
track the values for any output parameters until the termination conditions occur. At that 
time, it records the event in the List of Events, then returns to looking for the next 
initiation. 
Some events are manually accounted for by a plant administrative procedure. However, 
it must be ensured that the event in fact occurred. Some events that did not actually 
occur can increase the number of events. A classic example is plant heat up, which is 
stopped before reaching the nominal temperature condition. 
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The logic of the automatic cycle counting procedure uses a threshold value for the 
Reactor Coolant Lines temperature values in the events plant heat up and cooldown. 
These two events are not counted if the average temperature difference of the Reactor 
Coolant Line between the previous temperature of the event and the current temperature 
is ΔT ≤ 83 °C, that is, for the accounting of the heating event, the difference of average 
temperature of the Reactor Coolant Line between the previous temperature of the event 
and the temperature current must be above 83°C and must remain above this value for at 
least 5 minutes. 
An example of the Angra NPP Cycle Summary is shown in Table 4. 

Table 4: Example of transient cycle summary. 
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The control of cycles in accounted events is carried out through limits of alarm and 
related actions. In general, all locations have Cumulative Usage Factor (CUF) below the 
design limits. Controlling cycles in accounted events allows you to ensure that no site 
exceeds the limits of the cumulative fatigue usage provided for in the original design. 
Output results must be reviewed and modified as necessary to correct errors in the 
numbers of cycles or usage factors calculated by fatigue monitoring system.  These 
errors occur when the plant computer outputs are modified to produce some event logic 
in order to perform required surveillance testing, thus indicating transients that did not 
actually happen. An example of an erroneous event is when a Reactor Shut down 
(TRIP) signal is generated without a corresponding reduction in power. 
This event should be excluded from data files and the fatigue monitoring system should 
be run again in order to update the results. If data is lost during generation of the data 
files so than an actual transient is not included, then this transient must be manually 
input into fatigue monitoring system. 
With the fatigue monitoring system, it is possible to review the fatigue status of the 
plant, from the start of monitoring to the current date, in terms of plant cycles and 
fatigue usage factors. It is possible also sharpen focus down to a particular plant event 
or transient, to investigate the cause of each increment of usage. The fatigue monitoring 
system database for the Nuclear Power Plant maintains an extensive history of plant 
data and other computed parameters, to provide system engineers with the data they 
need to evaluate unusual transients or to justify alternate fatigue evaluations (such as 
partial cycle counts, although this is not licensed in Angra NPP). 

3.5 List of Events 
The List of Events shows a list of all recorded plant events over a given period of time 
(the report period). The event record includes the starting date/time and the duration of 
the event. 
Example of List of Events that occurred during a Plant heat up are shown in Table 5. 

Table 5: List of events for reactor coolant line heat up during a plant cycle. 
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3.6 Verification of Warning Displays in a List of Events Table 
If any device exceeds the plant's operating limits, a warning will be activated. 
In this case the index flag will be activated with the letter X. This can be seen in table 6. 

Table 6: List of events for pressurizer cool down during a plant cycle. 

 

Example of event details showing the X-activated flag are shown in table 7. 
Table 7: Details list of events. 

 

The details presented in table 7 for a Pressurizer event, shows the fatigue monitoring 
system verifying the cooling rate every 30 continuous minutes (rate using a 30-minute 
running average), from a preset value (360°C) to the temperature considered as steady-
state (below 65.6°C). Below the stationary value, it is considered that there is no metal 
fatigue. This class of data allows the fatigue monitoring system verify design 
parameters with values presented by plant instrumentation during a cycle or event. 
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3.7 Fatigue Monitoring in Selected Locations - Cycle-Based Fatigue 
Fatigue monitoring in selected locations is performed using the Cycle-Based Fatigue 
(CBF) methodology that utilizes the compiled Automated Cycle Counting event list to 
compute fatigue usage for monitored fatigue locations based on event patterns.  
In Angra there are 2 types of Cycle-Based Fatigue locations: 
 a) Per-Cycle (CBPC). 
 b) Event Pairing (CBEP) 

3.7.1 Per-Cycle Usage (CBPC) 
In the Per-Cycle Usage locations, a specific fatigue usage increment is associated with 
each type of event. This usage increment can either be a fixed amount for all events of a 
given type, or it can be a “partial-cycle” usage based on one or more of the event's 
recorded parameters. The total fatigue usage for each CBPC location is the sum of the 
individual usage increments of all of the recorded events in the Event List. 
In Angra NPP some locations were analyzed using the Per Cycle Method (CBPC), 
which were chosen due to the high Cumulative Usage of Fatigue (CUF) presented in the 
original project. These locations perform fatigue control through the occurrence of one 
of the transients 1 to 27 listed in Table 3. Figures 16 and 17 shows locations CBPC. 
The location shown in figure 21, monitors fatigue usage factor in the pipe weld to check 
valve in the safety injection line. 

 
Figure 21: Location SI_VALVE - safety injection line - austenitic stainless steel 

The location shown in figure 22, monitors CUF on the pressurizer spray line Tee. 

 
Figure 22: Location PZR_TEE - pressurizer spray line tee - austenitic stainless steel  
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3.7.2 Event Pairing (CBEP) 
For the Event Pairing method, each type of event is associated with a set of transients 
(that is, stress states) at the monitored location. Then, a pair-usage table is derived, 
giving the fatigue usage that would result from each possible pair of transients. Note 
that many transient pairs produce no significant usage, so these pairs are not included in 
the pair-usage table. To compute the fatigue usage, all events are reduced to their 
component transients, which are then counted. The transients are paired, highest-usage 
pairs first, and the usage for that pair is counted. Then the paired transients are removed, 
and the process continues with the next lower non-empty pair of transients. At the end, 
any unmatched transients are counted using the highest-usage pair which contains that 
transient. 
In Angra NPP other locations were analyzed using the Event Pairing Method (CBEP) 
methodology, which increases the factor of accumulated fatigue usage whenever a 
predefined pair of load cases occurs. Figure 18 shows locations CBEP.  
Figure 23 shows two fatigue monitoring locations type CBEP.  One is the Residual Heat 
Removal Tee to the Accumulator Line (nodal point 138) and the other is the 
Accumulator Line Cold Leg Nozzle (nodal point 212), M. Cisternas [2012]. 
 

 
Figure 23: Locations RHRTEE and ACSI - austenitic stainless steel 
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The location shown in figure 24, monitors fatigue usage factor at both of the Reactor 
Pressure Vessel outlet nozzles. 

 
Figure 24: Reactor vessel outlet nozzles - ferritic steels 

 
The location shown in figure 25, monitors fatigue usage factor at both of the Reactor 
Pressure Vessel inlet nozzles. 

 
Figure 25: Reactor vessel inlet nozzles - ferritic steels 

  

Cisternas, Miguel (2022) Fatigue Control in Angra Nuclear Power Plants pp. 277-310

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 302



3.8 Summary of Cumulative Fatigue Usage Factors 
The fatigue monitoring system in nuclear power plant components based on actual plant 
data are performed in some selected locations. Actual plant transients generally cause 
stress cycling that is typically less severe than that computed in the original design 
analysis. The use of a fatigue monitoring system can show that accumulated fatigue 
usage is much less than would be expected, based on consideration of design transients. 
The potential economic benefits derived from accurate cumulative usage factor 
assessment through the use of a fatigue monitoring system can be significant with 
regard to component life extension. Direct benefit is also provided in the areas of plant 
operation and maintenance throughout plant operating life. 
Cumulative Fatigue Usage (CUF) is the measure of accumulated damage underwent by 
a component due to cyclic stresses. 
The fatigue monitoring system performs an incremental analysis, in that all results are 
cumulative, reflecting all input files processed since monitoring began. As each new 
data file is input and processed, the results are updated to reflect the entire input history. 
This approach imitates the fatigue behavior of plant components, which gradually 
accumulate fatigue usage as they experience the various events and transients that occur 
during plant life.  
An example with cumulative fatigue usage factor in selected locations, showing the 
maximum value where redundant locations exist are shown in Table 8. 

Table 8: Example of cumulative usage factors. 

 
 
The Stress and fatigue analysis engineer evaluates the significance of the transient cycle 
counts.  Any transient behavior beyond the design basis may indicate the need to 
monitor additional locations for fatigue and to modify operations to minimize piping or 
component fatigue. 
  

Cisternas, Miguel (2022) Fatigue Control in Angra Nuclear Power Plants pp. 277-310

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 303



3.9 Projection of Cumulative Fatigue Usage (CUF) Location 
The design limit on fatigue assumes that the starting point of a crack occurs when the 
Cumulative Fatigue Usage Factor reaches the value 1.0. 
Figure 26 shows the projection of the cumulative fatigue usage factor for 40-year 
operating life of the plant for location Pressurizer Tee (PZR_TEE) of table 7. 

 
Figure 26: Location pressurizer tee (PZR_TEE) – 40-year life projection 

 
Figure 27 shows the CUF projection for 60 years of operation. 

 
Figure 27: Location pressurizer tee (PZR_TEE) – 60-year life projection 
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4 Permissible Cycle Limits 

4.1 Permissible Cycle Limits for the Planning of 60 Years of Operation 
The Angra NPP were designed to operate during a period of 40 years of service (40 
Years of Operation). However, the Angra NPP should operate for additional period of 
20 years of service. This new period is known as 60-Year Transient Projected Cycles.  
A catalog of allowable design limits for 40 years of operation was provided by the 
NSSS Vendor (Nuclear Steam Supply System). Limits for 60 years of operation can be 
obtained following the rules of the U.S. Nuclear Regulatory Commission (USNRC), or 
through the German standards, Nuclear Safety Standards Commission (KTA). 
Currently, in the nuclear industry, there is no uniform procedure of rules and techniques 
to be used to obtain the limits for 60 years of operation. 
To cover the possible environmental influence on fatigue resistance, plants that follow 
USNRC procedures, such as Angra 1 NPP, are subject to the so-called Environmentally 
Assisted Fatigue (EAF). In this case, there is an environmental penalty arising from 
tests carried out at the Argonne National Laboratory (ANL), which showed that the 
effects of fatigue in a water environment, at nominal temperature at full power, are 
significantly greater than the effects of fatigue in an air environment, in which the 
current fatigue curves of the ASME code were developed. Note that this penalty reduces 
fatigue life as it increases the accumulated fatigue usage factor. Basically, it consists of 
the assumption that the number of cycles allowed in the Reactor is subject to the 
considered environment. That is, it depends on the operating temperature, oxygen 
concentration and deformation rate of the materials used. The environmental correction 
factor (Fen) is defined through a mathematical formula, which has been continuously 
updated. Selected locations in NUREG/CR-6260 [1995], need to apply the Fen penalty. 
For Austenitic materials, NUREG/CR-5704 (Effects of Light Water Reactor Coolant 
Environments on Fatigue Design Curves of Austenitic Stainless Steels) [1999], gives a 
maximum value for Fen equal to: 

Fen = 15.3485 
In general, the value calculated using “ANSYS” finite element systems, after great 
computational effort using refined models, presents an average value around: 

Fen = 5.0. 
For Ferritic materials, NUREG/CR-6583 (Effects of LWR Coolant Environments on 
Fatigue Design Curves of Carbon and Low-Alloy Steels) [1998], gives a maximum 
value for Fen equal to: 

Fen = 2.4547. 
The Fen penalty is applied directly to the CUF factor (Cumulative Fatigue Usage 
Factor), that is: 

 
Alternatively, both NUREG/CR-5704 and NUREG/CR-6583 may be replaced by 
NUREG/CR-6909 (Effect of Light Water Reactor Coolant Environments on the Fatigue 
Life of Reactor Materials) [2007], requiring the use of new fatigue curves.  
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In other words, there is still no consensus on the applied formulations. The fatigue 
analyzes that follow this procedure are called TLAA analyses, which are analyzes 
whose validity is limited by the time or cycles of use (Time-Limited Aging Analysis). 
On the other hand, for plants that follow German Safety Standards, such as Angra 2, the 
German KTA standard also presented rules in case the environmental effects cannot be 
excluded, as in the event projection for 60 years of operation, and are presented Next: 
 

a) KTA 3201.4 [2010], describes the following rules: 

In projecting events for 60 years of operation, the number of allowable transients must 
be reduced until reaching the following limits for the cumulative fatigue usage factor 
(CUF), which will be considered as fixed values: 

CUF = 0.2 for Austenitic stainless steel. 
CUF = 0.4 for Ferritic steels (carbon steel and low alloy steels). 
 

b) KTA 3211.2 [2013], describes the following rules: 
In projecting events for 60 years of operation, the number of allowable transients must 

be reduced until reaching the following limits for the cumulative fatigue usage factor 
(CUF), which will be considered as fixed values: 

 CUF = 0.4 for Austenitic and Ferritic materials. 
 

The values adopted for CUF as being 0.2 or 0.4 depending on the standard, are called 
attention threshold, and correspond to 60 years of plant operation. 
The definition of attention thresholds reflects the current state of knowledge of 
environmental influences. This state of knowledge must evolve further in the future, and 
the decision will be made on the basis of this new basis and at the level of attention 
thresholds of the KTA standard or, if necessary, its omission will be decided. 
Table 9 next presents a summary of the use of rules from NUREG and KTA for 
transient projections for 60 years of operation: 
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Table 9: Fatigue correction factor - summary of the use of rules from NUREG and KTA. 

 

Summary for Ferritic materials: 
For the accounting of the number of transients occurring in Ferritic materials, the use of 
attention threshold is very similar if obtained using NUREG rules or the German KTA 
standard. That is: 
Adopting KTA for Ferritic materials implicitly means using  Fen = 2.5000 
Adopting NUREG for Ferritic materials means using Fen = 2.4547 

Summary for Austenitic materials: 
For the accounting of the number of transients occurring in Austenitic materials, the use 
of attention threshold is very similar if obtained using NUREG rules after a long 
computational effort or the German KTA standard. That is: 
 Adopting KTA for Austenitic materials implicitly means using Fen = 5.0 
 Adopting NUREG for Austenitic materials means using Fen ~ = 5.0 
(After great computational effort using refined models) 
 
Application of the rules to obtain the CUF for 60-year transient projected cycles 
Table 10 shows the cumulative fatigue usage factor (CUF) for 60 years of operation, 
using the results output shown in table 8. 
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Table 10: Cumulative fatigue usage factor for 60 years of operation. 

 
 
 1) It is not a selected location defined in NUREG/CR-6260, so it only needs to 

make projections for 40 and 60 years of operation considering the limit for 
CUF ≤ 1.0 (Figures 26 and 27). 

 2) Projection for 60 years of operation performed by a fatigue monitoring system. 
 
Conclusion: In general, the methodology used by NUREG when compared to the 

methodology used by the German KTA standard to address the 
environmental-assisted fatigue problem seems to lead to similar values, 
after great computational effort using refined models. 

The use of fixed value penalties (NUREG and KTA for Ferritic materials and KTA for 
Austenitic materials) can reduce costs and avoid creating very refined models. 
The employ of the maximum NUREG threshold value for Austenitic materials, should 
preferably be used in fatigue control of selected locations, which make use of automatic 
systems. 
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Abstract

In the past few decades, modal testing has become a major technology for deter-
mining, improving and optimizing dynamic characteristics of engineering structures
in different fields, with emphasys (but not limited to) mechanical, civil, and aero-
nautical/aerospace engineering. One of the great advantages of using modal tests
is related to their experimental practicality. This practical advantage leads to its
strong use in inverse methods, or commonly known as inverse modal-based prob-
lems. An inverse problem based on modal parameters can be formulated basically
using i) natural frequency, ii) damping factor or loss factor and iii) mode shapes.
Other metrics can also be used from the composition of these 3 main responses, such
as modal strain energy, inverse FRF and many others. Inverse modal-based identi-
fication through optimization algorithms are particularly emphasized. The methods
discussed here are mainly elaborated by the evaluation of modal data due to the
great potential of application. This chapter discusses the use of computational and
intelligent techniques for parameter identification using modal responses. The con-
tent in this paper aims to help engineers and researchers find a starting point in
developing a better solution to their specific structural problems, either by inverse
methods, pattern recognition, or intelligent signal processing.

Keywords: Modal Testing; Experimental Modal Analysis; Parameter Estimation;
Inverse Problems.
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1 Introduction and Context

The field of modal testing is quite extensive and, to be mastered, it is necessary to in-
tegrate knowledge from different engineering fields: vibration measurements, signal pro-
cessing and structural analysis, including the necessary mathematical background. This
Chapter does not intent to address in detail all aspects of experimental modal analysis, but
only to familiarize and give the most important concepts and recent application in inverse
problems to the reader. For a more comprehensive understanding of the topics covered,
the novice researcher may rely on the vast classical books on the field, such as the theo-
retical foudations of vibration analysis found in Meirovitch [2010] and Inman [2013] or
the fundamentals of modal testing, such as Silva and Maia [1999], Ewins [2000], Fu and
He [2001] and Avitabile [2017].

According to Aster et al. [2012], the formulation of direct and inverse problems may
be seen as an attempt to better understand physical phenomena in general by means of
mathematical models, assuming that the underlying physical concepts are adequately un-
derstood. The idea is to relate physical parameters characterizing a model m to a set of
data d by means of an operator G, such that

G(m) = d. (1)

The model m may be understood as a set of physical parameters and relations; the data
d may be a function of time and/or space, or may be a collection of discrete observations.
The operator G can take on different forms, depending on the chosen approach. It can be
an ordinary differential equation (ODE), or partial differential equation (PDE), or systems
of ODE/PDE. In other cases, G may be a linear or nonlinear system of algebraic equations.
This terminology is not a consensus between mathematicians and other scientists. The
former usually refer to G(m) = d as the model and m as the set of parameters, while the
latter call G the forward operator and m the model. Without loss of generality, the second
terminology is adopted hereafter.

The forward problem, or direct problem, is the process of obtaining d given m, which
usually involves solving ODEs or PDEs, solving a system of linear or nonlinear algebraic
equations, evaluating integrals or even applying numerical algorithms when an explicit
form of the operator G is not available. On the other hand, the inverse problem is to find
m given d, which can be, in most cases, a much more complex endeavor than solving
the associated direct problem. Solution existence, solution uniqueness ant instability of
the solution are some of the issues that arise when dealing with inverse problems and
that must be carefully addressed. For further information in the topic of inverse problems
in strtuctural integrity problems, ranging from basic theoretical background to advanced
applications, the reader is encouraged to consult the first volume of the present Book
Series (Jorge et al. [2022]).

In this context, modal testing may be seen as an inverse problem in itself, when one
focus on the process of identifying a useful dynamic model from measured data. The
identified model may be a set of estimated Frequency Response Functions (FRFs) or,
more frequently, a set of modal parameters, such as natural frequencies, damping factors
and natural mode shapes, which can be used in adequate sets of ODE, PDE or algebraic
equations in order to describe the dynamic behavior of the modeled system. Once ob-
tained, the described modal data can, in turn, be used in several applications as models in
direct/forward problems or as data in inverse problems.
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The relevance and broad range of the use of modal data in engineering investigations
in general, and in structural integrity problems in particular, is the main motivation for the
present chapter. The fundamental concepts that are necessary for a basic understanding
of the topic are briefly reviewed. Additionally, a selection of recent applications of the
use of modal data in structural integrity problems is presented and discussed. The authors
hope that the present chapter may provide the reader with the basic tools and information
to further studies in the field, taking advantage of a comprehensive list of classical and
recent literature for each relevant topic.

2 Overview and Philosophy of Modal Testing

Since the late 1970s, according to Fu and He [2001], modal analysis has increasingly
become a major technology in the quest for determining, improving and optimizing dy-
namic characteristics of engineering structures. A very interesting historical overview
of the first 30 years of developments in the field may be found in Brown and Allemang
[2007]. Not only has the topic modal testing been recognized in mechanical and aerospace
engineering, but modal analysis has also encountered profound applications for civil and
building structures, bio-mechanical problems, acoustical instruments, transportation and
nuclear plants, among others.

In the same way, according to Ewins [2000], since the very early days of awareness
of structural vibration, experimental observations have been necessary for the major ob-
jectives of i) determining the nature and extent of vibration response levels in operation
and ii) verifying theoretical models and predictions of the various dynamic (vibration)
phenomena. There is also a third requirement, which is, iii) identifying the essential ma-
terial properties under dynamic loading, such as damping capacity, friction and fatigue
endurance. One of the major requirements of the subject of modal testing is a thorough
integration of three components:

• The theoretical basis of vibration;

• Accurate measurement of vibration;

• Realistic and detailed data analysis.

Equally important, in summary, modal analysis is the process of determining the in-
herent dynamic characteristics of a system in forms of natural frequencies, damping fac-
tors and mode shapes, and using them to formulate a mathematical model for its dynamic
behavior. The formulated mathematical model is referred to as the modal model of the
system and the information for the characteristics are known as its modal data (Fu and He
[2001]). Modal analysis embraces both theoretical and experimental techniques. The the-
oretical modal analysis anchors on a “spatial model” of a dynamic system comprising its
mass, stiffness and damping properties. These properties may be given in forms of partial
differential equations. Modern finite element (FE) analysis empowers the discretization
of almost any structural system and hence has greatly enhanced the capacity and scope
of theoretical modal analysis. On the other hand, the rapid development over the last two
decades of data acquisition and processing capabilities has given rise to major advances
in the experimental realm of the analysis, which has become known as modal testing.
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Figure 1 depicts the theoretical and experimental vibration routes previously discussed
(Covioli [2021]). On the theoretical path, the relevant geometrical and material properties
of the system are the main input for the creation of the so-called “spatial model”, most
frequently a FE numerical discretization of a complex structure that combines several dif-
ferent continuous elements. This numerical representation in physical coordinates can be
transformed through the solution of an algebraic eigenproblem into a model consisting of
the natural frequencies and mode shapes of the system, which is referred to as the “modal
model”. From the modal model it is possible to efficiently obtain response functions in
the time domain or in the frequency domain, allowing for a wide range of simulations of
the dynamic behavior of the system when submitted to the envelope of excitations that
will occur during its operation.

. . .
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Figure 1: Vibration analysis route : (a) theoretical ; (b) experimental (adapted from
Covioli [2021]).

On the experimental path, the starting point is the measurement of the dynamic behav-
ior of the structure when conveniently excited. Signal acquisition and processing of the
excitation forces1and vibration responses (most frequently accelerations or velocities of
selected points of the structure) are the input data for the identification steps that follow.

1It is possible to perform modal tests without the measurement of the excitation forces, relying solely
on the measurement of vibration responses. This is particularly useful when investigation systems in its
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Response functions are then obtained and used to feed modal parameter extraction algo-
rithms, resulting in an experimental modal model representing the vibration modes of the
structure. Now, the dynamic behavior of the structure is described by a set of identified
natural frequencies, modal damping factors and natural mode shapes. The experimental
modal parameters, together with a simplified geometrical model of the measured degrees
of freedom, constitute the experimental description of the system.

There is a range of complex and relevant problems in engineering that make use of
modal data to solve a specific inverse problem, such as: numerical model updating and
tuning, detection and identification of damage, identification of mechanical properties,
force identification, and sensor optimization problems. The great advantage of using
modal data is due to the amount and quality of global information intrinsic to the structure.
This chapter is focused on discussing the use of modal data in order to solve a general
inverse problem as well as discussing the peculiarities of selected applications.

3 The Frequency Response Function

Most of the parameter identification techniques and algorithms used in Modal Testing
to obtain the modal parameters are based on a previous identification of at least one (usu-
ally several) FRFs of the system under investigation. Therefore, some basic definitions
and equations involved in the modal identification methodology based on FRFs are briefly
reviewed.

3.1 Frequency Response Function - SDOF systems

Some mechanical and structural systems can be idealized as Single Degree of Freedom
(SDOF) systems. The theory for an SDOF system forms the basis for the analysis of a
system with more than one degree of freedom (DOF). It also provides physical insight
into the vibration of a structural system. We will use the SDOF system shown in Figure
2 that has a mass, a spring and a damper with either viscous or structural (hysteretic)
damping.

For a harmonic force f(t) = F (ω)ejωt, the response of the system is another har-
monic function x(t) = X(ω)ejωt where X(ω) is a complex amplitude. Substituting into
the equations of motion for viscous damping models, we can derive the ratio of the dis-
placement response and the force input as:

H(ω) =
X(ω)

F (ω)
=

1

k − ω2m+ jωc
(2)

Briefly, the frequency response function is a transfer function that describes dynamic
structural physical behavior (displacement, velocity or acceleration) as a ratio, in the fre-
quency domain, to the input force. FRF depends on the intrinsic structural characteristics

operational environment. The procedure is usually called Operational Modal Analysis(Avitabile [2017],
Covioli [2021]).
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Figure 2: Single degree of freedom (SDOF) system

of mass, stiffness, damping and also the boundary condition (supports and bonds). Figure
3 shows the general idea of the FRF.

ω

Figure 3: Frequency response function

The ratio written in therms of the dynamic displacement shown in Equation 2, often
denoted as α(ω), is defined as the compliance FRF of the system. Although defined as the
ratio of the force and response, the FRF is independent of them. When damping is zero,
the complex FRF function is relegated to a real function. The FRF is the main function
on which modal analysis will depend. Although in theory the FRF is dictated only by the
system, in reality the accuracy of measured FRF data is critical to the success of modal
analysis.

The system FRF can also be represented in terms of the velocity or the acceleration
of the mass. By replacing the displacement response X(ω) with velocity Ẋ(ω) and ac-
celeration Ẍ(ω), types of FRFs can be defined, usually called, respectivelly, as mobility
(Y (ω)) and accelerance A(ω)) functions. The three functions may be written as

α(ω) =
X(ω)

F (ω)
=

1

k − ω2m+ jωc
, (3)
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Y (ω) =
Ẋ(ω)

F (ω)
=

jω

k − ω2m+ jωc
, (4)

and

A(ω) =
Ẍ(ω)

F (ω)
=

−ω2

k − ω2m+ jωc
. (5)

It is clear that the three types of FRFs, α(ω), Y (ω), and A(ω), are easily interchange-
able. All three are complex functions of frequency. Their amplitudes follow:

|A(ω)| = ω|Y (ω)| = ω2|α(ω)| (6)

The phase difference among them remains constant at any frequency:

θA(ω) = θY (ω) +
π

2
= θα(ω) + π (7)

The reciprocals of the three FRFs of an SDOF system also bear useful physical sig-
nificance and are sometimes used in modal analysis. They are respectively known as
Dynamic Stiffness (Eq. 8), Mechanical Impedance (Eq. 9) and Dynamic Mass (Eq. 10).

1

α(ω)
=

force

displacement
(8)

1

Y (ω)
=

force

velocity
(9)

1

A(ω)
=

force

acceleration
(10)

There are benefits to displaying the FRF in these different formats where some physi-
cal conclusion can be made, depending on the specific application. All of these responses
are mathematically related (as seen in Equations 3 to 5) so by calculating one FRF, any of
the other representations can be determined. In this sense, Figure 4 illustrate the different
types of direct and inverse input/output FRF.
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Figure 4: The direct and inverse frequency response functions.
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Graphical display of an FRF plays a vital role in modal analysis. A different graphical
display highlights different information an FRF carries. Since experimental modal anal-
ysis often relies on curve fitting of FRF data, sound understanding of FRFs in graphical
forms is imperative. In the following, we will show that even for the FRF of an SDoF
system which seems to be analytically simple and trivial, much insight about the function
can be gained by studying it in various forms of graphical display. We will use first the re-
ceptance FRF to begin our exploration of the graphical display. Since the receptance FRF
is a complex function of frequency, it is impossible to fully display it using merely one
two-dimensional plot. A three-dimensional plot of a receptance FRF of a typical SDoF
system is shown in Figure 5.

(a) A three-dimensional plot of an FRF (b) Nyquist plot of an FRF

(c) Magnitude of an FRF

Figure 5: An overview of FRF for SDOF system.
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3.2 Frequency Response Function - MDOF systems

Next, a multiple degree of freedom system (MDOF) is considered. Similarly to the
SDOF case, the equations of motion for a MDOF system can be derived assuming the
following simplifications (Avitabile [2017]):

• the mass and or inertia properties of the system are modeled as lumped quantities

• the spring forces (or moments) are proportional to displacement (angular displace-
ment).

• the damping forces (or moments) are proportional to linear velocity (or angular
velocity).

Additionally, the derivation is restricted to the case where the physical properties are
time invariant. Under these assumptions, the equations of motion for a N degree of
freedom linear, time-invariant system can be written in matrix form as

[M ] {ẍ(t)}+ [C] {ẋ(t)}+ [K] {x(t)} = {F (t)} , (11)

where [M ] is the mass matrix (N × N), [C] is the damping matrix (N × N), [K] is
the stiffness matrix (N × N), F (t) is the forcing vector (N × 1) and x(t) is the vector
(Nx1) of displacements. These equations constitute the “spatial model”, in the form of
system of ODEs, which are usually coupled in the physical coordinates x(t).

It is important to notice that, in structural dynamic problems, matrices [M ] and [K]
are quite often obtained from a finite element model. Matrix [C] is usually introduced
as a representation of localized damping devices in mechanical systems, as, for example,
vehicle suspension systems, physical joints in multibody systems and other very specific
mechanical problems. However, the damping matrix [C] is seldom available for general,
distributed parameter structural problems. The damping characteristics of such systems
are introduced in the models from previous heuristic knowledge or, more frequently, from
vibration experiments such as modal testing.

The Frequency Response Functions associated to Equation 11 may be also written in
matrix form as [H (ω)], an (N ×N) complex symmetryc matrix given by:

[H (ω)] =
(
−ω2 [M ] + jω [C] + [K]

)−1
, (12)

where each individual term in matrix [H (ω)], denoted by Hrs(ω), represents the FRF
related to the response at coordinate r due to an excitation acting on coordinate s of the
structural system.

The representation of the system FRFs in Equation 12, despite its simplicity, may
be computationally prohibitive for real-life, large structural models, which are easily ob-
tained nowadays with the available FE modeling tools. A much more efficient approach
is to introduce a change of coordinates intended to decouple the equations of motion - the
modal analysis approach, presented in the following paragraphs (the time-dependency of
the variables may be occasionally omitted for clarity).

The starting point is the equation for the free vibration of the undamped MDOF sys-
tem, expressed by

[M ] {ẍ}+ [K] {x} = {0} . (13)

Gomes, Guilherme F., et al. (2022) Modal Test Data in Inverse Problems pp. 311-348

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 321



Assume that the response x(t) is harmonic and has the general form

{x (t)} = {X} ejωt, (14)

where {X} is an (Nx1) vector of time-independent complex response amplitudes.
Substituting (14) into (13), we arrive at the algebraic eigenvalue problem(

[K]− ω2 [M ]
)
{X} = 0. (15)

The eigensolution of Eq.(15) yields N pairs of associated eigenvalues and eigenvec-
tors, ω2

r and {Xr} , which are the natural frequencies (squared) and mode shapes of the
system. The mathematical process of the eigensolution can be performed by means of
direct and indirect techniques. For smaller matrices, the direct techniques decompose the
set of equations to get all of the eigenvalues and eigenvectors. However, for complex
structures, when the matrices get larger, as is the case for the large finite models, then
indirect, iterative numerical techniques are used.

Due to the symmetric nature of the system matrices, the eigenvalues and eigenvec-
tors are real quantities. Each eigenvector {Xr} is a vector with N real quantities that
are only defined in relative terms, i.e, the direction of the vector is well defined, but
not its magnitude. It is useful to represent the eigenvectors by their mass-normalized
version {ϕr : //www.overleaf.com/project/629239a6de6fa1d13e3e226bht} , impos-
ing the normalization (Eq. 16).

{ϕr}T [M ] {ϕr} = 1 (16)

The orthogonality properties of the eigenquantities with respect to the system matrices
may now be written as shown in Eq. 17.

[Φ]T [M ] [Φ] = [I] (17)

and
[Φ]T [K] [Φ] = ⌈ω2

r⌋, (18)

where [Φ] is the modal matrix, in which each column is a mass-normalized mode
shape, and ⌈ω2

r⌋ is a diagonal matrix of the squared natural frequencies.
The orthogonality properties are useful to uncouple the system equations. Defining a

coordinate transformation

{x (t)} = [Φ] {q (t)} , (19)

and substituting into Eq. (13) leads to

{q̈(t)}+ ⌈ω2
r⌋ {q(t)} = {0} . (20)

Hence, the coordinate transformation leads to a set of uncoupled equations, corre-
sponding to N independent undamped SDOF systems that can be solved separately.

In general, the damping matrix is not diagonalized by the coordinate transformation
and the equations of motion for the damped system will remain coupled. However, un-
der the useful assumption that the damping is proportional, i.e., the damping matrix [C]
can be written as a linear combination of [M ] and [K], the damping matrix can also be
diagonalized as
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[Φ]T [C] [Φ] = ⌈2ζrωr⌋, (21)

where ζr is the modal damping ratio for mode r. Next, take Eq. (19) into Eq. (11) and
pre-multiply by [Φ]T , resulting in

{q̈(t)}+ ⌈2ζrωr⌋ {q̇(t)}+ ⌈ω2
r⌋ {q(t)} = [Φ]T {F (t)} . (22)

Equation (22) is the basis for a much more efficient forced response analysis of the
original coupled damped MDOF system, now represented by N independent damped
SDOF equations in the so-called modal coordinates {q(t)}. Also, it will lead to a more
useful formulation of the system FRFs, more suitable for the development of parame-
ter identification algorithms. After the necessary mathematical manipulation steps, the
MDOF system FRFs can now be written as

Hrs(ω) =
N∑
k=1

Ars(k)

ω2
k − ω2 + 2jζkωωk

, (23)

with

Ars(k) = {ϕk}r {ϕk}s , (24)

where {ϕk}r is the real entry at coordinate r of mode shape k.
Figure 6 depicts a typical FRF of a MDOF system, illustrating the contributions of

each single mode, combining the terms in the summation shown in Equation (23).

Figure 6: Typical FRF for a MDOF system : (a) “summed” FRF ; (b) individual
mode contributions (Avitabile [2017]).

Complementary, Figure 7 shows the FRF plots for a multiple degree of freedom
(MDOF) system. In this specific case, the numbers of modes in the shown frequency
range are N = 3.
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(a) A three-dimensional plot of an FRF (b) Nyquist plot of an FRF

(c) Magnitude of an FRF

Figure 7: An overview of FRF for MDOF system.
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Such a three-dimensional plot is complete because it shows the true face of an FRF.
It is, however, difficult to be used especially for modal analysis where characteristics
such as resonance need to be visually available. From Figure 5, we can see that the 3-
D plot, when projected to the frequency-real plane, becomes the real part of the FRF.
Likewise, its projection to the frequency-imaginary plane gives the imaginary part of
the FRF and that to the real-imaginary plane is the Nyquist plot. These plots (and their
variations) highlight different aspects of the FRF. The need to investigate an FRF from a
2-D graphical manifestation gives rise to a number of different graphical presentations of
it.

The wide range of modal parameter estimation strategies and algorithms developed
over the years rely on some mathematical representation of the system FRFs similar to
the one presented in Eq. (23). Slightly different derivations are needed, for instance, when
considering more general damping models, which may result in complex mode shapes.
Depending on the complexity of the modal test performed, the amount and quality of
the acquired data, and the level of details of the desired modal model, one can choose
identification procedures ranging from simple curve fitting for individual peaks in Fig. (6),
circle fitting of Nyquist plots, line fitting of a broader frequency band including several
modes or, for more complex demands, detailed algorithms that might include several
FRFs for different excitation points and different measurement locations. The next section
discusses some of the issues involved in the experimental identification of FRFs for modal
parameter extraction.

3.3 Comments on the Experimental Identification of FRFs

To obtain experimental FRFs with good quality for a successful modal parameter es-
timation, several aspects of the modal testing procedure have to be carefully taken into
account (Akers et al. [2020]). First, a thorough test planning must be conducted, including
topics such as test objectives, selection of frequency range of interest, selection of mea-
surement and excitation coordinates, selection of excitation devices and methods (impact
or shaker, for example), selection of measurement transducers, definition of support points
and apparatus, among others. It is very useful, whenever possible, to create a simplified
theoretical/numerical model for preliminary simulations that can greatly facilitate the test
planning process.

During the execution of the modal testing tasks, data acquisition and signal processing
issues are of paramount importance. The setup of all electronic devices and connections
that constitute the excitation and response measurement chains must be carefully and reg-
ularly inspected, to ensure that no extraneous influences are contaminating the acquired
data. A good understanding of the basics of signal processing theory is also necessary.
Issues such as sampling rates, windowing, filtering, averaging, coherence, etc. must be
thoroughly considered. This knowledge is essential for the acquisition of data that is
potentially free of the effects of spurious noise and data acquisition undesired phenom-
ena, such as leakage and aliasing. For more detailed information on modal test planning
and excecution, see Ewins [2000], Fu and He [2001], Peeters et al. [2004] and Avitabile
[2017].

Once a set of good quality FRFs is available, it is time for the parameter estimation
step. In theory, the FRFs of a MDOF system constitute a square (NxN) matrix of func-
tions. In practice, however, only a limited number of functions is available. Therefore, it
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is important to make sure that the correct estimation technique is chosen for the case at
hand.

Figure (8) illustrates an schematic classification of parameter estimation methods
based on the fitting of the available FRFs. A local approach may be sufficient for smaller
problems, using one FRF at a time to estimate natural frequencies, damping ratios and
the amplitude of the mode shape for the corresponding coordinate. It is important to no-
tice that the local method does not rely on a single FRF, since it would be impossible to
estimate mode shapes. The local stands for analyzing one FRF at a time and combining
the results in the end of the process. The global approach includes a set of FRFs obtained
at different locations from a single excitation point. In this case, a “column” of the FRF
matrix is fed to the estimation algorithm, resulting in the simultaneous estimation of the
natural frequencies, damping factors and mode shapes. The polyreference approach is and
extension of the global approach. Now, the algorithm can deal with data originated from
two or more excitation points. Complex and sophisticated tests may be conducted with
simultaneous multi excitation. It is more common, however, to obtain different columns
of the FRF matrix in distinct test runs. Care must be taken to make sure that the same test
conditions are reproduced for all the data acquisition runs.

Figure 8: Classification of modal parameter extraction aproaches: (a) Local
curvefitting ; (b) Global curvefitting; (c) Polyreference curvefitting (adapted from
Avitabile [2017]).

Another important aspect to be considered during the parameter estimation step is
related to modal density - the number of peaks in a given frequency band - and damp-
ing levels. Modes that are too close to each other may pose difficulties to less sophis-
ticated estimation methods. When damping levels are high, it is sometimes impossible
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to distinguish two modes of close natural frequencies. Figure (9) schematically illus-
trates this very relevant point. The lower frequency mode in (a) is clearly isolated and
a SDOF based method may be successful in estimating the modal parameters with good
quality. However, the two peaks marked in (b) will certainly demand a more detailed,
MDOF estimation algorithm. Two of the most popular methods found in the literature
and implemented in commercial Modal Analysis software are the Least Square Complex
Exponential method and the PolyMAX method (Avitabile [2017]).

Figure 9: Effect of mode spacing in estimation strategy : (a) SDOF curvefitting ; (b)
MDOF curvefitting; (adapted from Avitabile [2017]).

The topics discussed in the present section are obviously only a glimpse on the subject,
intended to motivate the reader to a more detailed look at the comprehensive literature
referenced at the end of the chapter. As a final comment about practical considerations
of a modal testing, it is important to register that the execution of an experimental modal
analysis campaign appears to be a challenge only suited for seasoned experimentalist with
hundreds of lab hours in his/her résumé. This is certainly true for large complex structures,
usually demanding a multidisciplinary team of professionals to get the job done within
the required time and quality constraints (Carneiro et al. [1992]. However, a dedicated
novice researcher can obtain very rewarding results with smaller problems, more typical
in academic research.

4 Inverse Modal Problems

Nowadays, many researches have been focused on the development of several met-
rics based on the characteristics of static and dynamic (mainly) responses of mechanical
systems. An inverse problem is a general strategy or methodology that is used to convert
observed measurements into information about a physical object or system in which we
are interested (Jorge et al. [2022]). There are several advantages to using modal data in
inverse problems, since modal data usually reflect both global and local structural condi-
tions with relevance (Gomes et al. [2018a], Magacho et al. [2021]).

An inverse problem based on modal parameters can be formulated basically using
i) natural frequency, ii) damping factor or loss factor and iii) mode shapes. Additional
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formulations based on FRF and derived from direct responses such as modal curvature,
energy and others are also widely used today. Modal parameters such as natural frequency
are values that have a significant amount and quality of global structural information
whereas mode shapes are more sensitive to local disturbances. The correct combination
of these responses, depending on the formulation and application in question, can lead to
reliable and accurate results in the identification of parameters.

Figure 10 briefly shows the general process of an inverse problem. Usually the exper-
imental tests are carried out in order to extract the modal properties (natural frequencies,
damping factors and mode shapes). These properties will feed the formulation of an in-
verse problem that is usually accomplished by minimizing an objective function. This
objective function can be the norm (or error) between results measured and calculated by
the optimizer. The importance of using optimization techniques, which play a fundamen-
tal role in the problem of parameter identification, is also noteworthy. Table 1 shows a list
of the main types of objective functions used in most of the research work found in the
literature.

ω)

ωn

ζ

Φ

Figure 10: A general flowchart of modal based inverse problems.

In general, the most relevant, discussed applications and source of attention for sev-
eral engineers and researchers are: damage detection and identification, sensor placement
optimization (Gomes et al. [2019a], Gomes et al. [2020]), property identification, struc-
tural optimization (by maximizing the fundamental natural frequency) and identification
of vibration forces. In this section, a brief discussion of the main contributions to each
theme will be made, as well as the advantages and peculiarities of each formulation.
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Table 1: Systematic review of the parameters used in optimization in damage detection.

Author Algorithm Objective Function

Friswell et al. [1998] GA J =
∑r

j=1

(
δωmj−δωaj

δωmj

)2

+
∑r

j=1(ϕmj − ϕaj)
T (ϕmj − ϕaj)

Yong and Hong [2001] GA J =
∑nm

i=1

{[(
λi(α)−λ0

i

λ0
i

)A

−
(

λD
i −λU

i

λU
i

)E
]2

+
[
(ϕij(α)− ϕ0

ij)− (ϕD
ij − ϕU

ij)
]2}

Jafarkhani and Masri [2011] CMA J(α) =
∑n

i=1

[(
fe
i −fa

i

fa
i

)2

+

(
1− |ϕeT

i ϕa
i |2

(ϕeT
i ϕe

i )(ϕ
aT
i ϕa

i )

)]

Nanda et al. [2012] PSO J =

√
1
n

∑n
i=1

((
fm
i

fc
i

)
− 1

)2

Mohan et al. [2013] PSO J = 1
N

∑N
q=1

(∑R
a=1

∑M
p=1

|Hak(ωp,α)−Hm
ak(ωp)|

max(Hm
ak(ωp))

)
Suveges [2016] DE J =

∑n
i=1

[
(σsim

ix − σcal
ix )2 + (σsim

iy − σcal
iy )2

]
Cha and Buyukozturk [2015] GA J =

∑ms
i=1

∑el
i=1 |ΦdT

i KjΦ
d
i − ΦsT

i KjΦ
s
i |

Braun et al. [2015] ACO J =
∑N

j=1

∑Nt

i=1

[
xMod
j (K, ti)− xExp

j (K, ti)
]2

Gomes et al. [2016a] GA J =

√
1
N

∑n
i=1

(
1− ωd

i

ωi(
−→
X )c

)2

Gomes et al. [2016b] GA J =

√
1
N

∑n
i=1

(
1− ωreal

i

ωi(
−→
X )model

)2

+
∑n

i=1

(
ẍreal − ẍmodel

)2
Vo-Duy et al. [2016] DE J =

∑nm
i=1

||Φd
i−Φd

i (x)||
||Φd

i ||
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4.1 Structural Health Monitoring Problems

The damage can be seen as a change in the geometric or physical properties of a mate-
rial. A structure, in the presence of a damage, will have a mechanical behavior (parameter)
that will not resemble an intact structure. These parameters are directly affected by the
variation in the physical (modal) properties of the structure (mass, rigidity and damping).
When all is said in done, damage may cause local changes in the mass and/or stiffness of
the structure and, as an outcome, alter its attributes.

The structural monitoring by itself does not find the solution to structural problems,
however, according to Worden et al. [2009], if it is used in conjunction with the develop-
ment of new computational technologies and mathematical tools, it opens the possibility
of solving optimization problems associated with Structural Health Monitoring (SHM)
and finding the best solution.

According to Sohn et al. [2003], many damage detection methods reviewed attempt
to identify damage by solving an inverse problem, which often requires the construction
of analytical models. This reliance on an earlier expository model, which is regularly un-
verifiable and not completely approved with test information, makes these methodologies
less alluring for specific applications.

There are various damage indicators (Gomes et al. [2018b]). Several are constructed
from vibration data, either in the time and/or frequency domain. These indicators have
proved to be efficient, but there are still areas that need to be improved. Many indicators
present sensitivity problems, need a reference state and do not present the probability of
detecting false alarms, reducing their reliability.

According to Gopalakrishnan et al. [2011], the SHM methodology offers a complete
platform to predict failures before they occur, for this, it is necessary that some properties
of the structure under study are provided and the configuration and detection parameters
are established, it should also be indicated if the monitoring will be done in part or con-
tinuous time. The SHM methodology, once proven reliable, contributes to the premature
detection of damages that have led to the collapse of the structure and is an indicator for
the scheduling of preventive actions. The field of application of this technique varies from
civil structures of the aeronautics and space industry. Some of the main advantages of the
SHM application are: i) to minimize the time of application of maintenance actions and
stops due to serious failures, ii) the information collected provides valuable data that can
be used to adjust the structure mode of operation or even to optimize the design in future
improvements and, iii) allow a reconditioning of maintenance actions based on operating
and performance conditions and not in periodic maintenance actions, that (probably) may
be unnecessary.

Damage is the main cause of structural failure and occurs frequently in mechanical
structures. In recent decades, special attention has been given to methods of detecting
damage at an early stage to avoid sudden failure of structural components. More specifi-
cally, the monitoring of structural integrity based on the vibration of structures has been
the focus of attention of many researchers in order to obtain efficient tools of great im-
portance for the civil, aeronautical and mechanical engineering communities. In addition,
many research fronts have been focused on the development of reliable damage indicators
that allow, in addition to detecting damage, identifying it in terms of location.

One of the first published studies of relevance was developed by Adams et al. [1978].
The authors have developed a non-destructive method of assessing structural integrity
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based on vibration measurements. It was shown that the vibration measurements made in
the structure (receptance function) can be used, together with a suitable theoretical model
(reference), to indicate the location and magnitude of damage, in a one-dimensional
model.

At the same time, Cawley and Adams [1979] realized that a certain state of dam-
age can be generated by a reduction in stiffness or by an increase in structural damping.
Changes in stiffness, whether local or distributed, lead to changes in the natural frequen-
cies of the structure in question. Further, since the stress distribution across a vibrating
structure is non-uniform and is different for each of the natural frequencies, any localized
damage would affect each mode individually and differently, depending on the particular
location of the damage. Thus, the measurement of modal data of a structure in two or
more stages of its life offers the possibility of locating damages in the structure. If a set of
dynamic responses is measured before the structure is in service, measurements of those
responses can be used to determine if the structure still meets certain operational criteria.

Several researchers develop strategies based on inverse problems in order to identify
damage to mechanical structures. The great advantage of using modal data is due to the
ease of experimental tests in loco and the quality of the data. Natural frequency data is
poorly sensitive to climate change and external factors. In addition, natural frequencies
are able to extract the overall structural situation with quality, being a good metric for
detecting (whether or not there is damage). However, damage identification strategies
can be improved with the aid of vibration modes. Mode shapes are more sensitive to
local structural variations. However, mode shapes are sensitive to external noise. A good
damage identification strategy can make use of modal parameters combined with the aid
of advanced signal processing and acquisition techniques.

In summary, the development of an efficient structural monitoring technologies aims
to provide safety and cost savings. However, the number of practical applications of
these technologies is still finite. This is mainly due to the complexity of possible damage
scenarios and the high performance requirements of the identification methods employed.
The study discussed in this section refers mainly to the relationship between these two
aspects, in order to reach a specific level of maturity.

4.2 Sensor Placement Optimization

The basic problem of fault and damage detection is to deduce the existence of dam-
age to a structure from measurements made on distributed sensors. It is known that the
quality of these measurements, that is, the quality of the structural monitoring, is largely
dependent on where the sensors are located in the structure. Cost and practicality issues
prevent the instrumentation of all points of interest in the structure and lead to the se-
lection of a smaller set of measurement sites (Barthorpe and Worden [2009], Gomes and
Pereira [2020]). The objective of this study is to indicate the problem of sensor placement
optimization (SPO) and to describe some methods that have been investigated for its so-
lution besides proposing an alternative optimization of the optimal positioning of these
sensors. The following discussion focuses on sensor optimization techniques based on
the dynamic structure.

Traditionally, a successful sensor distribution has been heavily dependent on the knowl-
edge and experience of those conducting experimental tests. Practical methods, for exam-
ple, by choosing sites close to anti-knots of low-frequency vibration modes, are combined
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to create coherent sensor distributions (Barthorpe and Worden [2009]). However, for a lot
of the times, a single mode of vibration does not have enough information on a damaged
structural state, being necessary the use of a set of modes. Therefore, a distribution in the
anti-nodes would not be feasible for a predefined number of sensors.

According to the theory discussed in (Barthorpe and Worden [2009]), the objective of
sensor positioning can be stated as the need to select a subset of measurement locations
from a large finite set of locations, so as to represent the system with the highest possible
accuracy using a limited number of degrees of freedom accessible. This can be seen as a
three-step decision process:

• Number of sensors - How many sensors need to be placed in the structure to allow
a satisfactory dynamic test?

• Sensor positioning optimization - Where should these sensors be located to obtain
more accurate data?

• Evaluation - How can the performance of different sensor configurations be mea-
sured?

In general, on the first aspect, the minimum requirement for the system to be observ-
able is that the number of sensors required can not be less than the number of modes to be
identified, with an upper limit usually imposed by the cost or availability of the equipment.
The second aspect is the area that has attracted the most interest. For the limited num-
ber of available sensors, the problem is the development of a suitable sensor positioning
performance measurement to be optimized and the selection of an appropriate method.
Some approaches require a single calculation to be performed, some are iterative, and
many others take the form of an objective function to which an optimization technique
must be applied. The third and last aspect includes several possibilities for evaluating the
performance of chosen sensor sets. In this work, preferably the positioning item will be
approached, where a pre-defined number of sensors will be fixed.

In addition, the sensor placement issue attracts a lot of attention from academia and
industry, especially due to the growing number of large instrumented monitoring struc-
tures over the last decade. This is due in part to economic reasons, to the high cost of
data acquisition systems (sensors and their supporting instruments), partly because of the
limitations of structural accessibility (Rao et al. [2014]).

The set of degrees of freedom measured in most large structures, usually the shifts of
the low frequency modes, provide enough information to describe the dynamic behavior
of a structural system with sufficient accuracy to allow its structural state and/or modifi-
cations determined in an effective manner. Thus, the fundamental problem is how many
and which degrees of freedom must be considered in the process of structural identifica-
tion. To solve this problem, economic factors that require a limited number of sensors to
be placed in accessible locations in the actual structure (Rao and Anandakumar [2007])
should be duly taken into account. Still, according to Rao and Anandakumar [2007], it is
crucial that the sensors are located in the most advantageous locations. Otherwise incom-
plete modal properties will be measured and an accurate assessment of structural health
monitoring will be impossible.

Figure 11 shows a general flowchart of a SPO process using an inverse problem. The
flowchart starts with numerical structural modeling (discretizing the largest amount of
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DOF possible). After obtaining the model, a given objective function J is chosen in order
to be minimized/maximized. The optimization of this function can be performed using
different algorithms (gradient-based or gradient-free) depending on the complexity of the
SPO problem. If a given stop criterion is satisfied, the optimal layout of the N predefined
sensors is obtained.

Numerical Modelling Modal Response

Complete
Modeshape ΦFEM Minimize (J)

s1 s2

sn s3

Optimal Sensor Layout

Convergence
satisfied?

Yes

Reduced
Modeshape Φcalculated

Genetic Algorithm

No

Mode   

Mode   

Complete 
mode shape

Reduced
mode shape

Figure 11: General methodology for SPO based mode shape.

4.3 Identification of Material Properties

Modal responses can also be part of formulating inverse problems in terms of iden-
tifying properties. This theme has great relevance because it allows non-destructive (vi-
bration) tests to be conducted in place of traditional destructive tests (such as tensile,
compression, bending tests, etc.). In addition to the identification of unknown properties,
this formulation strategy can also be used to update and adjust experimental-numerical
models.

Modal testing has the potential to provide the basis for rapid, inexpensive characteri-
zation of both elastic and viscoelastic properties of composites for design and manufac-
turing. Knowledge of elastic properties is, of course, required in design, but measurement
of elastic properties during manufacturing offers the potential for improvements in quality
control as well (Gibson [2000]).

The strategy of identifying mechanical properties by means of an inverse modal prob-
lem has its importance in isotropic materials. However, its great justification occurs in
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composite materials. The behavior of composite structural systems in which parameters
are variable or not perfectly known is still a challenging problem. The most available
models to investigate the behavior of composite structures assume an effective homoge-
nized set of material properties. These models fail to capture the true behavior of the wide
variety of such structures exhibit significant inherent uncertainty in material parameters
(Sepahvand and Marburg [2014]).

In addition, according to Gibson [2000], not only does the material property character-
ization add to the cost of manufacturing, but the complexity of the test procedures and the
test equipment is such that small and medium-sized composite fabrication shops generally
have to rely on outside testing laboratories to do the characterization. Such a separation of
the manufacturing and testing functions precludes an on-line evaluation of the properties,
which is needed for optimization and control of the manufacturing process.Ideally, the
composite characterization system should be fast, inexpensive and capable of providing
feedback.

5 The Use of Modal Data in Inverse Problems

The central thought for vibration-based damage detection is that damage causes a
modification in the mass, stiffness and damping structural matrix. These modifications
will also cause recognizable changes in modal properties (natural frequencies, modal
damping, and mode shapes). In this section, some classical and modern methodologies
based on vibration signals will be described and discussed. Modal experimental analysis
is an efficient tool to detect and identify damages, especially delamination in composite
materials.

5.1 Natural Frequency-Based Methods

The presence of damage or structural deterioration causes changes in the natural fre-
quencies in the structure. The most useful damage-finding methods (based on dynamic
tests) are probably the ones that use changes in resonance frequencies (natural frequen-
cies), because they are easy to obtain and are reliable metrics. Lifshitz and Rotem [1969]
present what may have been the first article to propose damage detection through vibra-
tion measurements. They analyze the change in the dynamic modules, which may be
related to the frequency change, indicating structural damage.

The effect of delamination on the natural frequencies of laminated composite beams
has been investigated by Valdes and Soutis [1999]. The use of vibration at higher fre-
quencies allows the identification of delamination occurrence. Additional setups can be
also used in addition with modal frequency data. Ling et al. [2004] developed fiber-optic
sensors to measure natural frequency in composite structures. The advantage of using
fiber-optics is that they can be incorporated in laminated composites structures allowing
real-time damage detection. LeBlanc et al. [1992] described how a network of embedded
optical fibers could be used to detect and monitor damage (in particular, impact damage)
within composites.

Also, as stated by Negru et al. [2015], transversal cracks in composite structures affect
their stiffness as well as the natural frequency values. For a given crack, irrespective of
its depth, the frequency drop ratio of any two transverse modes is similar (de Assis and
Gomes [2021]). This permitted separating the effect of damage location from that of its

Gomes, Guilherme F., et al. (2022) Modal Test Data in Inverse Problems pp. 311-348

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 334



severity and to define a Damage Location Indicator as a function of the square of the
normalized mode shape curvatures, according to the authors.

Natural frequencies are good damage metrics, not only for delamination, but also for
impact analysis. Velmurugan and Balaganesan [2011] studied the natural frequency and
damping factors before and after impact as well the effect of damage on natural frequency
and damping factors. It was shown that natural frequencies increase with the impact
velocity.

5.2 Damping-Based Methods

According to Cao et al. [2017], typical dynamic properties refer to modal parameters:
natural frequencies, mode shapes, and damping (or loss factor). Among these parameters,
natural frequencies and mode shapes have been investigated extensively for their use in
inverse problems such as damage characterization. Equally important, the use of damp-
ing as a dynamic property to represent structural damage has not been comprehensively
elucidated, primarily due to the complexities of damping measurement and analysis. Fur-
thermore, with advances in instrumentation and analysis tools, the use of damping as
index (or objective function) becoming a focus of increasing attention in the modal-based
inverse problems (especially for SHM community).

The main advantage of damping property is that damping has greater sensitivity for
characterizing damage than natural frequencies and mode shapes in various applications,
but damping-based damage identification is still a research direction “in progress” and
is not yet well resolved (Cao et al. [2017]). According to Curadelli et al. [2008], damp-
ing is a promising damage indicator in structural health monitoring because it has more
sensibility to damage than the natural frequency

Structural damping can be identified in both the time domain and frequency domain
responses. The main methodologies to damping identification are: i) half-power (-3dB)
method, ii) SDOF time response adjustment, iii) Circle fit in Nyquist plot, iv) logarithmic
decrement method, v) Ibrahim time domain method, vi) wavelet transform, vii) Hilbert
transform and many others.

From previous discussion, it can be noted that, whereas damping could be assumed
negligible in free vibration analysis, it plays a crucial importance in forced response and
must be quantified. In general, the overall damping of a system (SDOF or MDOF) is
usually the most difficult parameter to obtain (Adams and Askenazi [1999]). Table 2
shows some selected representative damping ratios.

Among all damping models, viscous damping is most widely used because of its
convenience in structural design. In fact, the viscous damping hypothesis has a serious
drawback. The energy loss per cycle depends on the frequency; however, this result is
inconsistent with many experimental results (Chopra, 2001). Another damping assump-
tion, hysteretic damping, can more accurately describe the energy dissipation. Although
it is difficult to translate the hysteretic damping mechanism into the time domain, it is
promising to use the hysteretic damping assumption in the frequency domain (Pu et al.
[2019]).

Apart from the shifts of the natural frequencies a change takes place also for the damp-
ing of the structure. Modal damping ratios would include the hysteretic damping resulting
from non lnear phenomena and yielding of the structural members. Hence, damping ra-
tios are very sensitive indices of the extent of inelastic deformation that takes place during
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Table 2: Damping constants values for different systems (Adams and Askenazi
[1999]).

System Damping Ratio (ζ)
Metals (in elastic range) <0.01

Continuous metal structures 0.02 to 0.04
Metal Structure with joints 0.03 to 0.07

Aluminum/Steel transmissions lines ∼0.0004
Small diameter piping systems 0.01 to 0.02
Large diameter piping systems 0.02 to 0.03

Auto shock absorbers ∼0.30
Rubber ∼0.05

Large buildings during earthquakes 0.01 to 0.05
Prestressed concrete structures 0.02 to 0.05
Reinforced Concrete Structures 0.04 to 0.07

physical structural disturbance (Kouris et al. [2017]).Equally important, according to Se-
hgal and Kumar [2021], in many fields, damping identification provides more sensitive
approach to characterize structural damage compared to natural frequencies and modal
assurance criterion (MAC) values, but damping-based identification of structural damage
needs to be explored further.

In the SHM field, according to Souza et al. [2019], several damage identification ap-
proaches are based on computational models, and their diagnostics depend on the set of
modelling hypotheses adopted when building the model itself. Among these hypotheses,
the choice of appropriate damping models seems to be one of the key issues. Normally,
damping models may not provide an increase of knowledge of some unknown parame-
ters when damping rates are lower than 1%. Equally important, real modal properties or
real FRF data without considering damping will cause failure to detect the real damages.
It is well known that damping mechanism in a real structure is very complicated, and it
remains the least-known aspect compared with stiffness and mass. However, the damp-
ing correction in a damage detection or FEM updating study will improve the physical
parameter detection accuracy (Pu et al. [2019]).

5.3 Mode Shape and Mode Curvature-Based Methods

In addition to the eigenvalues, the eigenvectors (vibration modes) are fundamental and
important data in the evaluation of damages in composite materials. In general, natural
frequencies are excellent data to detect damage; that is, whether or not there is structural
damage. The evaluation of the modes of vibration is more local; that is, these data allow
the detection of the location of damage. Fu et al. [2016] presented a two-step approach
based on modal strain energy (MSE) and response sensitivity analysis to identify local
plate damage. The local damage was simulated by a reduction in modulus of elasticity.
The important point is that a method to weaken the “neighborhood effect” has been pro-
posed to reduce false alarms in the location of damages, as these are one of the major
challenges facing the SHM community today. Numerical examples were then conducted
to illustrate the efficiency of the proposed method, and thus, damages could be success-
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fully identified even under the effect of measurement noise. There are some other new
developments on the two-step approach or modal strain energy that can be seen in the
studies of Hu et al. [2006], Yang et al. [2016] and Moradipour et al. [2015].

Under this approach, Hu and Wang [2009] and Hu and Wu [2009] showed the detec-
tion of surface cracks in a laminate using the modal strain energy method. First, the prop-
erties of the material were unknown and were obtained using an inverse method through
finite element analysis and experimental modal analysis. Modal displacements were used
to calculate the modal deformation energies and a damage index was defined by the au-
thors employing the fractional modal deformation energy of the laminate before and after
the damage. Consequently, the damage indices obtained from global and local measure-
ments were able to locate the surface crack in the laminate. In this proposed method, only
a few modes of vibration were required, and the authors concluded that the method has a
relatively low cost and flexibility in measurement, allowing a non-destructive evaluation
and feasibility of real-time detection in laminated structures.

It is also noted that Zhang et al. [2013] presented a new method of detecting damage to
plates based on the curvature of the frequency shift surface (FSS). Unlike other vibration
properties commonly used as vibration modes that may present low accuracy in practice,
the proposed method was used as a way to overcome this problem. In addition, it has been
found that local damage will only cause local change in FSS, which can be considered
an abnormality, since the curvature of the FSS of an intact plaque is smooth, according
to the assumption that intact plaque structures are often homogeneous. Compared with
traditional methods, the method proposed by the authors has been shown to be more
sensitive and accurate in identifying damage.

Techniques based on vibrations and modal data, although they have existed for some
decades, are still widely used to the present day. Manoach et al. [2017] presented a time
domain method based on Poincaré maps of the motion of a beam subjected to harmonic
loading. The proposed damage index is based on the Poincaré maps of the forced response
of the healthy and damaged structures. Numerical and experimental results confirmed that
the Poincaré map-based method can be successfully used to detect and locate damage.
Yang et al. [2017b] presented a Chebyshev pseudo spectral modal curvature formulation
for damage detection in beam-like composite structures. The proposed method was de-
veloped to overcome the wrap-around problem of the Fourier spectral modal curvature
and the authors stated that the damage detection performance is better than the Fourier.
Similar results can also be seen in the research of Yang et al. [2017d], Yang et al. [2017c]
and Yang et al. [2017a]. Recently Yang et al. [2018] dealt with the problem of vibration
health monitoring based on Poincare map method, which has been numerically and ex-
perimentally verified as an effective tool in damage assessment. The authors concluded
that the performance of the Poincare maps method depends on the selection of excitation,
also stated by Yang et al. [2017e].

Mode shapes and their corresponding spatial derivatives can also be used in the formu-
lation of inverse methods for damage assessment using local/global modal strain energy
information. Domingues et al., Domingues [2019] investigated the applicability of this
approach in detecting and localizing damage areas in aluminun-aluminum honeycomb
sandwich panels used in the constructions of the first Brazilian Geostationary Satellite.
The method combines a tuned FE model of the structural element, which provides the
stiffnes matrix of the undamaged system, and the experimental natural frequencies and
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mode shapes of the potentialy damaged panel, obtained from a modal testing procedure.
The method showed very promising results, successfully identifying stifness variations as
small as 5% in regions of the order of 10 % the total area of the panel.

A nondestructive identification method for composite beams damage was explored by
He et al. [2017]. The authors based their work on the curvature mode difference (CMD)
as damage index. By combining experimental modal analysis with finite element simula-
tion, the authors were capable of detecting and identifying damage sites. Similarly, Zhou
et al. [2018] studied curvature mode shapes for damage identification in laminated com-
posite plates. Numerical simulations demonstrate that the Continuous Wavelet Transform
(CWT) is more sensitive to damage identification. Indeed, finite element simulation can
be considered as very powerful tool in SHM systems. Some related works using FEA and
SHM damage detection problems can be seen in Alaimo [2018], Chronopoulos [2018],
Manoach et al. [2017] and Kefal et al. [2017]

5.4 No-Baseline Methods in Inverse Problems

Many methods used by the SHM community need to know the a priori condition or
structural response of an intact or healthy structure and then, with continuous monitoring,
be able to detect damage from changes in a known signal. This strategy works very well
and has been used to this day. On the other hand, new methods that do not need a baseline
(no-baseline methods) have been emerging.

Trendafilova et al. [2015] presented a Vibration-Based Structural Health Monitoring
(VSHM) technique which is developed and applied for delamination assessment in com-
posite laminate structures. The work suggests that the mutual information is a measure
for nonlinear signal cross correlation. The mutual information between two signals mea-
sured on a vibrating structure is suggested as a damage metric and its application for the
purposes of damage assessment is discussed and compared to the application of the tradi-
tional linear signal cross-correlation. The authors modeled the damage as a local stiffness
reduction (delamination modeling) and stated that the developed damage metric is effi-
cient for the purposes of delamination diagnosis in a composite laminate beam. The same
results for laminated plates can be seen in the work of Garcia et al. [2015]. Going fur-
ther, in the same context, Garcia and Trendafilova [2014] introduced a methodology for
structural vibration analysis and vibration-based monitoring which utilizes a special type
of Principal Components Analysis (PCA), known as Singular Spectrum Analysis (SSA).
The method was applied in a composite laminate beam based on the decomposition of the
frequency domain structural variation response using new variables, the Principal Com-
ponents (PCs). Experimental results demonstrated that different damage scenarios can be
clustered and clearly distinguishable.

Due to the above, other unconventional methods making use of structural dynamics
are proposed by some researchers (Bovsunovsky [2018]; Park and Oh [2018]; Tributsch
and Adam [2018]; Yin et al. [2017]; Abdeljaber et al. [2017]; Zhang et al. [2017]; Souza
and Nóbrega [2017]; de Azevedo et al. [2017]). It is clear that there is a need in the de-
velopment of effective structural monitoring techniques so that the safety and integrity of
the composite structures can be improved. Qiao et al. [2007] evaluated dynamic-based
damage detection techniques for laminated composite plates using intelligent piezoelec-
tric materials and modern instrumentation such as the Scanning Laser Vibrometer (SLV).
The study, aimed at the detection of delamination, made use of the measurements of the
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curvature of the modes of vibration, measured indirectly and directly. The implementa-
tion of the algorithm by the authors was successful in the detection of laminated plate
delamination, demonstrating that the dynamic-based damage detection approach using
curvature is a viable technique for the monitoring of composite structures.

Equally important, Viglietti et al. [2018] presented studies on free vibration analysis
of some aircraft composite structures with a tapered shape which were analyzed using a
1-D Carrera Unified Formulation (CUF) model, considering different types of damage.
The authors’ results demonstrated that their approach provided an accurate solution for
the free vibration analyses of complex structures and is able to predict the consequences
of a global or local failure of a structural composites components.

5.5 Hybrid Methods

As discussed in the previous paragraphs, natural frequencies are excellent overall
damage detection metrics while vibration modes are excellent local metrics for identi-
fication. Methods that implement both data can be considered more robust and in some
cases, more efficient.

In the face of this reality, in recent years, several research fronts have been joining
efforts to design better damage rates based on modes of vibration, since these are more
effective in locating structural damage. Citing a similar case, Kim et al. [2003] pointed to
a methodology to locate and non-destructively estimate the size of damage in structures,
for which only some natural frequencies or some modes of vibration are available. First,
the authors devised a method of natural frequency-based damage detection. An algorithm
was then developed to locate damages by alterations in natural frequencies, being able
to estimate crack size from frequency disturbances. Next, a method of damage detection
based on vibration modes is described. Both methods are evaluated for several numeri-
cally simulated damage scenarios, for which two natural and mode shapes are generated
from finite element models. The results of the analyses indicated that the two methods
correctly located the damage, but the methodology based on the modes presented greater
precision in the identification of cracks.

A hybrid technique proposed by Lopes et al. [2006] was able to identify delamination
in composite plates. The damage was identified using a technique that the measured cur-
vature differences before and after impact damage and also natural frequencies. Based on
the hybrid technique presented, it was possible to identify internal damage on a laminated
composite plate. Equally important, Gomes et al. [2016b] and Gomes [2016] applied an
inverse optimization problem in order to detect and identify circular holes and delami-
nation in CFRP plates. The cost function in the optimization procedure was a built in
function of natural frequencies and mode shapes. The authors realized that when greater
importance (weight) is given to the portion of the mode of vibration, better results are
obtained. In fact, as discussed in this review, modes of vibration are better at identifying
damages while natural frequencies are more robust and are excellent detection metrics
(whether or not there is damage).

Eraky et al. [2015] proposed a procedure based on comparison of modal strain energy
for different structural conditions from a damage index (DI). The DI was constructed
based on modal data from natural frequencies and mode shapes, respectively. It was
noticed that both the experimental and numerical results showed good agreement in iden-
tifying damages in flexural structural elements. In the same way, Owolabi et al. [2003]
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measured changes in the first three natural frequencies and corresponding amplitudes of
the measured acceleration frequency response function were used as a damage detection
scheme in beams. Since the frequencies and amplitudes depend on the crack depth and
location, these values can be uniquely determined by an inverse problem, thus identifying
the damage location. Related research can be found in the literature about damage de-
tection in composite materials using hybrid methods (Qiao et al. [2007]; Ručevskis et al.
[2009]; Fox [1992]; Zhang et al. [2010]; Ashory et al. [2017]).

5.6 Frequency Response Function-Based Methods

In addition, safety and economic aspects are the main motivations for increasing
research on the monitoring of structural integrity. Since the damage changes the dy-
namic characteristics of a structure, its modal properties (natural frequencies, damping
and modes of vibration), several techniques based on experimental modal analysis have
been developed in recent years. Not only are natural frequencies used as damage metrics,
but also the use of frequency response functions (FRF) are widely explored by several
researchers. As an example, the FRF curvature method was proposed by Sampaio et al.
[1999], based only on measured data without the need for any modal identification. In
the authors’ work, the method was described theoretically and compared to two, more
referenced methods in the literature. The results showed that the FRF curvature method
obtained good results in the detection, localization and quantification of damages, al-
though this last item still needs more attention. Its main advantage is its simplicity. From
FRF measurements, LeBlanc et al. [1992] evaluated the damage effects on changes in the
peaks of FRFs. The authors stated that, based on correct FRF analysis, FRF can accurately
determine damage levels from the natural frequency and damping levels.

Many current methods for identifying structural damage, such as Genetic Algorithm
(GA) and intelligent methods such as artificial neural networks (ANNs) are often im-
plemented on the basis of some measured data and a large number of simulation data
of structural vibration responses (Gomes et al. [2019b],Ribeiro Junior et al. [2020],Ju-
nior et al. [2021],Junior et al. [2022]). Therefore, Yan et al. [2006] emphasized that the
establishment of a precise and efficient dynamic model for a structure is an important pre-
condition. The authors presented an improved modeling method based on modifying the
stiffness matrix of the element at the position of structural damage using a modifying co-
efficient. The influence of the position of structural damage and boundary conditions on
the coefficient of modification for structural damage was verified, and for this the authors
made use of FRF and natural frequencies. The stiffness matrix can be used in two differ-
ent contexts. On the one hand, it is used in Finite Element Modelling (FEM) describing a
part of the equation system that has to be solved. On the other hand, it describes material
parameters in Hooke’s law of elasticity where the relation between mechanical stress and
strain is given (also known as stiffness tensor).

6 Final Remarks

In summary, this Chapter is focused on the discussion of the use of inverse problems
as main strategy for parameter identification in structural systems. Basically, three direct
answers can be used to formulate the inverse problem. Natural frequencies are more
robust data that give global structural information and little local sensitivity. On the other
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hand, damping and mode shapes are responses with a greater amount of local information,
however, more sensitive to noise. The quality of the inverse problem formulation also
depends on the quality of the experimental test and also on the identification algorithms
(gradient-based or gradient-free). Finally, inverse methods using modal data have a wide
range of application and are under continuous development and improvement where new
metrics and methodologies are developed.
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G. F. Gomes, Y. A. D. Mendéz, S. S. da Cunha, and A. C. Ancelotti. A numerical–
experimental study for structural damage detection in cfrp plates using remote vibration
measurements. Journal of Civil Structural Health Monitoring, 8(1):33–47, 2018b.

Gomes, Guilherme F., et al. (2022) Modal Test Data in Inverse Problems pp. 311-348

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 343



G. F. Gomes, F. A. de Almeida, P. da Silva Lopes Alexandrino, S. S. da Cunha, B. S.
de Sousa, and A. C. Ancelotti. A multiobjective sensor placement optimization for
shm systems considering fisher information matrix and mode shape interpolation. En-
gineering with Computers, 35(2):519–535, 2019a.

G. F. Gomes, F. A. de Almeida, D. M. Junqueira, S. S. da Cunha Jr, and A. C. Ancelotti Jr.
Optimized damage identification in cfrp plates by reduced mode shapes and ga-ann
methods. Engineering Structures, 181:111–123, 2019b.

G. F. Gomes, J. A. S. Chaves, and F. A. de Almeida. An inverse damage location problem
applied to as-350 rotor blades using bat optimization algorithm and multiaxial vibration
data. Mechanical Systems and Signal Processing, 145:106932, 2020.

S. Gopalakrishnan, M. Ruzzene, and S. Hanagud. Application of the finite element
method in shm. In Computational Techniques for Structural Health Monitoring, pages
157–175. Springer, 2011.

M. He, T. Yang, and Y. Du. Nondestructive identification of composite beams damage
based on the curvature mode difference. Composite Structures, 176:178–186, 2017.

H. Hu and J. Wang. Damage detection of a woven fabric composite laminate using a
modal strain energy method. Engineering Structures, 31(5):1042–1055, 2009.

H. Hu and C. Wu. Development of scanning damage index for the damage detection of
plate structures using modal strain energy method. Mechanical Systems and Signal
Processing, 23(2):274–287, 2009.

H. Hu, B.-T. Wang, C.-H. Lee, and J.-S. Su. Damage detection of surface cracks in com-
posite laminates using modal analysis and strain energy method. Composite structures,
74(4):399–405, 2006.

D. Inman. Engineering Vibrations, International Edition. Pearson Education Limited,
2013. ISBN 9780273785217. URL https://books.google.com.br/books?
id=PPuoBwAAQBAJ.

R. Jafarkhani and S. F. Masri. Finite element model updating using evolutionary strategy
for damage detection. Computer-Aided Civil and Infrastructure Engineering, 26(3):
207–224, 2011.

A. B. Jorge, C. T. M. Anflor, G. F. Gomes, and S. H. S. Carneiro, editors. Model-based
and Signal-Based Inverse Methods, volume 1 of Discrete Models, Inverse Methods,
Uncertainty Modeling in Structural Integrity. University of Brası́lia, 2022.

R. F. R. Junior, I. A. dos Santos Areias, and G. F. Gomes. Fault detection and diagnosis
using vibration signal analysis in frequency domain for electric motors considering
different real fault types. Sensor Review, 2021.

R. F. R. Junior, I. A. d. S. A. Methodoly, M. M. Campos, C. E. Teixeira, L. E. B. da Silva,
and G. F. Gomes. Fault detection and diagnosis in electric motors using 1d convo-
lutional neural networks with multi-channel vibration signals. Measurement, page
110759, 2022.

Gomes, Guilherme F., et al. (2022) Modal Test Data in Inverse Problems pp. 311-348

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 344

https://books.google.com.br/books?id=PPuoBwAAQBAJ
https://books.google.com.br/books?id=PPuoBwAAQBAJ


A. Kefal, A. Tessler, and E. Oterkus. An enhanced inverse finite element method for
displacement and stress monitoring of multilayered composite and sandwich structures.
Composite Structures, 179:514–540, 2017.

J.-T. Kim, Y.-S. Ryu, H.-M. Cho, and N. Stubbs. Damage identification in beam-type
structures: frequency-based method vs mode-shape-based method. Engineering struc-
tures, 25(1):57–67, 2003.

L. A. S. Kouris, A. Penna, and G. Magenes. Seismic damage diagnosis of a masonry
building using short-term damping measurements. Journal of Sound and Vibration,
394:366–391, 2017.

M. LeBlanc et al. Impact damage assessment in composite materials with embedded
fibre-optic sensors. Composites Engineering, 2(5-7):573–596, 1992.

J. M. Lifshitz and A. Rotem. Determination of reinforcement unbonding of composites
by a vibration technique. Journal of Composite Materials, 3(3):412–423, 1969.

H.-Y. Ling, K.-T. Lau, and L. Cheng. Determination of dynamic strain profile and de-
lamination detection of composite structures using embedded multiplexed fibre-optic
sensors. Composite structures, 66(1-4):317–326, 2004.

H. Lopes, J. Santos, R. Guedes, and M. Vaz. A hybrid technique for damage detection on
laminated plates. Photomechanics 2006, 2006.

E. G. Magacho, A. B. Jorge, and G. F. Gomes. Inverse problem based multiobjective
sunflower optimization for structural health monitoring of three-dimensional trusses.
Evolutionary Intelligence, pages 1–21, 2021.

E. Manoach, J. Warminski, L. Kloda, and A. Teter. Numerical and experimental studies
on vibration based methods for detection of damage in composite beams. Composite
Structures, 170:26–39, 2017.

L. Meirovitch. Fundamentals of vibrations. Waveland Press, 2010. ISBN 1478609656.

S. Mohan, D. K. Maiti, and D. Maity. Structural damage assessment using frf employing
particle swarm optimization. Applied Mathematics and Computation, 219(20):10387–
10400, 2013.

P. Moradipour, T. H. Chan, and C. Gallage. An improved modal strain energy method for
structural damage detection, 2d simulation. Structural Engineering and Mechanics, 54
(1):105–119, 2015.

B. Nanda, D. Maity, and D. K. Maiti. Vibration based structural damage detection tech-
nique using particle swarm optimization with incremental swarm size. International
Journal Aeronautical and Space Sciences, 13(3):323–331, 2012.

I. Negru, G. Gillich, Z. Praisach, M. Tufoi, and N. Gillich. Natural frequency changes
due to damage in composite beams. In Journal of Physics: Conference Series, volume
628, page 012091. IOP Publishing, 2015.

Gomes, Guilherme F., et al. (2022) Modal Test Data in Inverse Problems pp. 311-348

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 345



G. Owolabi, A. Swamidas, and R. Seshadri. Crack detection in beams using changes
in frequencies and amplitudes of frequency response functions. Journal of sound and
vibration, 265(1):1–22, 2003.

H. S. Park and B. K. Oh. Damage detection of building structures under ambient excitation
through the analysis of the relationship between the modal participation ratio and story
stiffness. Journal of Sound and Vibration, 418:122–143, 2018.

B. Peeters, G. Lowet, H. Van der Auweraer, and J. Leuridan. A new procedure for modal
parameter estimation. Sound And Vibration, 38(1):24–29, 2004.

Q. Pu, Y. Hong, L. Chen, S. Yang, and X. Xu. Model updating–based damage detec-
tion of a concrete beam utilizing experimental damped frequency response functions.
Advances in Structural Engineering, 22(4):935–947, 2019.

P. Qiao, K. Lu, W. Lestari, and J. Wang. Curvature mode shape-based damage detection
in composite laminated plates. Composite Structures, 80(3):409–428, 2007.

A. R. M. Rao and G. Anandakumar. Optimal placement of sensors for structural sys-
tem identification and health monitoring using a hybrid swarm intelligence technique.
Smart materials and Structures, 16(6):2658, 2007.

A. R. M. Rao, K. Lakshmi, and S. Krishnakumar. A generalized optimal sensor place-
ment technique for structural health monitoring and system identification. Procedia
Engineering, 86:529–538, 2014.

R. F. Ribeiro Junior, F. A. de Almeida, and G. F. Gomes. Fault classification in three-
phase motors based on vibration signal analysis and artificial neural networks. Neural
Computing and Applications, 32(18):15171–15189, 2020.
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Abstract 

 This chapter presents some basic concepts about some fundamental Deep 

Learning techniques currently used in the data processing. Next, the use of these 

techniques to aid decision-making in Electromechanical Impedance-based Structural 

Health Monitoring (ISHM) is presented. Initially, using a CNN to classify structural 

damage in specimens is evaluated, eliminating the need for temperature 

compensation. Then, an LSTM network prediction model of the evolution of an 

accelerated corrosive process (HCl acid) in specimens is presented. Finally, a model 

based on CNN is carried out as a case study of thickness loss in a real fuel storage 

tank plate. 

Keywords: Deep Learning; Impedance-based Structural Health Monitoring; Oil and Gas 

Industry 

1. Introduction 

Human beings use several types of mechanical structures daily to carry out their tasks. 

These structures, when in operation, are susceptible to failure due to wear conditions, 

fatigue, or impacts of their mechanical components (Moura Jr and Steffen Jr [2006], 

Rezende, Barella and Moura Jr [2020]). Therefore, for such facilities to perform their 

activities correctly, the failures present in the mechanical system must be identified and 

repaired promptly, which makes integrity monitoring processes a critical aspect 

nowadays (Palomino et al. [2011], Eleftheroglou et al. [2018], Ghazvineh et al. [2021]). 

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 350

mailto:stanley_washington@ufu.br
mailto:finzi@ufu.br
mailto:gallo@ufu.br
mailto:zereis@ufcat.edu.br
mailto:diogo.rabelo@ufg.br
mailto:zewaldemar@ufu.br
mailto:quintiliano.nomelini@ufu.br
mailto:julio.ramos@petrobras.com.br


In addition, it is known that incorrect identification of the presence of damage 

can have serious economic and safety consequences (Ghazvineh et al. [2021]). In this 

sense, the maintenance of systems considered critical becomes even more fundamental, 

and, consequently, different inspection and damage assessment techniques have been 

researched in recent years. These monitoring and inspection techniques now make up 

the so-called Structural Health Monitoring (SHM) (Zhao et al. [2011], Melville et al. 

[2018], Gulgec, Takáč and Pakzad [2019], Rastin, Ghodrati Amiri and Darvishan 

[2021]). 

SHM formulations and methods, in general, aim to provide or improve issues 

such as safety, operability, minimization of maintenance and repair costs, logistical 

efficiency, and increase in useful structural life, among others (Moura Jr and Steffen Jr 

[2006]). For this, SHM methods commonly employ different types of software and 

hardware to characterize the systems under study, acquire and manage monitoring data, 

and evaluate, in the long term, these systems' environmental and operational conditions 

(Melville et al. [2018], Gulgec, Takáč and Pakzad [2019], Rastin, Ghodrati Amiri and 

Darvishan [2021]). 

When a structure's degradation process is continuously monitored, its 

maintenance can be planned predictively rather than periodically, thus reducing 

associated costs and avoiding unnecessary system downtime (Eleftheroglou et al. 

[2018]). Therefore, this situation requires adopting a damage identification process with 

rapid prognostic capacity. For certain types of structures, it is necessary to evaluate the 

integrity and functioning conditions of the system in real-time (Zhao et al. [2011], 

Rastin, Ghodrati Amiri and Darvishan [2021]). 

The electromechanical impedance-based SHM method (ISHM), in this context, 

presents itself as a promising technology to reduce structural risks and maintenance 

costs. This condition, in turn, is given by the ease that this method offers in its 

implementation and the possibility of integration with advanced data processing 

techniques (Moura Jr and Steffen Jr [2006], Leucas [2009], Palomino et al. [2011], Na 

and Baek [2018], Nomelini et al. [2021]). 

In ISHM, piezoelectric transducers are usually integrated into the mechanical 

structures. Later, an electronic circuit becomes responsible for monitoring the variation 

of the electrical impedance of each chip. This procedure is carried out over a wide range 

of excitation frequencies (usually greater than 30kHz) (Moura Jr and Steffen Jr [2006], 

Leucas [2009], Na and Baek [2018], Rezende, Barella and Moura Jr [2020]). 

As each piezoelectric transducer is mechanically coupled to the structure under 

investigation, variations in the electrical impedance values suggest a possible presence 

of structural damage (Nomelini et al. [2021]). However, to make a correct measurement 

of structural failure the method needs a large volume of data for evaluation, which 

causes a significant increase in the complexity of the abstraction process (Palomino et 

al. [2011], Silva et al. [2018], Rezende [2021]). 

Due to this increase in computational complexity, recent SHM studies have 

sought to reconcile integrity monitoring methods with innovative and functional tools 

for pattern abstraction and classification (Verstraete et al. [2017], Ghazvineh et al. 

[2021]). The use of pattern abstraction techniques in the monitoring data sets aims to 

delimit a causal relationship between the different integrity states of the structures under 

study (Gulgec, Takáč and Pakzad [2017]). Thus, once the response behavior of the 
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system is assimilated, it is possible to detect promptly the existence of variations in this 

behavior, which indicate a possible presence of damage in such structures (Palomino et 

al. [2011], Melville et al. [2018]). 

In this sense, it should be noted that interpreting the acquired data is more 

important than collecting the monitoring information. Therefore, pattern abstraction and 

classification techniques used in conjunction with SHM methods must have high 

detection power and precision, factors that must still be achieved together with rapid 

data processing (Gulgec, Takáč and Pakzad [2017], Freitas, Jafelice and Silva [2021], 

Rastin, Ghodrati Amiri and Darvishan [2021]). 

Furthermore, data acquisitions performed during the processing of a given 

structure can easily contain thousands of pertinent information and, in this way, 

different types of tasks and operations can also be performed on them, such as damage 

level regression, classification of the kind of failures and anomaly detection in the 

monitored system (Barella [2021], Rezende et al. [2020]). 

Therefore, to elucidate the practical execution of some of these tasks in the daily 

context of the SHM, in this chapter, three possible aspects of integration between the 

deep learning (DL) models and the monitoring method based on electromechanical 

impedance will be evaluated. For this, two neural architectures, namely CNN and 

LSTM, will be implemented in the following sections of this chapter. Different practical 

tests will be carried out to identify the presence and severity of failures in mechanical 

structures. 

At first, a binary damage classification task in aluminum beams will be 

performed, analyzing the sensitivity of the combination of the CNN network and ISHM 

technique concerning environmental changes in the data acquisition stage. Then, with 

the LSTM architecture, a model will be developed to predict the level of corrosion in 

steel beams, which is caused by hydrochloric acid wear, also helping diagnose the 

structural life of this type of system. 

The third and last experiment will be developed to identify (by the CNN 

network and ISHM method) the structural health conditions of a damaged tank plate (by 

grinding), thus determining the level of thickness reduction in the region of interest of 

the coupled PZT sensor. 

Encouraging results were obtained by carrying out the previously mentioned 

experimental tests. Thus, it becomes possible to verify the employability of deep 

learning models (more specifically, the CNN and LSTM models) in support of the 

diagnosis of structural failures in mechanical systems. 

That said, and to make the theoretical and practical foundation of this chapter 

clearer and more concise, it was subdivided into sections as follows: initially, in Section 

1, the importance of SHM studies was discussed, in addition to pointing out the need to 

use of machine learning (ML) and DL models in support of the structural health 

monitoring methods. 

In Section 2, the concepts of machine learning and deep learning are deepened, 

and then the theoretical formulations of the required techniques are presented separately 

in their subsections. Section 3, on the other hand, focuses on the applications and results 

obtained in different case studies. Finally, Section 4 highlights the positive aspects of 
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the methodology used and describes the conclusions that could be inferred throughout 

the chapter. 

2. Machine Learning and Deep Learning Overview 

Machine learning (ML) is a subarea of Artificial Intelligence (AI) focused on 

developing techniques and computational algorithms capable of extracting features in 

today’s most varied problems (Provost and Kohavi [1998], Freitas, Jafelice and Silva 

[2021]). 

In general, machine learning algorithms are based on creating a programmable 

inference model, in which, from sampled data, a predictive answer is obtained. In this 

way, such algorithms automatically find more valuable representations of the data, 

mapping unknown relations in the space of hypotheses (Verstraete et al. [2017], 

Rezende et al. [2020]). 

Thus, the learning process in ML is performed inductively, where response 

patterns are automatically defined through experiences already observed by the 

mathematical model. Consequently, the main challenge is to formulate intermittent 

problems where a list of mathematical rules is not easily measurable (Freitas, Jafelice 

and Silva [2021]). 

Some conceptions of AI, previously used to solve complex problems, were 

based on characteristics specified by human operators, who were also responsible for 

delimiting all types of knowledge used by the computer. However, a limitation of this 

type of approach is the difficulty in determining what kinds of features are needed for 

the abstraction process (Liang, Guixi and Hongyan [2015], Rezende [2021]). 

On the other hand, ML techniques eliminate the need to formally define which 

characteristics the classifier should use through a hierarchical representation of 

concepts. Thus, knowledge is obtained through experience, enabling the computer to 

make predictions and classifications of complex ideas by abstracting more 

straightforward concepts. 

In this sense, artificial neural networks (ANNs) have stood out as one of the 

main ML techniques, contributing at the same time to the development of several areas 

of knowledge (Menezes et al. [2009], Barros, Morais and Fernandes [2017], Gulgec, 

Takáč and Pakzad [2017], Mhatre et al. [2017], Sharma and Singh [2017], Cofre-Martel 

et al. [2019]). Its efficiency is mainly due to the way data processing is performed, in 

which the applied operations are particularly close to those performed by the human 

brain (Komijani et al. [2017], Melville et al. [2018]). 

While other machine learning approaches use a series of logical blocks to 

execute the learning process, ANNs operate on a parallel network of nodes. These nodes 

are responsible for locally processing the abstracted information and, later, through a 

training algorithm, their response outputs are optimized to obtain the best resolution of 

the practical problem (Komijani et al. [2017]). 

It should be noted that no neural architecture is equally applicable to all types of 

problems found in the literature. Thus, various ANNs have been developed over time, 

some of which are convolutional (CNN) and recurrent models (such as the LSTM 

network). 
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However, most neural architectures are composed of a series of processing units 

(called artificial neurons) distributed in groups (named layers) in the form of a chain. 

Thus, as each neural layer is a combined function of the predecessor layer, an ANN’s 

assertiveness also depends on the number of layers used (Komijani et al. [2017], 

Rezende [2021]). 

When an ANN is composed of three or more processing layers, it is 

characterized as a deep neural network, and its application comprises the so-called deep 

learning (DL) (Chen, Li and Sanchez [2015], Yu et al. [2015], Blanco et al. [2019]). 

In the deep learning approach, the levels of representation of the data are used to 

follow a hierarchical flow; that is, the high-level characteristics are obtained exclusively 

through the composition of lower levels, which specialize in a specific type of 

information (Gulgec, Takáč and Pakzad [2017]). 

For this, deep learning models usually require large volumes of data and a high 

amount of hidden layers for abstraction. As a result, a high computational cost is also 

required, with data processing often being performed on the computer's graphics unit  

(Yu et al. [2015], Gulgec, Takáč and Pakzad [2019]). 

It should be noted that the topic of deep learning is an aspect of machine 

learning (Figure 1), which has gained significant importance in recent years, mainly due 

to its ability to solve problems that were not treatable until then; one of them being 

structural integrity monitoring (Verstraete et al. [2017]). Figure 1 presents the 

arrangement and relationships between the different tasks and areas involved in the 

context of ML and DL. 

 

Figure 1: Association between the main tasks in machine and deep learning. 

Source: Adapted from Trekhleb and Xie [2022]. 

As shown in Figure 1, several machine learning methods and models are 

available in the literature that is usable for the most varied types of engineering 

problems, one of which is identifying the presence of damage in mechanical structures 

(Verstraete et al. [2017]). 
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Furthermore, DL models represent only a tiny portion of the entire set of models 

and techniques available. However, existing models have been widely used in several 

studies, such as natural language processing, computer vision, and automatic sample 

generation (Portsev and Makarenko [2018], Abdoli, Cardinal and Koerich [2019], 

Rezende [2021]). 

From a general point of view, the objective of using a more significant number 

of layers in neural models is to increase the abstraction capacity of the data, which are 

evaluated from different perspectives, to condense better and associate the relationships 

between the inputs and outputs of the model of the system. Then, with the formulation 

of the neural model, it is then possible to infer, for example, the future behavior of the 

structures under study. This procedure is carried out from data not yet verified by the 

model (Rezende et al. [2020]). 

2.1. Convolutional Neural Architecture 

Convolutional Neural Networks (CNNs) are examples of deep learning models whose 

procedural formulation is inspired by some areas of the human visual cortex. These 

regions, called local receptive fields, are responsible for activating different neurons to 

perform the resource abstraction process and, through their overlap and specific 

selection, identify patterns of information present in the data (Chen, Li and Sanchez 

[2015], Albawi, Mohammed and Al-Zawi [2017], Gulgec, Takáč and Pakzad [2019]). 

As a rule, CNNs architectures can be composed in different ways, associating 

different types of neural layers. In which at least one of them, the mathematical 

operation of convolution is applied and which, in turn, is responsible for the network 

abstraction capacity (Gulgec, Takáč and Pakzad [2017], Indolia et al. [2018], Agarwal 

et al. [2021]). 

The convolution operation adopted by a convolutional layer is made from a 

sliding data window, commonly called a kernel, which is constituted by a mesh of 

synaptic weights and passes through all the inputs of the evaluated layer. This slippage 

and abstraction procedure is done to highlight the main local features of each dataset 

(Ghazvineh et al. [2021]). 

For this, CNNs assume that in the topology of the experimental data, the values 

of closer indices are much more correlated than the values of distant indices. This ideal, 

in turn, can be considered the main factor that justifies the intense application of the 

convolution technique in images, audio, and other types of vector sets (Chen, Li and 

Sanchez [2015]). 

Furthermore, it should be noted that each convolutional layer of a CNN may 

contain several abstraction kernels to improve the patterns of available information. The 

results achieved by each abstraction filter, on the other hand, generate a map of resulting 

features, which is used as input for the following constituent layers of the network 

(Chen, Li and Sanchez [2015]). 

Figure 2 outlines a general representation of the CNN topology, considering a 

one-dimensional impedance signal (impedance amplitude only) as input to the model. 
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Figura 2: Topologia geral de uma rede convolucional unidimensional. 

Source: Adapted from Rezende et al. [2020]. 

As can be seen from the image, we arrive at a feature map of the layer's input 

values due to applying the convolutional layer. This map, in turn, represents a template 

of the main characteristics observed in the input data about a given abstraction filter. 

However, due to the convolution process itself, some concepts intrinsic to this type of 

process are also present and significantly influence the result of the network; they are 

the value of stride, padding, and the sharing of free parameters (Chen, Li and Sanchez 

[2015]). 

The stride defines the sliding relationship between the abstraction kernel and the 

input data vector. Therefore, this parameter is directly linked to the final sensitivity of 

the feature map. On the other hand, the padding ratio represents the number of zeros 

added at each end of the input vector to guarantee the mathematical balance of the 

process. Therefore, these two parameters, i.e., stride and padding, are significantly 

crucial for the proper functioning of the network. 

At the same time, the sharing of free parameters occurs through the transmission 

of the values of the synaptic weights to other regions of the feature map. This 

transmission results from the linear displacement between the abstraction cores and the 

evaluated dataset. Such sharing produces a preliminary reduction in the parameters to be 

adjusted by the network, which also becomes of particular interest during the model 

training phase (Rezende [2021]). 

Also, since CNNs are generally used to process high-dimensional data, it makes 

sense to use subsampling layers between their convolution layers. These pooling layers 

(Figure 2), in turn, are intended to synthesize the information previously abstracted by 

the convolutional layers, thus employing another reduction in the observed 

dimensionality without, however, the considerable loss of information necessary for the 

problem (Rezende et al. [2020]). 

In the literature, several types of functions can be used in the subsampling step 

of the pooling layer. Among these functions, we can mention the value choice: 

maximum, average, and Euclidean norm, among others. However, they aim to represent 

the analysis region in a single numerical value, transmitted to the next layer through a 

reduced feature map (Chen, Li and Sanchez [2015], Ghazvineh et al. [2021]). 
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After the synthesis performed by the last pooling layer of the convolutional 

model, the output values of this layer are fully connected to a new feedforward model, 

which is responsible for classifying and defining the possible general outputs of the 

network (Agarwal et al. [2021]). A feedforward model is given with a set of neural 

layers, whose neurons in each layer are fully connected to neurons in its successor 

layers. Thus, the processing flow follows in a single direction, allowing the 

identification of patterns observed instantly through the current dataset. 

Based on the configuration of practical problems, the output of a neural network 

must be designed according to the type of problem to be addressed, which can then be 

given through deterministic data (discrete values) or the degree of belonging to a group 

(continuous values). Therefore, the final dimensionality of the fully connected layers of 

a CNN must also be adjusted for this purpose. 

It should also be noted that to make the connection between the last pooling 

layer and the first fully connected layer, a flattening sublayer is used between these two 

layers to maintain the mathematical and computational integrity of the problem. Such an 

event stems from the fact that the dimensionality achieved by the feature map resulting 

from the pooling layer is given as a two-dimensional matrix. However, the input of a 

feedforward model must be exclusively a one-dimensional vector. Consequently, an 

adjustment must be made to allow the algebraic operations performed by the network to 

be completed (Agarwal et al. [2021], Ghazvineh et al. [2021]). 

Once the neural architecture to be used is formulated, its training process begins, 

which in this case takes place as a supervised learning process. Thus, throughout the 

synaptic weights’ adjustment process, patterns of ideal responses are presented together 

with the input data groups of the network, and, through a whole process of 

backpropagation, the network parameters are reevaluated to reduce the errors returned 

(Gulgec, Takáč and Pakzad [2017]). 

In this sense, it is noteworthy that, as CNN networks are Feedforward, they have 

only one property of immediate reasoning: information is acquired over time by 

modifying synaptic weights. As a result, all information processed by each layer is 

associated only with current input values rather than previously processed data by the 

network. 

2.2. Long Short-Term Memory Architecture  

In short, to characterize a dynamic system, the analysis of its behavior under current 

conditions is not enough since its previous state usually influences its current state. In 

this context, feedforward neural architectures do not always become applicable, as they 

only have a direct relationship between the current input of the network and its 

respective output (Bispo [2018]). 

This condition of unidirectional input-output transmission performed by 

feedforward networks makes it impossible to process new information based on 

resources already processed by ANN. Therefore, such networks can be characterized 

only as immediate reasoning networks. Short-term memory resources are not present, 

and the learning process is achieved only by carrying out the entire process of training 

the synaptic weights (Rezende [2021]). 
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Thus, based on this principle, it is necessary to add to the ANNs some changes 

in their topology, which allow them to store a temporal relation of their previous states 

for their current evaluation. Among the various possible modifications, two stand out: 

delays in entering the network and the recurrence process. 

Delays in the entry of an ANN consist of time-dependent samples, which are 

composited together with their previous states. Thus, with the application of the delay 

technique, only the set of inputs is changed, and the ANN architecture remains of the 

feedforward type, which facilitates its implementation process. However, this 

adaptation alternative is only applicable in medium-complexity systems. For high-

complexity systems, internal structures of state changes are required, which is achieved 

by applying recurrence between the neurons of an ANN. 

Therefore, the recurrence property in an ANN is given by the presence of cycles 

between its processing units; that is, the output of a neuron of the nth layer is used as 

input for a neuron of a lower-level layer or the layer itself, assigning feedback to the 

architecture that will serve as a short-term memory engine (Le et al. [2019]). 

Figure 3 exemplifies the recurrence property in an artificial neural network, this 

effect being used both about different layers and the feedback of the same layer. 

 

Figure 3: Exemplification of a recurrent neural network. 

The practical effect of recurrence in ANNs is to streamline the neural models 

over time, causing the observed features to flow in both propagation directions and, at 

the same time, being able to abstract new information through parameters already 

measured. When a neural network is built with feedback neurons, it is called a 

Recurrent Neural Network (RNN) and is characterized as a feedback topology (Le et al. 

[2019], Rezende [2021]). 
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This short-term memory resource obtained by RNNs makes this type of neural 

architecture instrumental for many kinds of real applications. However, in practical 

terms, such models still have some disadvantages when evaluated on large datasets 

(with unlimited time windows), as their training process can become significantly 

complex and slow. 

Thus, in the quest to improve the temporal processing limit reached by RNNs, 

about the amount of information kept in their short-term memory, two problems with 

the gradient descent calculation emerged in deep learning studies. The first, called 

Exploding Gradient Descendent, refers to an instability imposed on the synaptic weights 

of the network throughout its training process. This instability, caused by the 

accumulation of errors evaluated in large chains of layers, can cause some of the values 

of the synaptic weights to cancel out for the initial layers. In contrast, others become 

considerably large, and thus the prediction made by the model is affected. 

The second problem, called Vanishing Gradient Descendent, is the inability of 

assimilation by the network for significant temporal dependencies; that is, the gradient 

values used in the error correction cancel out for the first-time parcels, and the training 

process ends up not working as expected (Hochreiter and Schmidhuber [1997], Zhao et 

al. [2016], Sherstinsky [2020]). 

To effectively solve these two problems that occur with gradient descent when a 

large volume of sequential data is evaluated, computer scientists Sepp Hochreiter and 

Jürgen Schmidhuber introduced, in 1997, a new model of recurrent neural network 

called Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber [1997], 

Rezende [2021]). 

The LSTM architecture is an example of a feedback network that can retain 

information for a more significant amount of network inputs, evaluated during the 

neural training process. The error flow calculated during the same processing is kept 

constant by including special units in its characteristic neurons. These units are 

popularly known as gates. 

The gates of an LSTM allow the neural network to assertively adjust its synaptic 

weights while truncating the gradient when information is no longer needed. Such a 

procedure symbolizes a form of forgetfulness on LSTM, which avoids canceling certain 

parts of its training process. 

Like all RNN architectures, LSTM networks can memorize some information 

about their previous states over time. However, it should be noted that the LSTM 

architecture manages to learn and control the time this information remains during the 

training process, working to create a much more efficient long-term memory 

mechanism than a normal RNN. This attribute is obtained through one of the gates of 

the LSTM neurons called forget gate (Le et al. [2019]). 

In general, neurons (also known as memory cells or blocks) of an LSTM 

network are composed of 3 gates: the forget gate, the input gate, and the output gate. 

They all have an activation function to control the information that flows in each 

direction of the cell, thus enabling its schematization, according to Figure 4. 
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Figure 4: Representation of a memory cell of an LSTM network. 

Source: Adapted from Rezende [2021]. 

As mentioned, the forget gate controls which information will be kept by the 

LSTM cell. Consequently, also responsible for eliminating unnecessary information 

from previous states, which contributes to the network learning process. For this 

purpose, three inputs are presented to the unit, which are: a current input vector (xt), a 

previously hidden state vector (st−1), and an output vector of the previous layer cell 

(yt−1). Each vector is multiplied by its respective weight matrix and added to the bias 

(which is responsible for compensating and dimensionalizing the input values in the 

activation function of this gate) (Yan [2016], Rezende [2021]). 

After the usual propagation calculation inside the forget gate, the result is passed 

through a binary activation function (𝜑0), where output 0 represents a forgetting process 

of the evaluated data, and output 1 means the correctness of the information for future 

use. 

The input gate, on the other hand, is responsible for updating the LSTM cell at 

the current time, this procedure being based on the cell input values at time t and its 

previous hidden state st−1 (measured by the forget gate). In this way, the flow of 

information within this unit is controlled according to equation 1, 

𝑠𝑡 = 𝜑0(𝑊0 ∙ [𝑦𝑡−1, 𝑥𝑡] + 𝑏) ∙ (𝑠𝑡−1 + 𝜑1(𝑊1 ∙ (𝑦𝑡−1, 𝑥𝑡) + 𝑏))  (1) 

where 𝜑0 and 𝜑1 are generally nonlinear functions and 𝑊𝑖  are weight matrices 

evaluated in each part of the cell structure. In the literature, the sigmoid and TanH 

functions are commonly used to represent the components 𝜑0 and 𝜑1, respectively. 

The output (yt) of the LSTM cell is obtained through the output gate, which uses 

a sigmoidal function to determine which of the state values will be remembered for the 

measurement of its final response. These values are then multiplied to a readjustment 

(exercised by applying a TanH function on the hidden state of cell st), to generate the 

output for the next cell (Yan [2016], Rezende [2021]). 

A long-term memory neural network comprises several processing cells layered 

to form the LSTM architecture. This neural network model has been widely applied in 

recent years, mainly in treating natural language and time series analysis, thus justifying 

its evaluation in the present chapter. 
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3. Experimental Case Studies 

3.1. Application of CNN for Temperature Variation Problems 

To facilitate understanding the implementation of a CNN in python language and 

already introducing it in the context of monitoring the structural integrity, the 

classification of the electromechanical impedance signatures of three geometrically 

identical aluminum beams (500x38x3.2mm). 

Therefore, each structure was monitored under two different integrity conditions 

(with and without damage) and at three acquisition temperatures (0ºC, 10ºC, and 20ºC). 

Thus, the experimental conditioning adopted here aims to verify the ability to detect 

damage in structures subject to temperature variation using the CNN architecture. 

The acquisition of impedance signatures was performed using a PZT transducer 

(20mm in diameter by 1mm in thickness) coupled 100mm away from one of the ends of 

each analyzed structure. The damage simulation was performed by adding mass to the 

three structural systems (three nuts ranging from 0.6-2.2g glued 380mm away from the 

PZT adhesive). Figures 5.a and 5.b show the three aluminum beams used and the 

imposed damage conditions. 

 

a) Structural Systems (Aluminum Beams + PZTs Insert). 

 

b) Mass addition damage conditions. 

Figure 5: Structures used as the object of study. 

Source: From Rezende et al. [2020]. 
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They were submitted to a boundary condition (single support) to analyze the 

structures correctly. In this sense, polystyrene foams were used to minimize the 

influence of noise during the acquisition phase. 

Environmental conditions can cause minor changes in the electromechanical 

impedance signatures during the acquisition process. Thus, in the literature, efforts have 

been made to minimize possible errors in structural prognosis (Afshari [2012], Rabelo 

et al. [2017a], Rabelo et al. [2017b] and Tsuruta et al. [2017]). 

In this investigation, to delimit and control the three different temperature levels, 

a climatic chamber of the Platinous EPL-4H series was used, which is available at the 

LMest laboratory of the Mechanical Engineering course at the Federal University of 

Uberlandia. Figure 6 illustrates the climate chamber model used in this case study. 

 

Figure 6: Platinous EPL-4H Climatic Chamber. 

Source: From Barella [2021]. 

The Platinous EPL-4H series climate chambers are based on BTHC (Balanced 

Temperature and Humidity Control), employing a thermodynamic balance to control 

temperature parameters. The operating volume of the model used is approximately 900L 

(100x100x90cm) and can handle the temperature from a range of -35ºC to 180ºC. 

For the construction, training, and validation of the CNN model, 20 

electromechanical impedance signatures were collected for the baseline state (pristine 

condition of the structure) and 80 signatures for the damaged state, thus totaling 900 

samples for evaluation (300 for each of the beams). 
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The frequency range used in acquiring impedance signatures was 68-77kHz with 

a step of 4.5Hz and 2000 sample points. It is also worth mentioning that the frequency 

band used was chosen through a trial-and-error process to subsidize a predominance of 

the random search optimization method. 

The random search optimization method was applied to the set of 

electromechanical impedance signatures to delimit the best scanning range for 

identifying the presence of damage among the pre-chosen frequency portion. This 

procedure was based on the methodology imposed by Bento [2017], which uses the 

RMSD damage metric as a comparison of the best frequency range to be monitored. 

Thus, with the application of the random search optimization method, the 

frequency range chosen became 71kHz to 75kHz, with a total of 888 sample points. The 

averages of the impedance signatures can be seen in Figure 7. 

 

Figure 7: Means of the impedance signatures of each evaluated group. 

Source: From Rezende et al. [2020]. 

To define the best CNN architecture for the problem in question, the type and 

dimensions of the input data used in the network must be identified. Electromechanical 

impedance signatures are two-dimensional vectors, where we have the 

electromechanical impedance signals in the frequency domain. Such a phenomenon can 

be modeled, in this way, by a 2D-CNN using its two parameters. However, if we 

consider a standardized frequency range for all samples evaluated, another one-

dimensional approach can still be performed, using only the impedance values 

measured in the transducer. 

Because the samples considered are measured in the same frequency range (71-

75kHz), one-dimensional analysis of electromechanical impedance signatures will be 

employed using a 4-layer 1D-CNN architecture. Thus, the topology used will comprise 

a convolutional layer, a pooling layer (MaxPooling type), and two fully connected 

layers, as shown in Figure 8. 
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Figure 8: Convolutional neural architecture implemented in the experiment. 

Source: From Rezende et al. [2020]. 

It is worth noting in Figure 8 that the steps called “1st Adjustment”, “Sublayer” 

and “2nd Adjustment” were not included in the count of the layers used since these, by 

their purpose, apply only one preset to the set of synaptic weights. Furthermore, the 

dimension isample represents the batch size of samples evaluated during iteration i of the 

training phase (although each of these samples is processed separately to adjust the 

synaptic weights of the network) (Rezende et al. [2020]). 

To initialize the construction of the convolutional neural network model in 

python, one must initially import the TensorFlow library into the system's memory and 

stabilize and stack the first layer (input) of the CNN model. This process can be 

performed by executing the commands below: 

>> import tensorflow as tf 
>> input = tf. keras.layers.Input(shape=(888,1)) 
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All sampling points of the electromechanical impedance signatures were used in 

this contribution. In this way, the developed inference system adds more degrees of 

freedom, which provides greater reliability to the classification method. 

To introduce the full extent of the impedance signatures in the CNN model, an 

input layer with 888 neurons was implemented. Thus, each sampling point has its 

respective input neuron, enabling the convolution between the electromechanical 

impedance signatures and the abstraction filters. 

As a next step in constructing the input layer, the other convolutional and 

pooling layers must be alternately stacked to the CNN model to elaborate the network 

architecture to be developed. 

Altogether, there are three types of convolutional layers previously implemented 

in the Keras package: Conv1D, Conv2D, and Conv3D. However, all kinds of 

convolutional layers perform the same mathematical functions and processes, differing 

only in the number of dimensions in which the data is convoluted (Rezende [2021]). 

The only one-dimensional analysis will be applied to the electromechanical 

impedance signatures. Therefore, for the implementation of the network, a 1D 

convolutional layer with 100 abstraction filters was used, where each filter had a 

dimension of 237 randomly chosen synaptic weights. 

The implementation of the convolutional layer developed in this section 

followed the TensorFlow formulation in the python IDE: 

>> net_cnn = tf.keras.layers.Conv1D(filters=100, kernel_size=237, 
                                                                   strides=1, padding='valid', 
                                                                   use_bias=True, 
                                                                   activation='relu')(input) 

where the parameters given to the function are, respectively, the number of filters used 

for convolution, the length of the abstraction kernel, the linear displacement of the 

kernel, the type of padding, the use of bias in the convolutional layer, and the activation 

function used. 

The displacement between the abstraction kernels and the input data was 

assigned as step 1 to evaluate all possible sample points for the convolution process. 

However, the padding action (valid) was not attributed since the extreme data of the 

signatures used were already null. 

After having performed all the convolutions of the input signals by the 

convolutional layer, an activation function of the ReLu type was applied to its feature 

maps. The purpose of using this function is to normalize the results of each feature map, 

thus allowing only the propagation of positive values of the output data of the 

predecessor layer. 

It is worth mentioning that all parameters used in modeling the convolutional 

layer were chosen to analyze a better portion of the signals used, which are specifically 

dependent on each case under investigation. 

Still, due to the application of the parameters mentioned above, it can be seen in 

Figure 8 a reduction of 26% in the amount of data to be evaluated by the pooling layer. 
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This paradigm contributes to its computational cost and helps the classification method's 

abstraction and data separability. 

On the other hand, coupling a section layer to a CNN model depends mainly on 

the type of function imposed by this same layer, thus varying between the maximum or 

medium value of each subregion of the characteristics map. 

In this work, the pooling layer adopted in the CNN model used only order two 

filters to abstract the impedance characteristics, keeping only the highest value reached 

for each of the analyzed areas of the feature map. In this way, only 50% of the input 

data from the pooling layer will be propagated for consecutive layers. 

The python function used for coupling the pooling layer in the CNN model is 

given as follows: 

>> net_cnn = tf.keras.layers.MaxPool1D(pool_size=2)(net_cnn) 

where the only parameter provided to the function is the inspection window 

dimensionality, which corresponds to the size of the feature map subregion to be 

evaluated. 

Two other adjustment sublayers were implemented to couple the fully 

interconnected layers to the CNN model, one for dropout and the other for flattening. 

Such an application aims to computationally adjust the response data of the pooling 

layer so that they are used as input to the feedforward model. 

Due to the significant dimensionality of the output data from the pooling layer, 

two fully connected layers were added to the classification model. The first dense layer 

was implemented with ten neurons to allow a reduction in the adjustable parameters of 

the last layer, which in turn is responsible for the network response output. 

The CNN architecture implemented in this contribution aims to catalog the 

impedance signatures in two states, with and without damage. In this way, the response 

layer of the model has only two neurons, whose outputs represent the probability of 

belonging, respectively, to the classes with damage (activation of the second neuron) 

and without damage (activation of the first neuron). 

For the output layer to respond to the probability of each sample belonging to a 

specific group, the Softmax logistic function was used in the fully connected layers. This 

function performs input data distribution, classifying them according to their similarity 

with the pre-delimited target classes (Chollet [2017]). Thus, the configuration of the 

parameters used to implement the fully connected layers is given as follows: 

 >> net_cnn = tf.keras.layers.Dropout(0.2)(net_cnn) 
 >> net_cnn = tf.keras.layers.Flatten()(net_cnn) 
 >> net_cnn = tf.keras.layers.Dense(units=10, activation='softmax') (net_cnn) 
 >> net_cnn = tf.keras.layers.Dense(units=2, activation='softmax') (net_cnn) 

After the neural topology is developed, the storage and construction of the CNN 

model with the optimization parameters and adjustment of the synaptic weights must be 

carried out. Such parameters define how the training algorithm will access and regulate 

the accessible attributes of the implemented model and delimit the loss function used to 

identify the error absorbed by the network. 
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To build a CNN model using the TensorFlow library, type the following 

commands in the python IDE: 

>> model = tf.keras.models.Model(input, net_cnn) 
>> optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.001, rho=0.8) 
>> loss_function = tf.keras.losses.BinaryCrossentropy() 
>> model.compile(optimizer= optimizer, loss=loss_function, metrics=['accuracy']) 

The “Model” function performs the sequencing and construction of the neural 

layers that make up the network. This process is based on pre-defined tensors. The 

“Compile” function, on the other hand, configures the neural architecture training and 

learning processes, delimiting the loss function and the optimization method according 

to the parameters provided to it. 

In this experiment, the Binary Crossentropy loss function and the RMSprop 

(Probabilistic Root Mean Square) optimization method are used since they exhibit good 

efficiency in classification problems. Still, in this section, it is worth noting that the 

learning rate (η) and the gradient decay factor (ρ) were defined by carrying out previous 

experiments since they directly influence the performance of the neural training process 

(Rezende [2021]). 

After executing the entire process of building and configuring the CNN model, 

the network training and learning stage starts. The model is adjusted according to the 

training samples and target values. To train a CNN in python, we used the fit function, 

as shown below: 

>> history = CNN.fit(training_samples, target_training, batch_size=2, epochs=40) 

The total epochs for training and the number of samples needed to update the 

synaptic weights (batch size) are also given to this method. The fit history of the 

synaptic weights is then stored in a data structure for further analysis, such as verifying 

the learning curve and measuring the accuracy achieved. 

It is noteworthy that a CNN model was built and trained for each beam structure 

individually to enable the prediction of structural damage. Thus, from the 300 

impedance signatures for each model, 30 random samples were removed for testing, and 

the remaining 270 samples were considered to train and build the previously described 

model. 

As mentioned, during the training process, the Binary Crossentropy loss 

function was used to verify the response accuracy of the networks. All models achieved 

a loss function of about 0.221, representing a slight difference between the result and 

the target groups related to the complexity of the problem. 

Subsequently, the RMSprop optimization algorithm calculated the adjusted 

weights of each network. At the end of this stage, the accuracies were approximately 

85.74%, 89.40%, and 95% for beam structures #1, #2, and #3, respectively. 

After adjusting the weights, the trained networks were evaluated using the test 

samples as input to the models. Thus, each model had ten runs for all 30 samples in the 

batch. As a result, all three models obtained different degrees of probability of damage 

detection. Figures 9.a, 9.b and 9.c show a histogram of all tests performed. 
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a) Test results for structure #1. 

 

b) Test results for structure #2. 

 

c) Test results for structure #3. 

Figure 9: Histogram with the test results imposed on each model. 

Source: From Rezende et al. [2020]. 

According to Figure 9.a, the probability of detection of damage by the first CNN 

model (structure #1) varies from 84% to 100%. This graph includes all assessed 
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integrity conditions (baseline and damage) in the test. Since the distribution of results 

does not follow a normal distribution, its median (which is a better parameter for 

comparing groups) is evaluated, reaching 98.83%. 

Figure 9.b illustrates the histogram for the model of structure #2, and similar 

results were obtained for the second model, with a probability of detection of damage 

from 81% to 100%, with a median of 97.49%. Finally, the last histogram presents the 

probability of damage detection for the third model (structure #3), ranging from 81% to 

100%, with a median of 97.44%. 

In this initial evaluation, all the developed CNNs models reached a probability 

of damage detection greater than 97%, meaning a good damage classification capacity 

for the three structures used. Thus, it is worth mentioning that, although the model used 

in this section is simple (composed of only one convolutional layer and pooling), the 

results achieved are favorable to the application of this deep learning technique in the 

electromechanical impedance SHM method. 

Also, since environment temperature is very relevant for the impedance-based 

SHM technique, changing the amplitudes of its electromechanical impedance 

signatures, this specific result demonstrates the ability of models to separate damage 

and primitive signatures, regardless of temperature, being very relevant to the proposed 

methodology. 

3.2.  Application of LSTM for Corrosion Problems 

In contrast, to execute the implementation process of an LSTM network in Python 

language, two geometrically identical steel beams (300x50x3.2mm) were considered 

under controlled corrosive action. This experimental condition was formulated to verify 

alterations in the impedance signatures resulting from the corrosion process of the 

structures, analyzing the progression of severity in them. 

Thus, the experimental design adopted here aims to verify the ability to predict 

the magnitude of structural failures in steel beams subjected to hydrochloric acid (HCL) 

corrosion using the LSTM architecture. 

The acquisition of impedance signatures was performed using a PZT transducer 

(30mm in diameter by 2mm in thickness) coupled 50mm away from one of the ends of 

each analyzed structure. 

To properly evaluate the two steel beams under similar corrosion conditions, all 

measurements took place with the specimens in the bi-supported form, with contoured 

regions (cradles) being delimited for the subsequent application of acid in each of the 

structures separately. Figure 10 shows the beams used in the experimental procedure 

adopted in this section. 
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Figure 10: Steel beams used in the HCL corrosion experiment. 

Source: From Rezende [2021]. 

The region (cradle) of HCL application in each structure was defined with a 

dimension of 32mm wide by 44mm long, positioned 150mm away from its respective 

PZT adhesive. The concentration of acid used is 36.5%. Its application in each structure 

was carried out by dripping, which allowed a better optimization of the acquisition 

process concerning other forms of application present in the literature, such as corrosive 

mist application. 

The order of collection of impedance signatures and application of HCL acid in 

the monitored structures was defined according to Table 1, in which 30 measurements 

of impedance signatures were collected for each evaluated severity set, thus totaling 240 

samples (120 referring to each of the beams) for the construction of the neural model. 

Table 1: Sequencing of collections and integrity groups evaluated in the implementation 

of the experiment. 

Measurement Application of HCL Acid Integrity Status Assessed 

#1 ‒ Baseline 

 Yes  

#2 ‒ Damage #1 (24h after the 1st Application) 

 Yes  

#3 ‒ Damage #2 (24h after the 2nd Application) 

#4 ‒ Damage #3 (48h after the 2nd Application) 

As can be seen, four levels of integrity of the evaluated structures were 

considered: an untouched condition of the steel beams (baseline) and three other 

conditions after partial corrosion of the material by applying HCL acid. 
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Then, the impedance signatures were monitored in a frequency range of 30-

100kHz, with a step of 10.02Hz and 6980 sample points, each calculated with 512 

means. 

All experiments with the specimens were carried out in an environment enclosed 

by grids but subject to the external environment, providing variations in temperature 

and humidity in the monitored beams. Such a formulation was carried out to 

approximate the experimental tests to the real operating conditions of this type of 

structure. Thus, it should be noted that the changes in the impedance signatures 

evaluated may depend both on the characteristics of the progressive corrosion process 

and the environmental conditions (temperature and noise) of the acquisition phase. 

Thus, to minimize the effects of temperature variation on the impedance 

signatures, a temperature compensation algorithm known as the Effective Frequency 

Displacement Method by Correlation Analysis was applied, making minor adjustments 

(horizontal and vertical) in the impedance signatures to maximize the correlation 

coefficient between the evaluated signal groups (Rabelo et al. [2017b]). 

After compensating for the effects of temperature variation on the impedance 

signatures, the RMSD damage metric was implemented to construct the LSTM neural 

model further. This metric index was used as input to the neural model due to its ability 

to identify the progression of damage severity better and allow the mutual application of 

delay and recurrence techniques. 

Figures 11.a and 11.b show the impedance signatures and metric index groups 

before and after temperature compensation. 

In the present case study, a two-layer LSTM model (Figure 12) will be used to 

predict the severity of corrosion in the monitored structures, using only the values of the 

RMSD damage metric as input to the neural model. 

The use of this formulation stems from the fact that, in corrosion problems, the 

level of structural severity obtained by calculating the damage metrics tends to increase 

over time, allowing the use of such values in the modeling of the phenomenon. Thus, 

given the above, the neural architecture used will be composed of only one LSTM layer 

and a fully connected layer expressed according to Figure 12. 

Millstein [2018] highlighted that the modeling of a neural network using the 

Keras package is performed through the sequencing of tensor layers, in which prototype 

functions are stacked to build the neural architecture. Thus, the modeling used in this 

case study followed the same formulation presented in the previous section for the input 

and fully connected layers, varying only their respective implementation parameters. 

As for the recurrence process, an LSTM layer with 120 memory cores was used, 

in which its activation functions 𝜑0 (cell activation) and 𝜑1 (recurrence function) were 

defined according to the following command: 

>> net_cnn = tf.keras.layers.LSTM(units=120, 
                                                              activation='tanh', 
                                                               recurrent_activation='sigmoid', 
                                                            use_bias=True) 
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a) Structure #1 

 

 
b) Structure #2 

Figure 11: Averages each severity level's impedance signatures and their respective 

RMSD metric values. 

Source: From Rezende [2021]. 
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Figure 12: LSTM neural architecture implemented in the experiment. 

Source: From Rezende [2021]. 

As a result of the present case study being evaluated as a regression problem, the 

RMSE loss function and the optimization method known as Adam was used to 

configure the neural model, as they present a better efficiency when compared to other 

methods and procedures available (Gulli and Pal [2017]). 

It is also worth noting that an LSTM model was built and trained for each beam 

structure separately to validate the methodology imposed in this contribution. Thus, of 

the 120 metric values of each model, 48 sequential samples were removed for testing, 

and the remaining 72 samples were considered to train and build the previously 

described neural model. 

Furthermore, it is worth mentioning that both the delay and recurrence 

techniques (provided by the formulation of the LSTM model) were applied jointly to the 

data group evaluated. However, to introduce the delay technique in the present 

experimental process, it was used for each forecast point and its respective previous 

units of the series, which caused a reduction in the number of points to be incorporated 

in the construction of the model. Thus, considering a delay level j=3, the final number 

of points to be used in the model are 45 values for testing and 69 samples for training 

the network. 

As mentioned, during the training process, the RMSE function was used to 

verify the response accuracy of the networks. All models achieved a loss function of 

about 0.0109, representing a slight difference between the expected result and the target 

values related to the complexity of the problem. 

After the error calculation, the optimization algorithm used (Adam) adjusted the 

synaptic weights of each network. At the end of this stage, the accuracy was 

approximately 90.42% and 90.22% for beam structures #1 and #2. 

The trained networks were tested for the efficiency of the test samples after the 

local parameters of each model had been adjusted. As a result, the accuracy of each 

model in predicting the structural severity of each surveyed beam varied. 
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The comparison between the expected results and the actual values of each beam 

is presented in Figures 13.a and 13.b, and it can be observed that the modeling used in 

this contribution was able to achieve a high level of precision in terms of structural 

severity prediction in beams subjected to the corrosive action of hydrochloric acid. For 

model test data nº1, this accuracy was 96.1%, and for model test data nº2, it was 

92.68%. 

 

a) Structure #1 

 

b) Structure #2 

Figure 13: Relationship between the data provided by the LSTM neural models and the pre-

delimited target values. 

Source: From Rezende [2021]. 
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Consequently, despite the simple LSTM architecture used in this section 

(containing only one recurring layer), the results were also beneficial for using the 

technique in conjunction with the SHM method via electromechanical impedance. 

2.3. CNN Application for Monitoring Machined Tank Plates 

An iron plate-like structure was used as a host system to carry out the third case study of 

this contribution. At the same time, successive thickness reductions by grinding part of 

the material were considered the method of artificial damage. Figure 14.a shows the 

support/structure set used in the present case study, and Figure 14.b shows the 

application regions of the piezoelectric sensors and the insertion site of the imposed 

fault. 

 
a) Experimental bench 

 
b) Top view of the structure used 

Figure 14: Experimental configuration adopted in the thickness loss study. 

As seen in the previous image, three piezoelectric sensors (30mm in diameter) 

were inserted in the region of interest, equidistant from the area to be ground, restricted 

by an external diameter of 60mm. However, to simplify the present case study, only 

PZT-1 impedance signatures will be considered for the next steps of the damage 

classification process. 

Thus, once the instrumental configuration to be adopted throughout the 

experiment was delimited, a total of 4 conditions of the structural integrity of the plate 
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under study were evaluated, that is, the initial condition of the plate (integral state) and 

another three monitoring configurations resulting from material thickness reduction by 

the plate metal grinding. 

In this sense, for each state of structural integrity considered, 30 repetitions of 

impedance signatures were measured to allow the later use of the CNN architecture in 

damage classification. In addition, the plate thickness levels in the region of interest 

were also measured (in a total of 15 repetitions) using ultrasonic tests. Table 2 presents 

the thickness relationships acquired in each of the repetitions of the ultrasound tests for 

each state of structural integrity monitored on the plate. 

Table 2. Monitored plate thickness measurements in each considered health state. 

 Baseline Damage #1 Damage #2 Damage #3 

Measurement #1 5.39 3.65 1.35 1.64 

Measurement #2 5.53 3.61 1.97 1.44 

Measurement #3 5.53 4.08 2.26 1.38 

Measurement #4 5.61 4.30 2.53 2.11 

Measurement #5 5.39 4.25 2.06 1.83 

Measurement #6 5.65 3.91 2.19 1.71 

Measurement #7 5.48 4.04 2.03 1.77 

Measurement #8 5.59 3.82 2.07 1.57 

Measurement #9 5.35 3.82 2.69 2.19 

Measurement #10 5.44 3.65 3.44 2.19 

Measurement #11 5.48 3.61 2.50 1.67 

Measurement #12 5.50 3.62 2.54 2.07 

Measurement #13 5.39 3.52 2.17 1.83 

Measurement #14 5.54 3.61 1.57 1.64 

Measurement #15 5.57 3.44 1.58 1.64 

Average value 5.50 3.80 2.20 1.78 

% of thickness 100 69.1 40.0 32.4 

Class 1 2 3 4 

As can be seen, different levels of material thickness were considered for each 

state of integrity. These changes, in turn, reflect on electromechanical impedance 

signatures. Thus, through statistical and mathematical methods, it is possible to infer 

reliable information about the usability conditions of the structure, making it possible to 

estimate its useful life and reduce costs and ensure better levels of safety. 

A 5-layer 1D-CNN architecture was then implemented in the present case study 

to verify the CNN topology’s sensitivity in identifying and classifying damage due to 

the loss of machined material. Therefore, the neural model used here was based on a 

deep neural network composition, being given by an input layer, a convolutional layer, a 

pooling layer (of the Max Pooling type), and two other fully connected layers (which 

are to the 3rd hidden layer and the network output layer). Figure 15 presents a schematic 

of the neural topology used in the tests in this section. 

Rezende, Stanley W. F., et al. (2022)              DL for Impedance-based SHM to Oil & Gas Industry pp. 349-385

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 376



 

Figure 15: Convolutional neural architecture used in this case study. 

It is worth mentioning that, as in the previous problem, the dropout and 

flattening steps were also not considered in the counting of these neural layers, as they 

only serve as data manipulation and processing functions during the training phase. 

Furthermore, it should be noted that all sampling points of the impedance signatures 

were again considered as input to the CNN architecture, which, in addition to 

introducing more degrees of freedom to the problem under study (providing more 

realistic modeling of the observed problem) it also avoids the need to define in advance 

the unique characteristics of the structure so that its integrity conditions can be 

identified, making the model responsible for this purpose. 

The input layer of the network, in this sense, was formulated with 3000 synaptic 

neurons, each one representing a specific frequency point of the impedance signature. 

Then, a Conv1D layer was developed with 110 abstraction filters (kernels) and later 

coupled to the model. Each abstraction filter in this last layer was composed of 200 

synaptic weights randomly chosen, and its construction process was like the architecture 

of the first case study. 

For the convolution process, the displacement between the abstraction kernels 

and the model input data was assigned as step 7 to abstract the main parts of the 

impedance signal separately. This abstraction reduced 85.7% of the input data, 

Rezende, Stanley W. F., et al. (2022)              DL for Impedance-based SHM to Oil & Gas Industry pp. 349-385

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 377



converting them into a representative vector of 429 sample points for each abstraction 

filter. 

As for the pooling layer of this section, size two kernels were also used, thus 

keeping only the highest value of each subregion of the data observed in each feature 

map. Therefore, only 50% of the layer's input data is propagated to consecutive layers, 

introducing a second reduction of the observed dimensionality (converting each signal 

into a representative vector of 214 sample points). 

After the pooling layer, two other fully connected layers were inserted into the 

neural network architecture so that the first dense layer was responsible for filtering the 

data (converting the 23540 input values of the layer into only 30 significant points), and 

the second layer was responsible for processing them and later defining the network 

output. 

Bearing in mind that the present case study aims to identify and classify the 

different states of the structural integrity of a machined iron plate system (with loss of 

material by grinding). In this way, the output of the considered model was attributed 

through a fully connected layer (of 4 synaptic neurons). Each layer neuron represented 

the probability that the sample in question belongs to a specific output class (Table 2). 

Therefore, to ensure that the output layer responds to the probability that each 

impedance signature belongs to a group, the softmax logistic activation function was 

also used in the present case study, with the optimizer model and the loss function 

equally given the experiment in Section 3.1 of this chapter. 

Then, to verify the generalization capacity of the developed neural model 

(concerning the evaluation and prediction of new impedance data), the set of signals 

monitored during the instrumentation phase was separated into two subsets of signals, 

being one for training the network (containing 125 randomly chosen signatures) and the 

other (including the remaining 55 signatures) for testing and validating the network. 

Therefore, considering that the choice of each signature belonging to each set 

was made at random, the formulation of these sets was characterized by being 

unbalanced about the evaluated classes. Hence, the number of samples considered in 

each category is not proportional during the training stage. Thus, although the situation 

described implies a greater complexity in the processing of the model (since it makes it 

more sensitive to specific characteristics of the impedance signatures), it brings it closer 

to the real conditions of its operation since, in concrete monitoring situations, the 

symmetrical acquisition of signals for the different observed states is not always 

feasible. 

In addition, during the training phase, a cross-entropy loss function was applied 

to the network responses to verify their accuracy in the target values. At the same time, 

Adam's algorithm (Adaptive Moment Estimation) adjusted the synaptic weights of the 

network for each iteration. The characteristic curve of the loss function values (whose 

final value is 0.000965) obtained in this step and the precision values (whose absolute 

value is 1) are also measured in Figure 16. 
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Figure 16: Loss and accuracy function achieved during the 1D-CNN neural network training 

process. 

In Figure 16, when the model reaches the 30th epoch, the adjustment of the 

synaptic parameters of the network is almost negligible since the magnitude of the 

observed error is significantly tiny (≈0). Thus, even if in the training configurations of 

the convolutional neural network used, the number of predefined epochs was 1000, the 

EarlyStopping procedure was applied already in the 67th epoch, thus interrupting the 

training process and, subsequently, avoiding a possible condition of overfitting of the 

model. 

As the last approach to be adopted in the present case study, the neural model 

developed here was then evaluated for its effectiveness through the confusion matrix, 

which compares the values predicted by the model and the target values already known 

from the structure integrity states. In this sense, Figure 17 compares the values predicted 

by the model and the pre-established target values for the same, both about the training 

and test sets. 

From the above, it can be observed that the model developed is totally sensitive 

to the integrity classes imposed in the present case study, reaching 100% of accuracy for 

all the foreseen conditions, both concerning the training and the test set. 

Thus, based on what has been exposed in this section, one can verify the 

efficiency and sensitivity of convolutional neural models in monitoring the structural 

integrity in iron plate-like structures. The damage condition is still given as reducing the 

thickness level of material used. 

Furthermore, jointly evaluating the results of Sections 3.1 and 3.3, it can be 

inferred that the use of the 1D-CNN architecture in support of the SHM method based 

on electromechanical impedance becomes of great applicability, allowing with a certain 

level of precision, the delimitation of the states of the structural integrity of the 

evaluated systems, independently of the environmental and operational conditions 

applied to the experiment during the stage of acquisition of the monitoring signals. 
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Figure 17: Confusion Matrix of the values predicted by the model in the thickness reduction 

experiment. 

4. Final Remarks 

As noted in the previous sections, deep learning models have great flexibility and the 

ability to represent complex physical phenomena. A peculiarity was observed in the use 

of CNN, specifically in classifying types of damage in structures due to the lack of a 

usual pre-processing of the data for temperature compensation. This is expected since 

Machine Learning techniques present demands of previous feature engineering tasks, 

unlike Deep Learning techniques that use mechanisms to explore relationships between 

features, eliminating data pre-processing steps. Still, in the exploratory set using the 

LSTM networks, it was possible to use these complex relationships to predict a complex 
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phenomenon such as corrosion in metals. In the final case study, using a plate extracted 

from a real fuel storage tank, it was possible to present the monitoring of the evolution 

of the loss of thickness, one of the main problems of corrosive wear explored by the oil 

and gas industry in this structural type. 
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Abstract 

This work is concerned with vibrations and noise in helicopters and turbofan 

engines. An overview of current and under research techniques to improve the 

detection of faulty components and Health and Usage Monitoring Systems 

(HUMS) tools are addressed in this book chapter. An overview of noise theory 

and existing sources in aircraft is carried out. Some applications with hybrid 

methods to measure the impact and extension of noise generated, by the landing 

gear, ice probes, and slatted-airfoil configurations are shown and discussed.  

Traditionally, system prognostics and health management (PHM) depend on 

sufficient previous knowledge of critical components degradation process to 

predict the remaining useful life (RUL). However, accurate physical or expert 

models are not applicable in most cases. The present work shows an example of 

how to predict engines’ remaining useful life (RUL) by utilizing deep 

convolutional neural networks (CNNs). CNN is more often utilized for 

classification and computer vision tasks. The advantage of a deep learning 

approach is that the user does not need manual extraction or selection of 

features for models to predict RUL. Moreover, there is a need for pre-existing 

knowledge of machine health prognostics or signal processing to develop a deep 

learning-based RUL prediction model. The example uses NASA's Turbofan 

Engine Degradation Simulation Data Set (C-MAPSS). The data set contains 

run-to-failure time series for four diverse sets, which were simulated with 

combinations of operational conditions and fault modes. This example uses only 

one data set, which is further divided into training and test subsets. In addition, 

relevant noise sources in transport aircraft and rotorcraft are discussed. A 

turbofan engine code and another to predict the airframe noise of transport 

airplanes are employed in a multi-disciplinary design and optimization 

framework (MDO) to design a 78-seat airliner. 

 

Keywords: noise, vibration in aircraft, health, and usage monitoring system, turbofan 

engine, convolutional neural network 
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1. Causes and effects of vibration in dynamic components  

1.1 Rotorcraft 

The study of the causes and effects of vibrations in dynamic components has become a 

continuous task for manufacturers of helicopters, engines, and transmission gears. 

Excitations come from all the possible sources of tan helicopters like main/tail rotors, 

engines, and transmissions. Vibrations may affect equipment performances and even 

cause some failures in the short term. 

The FAR regulations concerning vibration safety on the helicopter can be summarized in 

the following way (1): 

• §29.251 Vibrations: 

“Each part of the rotorcraft must be free from excessive vibration under each 

appropriate speed and power conditions” 

• §29.1301d Function and installation: 

“Each item of installed equipment must function properly when installed” 

• §29.1309a Equipment, systems, and installations: 

“The equipment, systems, and installations whose functioning is required by this 

subchapter must be designed and installed to ensure that they perform their intended 

functions under any foreseeable operating condition” 

• §29.571 Structural fatigue: this paragraph is not under Dynamics and Vibration 

responsibility but Structure.  Some objectives of equipment assessment: 

o Ensure that vibration does not affect the equipment’s performance  

o Prevent vibration-related failures (dynamic fatigue phenomena) 

o Show compliance with FAR 29.251 

There is a quest to implement techniques for minimizing the effects of these vibrations 

and early detection of their impact on the useful life of aircraft components. The usual 

measures to mitigate or reduction of vibration causes are suppression, absorption, 

reduction, isolation, or active/passive control of vibrations, or a combination of these 

techniques. As a result of all these efforts, several maintenance techniques have been 

developed, to be employed by the aircraft operator, which can be divided into two groups: 

reduction of the vibration levels and analysis of vibrations. 

Vibration reduction techniques available for the helicopter operators focus on the 

adjustment of the blade track of the main and tail rotors, and/or in the correction of any 

imbalance present in these rotors, as well as any imbalance present in some specific 

dynamic components of the aircraft, such as gearboxes, main and tail rotor drive shafts, 

oil cooler fans, etc. 

In a subsequent step, the user should concentrate his efforts on the vibration analysis, 

which consists in obtaining the aircraft vibration signature, i.e., the survey of the values 

of vibration amplitude versus frequency, carried out in pre-established locations and flight 

conditions, utilizing accelerometers and analyzers that directly provide a fault spectrum 

in the frequency domain. 
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The records of vibration signatures, duly filed, will form a vibration database of each 

aircraft type, which will be used as a starting point for the assessment of the vibration 

levels of a particular aircraft at a certain time of its useful life, allowing the detection, 

location, and identification of problems or defects, even when they are still incipient. 

Thus, vibration analysis would become an important predictive maintenance tool to 

monitor the wear and fatigue of components and reduce maintenance costs. 

The reduction of vibrations found in helicopters has, among others, the objectives of (2): 

a) Reduce the probability of failures in structural components before they reach their 

life limit. Such components have an estimated life, considering a certain 

magnitude of cyclic loads, acting on them. In this way, considering that there is a 

direct relationship between the vibration level of the structure and the cyclic loads 

acting, a high level of vibration shows that the structural components of the 

helicopter are being subjected to efforts beyond those estimated in its design and, 

consequently, present a high probability of in-service fatigue failures. 

b) Minimize the effects of tiredness and fatigue on the crew. Prolonged and repeated 

exposure to vibrations of different frequencies, amplitudes, and directions can 

cause various types of aggressions that essentially consist of headaches, tinnitus, 

general malaise, feeling of drowsiness, general weakness, irritability, a reduction 

in the will and the ability to concentrate, a reduction in reflexes, a psychic 

depression as well as fatigue of the eyes and ears. Depending on their intensity 

and persistence, these disturbances can decisively contribute to pilot fatigue and 

helicopter accidents. 

Each system of a helicopter generates vibration at a specific frequency and amplitude. 

Despite the main rotor rotating at a constant angular speed, it induces vibrations in many 

helicopter systems and subsystems. The analysis of vibrations parameters enables the 

mapping of the nodes and anti-node locations (Figure 2). At each rotor cycle about its 

axis, the loads caused by the rotor provoke cycled stresses on other systems. If a weight 

m is added to a determined system, it radically alters the vibration characteristics of that 

system. Put differently, the balanced mass shall alter the system's natural frequency to the 

same frequency of excitement. This way, the resonator cancels out the system’s vibration.  

To better explain the characteristics of the combination of masses and springs a system 

of two degrees of freedom is taken as an example.  A system is defined as having two 

degrees of freedom when two coordinates are required to describe the motion. This type 

of system will also have two eigenfrequencies and two normal modes of vibration which, 

in turn, refer to the relationship between the amplitudes of the two coordinates for each 

corresponding eigenfrequency. 

Free vibration, when subjected to an initial condition, will generally be the superposition 

of the two normal modes of vibration. However, if a forced harmonic vibration occurs 

with a given excitation frequency, the amplitude of each of the two coordinates will tend 

to a maximum at the two proper frequencies. 

These characteristics are understood through the example presented in Figure 1. In this 

spring-mass system, which is used as a vibration absorber in helicopters, k2 and m2 are 

adjusted about the frequency of the exciting force, in such a way that the movement of 

the main mass m1 (point B) is reduced to zero (3). 
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In fact, in Figure 1(b), it can be seen that: 

1. for the interval 0 < Ω < ΩA, the two bodies are moving in phase with the excitation, 

as the two maximum amplitudes are positive. For frequencies close to 0, the 

displacements of the two masses are slightly different, depending on the stiffness 

and mass parameters. However, for 𝛺 ≅ 𝛺𝐴, the maximum amplitudes of the two 

masses tend to infinity. Therefore, ΩA corresponds to the natural frequency of the 

1st normal mode of vibration, which is related to the in-phase motion of the 

masses; 

2. for the interval ΩA < Ω < ΩC, the two bodies initially move in phase (but in 

opposition to phase with the excitation), since the two maximum amplitudes are 

negative, inverting the phase (a maximum amplitude positive and one negative) 

from Ω ≅ Ω𝐵; 

3. for the interval ΩC < Ω < ∞, the two bodies move out of phase symmetrically, so 

that m2 and m1 are, respectively, in-phase and in phase opposition with the 

excitation. For 𝛺 ≅ 𝛺𝐶, the maximum amplitudes of the two masses tend to 

infinity, and then ΩC corresponds to the natural frequency of the 2nd normal mode 

of vibration (masses in phase opposition). 

It can also be verified that the amplitude X1 will be null, when Ω = ΩB, but, under these 

conditions, the absorber mass will be submitted to an amplitude 𝑋2 = −
𝐹0

𝑘2
⁄ , since the 

mass-spring system k2 and m2 oppose each other to the disturbing force. 

 
Figure 1: System with two degrees of freedom (3) 

The spring-mass combination enables the development of resonators to mitigate 

vibration. The number of resonators and their location shall be determined to reduce the 

vibration amplitude to an acceptable minimum. Regarding the reduction of vibration 

levels suffered by the helicopter crew, some resonators are placed under the pilot and co-

pilot seats (Figure 3) to mitigate vertical vibrations from the main rotor. In this case, the 

resonators are adjusted to mitigate the nbΩ, where n is an integer number representing a 

multiple of the fundamental frequency of the rotor assembly, b is the number of the 

blades, and Ω is the rotation frequency of the main rotor. All harmonics will be 

transmitted to the fuselage but the first one will cause vibration with higher amplitudes. 
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The multiples of the fundamental frequency (2Ω, 3Ω, 4Ω, etc.) will cause noise and the 

amplitudes of their vibrations will be considerably lower (3).  

 
Figure 2: Vertical vibration amplitudes with no cabin resonators (adapted from (4)) 

 
Figure 3: The addition of resonators reduces the vibration amplitude [Adapted 

from (4)] 

The rule of thumb for blade weight and aerodynamic adjustment is that all the blades must 

be strictly identical in the spanwise sense (same weight and same weight distribution) and 

aerodynamically (same airfoil geometry).  If so, there would be no problems and the rotor 

would then find flawless functioning. On the contrary, the rotor is unbalanced when the 

loads are not equal on all the blades. The rotation then induces periodical load variations 

generating vibrations, whose amplitude depends on the blade load differences. 

Rotor blades must be statically and dynamically balanced. Regarding static balance, the 

blades should have the same static moment, defined as the product of the blade weight 

(W) and the lever arm, the distance of CG from the rotor axis. Balance weights are 

properly installed at the blade tips to obtain equal static moments. The weights modify 

both the blade weight and the blade CG location, i.e. its static moment. 

The distance (d) between the CG. and the center of the lift induces a twisting moment, 

which deforms the blade and therefore the lift that is generated.  As consequence, stresses 

are generated. One requirement for dynamic balance is that the distance (d) be the same 

for all blades to produce the same twisting moment. This condition is satisfied by adding 

blade tip balance weights at the front and rear of the airfoil (Figure 4). These weights 

move the chordwise CG. to adjust the distance (d). 
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Figure 4: Dynamic balancing (5) 

1.2 Turbofan and turboshaft engines 

Turbofan engines find widespread use in commercial transport due to their advantage of 

higher performance and lower noise. The noise reduction for this kind of engine comes 

from combinations of changes to the engine cycle parameters and low noise design 

features. 

During normal operation, airliners are steadily sending small packages known as ACARS 

(Aircraft Communication Addressing and Reporting System) to ground stations. 

Information is transmitted to orbiting satellites that relay the data to ground stations. Each 

package of messages is limited in size, but it is possible to send considerable 

measurements taken from the aircraft data computer and engine controllers.  

The full authority digital engine (or electronics) control (FADEC) is a system consisting 

of a digital computer, called an electronic engine controller (EEC) or engine control unit 

(ECU), and its related accessories that control all aspects of aircraft engine operation. 

However, FADEC’s main objective is to guarantee that the engine works within a 

prescribed operation envelope, lengthening this way its useful life. The fan speed is the 

parameter used to define the engine thrust. The FADEC controls the fan speed for the 

required thrust based on pressure altitude, temperature, and Mach number. 

During take-off and cruise phases, information packages are always transmitted. Health 

Monitoring embedded systems acquire a lot of data (Big data), among them, meaningful 

indicators, and context information. Typically, information such as N2 (High-Pressure 

engine speed), EGT (Exhaust Gas Temperature), and FF (Fuel Flow) but also PS3 (static 

pressure after compressor) and T3 (temperature after compressor) and all associated 

context data are transmitted (6). Those last measurements give information about the 

compressor’s behavior and help to differentiate compressor degradation from that of the 

turbine (6). 

Helicopter jet engines consist of two stages. The first stage includes a compressor, 

combustion chamber, and turbine, and resembles the design of a traditional fixed-wing 

engine. This assembly is followed by the second stage, which is a free turbine, which 

must rotate at a constant angular speed. The second stage is coupled to the transmission 

system. 
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Engine turbines and compressors rotate at very high speeds and must be perfectly 

balanced for a flawless operation. Problems like disk cracks, blade cracks, and broken 

blades typically produce unbalanced rotation and are uncovered by monitoring vibration 

energy at the frequencies corresponding to the compressor and turbine rotating speeds. 

Engine performance is gradually degraded throughout its lifetime. Performance must not 

be allowed to drop below a safe threshold. The engine condition is determined by 

measuring which engine temperature is required to deliver a given torque or thrust. 

2. Health Usage Monitoring System for helicopters (HUMS) 

HUMS stands for Health and Usage Monitoring System. Such a system is a common 

component on board modern helicopters. A helicopter counting with a HUMS 

experiences improvement in safety, comfort, and easier maintenance. Safety is improved 

due to the detection of abnormal and dangerous vibration levels. This allows the anticipate 

detection of cracks, misalignment, unbalance, and corrosion of shaft, bearings, and gears 

before they fail. Another HUMS benefit is the decrease of maintenance workload because 

a faulty component can be easily pinpointed. Maintenance becomes less expensive 

because on-condition maintenance can be then established for many components. From 

collected HUMS data it is possible to proceed with rotor balance, avoiding a specific 

technical flight to perform that task. More comfort is possible thanks to better tuning of 

the aircraft thanks to HUMS data.   

 
Figure 5: Typical helicopter components being monitored by health and usage 

monitoring systems (7) 

The physical parameters that are measured by accelerometers are 

• Displacement: x(t) 

• Speed: 𝑣(𝑡) =
𝑑𝑥

𝑑𝑡
 

• Acceleration: 𝛾(𝑡) =
𝑑2𝑥

𝑑𝑡2  

Accelerometers utilize the piezoelectric properties to generate a time-domain signal. The 

health of mechanical components is estimated by the computation of trends and trend 

analysis by statistical analysis and deep learning tools. To detect anomalies in the 

functioning of components some analysis requires the Fast Fourier Transform (FFT) to 

be applied to time-domain a signal. FFT is the graph representation of harmonics in the 

frequency domain. Figure 6 shows a sound record in a helicopter cabin in its 

transformation in the frequency domain.  
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Accelerometers have not changed very much over time. The velometer is an 

accelerometer with an amplification & integration circuit built into each sensor’s base (8). 

These additional parts ensure the signal is amplified and integrates the basic electrical 

output from the accelerometer (8). It then converts the direct measurement into a 

corresponding velocity signal or displacement reading, usually inches per second. In 

general terms, a velometer produces a more linear response over a far vaster frequency 

window than that of a basic accelerometer. It tends to be notably efficient at the medium 

frequency band.  

The parameters which may be monitored by health and usage monitoring systems are 

extensive and may depend to some degree upon the precise engine/gearbox/rotor 

configuration. Table 1 contains a summary of some helicopter mechanical systems 

defects and their related indicators in the frequency domain. 

Listed below some acquisition parameters together with the rationale for their use. 

• Speed probes and tachometer generators: the measurement of speed is of great importance 

to ensure that a rotating component does not exceed limits with the risk of being 

overstressed. 

• Temperature measurement: exceeding temperature limits or a rate of increasing 

temperatures is often a warning of a major component or system failure. 

• Pressure measurement: a tendency to over-pressure or low pressure may be an indication 

of obstruction or a loss of vital system fluids. 

• Acceleration: higher acceleration readings than normally recorded may indicate 

component overstress or an abnormal wear occurrence. The use of low-cycle fatigue 

algorithms may indicate blade fatigue which could result in blade failure. 

• Particle detection: metal particle detection may indicate higher than normal metal 

composition in an engine or gearbox oil system resulting from abnormal or excessive 

wear of a bearing which certainly will fail. 

• Signal oscillation: cause may be a defective sensor or a mechanical issue with gears. By 

building a space state plot of a correlation �̇�(𝑥, 𝑦) ∗ 𝑅(𝑥, 𝑦) the origin of oscillation can 

be determined.  

 
Figure 6: Direct FFT from the raw signal (B means the number of rotor blades,  is the 

rotor rotation)  (7) 



Cruz, Alejandro R., et al. (2022) Noise, Vibration, and HUMS of Aircraft Dynamic Components pp. 386-450 

 

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 395 

Table 1: Indicators in the frequency domain (7) 

Frequency Defects Illustration 

1Ω is the 

rotation 

frequency of 

the monitored 

rotor (or 

shaft) 

imbalance, the 

result of torque 

loss, part 

damaging as 

crack 

 

2Ω is twice 

the rotation 

frequency of 

the monitored 

shaft or rotor 

shaft 

misalignment, 

shaft cracks, 

rotor track 

(RTB) 
 

xΩ is the 

mesh 

frequency for 

gears 

Gear tooth 

damage and 

weariness 

 

Modx is the 

amplitude of 

meshing 

frequency 

sideband 

gears 

Gear cracks or 

hub cracks 

 

Fi, Fe, Fb, and 

Fc (bearing 

indicators) 

Bearing 

damages 

detection and 

location 
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3. Noise 

3.1 General considerations and physics 

Noise pollution represents one of the main challenges to the aeronautical community due 

to the absolute necessity to reduce the noise exposure of the areas adjacent to airports or 

heliports. It is known that the noise exposure to the crew and especially the passengers 

and the people around landing and take-off areas represents a great issue. 

Aircraft noise can cause community annoyance and has a large impact on people’s health.  

There are records of restlessness in sleep, poor school performance, and increased risk of 

cardiovascular disease in people living in the vicinity of airports (9).  

In some airports, noise restrains air traffic operations. The Frankfurt-am-Main Airport 

has introduced innovative noise abatement procedures. Respite periods are one of the 

measures brought about by the successful Dedicated Runway Operations (DROps) 

project. DROps operations gave affected communities scheduled breaks from aircraft 

noise at night or during the early morning hours (10). After this, the Alliance for Noise 

respite periods initiative to develop noise respite periods came into force. Many 

companies are part of the project and trial operations for noise respite periods started on 

23 April 2015. This measure aimed to provide noise stoppage in combination with the 

six-hour nighttime curfew from 23:00 to 05:00 at the Frankfurt Airport. This affected 

some communities lying under approaches and departure routes (10).  

The sound is a hearing sensation generated by a short time fluctuation of pressure. The 

sound mechanisms are emission (Figure 7), propagation, and reception. 

 
Figure 7: Emission of sound: no vibration, no sound (7) 

The human ear does not have the same sensitivity to all frequencies. It is most sensitive 

at frequencies between 2 kHz and 5 kHz, and least sensitive at high and low frequencies, 

as illustrated in Figure 8. The long exposure to main rotor frequencies impacts instrument 

reading capability and causes fatigue and loss of control capacity. 

Noise generated by aircraft is a particular case, as it has a wide variable spectrum and a 

transient intensity-time relationship. For this reason, special rating scales have been 

developed, which are based on sound annoyance rather than sound intensity, and which 

contain factors that consider special spectral characteristics and sound persistence. The 

intensity considered in this case is not the physical one, but the one that our ears perceive. 

Many other units, such as the dBA, were developed to assess the more general impact of 

present day-to-day noise and are associated with intensity. The Perceived Noise Level 

(PNL, which has the PNdB unit) and effective perceived noise (Effective Perceived Noise 

Leve - EPNL, which has the EPNdB unit) scales are related to the annoyance caused by 



Cruz, Alejandro R., et al. (2022) Noise, Vibration, and HUMS of Aircraft Dynamic Components pp. 386-450 

 

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 397 

aircraft. However, the effective perceived noise level is a complex unit, so the use of dBA 

is more common to measure aircraft noise in some uses, including airport restrictions, 

where it is important that monitoring is as simple as possible. possible, and that is 

comparable with other sounds. 

The human ear is sensitive to the timeframe it is exposed to incoming sound waves. The 

following pressure level is used to measure the exposure to sound 

𝐿𝑒𝑞 = 10 𝑙𝑜𝑔 (
1

𝑇0
∑ 10𝐿𝐴𝑖 10⁄ ∆𝑡𝑖

𝑖

) (1) 

where T0 is a reference timespan (day, month, year) and LAi is dB(A) level during the 

period ∆𝑡𝑖 

The following criterium is used to measure the effects of sound exposure on health (11): 

𝐿𝑒𝑞 < 38 𝑑𝐵(𝐴) Sleep: keep quality 

𝐿𝑒𝑞 = 65 𝑑𝐵(𝐴) Office: strong discomfort, tired feeling 

𝐿𝑒𝑞 > 85 𝑑𝐵(𝐴) 
Workshop: risk of deafness increases with 

years of exposure 

 
Figure 8: Human sound perception is highly dependent on frequency (11) 

The main noise sources found in transport airplanes are shown in Figure 9 and Figure 10. 

Aircraft systems also generate noise: flight control actuators, auxiliary power units, air 

cycle machines, and others. Windows, gaps, rain gutters, handgrips, antennas, and skin 

ripples contribute to the thickening of the boundary layer and therefore increase airframe 

noise. 

 Thanks to the advances in technology and the utilization of high-bypass turbofan engines 

the engine-generated noise has been reduced considerably. Thus, the noise generated by 

high-lift devices and landing gear has recorded a percentual increase at the landing and 

approach flight phases. 
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Figure 9: Airplane noise sources (12) [Edition of a public domain photo] 

Airplane noise sources are normally divided into two basic groups: engine noise and 

airframe-generated noise. Each of these two groups is further divided into its components 

as shown in Figure 10 The noise of each of these components can be analyzed according 

to its origins as follows. Fan and compressor noise originates essentially from pressure 

fluctuations and interactions due to the airflow over rotating components. They are 

composed of (12): 

• Noise emitted from the fan or compressor inlet duct: 

o Broadband noise. 

o Discrete-tone noise. 

o Combination of tone noise. 

• Noise emitted from the fan discharge duct: 

o Broadband noise. 

o Discrete-tone noise. 

• Engine core noise originates from: 

o The process of combustion. 

o Flow around internal obstructions. 

o Scrubbing of the duct walls. 

o Local temperature fluctuations. 

o Flow throughout the turbine. 

o Turbine-blade and blade-stator interactions. 
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Figure 10: Airplane noise breakdown (12) 

Figure 11 illustrates the procedure to calculate the effective perceived noise generated by 

a flying aircraft from widespread and known parameters. 

 
Figure 11: Calculating the effective perceived noise  

It is important to differentiate sound pressure level (SPL) from sound power level (SWL). 

“Sound power or acoustic power is the rate at which sound energy is emitted, reflected, 

transmitted, or received, per unit time” (13). SPL depends on the distance and 

position/location of the source and the environment itself. Ambient, reflections on 

surrounding surfaces, and absorbing materials will influence the reverberation, sound 

propagation, as well as damping of the sound. Its unit of measurement is dB. SPW is not 

dependent on distance, position, or environment. This reveals a very important difference 

between both parameters. Indeed, SWL is a theoretical concept, and it is not directly 

measurable. Thus, a determined noise source presents the same sound power independent 

of its location and it provides a direct comparison between two sound sources.  
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At low frequencies, the absence of effective acoustic absorption materials requires the 

search for satisfactory alternative solutions for noise control, such as the application of 

reactive devices. The acoustic characteristics of reactive silencers are determined only by 

their geometric shape (without the use of acoustic absorption materials). These devices 

are designed in such a way as to let a fluid pass by greatly reducing its sound energy. As 

an example, one can mention compressor silencers, automotive engine exhausts, etc. 

The principle of these silencers is based on the reflection of the waves to the source, that 

is, the waves, when passing through the silencer, find a change in the acoustic impedance 

of the medium, for a very large or very small value. Then, a small portion of the energy 

propagates through the silencer and most of the energy is reflected in the source. These 

silencers are economical and have a low-pressure loss of the loaded fluid. 

3.2 Computational aeroacoustics 

Only the hybrid or acoustic analogy methods method for the analysis of noise generation 

is addressed in this section. Here, the flow solution is decoupled from sound propagation. 

In this approach, the computational domain is split into different regions, such that the 

governing acoustic or flow field can be solved with different numerical techniques. There 

is a need for two numerical solvers: a dedicated Computational fluid dynamics (CFD) 

tool; and an acoustic solver. The flow field is then used to calculate the acoustical sources. 

Both steady-state and transient fluid field solutions can be used. 

There are methods based on a known solution of the acoustic wave equation to compute 

the acoustic far-field of a sound source. Because a general solution for wave propagation 

in the free space can be written as an integral over all sources, these solutions are 

categorized as integral methods. The acoustic sources must be known from some different 

computations such as a finite element simulation of a moving mechanical system or a 

CFD simulation of the sources in a moving medium. The integral is taken over all sources 

at the retarded time (source time), which is the time at that the source is sent out the signal, 

which arrives now at a given observer position.  

All integral methods cannot account for changes in the speed of sound or the average flow 

speed between source and observer position as they use a theoretical solution of the wave 

equation. When applying Lighthill's theory (14) to the Navier Stokes equations, 

volumetric sources can be obtained, whereas the other two analogies provide far-field 

information based on a surface integral. Acoustic analogies are cost-effective in terms of 

computational efforts, as the known solution of the wave equation is used. One observer 

distant from the source takes as long as one very close observer. Common for the 

application of all analogies is the integration over many contributions, which may lead to 

additional numerical problems because there is addition/subtraction of many large 

numbers with a result close to zero. In addition, when applying an integral method, 

usually, the source domain is limited somehow.  
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Lighthill acoustic analogy 

The equation of Lighthill can be derived from the mass and momentum conservation 

principles (14). The intent is to evolve towards a wave equation in which the acoustic 

source terms are explicitly present. In this derivation, the absence of mass sources in the 

domain is assumed. The mass and momentum equations are then given by 

𝜕𝑝

𝜕𝑡
+

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 (2) 

𝜕𝜌𝑢𝑖

𝜕𝑡
+

𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑖
=

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝑓𝑖 (3) 

where 𝜎𝑖𝑗 is the stress tensor comprising the viscous stresses 𝜏𝑖𝑗 and the static pressure is 

represented by p. The body force in the i-direction is given by 𝑓𝑖. 

For a Newtonian fluid, the viscous stress tensor can be written in terms of viscosity and 

the gradient of the velocity field as stated in Eq. 4 

𝜎𝑖𝑗 = 𝜏𝑖𝑗 − 𝛿𝑖𝑗𝑝 (4) 

𝜏𝑖𝑗 = 𝜇 [
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3

𝜕𝑢𝑖

𝜕𝑥𝑖
𝛿𝑖𝑗] (5) 

If the time derivative of the mass equation and the divergence of the momentum equation 

are taken, these equations can be combined to obtain Equation (6). By linearizing the 

pressure and the density and subtracting the term 𝑐0
2 𝜕2𝜌′

𝜕𝑥𝑖𝑥𝑖
 from both sides, (6) can be 

rewritten as (7). The linearization is carried out around the uniform free-field pressure 

and density. This is only valid for very small perturbations on the free field conditions, 

which is the case in general acoustics. 

𝜕2𝜌

𝜕𝑡2
=

𝜕2(𝜎𝑖𝑗 + 𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑖𝜕𝑥𝑗
−

𝜕𝑓𝑖

𝜕𝑥𝑖
 (6) 

𝜕2𝜌′

𝜕𝑡2
+ 𝑐0

2
𝜕2𝜌′

𝜕𝑥𝑖𝜕𝑥𝑖
=

𝜕2𝑇𝑖𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
−

𝜕𝑓𝑖

𝜕𝑥𝑖
 (7) 

On the left-hand side, the wave equation is obtained for the perturbation of the density, 

with 𝜌′ = 𝜌 − 𝜌0 , where 𝜌0 is a reference value in a medium at rest for density. In this 

equation, the right-hand side contains the acoustic source terms. The last term is the 

contribution of body forces. The 𝑇𝑖𝑗 is referred to as Lighthill’s stress tensor and is given 

by 

𝑇𝑖𝑗 = 𝜌𝑢𝑖𝑢𝑗 − 𝜏𝑖𝑗 + (𝑝′ − 𝑐0
2𝜌′)𝛿𝑖𝑗 (8) 

The three terms of Lighthill’s stress tensor that are responsible for the production of sound 

are: 
• 𝜌𝑢𝑖𝑢𝑗 related to non-linear convective forces 

• 𝜏𝑖𝑗 viscous forces 

• (𝑝′ − 𝑐0
2𝜌′)𝛿𝑖𝑗 is related to the deviation from isotropic conditions 

The term 𝑃𝑖𝑗 = 𝑝′𝛿𝑖𝑗 − 𝜏𝑖𝑗 is the stress tensor that includes viscous stresses and 𝑝′ = 𝑝 −

𝑝0 is the acoustic pressure, with 𝑝0 taken as a reference value. 
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For turbulent flows, the viscous term in the Lighthill’s stress tensor will be small 

and Tij can be approximated by 𝑇𝑖𝑗≈𝜌𝑢𝑖𝑢𝑗 . Furthermore, if the Mach number is 

sufficiently small the density ρ can be replaced by the ambient value ρ∞, resulting in the 

following equation for the acoustic density fluctuations 

𝜕2𝜌′

𝜕𝑡2
+ 𝑐0

2
𝜕2𝜌′

𝜕𝑥𝑖𝜕𝑥𝑖
= 𝜌∞

𝛿2𝑢𝑖𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
 (9) 

Method of Ffowcs Willians and Hawkings 

The Ffowcs Williams-Hawkings (FWH) equation represents an extension of the original 

work of Lighthill on the aerodynamically generated sound and governs the noise 

generated by a moving body immersed in a fluid. It is derived from the fundamental 

conservation laws of mass and momentum, expressed in terms of generalized functions, 

by representing the presence of the body as a discontinuity in the computational domain. 

These equations will reduce the computational expense in comparison to the solution of 

Curle’s analytical solution (15). 

The Ffowcs Williams and Hawkings wave equation can be derived from the Navier-

Stokes equations. The idea of this derivation is to force every variable to be zero inside a 

predefined volume. To achieve this, the wave equation should be modified in such a way 

that it is valid in the whole flow domain. This way the free field Green's functions can be 

applied to the inhomogeneous wave equation in the entire domain. This manipulation is 

done by multiplying the Navier-Stokes equations by the Heaviside step function. This 

function has the following properties. 

𝐻(𝑓) = 0 𝑓𝑜𝑟 𝑓 < 0

𝐻(𝑓) = 1 𝑓𝑜𝑟 𝑓 > 0
 (10) 

This implies that f < 0 inside the body and f > 0 outside the body therefore in the fluid 

domain. The function f is a function of the x-coordinate. Now let control volume be 

denoted by V, enclose the solid body, and denote the surface of the volume by S. Then 

function f must be chosen such that 

𝑓(𝑥) < 0 𝑖𝑓 𝑥 ∈ 𝑉

𝑓(𝑥) = 0 𝑖𝑓 𝑥 ∈ 𝑆

𝑓(𝑥) < 0 𝑖𝑓 𝑥 ∉ 𝑉

 (11) 

Now the Navier-Stokes equations are multiplied by the Heaviside function. This way 

the equations apply to the fluid domain and the variables inside the control volume are 

zero. 

𝐻(𝑓) [
𝜕𝑝

𝜕𝑡
+

𝜕𝑢𝑖

𝜕𝑥𝑖

] = 0 
(12) 

𝐻(𝑓) [
𝜕𝜌𝑢𝑖

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

{𝜌𝑢𝑖𝑢𝑗 − 𝜎𝑖𝑗}] = 0 
(13) 

Combining these two equations and using the isotropic relation 𝑑𝑝 = 𝑐0
2𝑑𝜌, we obtain the 

Ffowcs Williams and Hawkings equations given by 

1

𝑐0
2

𝜕2𝑝′

𝜕𝑡2
−

𝜕2𝑝′

𝜕𝑥𝑖𝜕𝑥𝑗

=
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

{𝑇𝑖𝑗𝐻(𝑓)} −
𝜕

𝜕𝑥𝑖

{[𝜎𝑖𝑗𝑛𝑗 + 𝜌𝑢𝑖(𝑢𝑛 − 𝜐𝑛)]𝛿(𝑓)}

+
𝜕

𝜕𝑡
{[𝜌𝑣𝑛 + 𝜌(𝑢𝑛 − 𝑣𝑛)]𝛿(𝑓)} 

(14) 
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Here u is the velocity of the fluid and v is the velocity of the surface. For both velocities 

the subscript i indicates the direction of the velocity and subscript n indicates the normal 

component. The δ(f) is the Dirac delta function, which appears from the gradient of the 

Heaviside function. In Eq. 14 again the sources of sound can be identified. The first term 

is the contribution by the quadrupoles in the volume as represented by the Lighthill stress 

tensor. The other two terms are due to the distribution on the control surface because the 

δ(f) is zero except at the surface, f = 0.  

In the Fluent code (16), the contribution of the volume integral is neglected. This means 

that the quadrupole contribution of the Lighthill stress tensor is automatically excluded 

from the calculation. We end up with Eq. 15. 

1

𝑐0
2

𝜕2𝑝′

𝜕𝑡2
−

𝜕2𝑝′

𝜕𝑥𝑖𝜕𝑥𝑗

= −
𝜕

𝜕𝑥𝑖

{[𝜎𝑖𝑗𝑛𝑗 + 𝜌𝑢𝑖(𝑢𝑛 − 𝜐𝑛)]𝛿(𝑓)} +
𝜕

𝜕𝑡
{[𝜌𝑣𝑛 + 𝜌(𝑢𝑛 − 𝑣𝑛)]𝛿(𝑓)} (15) 

The result is quite simple. The first source term is often called the loading term because 

it represents the sound generated by the forces on the body. The second term is referred 

to as the thickness noise, which is related to the time-dependent fluctuation of the surface. 

In the result presented in Eq. 15, the integration surface is of big importance. The surface 

should be chosen in such a way that it is valid to neglect the contribution of the Lighthill 

stress tensor. For flows with dominant acoustic regions, like the slat cove, this integration 

surface must enclose the region, so the contributions are considered. For low Mach 

number flows it is valid to exclude the Lighthill stress tensor, see Pan (17). 

If the surface is chosen as the surface of the solid body, which is of course impermeable 

and non-moving, the relation for the sound production is further simplified to Eq. 16. As 

can be seen the forces of the fluid on the body are the acoustic sources. 

1

𝑐0
2

𝜕2𝑝′

𝜕𝑡2
−

𝜕2𝑝′

𝜕𝑥𝑖𝜕𝑥𝑗
= −

𝜕

𝜕𝑥𝑖
[𝜎𝑖𝑗𝑛𝑗𝛿(𝑓)] (16) 

Earlier reports, like Singer et al. (18), show that taking an off-body surface does not 

directly imply that the acoustic results will be better, even though an improved model is 

the case. Flow fluctuations on the body may dissipate and disperse numerically by the 

CFD computation before reaching the off-body surface. This will be verified with the 

cylinder test case by performing a simulation with an on-body integration surface and an 

off-body integration surface. 

Eq. 17 can now be calculated using free field Green's functions in the same way as Curle’s 

solution. The result is the pressure fluctuation generated by the unsteady forces. 

𝑝𝐿
′ (𝑥, 𝑡) =

1

4𝜋𝑐0
∬

(𝑥𝑖 − 𝑦𝑖)𝑛𝑖𝜕𝜎𝑖𝑗(𝑦, 𝑡𝑒)

𝑅2𝜕𝑡𝑒𝑆

 (17) 

where the subscript L denotes the pressure perturbation produced by the loading term. 

  



Cruz, Alejandro R., et al. (2022) Noise, Vibration, and HUMS of Aircraft Dynamic Components pp. 386-450 

 

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 404 

3.3 Application of noise calculation in design and analysis cases 

The cylinder and airfoil-slatted configuration analyses presented in this Section were 

performed by Tijmen Ton and Dennis van Putten during their internship program at 

Instituto Tecnológico de Aeronáutica. 

Cylinder validation case 

The flow over a cylinder with a diameter d = 1.9 cm was calculated. The flow is 

characterized by a freestream velocity of U∞ = 69.19 m/s at standard sea-level conditions 

(19), which results in a Reynolds number of about Red = 90,000. All simulations of the 

present work were performed on a PC running a Windows operational system and fitted 

with an AMD® Athlon™ 64 4000+ (2.42 GHz) processor and 2 GB RAM.  

A discussion about the aerodynamic and aeroacoustic validation quantities is part of the 

content of this case. Then the results of the comparative simulations are presented. At the 

end of this Section, the results of the best simulation will be presented in more detail and 

some conclusions will be drawn regarding the follow-up simulations. The time step of the 

simulations was 5 x 10-6 and the total time was 0.2 s. 

To perform a qualitative analysis of the results, some appropriate flow quantities must be 

chosen to use as comparative tools. These quantities must be easily accessible and 

comparable. Even more important is that good experimental data about them must be 

available. In the next sections, this is discussed for both the aerodynamic and aeroacoustic 

aspects of the problem. The raw Sound Pressure Level (SPL) data obtained with Fluent 

is a noisy signal. This data is smoothed using a locally weighted least squares quadratic 

polynomial technique which is robust in the sense that is resistant to outliers.  The same 

technique is used for smoothing the Fast Fourier Transformation (FFT) of the raw Cl data. 

The smoothed data is used to obtain the validation quantities. The aeroacoustic data is 

sampled from receiver 1, the upper microphone (Figure 12). 

 
Figure 12: Experimental set-up by van der Kooi (20) 

The aerodynamic flow properties that will be used to qualify the simulation results are 

the mean drag coefficient Cd, root-mean-square (RMS) drag coefficient Cd', the mean lift 

coefficient Cl, the RMS lift coefficient Cl', and the Strouhal number St. These quantities 

are defined by 

 
(18) 

In Figure 13, the drag coefficient of a circular cylinder is given for a wide range of 

Reynolds numbers.  As can be seen, the Reynolds region of our interest lies in a plateau 

of nearly constant Cd = 1.2. 
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Figure 13: At left, drag coefficient vs. Reynolds number for a circular cylinder. At 

right, RMS drag coefficient function of Reynolds number (19) 

The experimentally determined value of Cd' can be found in Figure 12, which was 

presented by West (21). The reference value for Red = 90,000 is then Cd' ≈ 0.18. 

Regarding the flow over the cylinder, the mean lift coefficient is zero for obvious reasons. 

Experimental research on the time-varying lift of cylinder flow has focused on 

determining the RMS of the lift fluctuations. Despite a lot of efforts, however, researchers 

have yet not been able to agree on the correct value for Cl' (Re). In Figure 14, which is 

taken from Norberg (22), we consider Cl' ≈ 0.45 − 0.6 for the current case under study. 

The vortex shedding Strouhal number can be found in Figure 14 to be Stvs ≈ 0.19. The 

figure was taken from Norberg (22). 

  

Figure 14: At left, RMS lift coefficient as a function of Reynolds number. At right, Strouhal 

number as a function of Reynolds number (19) 

The aeroacoustic property of interest is the Sound Pressure Level (SPL) at some defined 

receiver locations.  In the simulations, these locations were chosen to replicate the setup 

used by van der Kooi (20), which is depicted in Figure 12. Van der Kooi measured the 

SPL of a smooth cylinder at several Reynolds numbers. His results are displayed in Figure 

15. The 73 m/s line corresponds to a Red = 100, 000. The properties of most interest are 

the peak SPL and the Strouhal number Stps at which this occurs. The interpolated peak 

SPL for Red = 90, 000 is found to be around 107 dB at St ≈ 0.21. 
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Figure 15: Sound Pressure Level as a function of Strouhal number (19) 

Table 2: Summary of reference values (BM) for the benchmark cases (19) 

Parameter Value 

Cd 1.2 

Cd' 0.18 

Cl 0 

Cl' 0.45-0.60 

Stvs 0.19 

SPL (dB) 107 

Stps 0.21 

The main conclusion from the literature study was that the influence of the SGS models 

on the results is quite small. To get some hands-on experience with the performance of 

the models it was however decided to make a comparison, nonetheless. When using the 

LDK model, the authors were not able to achieve convergence of the subgrid kinetic 

energy transport equation involved with this model. Therefore, this model was omitted 

from further use.  All simulations were run with Interactive Time Advancing (ITA) time 

stepping and SIMPLEC pressure-velocity coupling. In the ITA scheme, within a given 

timestep, all the equations are solved in a blockwise loop until the convergence criteria 

for all equations are met. Thus, advancing the solution by one timestep normally requires 

several global iterations. With the iterative scheme, the non-linearity of the individual 

equations and couplings between equations are fully accounted for, eliminating the 

splitting error, which is caused by the segregation of the equations. This is usually overkill 

because the overall solution accuracy is limited by the time discretization error. 

In Table 3, the results of the comparison are displayed. The differences between the 

results are not large.  All models and Smagorinsky seem to overpredict the magnitude of 

the vortex shedding, because of which all values are slightly higher. Specially the 

fluctuation coefficients Cd' and Cl' are quite drastically overestimated. The agreement with 

the benchmark values is not fine. WALE and LDS are to be around 30% more expensive. 

The shedding frequency and the SPL are quite well approximated by the WALE 

simulation. Thus, WALE is used for all other simulations performed in this study. 
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Table 3: Comparison of SGS models (19) 

Parameter BM Smagorinsky LDS WALE 

Cd 1.20 1.486 1.433 1.525 

𝐶𝑑
′  0.18 0.3409 0.3407 0.4555 

Cl 0 0.0559 -0.0009 0.0007 

𝐶𝑙
′ 0.45-0.60 1.344 1.127 1.131 

𝑆𝑡𝑣𝑠 0.19 0.2363 0.2258 0.1860 

𝑆𝑡𝑝𝑠 0.21 0.2420 0.2253 0.2039 

SPL [dB] 107 112.6 111.1 109.4 

CPT [s]  1.07 1.37 1.35 

One of the most important aspects of numerical analyses is the mesh characteristics. To 

evaluate the impact of mesh refinement on results three meshes were used in the 

calculations.  The influence of wall treatment on the result is also investigated. The results 

of the normal grid simulation (which employs wall function) are compared to those 

obtained using finer meshes, which ought to resolve the full boundary layer structure. The 

simulations are denoted as coarse, intermediate, and fine. All simulations were performed 

with Non-Interactive Time Advancing (NITA) time stepping and the WALE SGS model. 

The NITA scheme performs a single global iteration per timestep. There are sub-iterations 

performed on the segregated equations within each time step, but the outer iteration 

(velocity-pressure iteration) is performed just once, hence the term non-iterative. This 

approach effectively drives the splitting error to the time discretization error, and it is 

nonzero. It must be noted that this method is only applicable for incompressible or flow 

with negligible compressible effects, which is the case of the present problem. The great 

advantage of the NITA method is the considerable decrease in computing time. Some 

sources give examples of a reduction in computational expense of 75% when using NITA 

instead of ITA. The results are displayed in Table 4 below. 

Table 4: Results for different mesh sizes. BM is the reference value (19) 

Parameter BM Coarse Intermediate Fine 

Cd 1.20 1.202 0.6015 0.9788 

𝐶𝑑
′  0.18 0.2902 0.1162 0.2332 

Cl 0 0.0012 0.0352 0.0473 

𝐶𝑙
′ 0.45-0.60 0.9001 0.6232 0.9534 

𝑆𝑡𝑣𝑠 0.19 0.2045 0.3027 0.2463 

𝑆𝑡𝑝𝑠 0.21 0.2222 0.3038 0.2424 

SPL [dB] 107 110.4 110.4 109.2 

CPT [s]  0.55 0.51 1.78 

The results of the finer meshes are somewhat disappointing. The finest mesh gives better 

results than the intermediate one but is in no way better than the coarsest mesh. In the 

intermediate case, two different vortex shedding frequencies could be distinguished. The 

true physical vortex shedding is not captured properly in this simulation. As observed by 

Piomelli (23) and Templeton (24) the near-wall vortical structures are of a very small 

scale, but dynamically important. SGS models are found to be incapable of capturing the 

correct physics associated with these small structures. This means excessively fine grid 
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resolutions must be adopted when using this so-called solve-to-wall approach. Refining 

the grid in a wall-normal direction creates cells with a bad aspect ratio, which in LES is 

found to give bad results. This means that all directions must be refined, because of which 

the necessary resolution approaches that of a full DNS simulation. In both the fine mesh 

simulations Fluent adopts the solve-to-wall approach, although the resolution is not nearly 

as high as necessary to capture the correct physics. This is probably the main reason for 

the failure of the finer mesh simulations. The wall-modeling technique used in 

conjunction with the coarse grid seems to perform adequately and will therefore be 

adopted in the other more complex cases. It should be noted that the comparison of CPT 

between the coarse and finer grids is not representative, because the structure of the grids 

(and their qualities, which influence convergence) differs somewhat. It is however clear 

that in the case the meshes are structurally comparable, a lower number of cells results in 

a lower expense. 

This section will investigate the influence of the integration surface used in conjunction 

with the Ffowcs Williams and Hawkings Equation (Eq. 17). The mesh and integration 

surfaces used for the simulations were discussed previously. The results of the simulations 

are displayed in Table 5 below. Because the only difference between the simulations is 

found in the acoustics, only these quantities are given. 

Table 5: Comparison of integration surface (19) 

Parameter BM On-cylinder Off-cylinder 

𝑆𝑡𝑝𝑠 0.21 0.2087 0.2087 

SPL [dB] 107 106.4 106.2 

It appears that the assumption that the sound generated in the off-body region is negligible 

is indeed valid in this case. The choice of integration surface hardly alters the outcome. 

This is not the case for the slatted-airfoil configuration and will be discussed later. 

The results presented here are the best ones (Table 6 and Table 7). Excellent visualization 

of the vortex shedding behavior is formed by a filled contour plot of the velocity 

magnitude, as given in Figure 16. The vortex shedding character is visible from the 

low/high-velocity pairs which indicate an alternating sequence of clockwise rotating 

vortices shedding from the upper side and counterclockwise rotating vortices that are 

shedded by the lower side. 

Table 6: Aerodynamic coefficients for the circular cylinder (19) 

Parameter BM NITA 

Cd 1.20 1.202 

𝐶𝑑
′  0.18 0.2902 

Cl 0 0.0012 

𝐶𝑙
′ 0.45-0.60 0.9001 

𝑆𝑡𝑣𝑠 0.19 0.2045 

The SPL spectrum produced by this simulation is displayed in Figure 17. The included 

experimental data was obtained from an interpolation of the 73.0 m/s and 58.4 m/s 

datasets of van der Kooi to correct deviating Reynolds number. The agreement with the 

experimental data is very good. The peak SPL and its corresponding Strouhal number are 

predicted well. The global deviation is however around 12 dB, which is considerable.  
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Table 7: Aeroacoustics results for the circular cylinder (19) 

Parameter BM NITA 

𝑆𝑡𝑝𝑠 0.21 0.2222 

SPL [dB] 107 110.4 

 

 

Figure 16: Contours of velocity magnitude @ time = 4.66 x 10-1 s. Simulation using 

NITA and WALE (19) 

 

 

Figure 17: Sound pressure level at receiver 1 (19) 
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Airfoil with deflected slat 

Most airframe noise is broadband in nature, with some low-frequency tones with low-

frequency tones associated with cavities and discontinuities. Solid-body interaction with 

fluid may be related to the dipole noise source (25). In the quadrant where the slat noise 

is most present, the jet noise dominates. However, considering the low-noise signature of 

new generations of high by-pass turbofan engines, the slat noise may become the major 

contributor in this quadrant. 

The flow over a deflected slat configuration is considerably complex and is characterized 

by a vortex in the slat cove region (Figure 18). One approach to reduce the noise caused 

by the deflected slat is to evaluate it with different horizontal and vertical separations to 

the main component of the airfoil and then utilize a surface response method to obtain the 

best configuration. However, techniques to reduce the noise level must consider the 

requirements of ice protection and the maximum lift coefficient provided by the slat. 

The noise-generating mechanisms of slats are (25): 

• Unsteady flow separation at the cusp of the slat 

• Unsteady mass fluctuations in the slot 

• Unsteady motions of the vortex in the slat cove region 

 
Figure 18: Navier-Stokes flow over a slat configuration showing a strong vortex behind 

the slat. The picture also allows for the inference of the location of the stagnation points 

on the slat and main airfoil (𝑴∞ = 𝟎. 𝟑𝟎, ∝= 𝟎𝒐) 

An acoustic analogy is employed for the noise prediction of a slatted-airfoil configuration 

(19). The flow was simulated using Large Eddy Simulation (LES) approach and the 

acoustic propagation is successively calculated with the Ffowcs Williams and Hawkings 

method (26). For the LES a relatively fine mesh is required. The time step must be limited 

due to the acoustical calculation, and the spectrum was calculated for the whole audible 

range (20-20,000 Hz).  
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The geometry and computational domain of the high-lift airfoil are shown in Figure 19 

and Figure 20.  As can be seen in Figure 20, the slat and the slot region are bounded by 

the dashed line, representing a surface used for the computation of sound radiation. A 

report of Andreou (27) is used for validation of a numeric run that employed the Fluent 

code (16). The aeroacoustic measurements are done on the tunnel floor by an array of 

microphones. The vertical distance between the microphone array and the wing was 0.6 

m. The use of two different arrays resulted in measurement with a frequency range 

between 2 kHz and 20 kHz. The validation of the simulation was performed in this 

bandwidth. The acoustical emission outside this bandwidth will be discussed as well. 

Especially the contribution in the audible range will be looked at.  

Three measurements were performed at α = 6o, 10o, and 16o. Ref. (27) does not only 

discuss the aeroacoustics of the configuration but also provides important aerodynamic 

data. The acquired data was corrected due to the perturbation caused by wind-tunnel 

walls, wake vortex sheet hitting the wind tunnel, and blockage of the model that was tested. 

 
Figure 19: Computational domain for the airfoil slatted configuration (19) 

 
Figure 20: Airfoil configuration being investigated (19) 

The report by Andreou focuses on the determination of the sources of sound. The setup 

with the microphone array can pinpoint the sources of sound. Figure 21 shows the 

experimental data for different frequencies at an angle of attack of 6o. The leading and 

trailing edge of the airfoil is indicated by the thick black lines. The slat is the main 

contributor to the noise generation of the overall configuration.  

 
Figure 21: Sound pressure pattern for α = 6o (27) 

The source location can also be determined with Fluent (16). This is done by plotting the 

source dipole strength on the surface of the slat and airfoil. Integrating this term over the 

surface will give the contribution of all the sources on the surface to a specified 

observation point. The source dipole strength is given in Figure 22 for α = 6o. The slat, 

the slot, and the leading-edge region of the main wing are the main sources of sound. The 

dipole strength on the upper surface of the main wing is not measured in the experiments 

and therefore is not shown in Figure 23. The source dipole strength for the case of 16o 

angle of attack is very strong at the upper surface. This indicates that there is a lot of noise 
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radiation upwards, which was unfortunately not tested in the wind tunnel. Also, the sound 

pressure level at the tunnel floor was measured in the experiment. Our corresponding 

acoustic simulation was performed with eight receivers at the lower tunnel floor, with the 

receivers 0.1 m apart. SPL was calculated at these receiver points. It was found that there 

is not a significant difference between the receivers. Therefore, the sound pressure level 

of the receiver below the slat is used for the comparison. In Figure 23 the experimental 

SPL data is given for different angles of attack.  

 

Figure 22: Source dipole strength along airfoil surface (α=6o) (19) 

 

Figure 23: Experimental SPL for α = 6o, 10o, and 16o (27) (19) 



Cruz, Alejandro R., et al. (2022) Noise, Vibration, and HUMS of Aircraft Dynamic Components pp. 386-450 

 

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 413 

The SPL over the frequency that was obtained with the numerical simulation is given in 

Figure 24. By using a weighted least squares method, the data is smoothed. In Figure 24, 

the dashed line is a regression of the experimental data, given in Figure 23. Depending 

on the frequency, the simulation overestimates the SPL from 5 up to 10 dB, so this result 

can be considered still satisfactory. The trend and specific peak frequencies must be 

captured properly, and the overall tendency was captured well up to a frequency of about 

10 kHz. The decrease in accuracy in the high-frequency region may be accounted for by 

the mesh size. Literature on this topic states that often the smallest wavelength is resolved 

with denser meshes, specifically a refinement by a factor of about two is required, 

demanding a large mesh. To keep the computational expense at a reasonable level, the 

refinement was only applied to the slot region, because this region is the major source of 

the noise. The results of this simulation are shown in Figure 24. 

 
Figure 24: Experimental and computed SPL data for α = 6o (19) 

According to Figure 24, the results obtained with the finer grid are not better than those 

with the coarser mesh. In the low-frequency region, the simulation lacks accuracy. 

Despite this, the trend was better captured with the finer grid, but this is just an effect of 

the increased SPL deviation at low frequencies. We can therefore conclude that refining 

only the slot region is not enough to increase the accuracy of the sound emission 

prediction. The refining must be extended towards the source surfaces and especially to 

the lower surface of the slat. It is believed that refinement in these regions will increase 

the accuracy, and additional simulations are needed to support this claim.  

The integration surface is introduced to capture more of the physics of the problem and 

to obtain a better simulation of the sound production. In the benchmark case, it is proven 

that for the cylinder the results did not differ much. For the simulation of the slatted-

airfoil configuration, two integration surfaces were used to calculate the sound emission. 

The results of this calculation are shown in Figure 25. For these simulations, the refined 

grid was used to avoid dissipative effects in the slot region. The use of two separate 

integration surfaces which are at a close distance is physically not realistic. In the region 

between the surface, reflection plays a dominant role, but it is not accounted for by the 

method of Ffowcs Williams and Hawkings. By enclosing this whole reflective region, 

this problem is avoided, and reflection is considered. The on-body surface is indeed found 

to perform somewhat worse when looking at the trend line, as can be seen in Figure 25.  



Cruz, Alejandro R., et al. (2022) Noise, Vibration, and HUMS of Aircraft Dynamic Components pp. 386-450 

 

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 414 

 
Figure 25: Sound generation from different integration surfaces (19) 

In the experiment carried out by Andreou, only the frequencies between 2 kHz and 20 

kHz were measured. However, the trend of the numerically obtained SPL shows that low 

frequencies are most dominant in the spectrum. From an engineering point of view, the 

bandwidth of interest extends to the low frequencies up to 20 Hz. The simulation was run 

long enough to also capture even lower frequencies; these results are shown in Figure 26. 

The region left out of the measurements of Andreou is indeed very interesting. Especially 

the region between 200 Hz and 1 kHz has a relatively high SPL. This region diminishes 

when the angle of attack is increased. This phenomenon can be ascribed to the boundary 

layer instability and the vortex shedding initiated from the instability at the lower slat 

surface. It only occurs at low angles of attack as will be clarified in the aerodynamic 

section.  

 
Figure 26: SPL for all angles of attacks in the audible range (19) 

The same phenomenon causes the high source dipole strength on the lower slat surface, 

as shown in Figure 22. The instability in the boundary layer causes pressure fluctuations 

on the surface, which translates to sound emission. As the angle of attack is raised the 

boundary layer instability will occur at the upper surface of the slat.  
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The source dipole sound is caused by the instability of vortex formation in the boundary 

layer. These instabilities can be visualized by plotting the pressure distribution in the 

flowfield at a certain instant in time. This distribution is given in Figure 27 as the relative 

pressure deviation from the freestream pressure. The instability occurs at the upper 

surface of the main element. These fluctuations were also visible in the source dipole 

strength plot in Figure 22. There is also a large recirculation area visible in the slot. This 

region is affected by shear stress which originates from the slat trailing-edge flows.  

 
Figure 27: Iso-pressure isobar lines for α = 6o (19) 

The boundary layer separation on the slat can be related to the pressure distribution on 

the surface. If the pressure gradient is negative the flow is accelerated, and the boundary 

layer will be stretched. This damps the instability and prevents the separation of the 

boundary layer. On the other hand, if the pressure gradient is positive, separation can 

occur and therefore the pressure coefficient gives a good estimation for boundary layer 

separation. For one instant in time the pressure coefficient along the surface is given in 

Figure 28. The pressure fluctuation on the lower surface of the slat is also clearly visible. 

Again, these results comply very well with the results found before. For graphical 

purposes, the slat geometry given in the Figure is stretched and does not comply with the 

real geometrical dimensions.  

  
Figure 28: Cp Distribution on slat surface (α = 6o) (19) 
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The same can be done for the main element. Here the instability occurs at the upper 

surface. The pressure fluctuations are present over the whole upper surface (Figure 29). 

The wavelength of the fluctuations increases when traveling towards the trailing edge. 

This indicates that small eddies are generated near the leading edge and are convected 

with the flow while increasing in size. As stated before, the scale of the eddies is roughly 

proportional to the wavelength of the sound radiation. This means that the emission near 

the leading edge is relatively high-frequent and near the trailing edge low frequent. The 

scales of the eddies can be visualized using iso-pressure contours. This is done in Figure 

30. On the lower surface a negative, or adverse, the gradient is maintained over almost 

the whole surface, except for the region from half the chord length up to the trailing edge. 

Here the pressure shows some harmonic oscillations around a nearly constant value. 

These fluctuations are however very small. They are caused by small eddies that are 

shedded from the point where the geometry changes suddenly and convected along the 

surface.   

 

Figure 29: Cp distribution on the main element at α = 6o (19) 

 

Figure 30: Iso-pressure contours on the main element at α = 6o (19) 



Cruz, Alejandro R., et al. (2022) Noise, Vibration, and HUMS of Aircraft Dynamic Components pp. 386-450 

 

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 417 

Landing gear of a long-haul airplane configuration 

White noise consists of a simultaneous combination of sounds of all frequencies. The 

adjective white is used to describe this type of noise in analogy to the functioning of white 

light, given that this is obtained through the combination of all chromatic frequencies. 

Proudman (28), using the analogy of light waves with acoustics, derived a formula for the 

acoustic power generated by isotropic turbulence without mean flow. More recently, 

Lilley (29) again derived the formula but this time accounting for the delay time 

difference which was neglected in Proudman's original derivation. Both derivatives gave 

an acoustic power yield acoustic power due to the unit volume of isotropic turbulence (in 

W/m3).  Equation summarizes the relationship between acoustic power and flow variables: 

𝑃𝐴 = 𝛼𝜌0 (
𝑢3

𝑙
)

𝑢5

𝑎0
5 (19) 

where u and l are the turbulence velocity and length scales, respectively, and 𝒂𝟎 is the 

speed of sound. The parameter α in Equation 19 is a constant. In terms of k and ε, 

Equation 19 can be rewritten as 

𝑃𝐴 = 𝛼𝜖𝜌0𝜖𝑀𝑡 (20) 

with 

𝑀𝑡 =
√2𝑘

𝑎0
 (21) 

Ansys Fluent (30) uses the above model to compute the acoustic power level in dB 

𝐿𝑃 = 10 𝑙𝑜𝑔 (
𝑃𝐴

𝑃𝑅𝑒𝑓0
) (22) 

A CFD simulation for an airplane similar in configuration to the A340 was carried out 

with Ansys Fluent (30). Some characteristics of this CFD run 

• Freestream Mach number of 0.14 and 3o angle of attack. 

• Fluent’s density-based implicit algorithm was chosen to run the simulation. 

• A realizable k-ε turbulence model with standard wall treatment was employed. 

Corrections for curvature and compressibility were considered. 

• The airplane analyzed was modeled with main and nose landing gear extended, including 

some doors at the open position. 

• Airplane geometry and initial surface mesh were generated with the open-source code 

Sumo (31). 

• The final computational mesh is comprised of 7,923,665 tetrahedra. 

• Mesh adaptations were performed to smooth absolute gradient values and keep the y+ 

parameter within reasonable values. 

Contours of surface acoustic power [dB] can be seen in Figure 31 for the main landing 

gear and the entire aircraft. the corner of the landing gear compartment generates 

considerable noise. Rounding off this edge would certainly contribute to a significant 

reduction in the noise level. The downstream pair of wheels is a considerable source of 

noise, as it receives the flow that was decelerated and separated from the front ones. 

Figure 32 Shows streamlines colored by velocity magnitude released in front of the main 

landing gear. The flow is highly disturbed by the front wheels and other cylindrical parts 

of the landing gear assembly. 
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Figure 31: Contours of surface acoustic power level [dB] 

The bogie incidence relative to the fuselage centerline (Figure 9 and Figure 32), as already 

present in many aircraft configurations, contributes to the noise reduction because a part 

of the wake originating on the front wheels does not impinge on the wheels located 

downstream. This arrangement also contributes to less mechanical vibration in the 

landing gear assembly. Cao et al. (32) studied the effect of the bogie pitch angle on the 

structural design during touchdown. Their results indicate that the overload of main 

landing gear, drag force, and maximum stress decrease as the initial bogie angle increases. 

However, the total force of the snubber increases when the initial truck angle increases. 

Increasing the initial bogie pitch angle at touchdown increases structural robustness (32). 

  

Figure 32: Left - Streamlines close to the main landing gear of the four-engine 

airplane. Colors are related to acoustic power level [dB] (𝑴∞ = 𝟎. 𝟏𝟒, ∝= 𝟑𝒐). 

Right - Misalignment of wheels pairs (Photo: Adrian Pingstone, public domain) 
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Ice detector 

The front fuselage of airplanes must accommodate flight instruments, primary flight 

control, and the nose landing gear. Externally, it hosts several probes that are vital for the 

safety of the flight such as angle of attack sensor, total temperature probe, Pitot tubes, and 

ice detectors. 

As ice accretes on the vibrating probe (Figure 33), the nominal natural frequency is 

reduced due to the ice mass. Reduction of the probe frequency below a predetermined 

threshold causes changes in a reference signal and the system is then activated, thus 

causing the protected surfaces to be deiced. 

Most ice that builds up on aircraft surface owes its constitution to droplets with a size 

between 15 and 50 µ. An aircraft certificated to fly into known icing conditions can 

sustain flight in stratus-type clouds with droplet Median Volume Diameters (MVD) up to 

40 µ; and flight in cumulus clouds with droplet MVDs up to 50 µ. Larger droplets present 

greater inertia, and their trajectories may depart significantly from the streamlines around 

the aircraft. As a result, larger droplets adhere to larger parts of the aircraft surface and 

are more likely to strike behind ice-protected surfaces. Supercooled Large Droplets (SLD) 

can be up to 4000 μ in diameter and, despite icing certification limitations, accidents, and 

incidents in SLD conditions have been documented, especially following sustained flight 

in freezing drizzle or freezing rain. 

 
Figure 33: Magnetostrictive ice detector 

Navier-Stokes simulations were carried out with the Ansys Fluent code (16) for a 55-seat 

airliner configuration, which was designated ITA55ADV. Fluent’s realizable k-ε 

turbulence model and standard wall functions were employed in this simulation The 

computational model is not symmetric, with one ice probe placed only on the port side of 

the front fuselage in the position labeled P2 (Figure 34). This approach intends to measure 

the impact of the probe on the SWL, comparing the distribution on this side with the flow 

calculated on the starboard side, which is free from probes. Figure 34 also displays the 

triangular surface mesh employed in the calculation. The spatial mesh was adapted to 

lower velocity and pressure gradients and to keep the y+ values within reasonable values. 
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Figure 34: Left - Locations chosen for placement of the ice detector. Right – Initial surface mesh in the ice-

detector region generated for the P2 ice-detector configuration 

A CFD calculation was performed at freestream conditions with M∞ = 0.40 and α = 3o.  

The results show that, besides the logic separation behind the cylindrical part of the probe, 

the flow also separates at the trailing edge of the P2 configuration according to the Navier-

Stokes simulation performed with Fluent (Figure 35). The rounded trailing edge of the 

basis of the probe is not suited to keep the flow attached (Figure 36), namely at higher 

Mach numbers. Naturally, the flow behind the probe’s cylindrical part is also separated 

for all conditions in the airplane’s flight envelope. The maximum Mach number over the 

ice detector obtained from the CFD run was found to be as high as 0.89. Comparatively, 

the fuselage and wings recorded 0.58 as the highest Mach number on these surfaces. 

 
Figure 35: Mach number contours on the ice detector and its neighborhood 

(M∞ = 0.40, α = 3o) 

 

Figure 36: Streamlines (M∞ = 0.40, α = 3o) 
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Figure 37 shows regions where the surface power level was calculated to be higher than 

100 dB. It is noticeable the great impact of the ice probe is producing considerable noise. 

The shape of the fuselage surface over cockpit the accelerates the flow there and causes 

a thickening of the boundary layer and consequently an increase in the broadband noise. 

However, the region affected by the ice detector is much larger. This CFD run leads to 

two important conclusions: 

1. It is important to consider aerodynamics and noise in the design of ice probes to avoid 

flow separation and high accelerated flow over the probe. 

2. There are many probes at the front fuselage of airliners, so the combined noise generated 

by them is considerable and affects mainly the cockpit crew. 

  
Figure 37: Surface power level above 100 dB reveals that the ice probe is a 

considerable source of noise 

3.4 Some remarks about helicopter noise 

In terms of helicopter noise sources, the main sources are the rotor, anti-torque, engines, 

gearbox, depending on flight condition, transmission gear, and are illustrated in Figure 

38. The typical noise sources in helicopters can be summarized as 

• Turbulent boundary layer noise. 

• Engine noise. 

• Heating and ventilation noise. 

• Main/tail rotor noise. 

• Fan noise. 

In a short review of the noise sources generated by the helicopter and connected to the 

present study, it is worth mentioning the thickness noise which is caused by the blade 

periodically displacing air during each revolution and is dependent only on the shape and 

motion of the blade. Generally, the thickness noise propagates in the plane of the rotor as 

well as the high-speed impulsive noise. In addition, the loading noise is another type of 

noise source which influences the inside-cabin noise. The noise generated due to the 

loading on the blade is directed below the rotor and is caused by the acceleration of the 

force distribution on the air around the rotor blade passing through it. Another important 

contribution is that of  the blade vortex interaction directed down and rearward. It occurs 

when a rotor blade passes within proximity of the shed tip vortices from a previous blade. 

The rotor noise sources are depicted in Figure 39. 
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Figure 38: Helicopter noise sources 

Rotating blades emit two distinctly different types of acoustic signatures (33): tone or 

harmonic noise which is caused by periodic sources with a period linked to a rotation 

cycle; and broadband noise which is a random, nonperiodic signal caused by the flow-

blade interaction. 

Helicopter main rotors typically present a rotating frequency between 3 and 7 Hz, 

depending on the aircraft configuration and performance. The main vibrations caused by 

the rotors in the structure vary between 3 and 22 Hz, while tail rotors and other accessories 

rotate at higher frequencies. The most annoying noise for humans is that originated at the 

tail rotor due to its higher frequency which coincides with the band to which the human 

ear is most sensitive (34). A method to separate the main rotor noise from that originating 

from the tail rotor of a helicopter in flight was applied by Farassat and Morris (35). A 

two-dimensional Fourier analysis method was used, whereas the two-dimensional 

spectral analysis method is initially applied to artificial signals. This initial analysis 

provided an idea of the characteristics of the two-dimensional autocorrelations and 

spectra. Data from a helicopter flight test were then analyzed using data from a 2D-

microphone array. Two test aircraft were employed, a Boeing MD902 Explorer NOTAR 

and a Sikorsky S-76, the latter fitted with a four-bladed tail rotor. 

 
Figure 39: Rotor noise sources [Adapted from Ref. (11)] 
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The contributions to the internal noise of major helicopter components are summarized 

in Figure 40. The pressure level is practically linearly decreasing when the frequency is 

increasing on a logarithmic scale, 

 
Figure 40: Internal noise mapping (11) 

As seen in Figure 39 gearbox is also a major source of noise in helicopter cabins. Several 

studies address transmission designs by targeting noise reduction (36). The production of 

gear noise is basically due to the meshing forces acting on the gear teeth. The shape 

variation of the teeth during their operational cycle will produce sound waves or, in other 

words, noise (Figure 41). If the forces acting on teeth are reduced, the generated noise 

will follow this trend. The two main approaches for helicopter transmission are the 

modification of the tooth shape and contact ratio.  

The contact ratio has a strong influence on stiffness. Depending on which part of the toot 

the contact takes place, the bending stiffness may vary substantially (Figure 42). 

Helical gears, as compared to spur gears, typically produce lower noise levels. The 

helicoidal angle has a strong influence on the overlap ratio (Figure 43): 

𝜖𝛽 =
𝑏𝑡𝑎𝑛(𝛽)

𝑝
 (23) 

By raising the parameter 𝜖𝛽, the meshing stiffness decreases, and therefore the noise 

generated by the gears follows suit. 

Li et al. proposed a methodology of fault diagnosis combining vibration and sound signals 

from gears (37).  According to them, the two kinds of signals complement each other, 

which is beneficial for fault diagnosis. However, there is a limitation of the signal source 

and sensor in assessing the gear state under different working conditions. 
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Figure 41: Gear deformation due to loading (11) 

 

 
Figure 42: Variation of the bending stiffness according to the contact point (11) 

While helical gears provide some degree of noise reduction, their use also generates a 

thrust load which must be dealt with in the design of the overall system, especially the 

support bearings, gear blank design, and housing structure (36). Double helical gears 

cancel the thrust loads from each helix within the gear blank, providing this way relief 

from the net thrust issue (36). 

 
Figure 43: Helical gear (11) 
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3.5 Turbofan engines 

Overview 

Interaction of tone and broadband noise mechanisms are found in a multi-blade row 

propulsor application (Figure 44). Broadband noise is produced by the interaction of 

airflow with a solid surface, as is the case of a wake from a rotor interacting with a stator. 

Broadband noise is defined as noise that has a flat spectral density distribution. 

Regions of separated flow produce a considerable noise, and the flow separation must be 

contained as far as possible. These regions can be even found on airplanes in steady-level 

flight. An example of this is the regions downstream of anti-collision lights, ice detectors, 

and knobs.  

Aeroacoustics measurements are vital for providing validation data for the development 

of computational aeroacoustics codes (38). The main sources of noise in turbofan engines 

are as follow: 

i. Rotor self-noise which is significant even with clean inflow and no duct boundary layer 

includes Gutin tones, thickness noise, tones and broadband sound generated by the 

interaction of the rotor with upstream flow distortion, and tones and broadband sound 

generated by the interaction of the rotor wakes with downstream bodies and trailing-edge 

broadband noise. 

ii. The interaction of the rotor with the inlet boundary layer is affected by rotor tip clearance. 

iii. An unsteady nonuniformity in the tip-duct gap rotating at a fraction of the fan speed, at 

least when tip clearance and loading are both large. 

iv. Stator-generated noise is significantly affected by propagation through the upstream rotor 

fan which consists of interaction tones and broadband noise with the shed rotor turbulent 

wakes and stator trailing-edge noise. 

 
Figure 44: Turbofan engine noise sources (OGV means outlet guide vane) 
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Example of noise prediction 

A computational tool for noise prediction generated by conventional turbofan engines 

was developed by Muraro in his master's program (39). The tool was based on several 

methods described in a batch of NASA TM-X reports. Each of those reports addressed 

some specific component of the engine such as the inlet, fan (40), core (41), turbine, and 

nozzle (42). The tool was written in MATLAB® language. The following baseline data 

were considered as an exemplification of noise prediction and a comparison with the 

results of Refs. (43) (44) is provided. Table 8 shows the ambient and position of the 

airplane fitted with the engine considered in the present noise estimation example (43). 

Table 8: General parameters for noise estimation methods comparison (39) 

Parameter Value Unit Description 

ISAT  0 ºC Temperature variation in comparison to ISA 

H 0 m Altitude 

0P  101,325 Pa Ambient static pressure 

0  1.225 kg/m³ Ambient density 

0V  87 m/s Ambient velocity or flight velocity 

0M  0.26 - Ambient Mach number or flight Mach number 

  50 degree Directivity angle 

f  0 degree Azimuth angle 

r 538 m Distance between the source and the observer 

Fan noise 

The following parameters (Table 9) are considered for the estimation of the fan noise. 

Table 9: Engine parameters for fan noise comparison (39) 

Parameter Value Unit Meaning 

fanm  385 kg/s Fan mass flow rate 

PR 
fan

 1.53 - Fan pressure ratio 

fan  0.9 - Fan efficiency 

D
fan

 1.6 m Fan diameter 

rpm
fan

 5,233 rpm Fan revolutions per minute 

( )
DTRM  1.17 - M

TR
 value in the fan design point 

n
rotor

 22 - Number of fan rotor blades 

n
stator

 50 - Number of fan stator blades 

RSS 200 % Fan rotor/stator spacing 

Additionally, there must be informed if the engine has inlet guide vanes and if there are 

inlet flow distortions. The program results are shown in Figure 45, together with the 

results from the applet and the ESDU methodology for comparison. The ESDU results 

are plotted two times, one with the original ESDU method, and another with the 

Heidmann method (40), the same used in the NASA report. A Java applet for the 

prediction of noise generated by turbofan engines was some time ago available on the 

Website of the TU Berlin and it served as a comparison basis. Amado’s program results 

are very similar to the ones obtained by the ESDU results with the NASA method. The 

difference at higher frequencies can be credited to atmospheric damping, which is not 

considered in the ESDU method. 
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However, the applet results are very lower than the programs. This is probably because 

the applet uses the ESDU own methodology. The difference at higher frequencies is again 

due to the atmospheric damping. 

 
Figure 45: Comparison between the fan noise generated by the program, by the 

applet, and by the ESDU (39) 

Combustion chamber noise 

There are 4 parameters needed for the noise prediction generated by the combustion 

chamber: 
Table 10: Engine parameters for combustion chamber noise comparison (39) 

Parameter Value Unit Meaning 

chamberm  157 kg/s Chamber mass flow rate 

entranceT  844 ºC Air temperature at the chamber entrance 

exitT  1,676 ºC Air temperature at chamber exit 

entranceP  3,000,000 Pa Air pressure at the chamber entrance 

The results are shown in Figure 46, together with the results from the applet and the 

ESDU.  



Cruz, Alejandro R., et al. (2022) Noise, Vibration, and HUMS of Aircraft Dynamic Components pp. 386-450 

 

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 428 

 
Figure 46: Comparison between the combustion chamber noise results obtained by 

the program, the applet, and the ESDU (39) 

The program results are very close to the applet results, and only show some difference 

in lower frequencies. The ESDU results are also very similar to the program’s, however, 

since the ESDU method considers a 
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  factor, that is equal to -10.8 dB at 

the simulation conditions, the results are lower, and the ESDU plot in Figure 46 has this 

factor value-added. 

Turbine noise 

For the turbine noise estimation, the following parameters are required: 

Table 11: Engine parameters for turbine noise comparison (39) 

Parameter Value Unit Meaning 

turbinem  157 kg/s Turbine mass flow rate 

turbinerpm  5,233 rpm Turbine revolutions per minute 

turbineTRM  0.5 - Mach number at turbine tip 

n
turbinerotor

 50 - Number of turbine rotor blades 

RSS
turbine

 50 % Turbine rotor/stator spacing 

The program results are shown in Figure 47 below, together with the applet results for 

comparison. As it can be seen, both graphics are very close, showing that the program has 

a good correspondence. 
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Figure 47: Comparison between the turbine noise results obtained by the program 

and the applet (39) 

Jet noise 

Jet noise is caused by a mixture of hot air with the surrounding air. Temperature and 

velocity gradients can significantly influence the nature of the turbulence, and hence the 

noise generated. Lighthill (14) proposed the following equation for the power irradiated 

by the gas exhaustion: 

𝑃 = 𝑘
𝜌𝑗𝑒𝑡

𝜌𝑎𝑖𝑟
𝐴

𝑉8

𝑉𝑠𝑜𝑢𝑛𝑑
5  (24) 

In Eq. 24, 𝜌𝑗𝑒𝑡 e 𝜌𝑎𝑖𝑟 are the jet and ambient density, respectively; V and 𝑉𝑠𝑜𝑢𝑛𝑑 are the 

flow speed and sound speed, respectively; A is the nozzle area, and k is a proportionality 

constant.  

For the estimation of the last part of the engine noise, several velocities, densities, areas, 

and temperatures are needed (Table 12). 

Table 12: Engine parameters for jet noise comparison (39) 

Parameter Value Unit Meaning 

jetA  0.85 m² Jet area 

gaph  0.15 m Gap distance 

bypassA  2.399 m² Bypass area 

jetV  447 m/s Jet velocity 

bypassV  298 m/s Bypass velocity 

jetT  786 ºC Jet temperature 

bypassT  88 ºC Bypass temperature 

jet  0.22 kg/m³ Jet density 

bypass  0.976 kg/m³ Bypass density 
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Additionally, it is necessary to inform if the nozzle is circular or plug. The results for 

the applet and the program with a circular nozzle are shown in Figure 48, while Figure 

49 shows the results with the plug nozzle. In the two situations, the program has very 

good results compared to the applet, although with the plug nozzle a small difference 

can be seen in lower frequencies. 

 
Figure 48: Comparison between the jet noise results with circular nozzles obtained by 

the program and the applet (39)  

 
Figure 49: Comparison between the jet noise results with plug nozzles obtained by the 

program and the applet (39) 

By lowering the jet exhaust velocity, the jet noise will be reduced, typically. Some more 

recent engines like the GE-90 employ this approach by using the engine cycle to extract 

energy from the engine core and reduce the mixed velocity of the core and fan ducts (38). 

It is highly desirable to reduce the jet noise without changing the engine cycle, indeed a 

very challenging problem. In 1996, a jet noise reduction concept using “chevron nozzles” 

was tested at NASA that reduces the jet noise by mixing the core and bypass flows in a 

way that reduces low frequency mixing noise from highly turbulent flows (40). This 

approach is employed in the engines of the B787 airliner. 
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3.6 Transport airplane optimization with noise constraints 

An optimization with noise constraints was carried out for the design of a 78-seat airliner. 

Some characteristics of this simulation: 

• Only twinjet configurations were considered. 

• Some FAR rules are set as constraints: missed approach climb gradient, climb gradient in 

2nd segment, rate of climb at service ceiling, and others. 

• Design variables are set for wing planform and engine definition. 

• The turbofan engine model (45) presents five design variables. 

• Turbofan noise model according to Ref. (39); airframe noise by Ref. (46). 

• The maximum lift coefficient is estimated by the critical section methods. 

• Direct Operating Cost (DOC) and Maximum Takeoff Weight (MTOW) are the two 

objectives. 

• Artificial neural networks were employed for the estimation of aerodynamic coefficients 

(47).  

• Range of 2,200 nm with 78 passengers.  

• Stabilizers were designed according to controllability and stability criteria (48). 

• The genetic algorithm NSGA-II was used as an optimizer. 

Figure 50 shows the results of the optimization run. There, 804 airplane configurations 

were analyzed, of which 279 could properly be sized and did not violate any constraints. 

Another graph containing the wing aspect ratio and area of the individuals analyzed in 

the optimization run is shown in Figure 51. Only three airplane configurations composed 

the Pareto front, which resulted in a line almost parallel to the DOC axis, i. e., the MTOW 

of the Pareto members differ by a small amount. 

 
Figure 50: Pareto and dominated individuals of the optimization run for the design of 

a 78-seat airliner 
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Figure 51: Wing aspect ratio and area of individuals analyzed in the optimization run 

Table 13 presents a comparison of characteristics among two E175 versions (AR and LR) 

to those from three configurations that resulted from the design optimization task. The 

range for the mission with 78 pax mission was performed at 35,000 ft for the Embraer 

airplanes and 40,000 and 41,000 ft for the optimized configurations. The thrust provided 

by the CF34-8E engines of the E175 versions does not enable them to cruise at higher 

altitudes than 35,000 ft taking off with MTOW, according to the aircraft model employed 

in the present computations. 

The flyover noise (posed as a constraint) was considerably reduced when compared to 

those from the E175 versions, but the sideline noise (no constraint established) increased 

approximately by 1 dB. 
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Table 13: Specifications of the optimally designed 78-seat airliner compared to those of 

two E175E1 versions. All airplanes present a service ceiling of 41000 ft (49) (50) (51) 

 E175 LR E175 AR ID 956 ID 4778 ID 3128 

Range (MTOW, LRC, 78 

Pax, ISA, 100 nm 

alternate, 45 min loiter) 

[nm] 

2,000+, 1 2,200+, 2 2,200† 2,200† 2,200† 

Maximum operating 

Mach number 
0.82 0.82 0.84 0.84 0.84 

Takeoff field length 

(MTOW, sea level, ISA) 

[m] 

1,724 2,244 2,000 2,000 2,000 

Landing field length 

(MLW, sea level, ISA) 

[m] 

1,259 1,261 1,259 1,259 1,259 

BOW [kg] 21,870 21,890 21,708 21,830 21,785 

MTOW [kg] 38,790 40,370 37,812 37,832 37,808 

Max. usable fuel [kg] 9,428 9,428 9,187 9,007 9,421 

Wing quarter-chord 

sweepback angle 
23.5 23.5 26.63 27.48 27.25 

Wing reference area [m2] 72.72 72.72 82.07 81.37 78.53 

Wing aspect ratio 8.6 8.6 7.50 7.54 7.50 

Fuselage width [m] 3.01 3.01 2.84 2.84 2.84 

Engine by-pass ratio 5.00 5.00 5.69 5.27 5.54 

Engine overall pressure 

ratio 
28.50 28.50 30.57 31.85 29.37 

Fan pressure ratio 1.9 1.9 1.60 1.64 1.65 

Static takeoff thrust (Sea 

level, ISA) [lb] 
14,200 14,200 14,902 15,017 14,706 

Time to climb to initial 

or final cruise altitude 

[min] 

181 182 26.33 25.74 24.83 

Flyover noise (EPNL) 84.4* 85.9* 78.8 79.0 78.6 

Sideline noise (EPNL) 91.9* 91.9* 93.0 93.1 93.0 

DOC [US$/nm] - - 7.183β 7.126β 7.194β 

1,2FL350 3FL400 4FL410 / + TOW of 38,790 kg / † MTOW, 200 nm alternate + 45 min loiter 

* Reference (50) / β fuel at US$ 2.387/gallon 
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4. Estimation and prediction with convolutional neural networks 

4.1 Overview 

There are various types of neural networks, which are used for diverse applications and 

data types. For example, recurrent neural networks are frequently utilized for natural 

language processing and speech recognition whereas multilayer perceptron networks are 

frequently utilized for parameter identification (47). 

Multilayer-perceptron and other ANNs operating on raw images do not scale well as the 

image size increases, lacking accuracy (52). For example, consider a color image with 

64×64 pixels with a red, green, and blue channel. This results in a total of 64×64×3 inputs 

to that network, which apparently can be handled. However, if 256×256-pixel images are 

in place, the total number of inputs and weights would jump to 196,608. For an ANN with 

multiple hidden layers with a varying number of nodes per layer, these parameters can 

demand unacceptable training times and unsatisfactory accuracy (52).  

Convolutional neural networks (ConvNets or CNNs) are more often utilized for 

classification and computer vision tasks (53). CNN represents the local features by 

convolution kernels to solve the problem of high-dimension data.  

Manual feature extraction methods to identify items in images demands considerable 

computational power. By using CNNs a more scalable approach to image classification 

and object recognition tasks is possible. The CNN methodology  is based on utilization 

of concepts and ideas from linear algebra, specifically matrix multiplication (convolution 

operation), to identify patterns. Besides finding patterns in images to recognize objects, 

faces, and scenes, CNNs can also be quite effective for classifying signal data such as 

audio records, HUMS measuraments, and other time series. One important application of 

CNN is on autonomous vehicles, which require intensive processing for object 

recognition. 

CNNs embody multilayer perceptrons neural networks ins their structure (47). Multilayer 

perceptrons usually are fully connected networks, that is, neurons placed in one layer are 

connected to all other neurons in both the preceding and the following layer. CNNs have 

three main types of layers (54): 

• Convolutional layer 

• Pooling layer 

• The fully connected layer 

The convolutional layer is the first layer of a convolutional network. Convolutional layers 

can be followed by additional convolutional layers, but a fully connected layer must be 

the last one. With each layer, the CNN increases in its complexity, identifying greater 

portions of the image. Earlier layers focus on simple features, such as colors and edges. 

As the image data progresses through the layers of the CNN, it starts to recognize larger 

elements or shapes of the object until it finally identifies the intended object. 
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Convolutional layer characteristics 

The convolutional layer is the main part of a CNN. It requires a few components, which 

are input data, a filter, and a feature map. However, the convolutional layers are where 

high-demanding computational processing takes place.  

Convolution is a mathematical operation on two functions (f and g) that produces a third 

function (f*g) that expresses how the shape of one is modified by the other. In practice, 

the convolution theorem is used to design filters in the frequency domain. The 

convolution theorem states that the convolution in the time domain equals the 

multiplication in the frequency domain.  

To illustrate the application of a convolutional operation, consider an image sharpening. 

Taking four times the current pixel and subtracting the neighbors from it results in a 

sharpened image (Figure 52). 

Another example considers a color image where the input consists of a matrix of 3D 

pixels. This means that the input will have three dimensions, height, width, and depth, 

which correspond to RGB layers in an image. 

The feature capture of a CNN consists of a two-dimensional array where weights are 

stored. This represents only a portion of the image. The filter size (width and height) can 

be specified that also determines the size of the receptive field. In Figure 53, a 3x3 matrix 

was employed. The filter is then applied to an area of the image, and a convolutional 

operation is then carried out between the input pixels and the filter. This operation, a dot 

product, is then stored in an output array. This process is repeated until the entire image 

is processed. The final output from the series of dot products from the input and the filter 

is known as a feature map or kernel matrix  (54). 

 
Figure 52: Example of image sharpening 

 
Figure 53: Feature mapping of the color image example [Adapted from (54)] 
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As can be seen in the image in Figure 53, each output value in the feature map does not 

have to connect to each pixel value in the input image but it only needs to connect to the 

receptive field, the area of filter application. Since the output array does not need to map 

directly to each input value, convolutional (and pooling) layers are commonly referred to 

as partially connected layers.  

The weights in the feature detector remain fixed as it moves along the image, which is 

also known as parameter sharing. Parameters, like the weight values, are modified during 

the training of the network, which can be performed by backpropagation and optimization 

algorithms such as gradient descent ones. 

Three parameters affect the size of the output, and they must be set before training of a 

neural network starts (54) (55):  

• The number and size of filters affect the profundity of the output, so the number of 

feature maps is directly related to this parameter.  

• Zero-padding is usually used when the filters do not fit the input image. This sets all 

elements that fall outside of the input matrix to zero, producing a larger or equally sized 

output. It must be specified whether to use padding. 

• Stride is the distance or pixels that the kernel moves over the input matrix. While stride 

values of two or greater is rare, a larger stride yields a smaller output. 

• Output depth: This parameter controls the number of neurons in a convolutional 

layer, which is connected to the same region in the input layer (55). 

After each convolution operation, a CNN applies a Rectified Linear Unit (ReLU) 

transformation to the feature or constituent map, conferring non-linear characteristics to 

the model. The ReLU activation operation performs a nonlinear threshold operation, 

where any input value less than zero is set to zero. This operation is equivalent to 

𝑓(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

 (25) 

ReLU allows for faster and more effective training by mapping negative values to zero 

and keeping positive values active and only the activated features are carried forward into 

the next layer (56). 

As described in the preceding paragraphs, another convolution layer can follow the initial 

convolution layer. When this happens, the structure of the CNN can become hierarchical 

as the later layers can see the pixels within the receptive fields of prior layers.  As an 

example, it is required to determine whether an image contains a car or not (Figure 54). 

The usual approach is to consider the car as a sum of parts. It is comprised of an engine, 

transmission, wheels, doors, instrumentation et cetera. Each part of the car makes up a 

lower-level pattern in the neural net, and the combination of its parts represents a higher-

level pattern. 
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Figure 54: Hierarchy within the CNN [Adapted from (54)] 

Ultimately, the convolutional layer converts the image into numerical values, allowing 

the neural network to interpret and extract relevant patterns. 

Pooling Layer 

Pooling layers reduce the dimensionality of the problem, lowering the number of 

parameters present in the input data. Like the convolutional layer, the pooling operation 

applies a filter across the whole input, but here the filter does not have any weights. 

Instead, the kernel applies an aggregation function to the values within the receptive field, 

populating the output array. While a lot of information is lost in the pooling layer, it also 

has several benefits for CNN. They help to reduce complexity, improve efficiency, and 

limit the risk of overfitting. There are two common types of pooling in popular use: max 

and average. 

Fully connected layer 

Pixel data of the input image are not directly connected to the output layer in partially 

connected layers. However, in the fully connected layer, each node in the output layer 

connects directly to a node in the previous layer. 

This layer performs the task of classification based on the features extracted through the 

previous layers and their different filters. While convolutional and pooling layers tend to 

use ReLu functions, FC layers usually leverage a softmax activation function to classify 

inputs appropriately, producing a probability from 0 to 1. 
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Convolutional neural networks applications 

Convolutional neural networks power image recognition and computer vision tasks. 

Computer vision is a field of artificial intelligence (AI) that enables computers and 

systems to derive meaningful information from digital images, videos, and other visual 

inputs, and based on those inputs, it can act. This ability to provide recommendations 

distinguishes it from image recognition tasks. Some common applications of this 

computer vision today can be seen in: 

• Marketing: photo tagging in social media. 

• Maintenance: gear fault diagnosis. Monitoring and diagnosis are important means to 

detect and eliminate mechanical faults in real-time or to proceed with preventive 

maintenance (37). 

• Healthcare: thanks to machine learning in radiology diseases can be now easily 

diagnosticated. 

• E-commerce: Visual search has been incorporated into some e-commerce platforms 

with the introduction of methodic purchases and data-driven personalized advertising. 

• Automotive: While the age of driverless cars has not quite emerged, the underlying 

technology has started to make its way into automobiles, improving driver and 

passenger safety through features like lane line detection. 

4.2 Examples of CNN application for the prediction and forecasting of time-series  

CNN-RNN combination 

Time series forecasting is an important area of machine learning and in recent years has 

been the main topic of research in a wide range of sectors such as engineering, energy, 

finance, and health among others.  

This example presents a combination of a CNN with a recurrent neural network (RNN) 

to predict a function dependent on time-based known values for previous months. The 

application was developed by H. Sanchez (57). 

The CNN is tailored for feature extractions while an RNN has proved its ability to predict 

values in sequence-to-sequence series. At each time step, the CNN extracts the main 

features of the sequence while the RNN learns to predict the next value on the next time 

step (57). 

The size of the input of the sequence is lagged by n-months thus the RNN expects an 

input size of n-months cases to yield the prediction of the next month; one step ahead.  

This example used a sine-type distribution with decreasing amplitude over time. The 

training and the net parameters need further tuning. Fine-tuning is performed by using 

Bayesian optimization. The observed data was split into training and testing. 90% of the 

data is used for training and 10% for testing. It is useful to reserve a small portion of the 

data for validation purposes thus the convergence progress can be closely checked. In this 

example, the validation data has been ignored. 

To improve the convergence process, it is recommended to standardize the data or 

normalize the data. In this example the data is standardized. The data can be normalized 

by several normalization algorithms by using normalize the function of MATLAB® but 

the normalization parameters need to be recorded to further de-normalize or convert the 

data to its generic values. 
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Monitoring the convergence training process is always useful (Figure 55). By plotting 

various metrics during training, the user can learn how the training is progressing. For 

example, it is possible to determine if and how quickly the network accuracy is 

improving, and whether the network is starting to overfit the training data. 

 
Figure 55: Convergence log of the hybrid ANN for the prediction of time-series 

The time series and forecasted with the trained network values are compared in Figure 56 

and Figure 57. The simple correlation (Eq. 26) between the testing and the predicted value 

is also shown in Figure 56. 

𝑠𝑀𝐴𝑃𝐸 =
1

2

𝑚𝑒𝑎𝑛(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝑡𝑒𝑠𝑡)

𝑎𝑏𝑠(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) − 𝑎𝑏𝑠(𝑌𝑡𝑒𝑠𝑡)
 (26) 

 Figure 58 shows the correlation between predicted and observed data and contains. For 

an ideal prediction capability, the regression curve of the predicted sample should merge 

with the target line crossing the origin. 

 
Figure 56: Distribution selected for analysis and its part that was selected for 

forecasting 
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Figure 57: Predicted vs observed sequence for sinusoid-type time series 

 
Figure 58: Correlation between predicted and observed data 

Historic data concerning the West Texas Intermediate (WTI) price for crude oil is freely 

available by U.S. Energy Information Administration (58). The WTI Price evolution from 

January 1986 until April 2022 is shown in Figure 59. Utilizing the same methodology 

utilized in the previous example, which consists of five convolutional layers and a single 

fully connected one, the prediction capacity for the last batch of data is shown in Figure 

59 and Figure 60. In this case, the hybrid CNN is working as a surrogate model for the 

crude oil price over time. 
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Figure 59: oil data series and prediction capability of the CNN-RNN combination 

 
Figure 60: Close-up of the observed and predicted WTI price by the CNN-RNN 

combination 

Non-stationary time series 

Despite the good results with the two data sets shown before, these sets contain 

nonstationary data. Thus, the hybrid RNN does not work very well to proceed with 

forecasting. However, for other data sets such as stock data, it is recommended to 

transform the data stationary and then apply the method described before. 

The Auto-Regressive Integrated Moving-Average (ARIMA) model was developed by 

Box-Jenkins (59). This model has been successfully applied in several situations, with 

emphasis on the forecast of econometric time series. 
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The ARIMA model establishes the prediction of the future value of a variable with the 

use of a temporal correlation structure (autocorrelation). This model consists of 

estimating a variable from a linear function, through several historical observations, 

considering its random errors. 

The difference between exponential smoothing models and ARIMA is that the former is 

based on describing the trend and seasonality in the series, while the latter is based on 

autocorrelations present in the data. 

The structure of time series data presents a big challenge for researchers and users, 

considering that traditional regression approaches do not yield valid results. Uncorrelated 

residuals are a key assumption of many regression methods. Models that fail to account 

for autocorrelation will have correct parameter estimates, but incorrect standard errors. 

The identification steps involve fitting the autoregressive component (variable “p”), the 

moving average component of the ARIMA model (variable “q”), as well as any required 

differing to make the time series stationary or to remove seasonal effects (variable “d”). 

Together, these user-specified parameters are called the order of ARIMA.  

The formal specification of the model will be ARIMA (p,D,q), where 

• p — Nonseasonal autoregressive polynomial degree nonnegative integer 

• D — Degree of nonseasonal integration nonnegative integer 

• q — Nonseasonal moving average polynomial degree nonnegative integer 

The first step in model identification is to ensure the process is stationary. Stationarity 

can be checked with a Dickey-Fuller Test. In statistics, the Dickey-Fuller test tests the 

null hypothesis that a unit root is present in an autoregressive time series model. The 

alternative hypothesis is different depending on which version of the test is used but is 

usually stationarity or trend-stationarity (60). Any non-significant value under model 

assumptions suggests a non-stationarity. The process must be converted to a stationary 

process to proceed by differencing the time series using a lag in the variable and removing 

seasonality effects. 

After a developed model is properly considered to be stationary and adjusted such that 

there is no information in the residuals, a forecasting task can then take place. Forecasting 

assesses the performance of the model against concrete data. The usual approach now is 

to split the time series into two parts, utilizing the first part to fit the model and the second 

half to check performance. Usually, the utility of a specific model or the utility of several 

classes of models to fit actual data can be assessed by minimizing a value like a root mean 

square. 

To proceed with the forecast of WTI oil price using the data from Figure 59 the 

regARIMA MATLAB® command was initially employed (61). This creates a stationary 

regression model of the oil-price time series. If the errors have an autocorrelation 

structure, then it is possible to specify models for them. 

A seasonality parameter is required by the regARIMA command, and it exerts a great 

influence on the results. After the model is created, another step involves its rework by 

using the ARIMA errors of the previous step. This rework also encompasses the use of 

the distribution of the innovations to build the likelihood function. Finally, forecast 

responses of the regression model with ARIMA errors are performed. 
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Figure 31 shows a forecast with ARIMA data regularization that is compared to the last 

200 registers of the WTI oil price. This period, i. e., this part of the data set was never 

employed in the creation of the regression models. This result represents the best match 

obtained by adjusting the seasonality parameter. in Figure 32, the area of interest was 

augmented. The overall trend of the price evolution was satisfactorily captured, but the 

plunge seen in Figure 32, was in some way anticipated. 

 
Figure 61: Oil price forecast 

 
Figure 62: Oil price forecast in detail 
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4.3 Remained useful life of a turbofan engine 

The remaining useful component life (RUL) is given in units of time (e.g., hours or 

cycles); end-of-life can be subjectively determined as a function of operational thresholds 

that can be measured. These thresholds depend on user specifications to determine safe 

operational limits. 

Prognostics is currently at the core of systems health management. Reliably estimating 

remaining life holds the promise of considerable cost savings (for example by preventing 

unscheduled maintenance and by increasing equipment usage) and operational safety 

improvements. Remaining life estimates provide decision-makers with information that 

allows them to improve operational characteristics (like usage) which in turn may prolong 

the life of the component. It additionally allows companies to account for upcoming 

maintenance and set in motion a logistics process that supports a seamless transition from 

defective equipment to a fully operative one. Aircraft engines and structures, helicopter 

gearboxes, power plants, etc. are some of the typical examples of these types of 

equipment.  

There is a lack of run-to-failure data sets for prognostics based on data. In most cases, 

real-world data contain fault signatures but no or little data capture fault evolution until 

failure (62). However, progress has been recorded. Khan and Yairi (63) studied the 

utilization of deep learning tools, such as, convolutional neural networks (CNNs), and 

recurrent neural networks (RNNs) in prognosis and health management. 

Saxena et. al (62) describe how damage propagation can be modeled within the modules 

of aircraft gas turbine engines. They built response surfaces for all sensors by using a 

thermodynamical model for the engine as a function of variations of flow and efficiency 

of its components. An exponential rate of change for flow and efficiency loss was 

imposed for each data set, starting at a randomly chosen initial deterioration set point. 

The rate of change of the flow and efficiency denotes an otherwise unspecified fault with 

an increasingly worsening effect. The rates of alteration of the faults were constrained to 

an upper threshold but were otherwise chosen randomly.  Damage propagation was 

allowed to continue until a failure criterion was reached. A health index was defined as 

the minimum of several superimposed operational margins at any given time instant. The 

failure criterion is reached when the health index equals zero. The output of the model 

obtains the cycles of the measurements, typically available from aircraft jet engines. 

The prominent advantage of a deep learning approach is that there is no practical necessity 

for manual feature extraction or selection to use in a customized model to predict RUL. 

In addition, no prior knowledge is required of equipment health prognostics or signal 

processing to adequately develop a deep learning-based RUL prediction model. 

The remained part of this section shows how to predict the RUL of turbofan engines by 

using deep convolutional neural networks, based on an example made available by 

Mathworks, Inc (64) (65). This example utilizes the Turbofan Engine Degradation 

Simulation Data Set (C-MAPSS) (66). The data set was compressed into a single file that 

can be freely downloaded from the NASA Website.  It contains run-to-failure time-series 

data regarding four different sets (FD001, FD002, FD003, and FD004), corresponding to 

tests carried out under different combinations of operational conditions and fault modes. 

The present application uses only the FD002 data set, which is further divided into 

training and test groups. The training group contains simulated time-series data for 260 

engines.  
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Each engine contains 21 sensors whose values are recorded at a given instance in a 

continuous process. Therefore, the sequence of recorded data varies in length and 

corresponds to a full run-to-failure instance. The test group contains 259 partial series and 

corresponding values of the remaining useful life at the end of each sequence. 

The available data from NASA files present 26 columns of numbers, separated by spaces. 

Each row is a data record taken during a single operational cycle, and each column 

represents a different variable: 

• Column 1 — Unit number 

• Column 2 — Elapsed time 

• Columns 3–5 — Operational conditions 

• Columns 6–26 — Measurements of 21 sensors 

Figure 63 shows some information extracted from the FD002 data set, which contains a 

failure related to a degradation of the high-pressure compressor. Initially, a verification 

procedure concerning the variability of some data is carried out and if there are small 

changes over time this data is discarded (64). Here, it is properly processed and sorted the 

data in a sequence format, with the first dimension being representative of the number of 

selected features and the second dimension representing the length of the time sequence. 

A convolutional layer composes a set with a normalization layer followed by an activation 

one, this combination being tailored for feature extraction. The fully connected layers and 

regression layer are used at the last stage of the network to estimate the RUL value and 

provide the output figure. 

 
Figure 63: Some data of NASA’s Turbofan Engine Degradation Simulation Data Set 

The chosen CNN architecture applies a 1-D convolution along the time sequence 

direction only. Therefore, the order of features has no impact on the training, and only 

trends for each feature at a time are considered (64). 

The CNN consists of five consecutive sets of a convolution 1-d, batch normalization, and 

a ReLU layer, with increasing filter size and number of filters as the first two input 

arguments to the convolution layer followed by two fully connected layers with 100 

neurons each and a dropout layer with a dropout probability of 0.5. Since the network 

predicts the RUL of the turbofan engine, there is just a single output in the fully connected 

layer as the last layer of the network. Figure 64 provides a good overview of the network 

architecture. 
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Figure 64: CNN architecture 

The calculation of the root mean squared error (RMSE) across all time cycles of the test 

sequences provides rightful information to analyze how well the network performs on the 

test data. 

The capability of the network predictor to perform throughout the given sequence of data 

in the test engines can be inferred from the comparison shown in Figure 65. The 

degradation process is represented by a combination of straight lines. The predicted RUL 

against the true RUL of a best case prediction reveals a 12-cycle difference concerning 

the prediction by the CNN and the test data at the fianl stage of this analysis. In general, 

the agremeent with test data is very good according to Figure 65. However, the CNN 

prediction of RUL is lower along the some part of period analyzed. In addition, each time 

this example is run, different results are obtained (Figure 66). 

 
Figure 65: Best prediction case 

 
Figure 66: variability of RUL predictions for engine no. 33 
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5. Conclusions 

The Chapter addressed some relevant noise and vibration issues related to transport 

aircraft and rotorcraft. An example of an application for noise estimation of turbofan 

engine components showed excellent agreement with two other methods. This approach 

jointly with another for estimation of airframe noise was employed in an MDO framework 

for the optimal design of a 78-seat airliner. The flyover noise was posed as a constraint 

and was effectively reduced for the individuals in the Pareto front when compared to a 

reference airplane. 

From the CFD runs described in the present work, suggestions to lower the noise power 

level generated by main landing gear arrangements and sensors placed in front fuselages 

of transport aircraft are provided. 

The forecast of the crude oil price by the regularization of non-stationary time series was 

carried out and the results can be considered acceptable. 

A methodology to predict remained useful life of turbofan engines was described and 

applied to real data made available by NASA. The methodology utilizes convolutional 

neural networks and there is no need to manually extract features from data. 
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Abstract 

This chapter presents a compilation of the research work done by the authors and collaborators 

on the topics of vibration analysis and Health and Usage Monitoring Systems (HUMS) of 

dynamic components of helicopters, comprising: i) an introduction to helicopter vibration; ii) 

a discussion and details of vibration analysis techniques for helicopter rotors and dynamic 

components, from the point of view of the operational user and the technical maintenance of the 

helicopter; iii) a discussion and details on vibration-based Health and Usage Monitoring 

Systems (HUMS) philosophy in the predictive maintenance of helicopters, from the point of view 

of history and evolution of the market; architecture; benefits, disadvantages, limitations; 

certification challenges; and application perspectives; and iv) a discussion on vibration-based 

HUMS of dynamic components of helicopters, focused on results and discussions done during 

the Offset Program of Transfer of Technology in HUMS of the helicopter EC-725, a program 

involving AIRBUS HELICOPTERS, HELIBRAS, UNIFEI, and ITA. The latter includes, in 

particular: 1) some discussion and details of the M’ARMS system; 2) its evolution towards the 

MOD45 indicator; 3) a case study of electrical/signal errors in the vibration acquisition system 

(accelerometers, cables, etc) with a proposed error indicator; and 4) a finite element modeling 

of a typical coupling between two sections of a tail drive shaft. 

Keywords: helicopter rotor vibration; vibration analysis; HUMS – Health and Usage 

Monitoring Systems, helicopter dynamic components 
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1. Vibration analysis and HUMS in dynamic components: chapter outline 

and introduction to helicopter vibration 

This chapter concentrates on a discussion of vibration analysis techniques and the use of 

a framework of Health and Usage Monitoring Systems (HUMS) for helicopter dynamic 

components. 

Some helicopter vibration reduction techniques focused on balancing and tracking the 

helicopter rotors are discussed in a separate chapter, concentrated on model-based 

parameter identification for balancing and tracking a helicopter's main rotor using once-

per-revolution vibration data. 

1.1 Section content 

Subsection 1.2 presents an introduction to helicopter vibration. 

Section 2 presents a discussion and details of vibration analysis techniques for helicopter 

rotors and dynamic components, from the point of view of the operational user and the 

technical maintenance of the helicopter. 

Section 3 presents a discussion and details on vibration-based Health and Usage 

Monitoring Systems (HUMS) philosophy in the predictive maintenance of helicopters, 

from the point of view of history and evolution of the market; architecture; benefits, 

disadvantages, limitations; certification challenges; and application perspectives. 

Section 4 presents a discussion on vibration-based HUMS of dynamic components of 

helicopters, focused on results and discussions done during the Offset Program of 

Transfer of Technology in HUMS, a program involving AIRBUS HELICOPTERS, 

HELIBRAS, UNIFEI, and ITA. 

Section 5 presents some concluding remarks. 

1.2 Introduction to helicopter vibration 

This section is based on class notes materials for the courses “Foundations of Helicopter 

and Rotary Wing Engineering”, ITA [1], and “Flight Test Course - vibration theory”, 

PEV, DCTA (Gomes & Cruz, 2008). 

All helicopters shake due to rotary sources, such as the rotors, transmission gears, engines, 

and several other dynamic components. The main causes of the vibration can be 

understood by remembering some basic concepts about oscillatory movements. 

A body must satisfy two conditions to oscillate: it must be able to store potential energy 

(which means an elastic behavior) and it must be able to have kinetic energy (which 

means to have mass and velocity). Therefore, oscillation represents the continuous 

exchange of kinetic and potential energy. 

A motion that repeats itself after an equal interval of time T, called the period of the 

oscillation, is called periodic motion, and the reciprocal 𝑓 = 1
𝑇⁄  is known as the 

frequency. The simplest form of periodic motion is the harmonic motion, which can be 

obtained, for example, by the movement of a mass coupled to spring without the action 

of external forces, acting in a vacuum, as shown in Figure 1. 
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Figure 1: Free Vibration (Adapted from [2]) 

In this simplified system, the spring has negligible weight concerning the mass M and has 

a stiffness constant K. Disregarding the damping of the air, this mass-spring system is 

conservative and, therefore, the total energy of the system is constant and can be 

determined by the sum of kinetic energy Ec and potential energy Ep. 

When the mass M is displaced from the equilibrium position and then released, sinusoidal 

oscillations will occur around the equilibrium position of the system according to the 

equation 𝑧 = 𝐴 sin Ω𝑛𝑡, where Ωn is the natural frequency of the spring-mass system in 

rad/s (Ω = 2πf), A is the amplitude of motion and f is the frequency in Hz. Also, if the 

total energy of the system is constant, the energy equation can be applied between two 

instants of sinusoidal motion. Thus, if 1 is the static equilibrium position with maximum 

kinetic energy and 2 is the maximum mass displacement and, therefore, the maximum 

potential energy, we have, equating both terms, that: 

                     
1

2
𝐾𝐴2 =

1

2
𝑀𝑉𝑚á𝑥

2 =
1

2
𝑀(𝛺𝑛𝐴)2 ⇒ 𝛺𝑛 = √

𝐾

𝑀
                              (1) 

Equation (1) allows us to obtain the natural frequency of the system as a function of its 

stiffness and mass. However, helicopter vibrations originated from periodic external 

forces. The system presented in Figure 2 represents an example of harmonically excited 

vibration, where the upper end of the spring is connected to a base of an eccentric shaft 

that excites the system with an amplitude X and a frequency Ω. 
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Figure 2: Harmonically excited vibration for damped and undamped systems 

(Adapted from [2]) 

If the rotor speed of that axis is slow, the mass M follows the movement of the base. This 

means that the mass oscillates with the frequency forced by the eccentric, and both are in 

phase. If the rotor speed increases, the amplitude passes, in the case of an undamped 

system, to infinity at the natural frequency of the system. This is the so-called resonant 

frequency, where there is still a phase inversion. Continuing to increase the speed, the 

amplitude tends to zero as the excitation frequency approaches infinity, while the mass 

oscillates in phase opposition regarding oscillatory excitation force. 

Introducing viscous damping into the mass-spring system of Figure 2 considerably 

modifies the response. Its effect is basically to dissipate the energy of the system and, 

consequently, reduce the oscillation amplitude. This is the basic principle of a helicopter 

vibration damper. Some examples of vibration dampers are the landing gear dampers and 

the main rotor lead-lag dampers. Their main functions are to dissipate energy to avoid a 

catastrophic phenomenon known as ground resonance, an auto-excited instability that 

occurs when the frequency of the blade lead-lag regressive mode coalesces with a 

frequency of a fuselage mode on the ground. 

Other devices used by helicopter manufacturers to reduce the amplitude of oscillation are 

vibration isolators and vibration absorbers. Ref. [3] presents a comprehensive analysis of 

both kinds of vibration controls. Regarding the vibration absorbers, they consist of 

another mass-spring system attached to the original mass that needs to reduce its vibration 

amplitude. Therefore, they constitute a two-degree-of-freedom system as shown in Figure 

3. 
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Figure 3: Two-degree-of-freedom system (Adapted from [2]) 

This type of system has two normal vibration modes: the first mode corresponds to the 

main mass and the attached absorber mass movement in phase; while the second one 

consists of a movement of both masses in opposite phases. Each mode has its natural 

frequency. If there is no external harmonic force acting over the two-degree-of-freedom 

system, the resulting motion, after an initial excitation, will be the superposition of both 

normal modes of vibration. However, if there is an external harmonic force acting over 

the system, the resulting forced harmonic vibration frequency will be the same as the 

applied external force. 

A helicopter vibration absorber has k2 and m2 tuned to match the frequency of the external 

force to be absorbed, which will be the frequency bΩ, where b is the number of blades 

and Ω is the main rotor speed. 

As shown at point B in Figure 3, the attached absorber mass will vibrate at the same 

frequency bΩ but in the opposite phase of the external harmonic force. Consequently, the 

movement of the main mass m1 is reduced to zero. It should also be noted from Figure 3 

that: 

a) for the interval 0 < Ω < ΩA, m1 and m2 move in phase with the external harmonic force, 

once both amplitudes vibrations are positive. For frequencies close to 0, both movements 

of the bodies are slightly different, depending on the stiffness and mass parameters; 

however, for Ω ≈ ΩA, the maximum amplitudes of both masses tend to infinity. Therefore, 

ΩA corresponds to the natural frequency of the 1st normal mode of vibration related to 

the in-phase motion of the masses; 

b) for the interval ΩA < Ω < ΩC, m1, and m2 initially move in phase but in opposite phase 

with regarding the external harmonic force since both maximum amplitudes are negative. 

Increasing Ω, it will be observed that the bodies start moving in opposite phases from Ω 

≈ ΩB; and 

c) for the interval ΩC < Ω < ∞, m1 and m2 move symmetrically out of phase, so that m2 and 

m1 are, respectively, in-phase and in opposite phase with the external harmonic force. For 

Ω ≈ ΩC, the maximum amplitudes of both masses tend to infinity, and then ΩC 

corresponds to the natural frequency of the 2nd normal mode of vibration related to 

opposite phase motions of the masses. 
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There are several examples of helicopter vibration absorbers. Some of them, such as the 

cabin resonators and the main rotor vibrator absorber of the Squirrel AS350 helicopter 

(Figure 4) utilize a physical spring so that it is tuned to one frequency and is effective 

only over a narrow band of frequencies. Considering the nominal rotor speed of 390 rpm, 

the bΩ frequency tuned is 19.5 Hz. Changing rotor speed, the effectiveness of this device 

is reduced significantly. 

 
 

(a) Vibrator absorber (b) Cabin Resonator 

Figure 4: Vibration Absorbers of the Squirrel AS350  

[adapted from (EUROCOPTER, 2010)] 

Other helicopter vibration absorbers such as the centrifugal pendulums of the BK-177 

and the bifilar weights of the UH-60 “Black Hawk” (Figure 5) replace the physical spring 

with a centrifugal spring. So, using the centrifugal force, the main gain of those absorbers 

is that they are automatically tuned to bΩ, considering any rotor speed. 

 
 

(a) Kawasaki / Eurocopter BK117 

centrifugal pendulums [adapted 

from (JGSDF Camp Akeno 

Airshow, 2002)] 

(b) Black Hawk bifilar absorber (Photo and 

editing: B. Mattos) 

Figure 5: Examples of helicopter vibration absorbers 

Vibration absorbers need to be tuned to match the frequency bΩ of the helicopter's main 

rotor. It is important to pay attention that lower frequency values mean higher vibration 

amplitudes, so the main rotor is the main source of helicopter vibration, and much lower 

frequencies vibration must be reduced. 
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Considering that the external harmonic forces acting on the blade are cyclic, their effects 

can be decomposed into the sum of sines and cosines harmonically related, in other words, 

their forces correspond to frequencies multiples of the rotor speed (1Ω, 2Ω, 3Ω, and 

successively), in a Fourier series. For the case of the helicopter main rotor, the forced 

vibrations on the blades are in frequencies multiples of the fundamental frequency Ω 

(mainly 1Ω). This characteristic requires special attention during blade design, once each 

blade has many flapping, lead-lag, and torsion elastic modes, as shown in Figure 6. The 

position of those natural frequencies concerning the harmonic excitation determines the 

increase or attenuation of the forces applied to the main rotor blades. 

 
Figure 6: Main Blade Elastic Modes (Adapted from [1]) 

Furthermore, it should be observed that the aeroelastic coupling of the rotor blades can 

also cause some instabilities, such as flap/lead-lag instability, pitch/lead-lag instability, 

flutter, and stall flutter at high blade angles of attack, which also provokes the increased 

of the vibration levels and the blade loads. 

For that reason, the natural frequencies of elastic modes must be separated from each 

other and also from the harmonic excitation frequencies of the blades at the nominal rotor 

speed. 

This is a design criterion, therefore, if necessary, the manufacturer adds mass or changes 

the stiffness of the blades to move their natural frequencies away from the excitation 

harmonics, at least, according to [4], up to typically 4Ω or 5Ω for single-rotor helicopters 

and up to 6Ω or 8Ω for tandem helicopters. 

Such efforts acting on the blades are transmitted to the main rotor hub that works like a 

filter exciting the fuselage vertically and horizontally at frequencies multiples of the 

number of the blades, nbΩ, where n is an integer number. 

Ref. [5] presents such mathematical deduction for both vertical and horizontal forces 

transmitted to the fuselage. However, some simplified models can also be used to explain 

how the main rotor hub acts example for the 1Ω and 2Ω flap excitation as shown in Figure 

7. 
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(a) 1st Harmonic Excitation – Flap 1Ω (b) 2nd Harmonic Excitation – Flap 2Ω 

Figure 7: Graphical Representation of Flap Excitation (Adapted from [2]) 

For the 1Ω in flapping, there is a complete oscillation in one rotation of the rotor (Figure 

7a). it means there is a maximum vertical displacement at ψP = 180o, a minimum at ψP = 

0o, and zeros at ψP = 90o and 270o, where ψP is the blade azimuth position, counted from 

the position furthest from the flight direction (FD indicated in Figure 7). 

As shown in Figure 7a, the two-blade rotor will have one of its blades on a crest and the 

other one, diametrically opposite, in a depression. 

Therefore, the main rotor hub displacement will be zero, in the vertical direction, as long 

as the trajectory of the blades is the same. For that reason, a two-blade rotor doesn’t 

transmit vertical vibration at 1Ω frequency to the fuselage, if its blades are correctly 

tracked. 

For the 2Ω in flapping motion, there are two complete oscillations in one rotation of the 

rotor (Figure 7b). This means that there are maximum vertical displacements at ψP = 0o 

and 180o, minimum at ψP = 90o and 270o, and zeros at ψP = 45o, 135o, 225o, and 315o. 

One can conclude that the two-blade rotor will always present vertical displacements that 

add up. 

Therefore, a two-blade rotor will transmit vertical vibration at 2Ω frequency to the 

fuselage, even if the rotor is perfectly tracked. That is a non-correctable vibration, thus 

the structure will be excited along the vertical axis at frequencies nbΩ (mainly bΩ). 

Another important helicopter vibration feature is related to the horizontal vibration, which 

is similar to the movement of a sieve. In this case, the structure will be excited along the 

longitudinal and lateral axes with frequencies (n + 1)Ω and (n - 1)Ω, provided that (n + 

1) and (n – 1) are multiples of the number of the blades. 

Thus, for a two-blade rotor (b = 2), a horizontal force at 3Ω frequency (n = 3) will transmit 

forces at 2Ω (m = 1) and 4Ω (m = 2) to the fuselage. 

For a three-blade rotor (b = 3), m will not be an integer and, therefore, a horizontal force 

at 3Ω frequency will not transmit forces to the fuselage. 

Table 1 presents the oscillatory forces that are transmitted to the fuselage as well their 

harmonic excitation frequencies as a function of the number of blades. 
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Table 1: Main Rotor Vibration Transmitted to the Fuselage 

 HARMONIC 

EXCITATION 

FREQUENCIES ON THE 

BLADES 

MAIN ROTOR VIBRATION 

FREQUENCIES TRANSMITTED 

TO THE FUSELAGE 

 b = 2 b = 3 b = 4 

VERTICAL 

EFFORTS AT FLAP 

HINGE 

1Ω - - - 

2Ω 2Ω - - 

3Ω - 3Ω - 

4Ω 4Ω - 4Ω 

5Ω - - - 

HORIZONTAL 

EFFORTS AT 

LEAD-LAG HINGE 

1Ω 2Ω - - 

2Ω - 3Ω - 

3Ω 2Ω and 4Ω - 4Ω 

4Ω - 3Ω - 

5Ω 4Ω and 6Ω 6Ω 4Ω 

This table is only valid if the rotor blades are at the same trajectory and perfectly balanced. 

Otherwise, vibration amplitudes at frequencies of 1Ω, 2Ω, and 3Ω, successively, will 

appear in the fuselage. That vibration can be reduced utilizing balancing and tracking of 

the main rotor. This table answers the question about absorbers tuning to match the 

frequency bΩ. While frequencies different from nbΩ are correctable by balancing and 

tracking, multiple frequencies of the number of blades are uncorrectable. For that reason, 

those frequencies, and especially bΩ, are the focus of helicopter manufacturers to reduce 

the vibration level in the fuselage. 

Indeed, the vibration at a particular point of the helicopter depends on the fuselage's 

response to the efforts transmitted by the main rotor hub at frequencies multiple of the 

number of blades. Many helicopter manufacturers and research centers made use of 

software to obtain modal shapes and their respective frequencies to calculate the fuselage 

response. Some of them have already been published, such as the NASTRAN (NASA 

Structural Analysis). An example is shown in Figure 8 for the AS 330. 

 
Figure 8: Typical AS 330 dynamic response, longitudinally excited by the rotor hub 

(4Ω = 17,4 Hz) (Adapted from [2]) 
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This sort of analysis allows designing the structure in such a way that the nodal points 

(zero amplitude vibration points) are positioned along the fuselage where it’s desirable to 

have the lowest vibration level. This can be done utilizing mass and rigidity adjustments, 

as well as using vibration absorbers as previously discussed. 

Unfortunately, such fuselage regions can change a lot due to different loadings and 

determined flight conditions. For that reason, flight tests under certain specified 

conditions are required to confirm the accuracy of the computer model and to certify the 

helicopter according to paragraph 251 (Vibration) of 14 CFR Part 27 [6] and Part 29 [7], 

which requires that the helicopter not to be subjected to excessive vibration in all 

approved flight envelope. 

2. Vibration analysis techniques for helicopter rotors and dynamic 

components 

This section is based on the article of Jorge & Torres Filho [8], first presented at “XI 

Simpósio de Segurança de Aviação da MB”, SIPAERM, 1989, Rio de Janeiro, RJ, Brazil. 

2.1 Vibration in dynamic components: causes and effects  

The study of the causes and effects of vibrations in dynamic components has become a 

continuous task for manufacturers of aircraft, helicopters, engines, transmission gears, 

and dynamic components in general, to implement techniques for minimizing the effects 

of these vibrations, either by suppression, absorption, reduction, isolation, or 

active/passive control of vibrations, or a combination of these techniques. As a result of 

this study, several maintenance techniques have been developed, to be employed by the 

aircraft user, which can be divided into two groups: reduction of the vibration levels and 

analysis of vibrations. 

The vibration reduction techniques available for helicopter users are concentrated, in the 

first step, in the correction of the trajectory traveled by the blade tips (adjustment of the 

blade “track”) of the main and tail rotors, and/or in the correction of any imbalance present 

in these rotors, as well as any imbalance present in some specific dynamic components 

of the aircraft, such as gearboxes, main and tail rotor drive shafts, oil cooler fans, etc. 

In a subsequent step, the user should concentrate his efforts on the vibration analysis, 

which consists in obtaining the aircraft vibration signature, i.e., the survey of the values 

of vibration amplitude versus frequency, carried out in pre-established locations and flight 

conditions, utilizing accelerometers and analyzers that directly respond the frequency 

domain. The records of vibration signatures, duly filed, will form a vibration database of 

each model aircraft, which will be used as a starting point for the assessment of the 

vibration levels of a particular aircraft at a certain time of its useful life, allowing the 

detection, location, and identification of problems or defects, even when they are still 

incipient. Thus, vibration analysis would become an important predictive maintenance 

tool, to monitor the wear and fatigue of components, to obtain a reduction in maintenance 

costs. 

The statement of the problem, at the user level, in these two steps, is detailed below. In 

addition to vibration reduction and analysis techniques, some details of the equipment 

used for these purposes are described, as well as some prospects for the future. 
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2.2 Objectives of the vibration Reduction  

The vibration reduction has the objectives: 

a) Reduce the probability of failures in structural components during their useful life, which 

considers a certain magnitude of cyclic loads, acting on them. Because there is a direct 

relationship between the vibration level of the structure and the cyclic loads acting, a high 

level of vibration shows that the structural components of the helicopter are being 

subjected to efforts beyond its design envelope and, consequently, present a high 

probability of in-service fatigue failures; 

b) Minimize the effects of tiredness and fatigue on the crew. Prolonged and repeated 

exposure to vibrations of different frequencies, amplitudes, and directions can cause 

various types of aggressions that essentially consist of headaches, tinnitus, general 

malaise, feeling of drowsiness, general weakness, irritability, a reduction in willingness 

to work, concentration deficit, slower reflexes, a psychic depression as well as fatigue of 

the eyes and ears. These disturbances, depending on their intensity and persistence, can 

decisively contribute to helicopter accidents. 

From a mechanical point of view, the human body is a complex structure with viscoelastic 

tissue supplemented by bone tissue. The human body can be considered as a system 

composed of masses, springs, and dampers. Thus, each region or organ of the body will 

have a resonant frequency, at which that region or organ will shift or deform more than 

the other parts of the body, being, therefore, more sensitive to external or excitatory 

vibrations at that frequency. The resonant frequencies of the human body vary in the 

following ranges: 

• 4 to 8 Hz - chest (internal) and abdomen 

• 11 to 15 Hz - spine and joints 

• 11 to 25 Hz – skull 

• 40 to 60 Hz - rib cage (rib and muscles) 

Frequencies between 15 and 30 Hz cause a reduction in visual acuity when the 

crewmember's gaze is fixed on an immobile object at infinity. This reduction is even more 

pronounced if the object is fixed but close to the pilot, such as an indicator on the 

instrument panel. 

On the other hand, vibrations transmitted to the pilot through his feet (by the pedals) and 

the seat, at frequencies between 8 and 15 Hz, combined with the vices of position or 

posture that the pilot assumes to control the aircraft, can bring spinal trauma, such as 

injuries to intervertebral discs or herniated discs, for example. 

By way of illustration, helicopter main rotors typically rotate between 3 and 7 Hz, 

depending on the aircraft, and the main vibrations perceived in the structure vary between 

3 and 22 Hz, while tail rotors and other accessories rotate at higher frequencies. 

c) Improved weapon firing accuracy. Limitations in the use of weaponry can also occur, as 

the vibrations may make the helicopter an inefficient weapons platform, both from the 

point of view of directional stability of the machine guns and rockets, as well as from the 

fact that vibrations in the auxiliary weapons equipment, such as the gun shooting sights, 

or the guided missile tracking sights can make their use impractical; and 

d) Reduce breakdowns in helicopter avionics and electromechanical items. Such 

breakdowns are caused by friction between internal components or by their fatigue. As a 

rule of thumb, an estimate of 50% of helicopter breakdowns may be due to problems 

related to fuselage vibrations. 
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2.3 Causes of vibration in helicopter rotors and other dynamic components 

The most common causes for the occurrence of vibration can be categorized into two 

groups, depending on the possibility of the operator acting to eliminate or minimize the 

efforts that caused the vibration: 

a) Unavoidable causes: 

- the variable aerodynamic forces resulting from the cyclic movement of the 

blades, necessary to allow translational flight. It is found that such forces 

predominantly induce vibrations at the multiple frequencies of the aircraft's main 

rotor rotation times the number of blades, that is, for a 4-blade helicopter with a 

main rotor rotation speed of 340 RPM (5.7 Hz), the cyclical variation of the pitch 

of this rotor blades will cause efforts that will induce vibrations in the frequencies 

of 22.8 Hz, 45.6 Hz, 91.2 Hz, etc., in the aircraft. These efforts increase with the 

aircraft's translational speed; 

- centrifugal forces resulting from the variation in the position of the CG of the 

rotor set, resulting from the flapping motion of the blades, are necessary to 

maintain translational flight. The resulting vibration occurs in the plane of the 

rotor, at the rotation frequency of the main rotor; and 

- aerodynamic forces arise from the airflow from the rotors, acting on the 

helicopter fuselage, or from turbulence and gusts on the aircraft. 

b) Avoidable causes 

- unbalance of rotating parts and rotors: unbalance always exists, to a greater 

or lesser degree, in any set or rotating part and is characterized by vibration 

that occurs once per rotation as shown in Figure 9. 

 
Figure 9: Unbalance of rotating parts and rotors (Adapted from [8]) 

Imbalance occurs when the center of mass of the rotating body is different from, or farther 

from, the center of rotation of that body. If the center of mass and the center of rotation 

are equal, the system is said to be balanced. As the center of rotation cannot be moved, 

the solution is to move the center of mass, adding weights in opposition to the inertia 

force produced by the imbalance, which is of the form given by Equation (2): 

F = M. r. W2                (2) 

where: 

 F = Force produced by unbalance 

 M = Mass of the set 

 r = Radius (radial position of the center of mass) 

 W = Angular Velocity 
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Vibration at the frequency of once per revolution is not always due to unbalance but could 

be indicative of another problem (such as mechanical backlash). The characteristics of 

unbalance are: 

• the vibration occurs at the frequency of once per revolution; 

• the phase is stable. For example, if we are trying to balance a tail rotor that exceeds 

established vibration limits and the phase indication is not stable, this could be an 

indication of mechanical clearances rather than unbalance; and 

• the amplitude of vibration increases with increasing rotational speed. 

I. Misalignments of couplings and bearings 

Vibration in an axis due to misalignment is usually intense at a frequency of twice the 

rotational speed, and the highest levels are in the longitudinal direction of that axis. 

Misalignment can be of two types: 

1. Pre-stress in a bent shaft or improperly bedded bearing; and 

2. Deviation of axis centerlines. 

Flexible couplings increase the ability to tolerate misalignment, however, they are not the 

solution to more serious alignment problems. 

The longitudinal vibration phase measured at one end of a bi-supported shaft will be 180 

degrees out of phase with that measured at the other end of that shaft, provided that the 

shaft is operating below its natural frequency, as shown in Figure 10. 

 
Figure 10: Misalignment of a shaft (Adapted from [8]) 

This relationship can be used to differentiate misalignment from unbalance, which 

produces in-phase longitudinal vibration at both ends of the shaft. 

This test cannot be used in vertical or lateral directions, as the phase of unbalance varies 

with its type. It is interesting to note that: 

a) Machine dynamics affect phase readings, so the phase difference of vibration in 

the vertical direction may not be exactly 180 degrees, but may vary between 150 

and 200 degrees; and 

b) The orientation of the transducers that will capture the vibration is important. 

These transducers must be placed in the same direction, at both ends of the shaft. 

If this is not possible, they can be placed pointing one to each side, remembering 

that now the phase difference between them will be 0 degrees. 
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I. Worn, eccentric, or damaged gears. 

One of the frequencies associated with gear problems is the so-called "gear mesh", which 

is equal to the number of teeth times the speed of rotation of the gear. High vibration rates 

at the gear mesh frequency are common and therefore must be compared with average 

values taken as a reference to detect the existence of a possible problem. Figure 11 shows 

a typical spectrum of gear mesh. 

 
Figure 11: Gearmesh typical spectrum (Adapted from [8]) 

Sidebands around the gear mesh frequency are usually caused by small eccentricities or 

backlash in the gears. High levels of vibration at the rotation speeds of the sidebands are 

a good indicator that there is a problem with the gear. Identifying problems in gears, and 

examining vibration spectra is a difficult task, as it depends on the resolution of the 

analyzing equipment used, therefore, this problem identification technique must be used 

in conjunction with oil analysis, swarf detectors, and monitoring of the temperature of the 

gear oil. 

II. Looseness in the fixing of components, or mechanical clearances. 

Mechanical clearances almost always result in a large number of harmonics in the 

vibration spectrum. The harmonics (1, 2, 3, etc times the fundamental rotational speed) 

that characterize the backlash are the result of impulses and truncation (limitation) of the 

component's response. Figure 12 shows the typical vibration caused by a backlash, both 

in the time domain (Amplitude versus Time) and the spectrum in the frequency domain 

(Amplitude versus Frequency). 

 
Figure 12: Mechanical backlash vibration (Adapted from [8]) 
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The truncation of the top of the sine wave seen in the time domain is what causes 

harmonics to appear in the vibration spectrum. 

Warped shafts present a situation where the backlash does not result in many harmonics 

because the truncation is dampened by the warping and the resulting vibration is 

essentially one time per revolution. 

III. Other causes such as: 

1. defective shock absorbers; 

2. damaged housing bearings; 

3. little lubrication in rotating elements; and 

4. displacement of panels. 

Balancing dynamic components 

The procedures may vary according to the aircraft involved and are provided for in the 

maintenance manuals for each system, set, or accessory of interest. Thus, for a particular 

aircraft, the manufacturer may have considered it important to perform the task of 

balancing the main gearbox oil cooling system fan shaft, while for another aircraft, the 

balancing of the transmission shaft for the tail rotor may have been considered more 

important. 

It is important to keep in mind that not all shaft problems are due to unbalance. So, if, for 

example, we add balancing masses and the vibration level does not drop, the shaft may 

be misaligned or warped, and adding mass will not correct this problem, putting even 

more stress on the bearings on that shaft. The best solution will be to correct this 

misalignment, and even replace the shaft, if appropriate. 

The clearance in certain components of the aircraft can change the rigidity of the structure, 

bringing the frequencies of the dynamic loads acting on the structure closer to the natural 

frequencies of the fuselage. As an example of this situation, one can verify that, in the 

case of the WG-13 Lynx helicopter, the excessive clearance of the upper mast bearing in 

its seat in the main gearbox causes an increase in the amplitude of the vibration at the 

fundamental frequency of the main rotor. 

2.4 Vibration analysis in dynamic components of helicopters 

Vibration analysis objectives 

1. Detect defects in mechanical components (slacks, wear of bearings, gears, misalignments, 

lack of lubrication) before catastrophic damage to the assembly occurs; 

2. Detect structural problems in the aircraft (cracks, loosening of screws and rivets) before 

catastrophic failures occur; 

3. Assist in the diagnosis of breakdowns in mechanical components, indicating the 

subcomponents of abnormal behavior; 

4. Allow maximum utilization of components subject to wear and fatigue, removing them 

for overhaul only when there is evidence of failure (predictive maintenance), rather than 

at scheduled time intervals (preventive maintenance). 

5. Plan repairs or replacement of components, consequently increasing the quality of repairs, 

reducing operating costs, and allowing an ordering, in time, of the needs for replacement 

parts. 
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Theoretical foundations of vibration analysis 

It can be shown that a periodic motion can be represented by a summation of sinusoidal 

functions, which in turn, represented in the form Amplitude X Frequency, constitute the 

frequency spectrum of that movement. Figure 13 illustrates a periodic motion, plotted in 

the time domain and the frequency domain. 

 
Figure 13: Periodic Motion (time domain and frequency domain) (Adapted from [8]) 

One must note that forced vibrations occur at the frequency of the external forces causing 

them, and consequently, a large amplitude of vibration at a certain frequency of the 

spectrum can be related to the possible causing force. Therefore, the tracking or 

monitoring of the frequency spectrum of components allows the detection of the 

beginning of anomalies in components and the determination of their origin. 

In the case of helicopters, some manufacturers provide a frequency order sheet that allows 

locating the possible cause of any discrepancy in the frequency spectrum, obtained by 

sensing specific points on the helicopter's fuselage. 

The transmission of vibrations along the structure of the aircraft is a function of the 

distribution of mass and stiffness along with the structure. Vibration spectra different than 

expected or high amplitudes at a certain frequency without an apparent reason can mean 

changes in structure characteristics, such as loose rivets and screws, cracks, etc. 
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A practical example of vibration analysis for a helicopter 

Figure 14 shows a vibration signature card, obtained with the "Scientific Atlanta model 

2521" analyzer for an SH3-A helicopter, where the vibration amplitude at 8099 BPM is 

very high. 

 
Figure 14: Vibration signature of a helicopter on the ground, with a problem at 8099 

rpm (Adapted from [8]) 

The research of possible causes was done with the help of the "H-3 Troubleshooting 

Chart". We had, among others: "Generator Adapter broken/deteriorated". 

After some research, it was found that the number 2 generator adapter was cracked, a 

problem that had not yet been discovered during normal aircraft maintenance. After 

replacing this adapter, the spectrum was as shown in Figure 15, where one can see that 

the vibration at 8099 RPM was drastically reduced. As it is a high frequency for the 

sensitivity of the human body, the problem was only detected with the help of the 

analyzer, not being felt by the crew when in flight. 

 
Figure 15: Vibration signature of the helicopter, after changing the generator 

adaptor (Adapted from [8]) 
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Outline of a vibration analysis program for a helicopter fleet 

a) The program consists of all aircraft having their vibration signatures registered and 

archived for the formation of a vibration database, to have data to compare the vibration 

signature of an aircraft at a certain time of its useful life (for example aircraft with 500 

hours flown; aircraft after overhaul; aircraft after SDLM (Standard depot-level 

maintenance); aircraft after major structural repair or after an accident, etc) with: 

- the vibration average of the different aircraft of the same model, to verify how this aircraft 

behaves concerning all the others; 

- the same aircraft at a previous time, to investigate the possible degradation of the 

vibration state of the aircraft with use. 

b) Aircraft vibration signature records must be obtained: 

- only after having been eliminated, or minimized, as far as possible, avoidable vibrations 

once-per-revolution of the main and tail rotors, by the use of vibration reduction 

techniques; 

- for the flight conditions foreseen for the aircraft, trying to keep the flight parameters as 

constant as possible; 

- with the accelerometers fixed in the positions provided for in the aircraft manuals; and 

- usually at pre-established periods or after major maintenance inspections, overhauls, 

major structural repairs, accidents, etc. 

c) After obtaining the cards with the aircraft vibration signature, a data reduction is 

performed, which consists in obtaining average values of vibration amplitudes, to be used 

as a source of future comparison. These values are calculated using statistical sampling 

criteria for each type or model of aircraft, for each flight condition, for each of the 

frequencies, predicted to be the most significant in terms of vibration problems in the 

aircraft, and for each of the directions of interest (vertical, lateral, and longitudinal). 

For each flight of an aircraft of a particular model, each vibration amplitude value will be 

compared with the average value existing in the corresponding table, and the evaluation 

of the results will be made by pre-established criteria, reaching conclusions about the 

maintenance actions that must be undertaken or not. 

Thus, if the vibration amplitude value, at a particular frequency, is considered: 

- Good, it means that there is no action to be undertaken; 

- Regular, means that the vibration level at that frequency is already in the "Marginal" 

range, and some maintenance must be programmed (in any equipment which could 

be somehow related to this vibration frequency) as soon as possible, and greater 

attention must be paid to secondary indications (as, for example, visual inspection of 

the equipment involved, analysis of lubricating oil or hydraulic fluid, when 

applicable, to try to detect particles or debris, etc); and 

- High, means that, before the next flight of the aircraft, maintenance troubleshooting 

must be carried out, according to the appropriate manual for each aircraft. 

d) As the vibration of the aircraft is an eminently random phenomenon, one must 

redouble the attention when finding a vibration value, only, in "High", because this 

value can just be the result of a single event of turbulence that was registered by the 

accelerometer, not being, therefore, a vibration of the aircraft itself.  
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The following guidelines should be followed, as far as possible, to have more solidly 

based conclusions: 

- if the vibration is "High" at a certain frequency in a given flight condition, check if it is 

also "High" or "Marginal" at the same frequency in other flight conditions; if it is, the 

need for troubleshooting is consolidated; if not, it could be a problem of turbulence or any 

other effect that has masked the measurement, generating the need for a better evaluation; 

- whenever there are doubts about the intensity of vibration obtained, or if the result 

obtained indicates the need for replacement or repair of a large component, a new 

vibration analysis should be carried out to collect more data and be able to obtain more 

accurate and reliable results; and 

- in parallel with the vibration analysis, one should seek to collect as much data as possible, 

as well as information that may be useful, such as the "life" in hours of the components 

involved, their last replacement, relevant maintenance information, information on 

contamination of lubricating oil, hydraulic fluid, etc., when applicable. 

e) The evaluation of the results can also be done, in parallel, by comparison with the 

maximum vibration foreseen in existing international standards on the subject. Thus, as 

long as there are no average results calculated for a certain model of aircraft, or these 

average results are not judged sufficiently reliable, or if another criterion for evaluating 

their vibrations is desired, we can adopt internationally disseminated evaluation criteria. 

These criteria can be qualitative, such as the "Cooper Harper" scale, or quantitative, such 

as, for example, those described in the following standards: 

- MIL-H-8501A, General Requirements for helicopter flying and ground handling 

qualities; 

- MIL-STDTD-810D, environmental test methods, and engineering guidelines; 

- AvP 970, Design Requirements for Aircraft for the RAF and RN, volume 3: rotorcraft 

design requirements; and 

- DEF STAN 00-970, volume 2, chapter 501, vibration and internal noise. 

Some remarks on vibration analysis in dynamic components of helicopters 

The problem of vibrations in helicopters is considerably more complex than what exists 

in airplanes, as the helicopter experiences cyclic a variation of aerodynamic loads that 

cause strong vibrations in the structure, and which currently can only be mitigated by the 

use of heavy vibration absorbers, insulators, dampers along the fuselage or dynamic 

decoupling between rotor and fuselage (and also some active systems, currently in the 

prototype phase or with limited application). 

However, until a type of aircraft is obtained that allows translational and hovering flights 

to be carried out more efficiently (such as V-22 Osprey) this is one of the prices that one 

has to pay for the use of the helicopter in his entire flight envelope, which is unique. 

The existing vibrations in the fuselage of helicopters entail a higher maintenance cost, 

reduce crew performance, and may even compromise flight safety by the possibility of 

causing fatigue failures in structural components. It remains for operators to know the 

causes of the phenomenon and, using existing equipment, reduce the vibration levels of 

their helicopters to the lowest possible value. Vibration analysis techniques, however, 

appear as a possible way out of the problems of high maintenance costs and reduced flight 

safety, as they may allow monitoring the operating conditions of all helicopter 

components, allowing the installation of reliable programs of predictive maintenance. 
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Future perspectives: the HUMS for dynamic components of helicopters 

The scope of the computer-based HUMS for dynamic components of helicopters typically 

may include vibration analysis, balancing, and rotor tracking equipment, equipped with 

computer-based expert systems (artificial intelligence). 

Such equipment must present the capacity to be operated by personnel without knowledge 

of vibrations, to provide the best possible correction of balance and track of rotors, and to 

analyze vibration spectra, indicating eventual problems and their causes. 

In terms of helicopter design, the equipment installed on board may include active 

systems to nullify vibrations considered "unavoidable". These systems act, through the 

blades, on the excitation forces, generating a new set of aerodynamic forces that, added 

to the existing one, cancels the structural vibrations at certain points of the helicopter. 

HUMS systems enable continuous monitoring of vibrations, allowing the almost 

unlimited use of components subject to wear and fatigue, with the assurance that any start 

of a defect will be detected, and the component will be replaced promptly before 

catastrophic failure occurs in the assembly. These HUMS systems may also help to reduce 

or even eliminate the need for periodic replacement or removal of components for 

overhaul. 

The available HUMS equipment can be coupled to onboard computers, as well as to 

central computer stations on the ground (transmitting their vibration information either 

online and/or offline), for monitoring and continuous analysis of the information 

collected. Thus, the comparison with established limits can be done on board or offline, 

by land-based computers, which can analyze the records obtained in flight. 

3 Vibration-based Health and Usage Monitoring Systems (HUMS) 

philosophy in the predictive maintenance of helicopters 

This section is based on the article of González & Donizeti [9], first presented at “XII 

SIGE - Simpósio de Aplicações Operacionais em Áreas de Defesa”, 2010, São José dos 

Campos, SP, Brazil. XII SIGE, 2010, and on excerpts from the master’s thesis [10], for 

the Post Graduate Program in Mechanical & Aeronautical Engineering at ITA, São José 

dos Campos, Brazil, 2012. 

3.1 Introduction 

HUMS (Health and Usage Monitoring Systems) were initially developed for large-size 

helicopters, such as the one used in offshore activity, being one of the types of condition 

monitoring systems, commonly called Health Monitoring Systems (HMS), that also 

consider helicopter employment parameters. Aligned to the philosophy of predictive 

maintenance, the HUMS actions propose to guarantee continued airworthiness and reduce 

operating costs through diagnostics forecasting (early diagnosis) and fault prognosis that 

increase reliability, from the treatment of data collected by algorithms dedicated to 

increasingly expanded functions and integrated into other subsystems. This collected data 

for the prediction of failures comes from vibration sensors, such as accelerometers, 

permanently installed in the fuselage and/or in dynamic components and/or in engines, 

with different vibration levels corresponding to various helicopter operating conditions. 

The research effort is also justified by the potential of HUMS to improve flight safety 

through their proposal to guarantee the replacement of components always before their 

failures. 
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This section aims to present an introduction to predictive maintenance for helicopters and 

a brief qualitative summary of these HUMS systems, segmented into history and 

evolution of the market; architecture; benefits, disadvantages, limitations; certification 

challenges; and application perspectives. 

The condition monitoring systems, or HMS, were initially developed to improve safety 

on commercial airplanes. Currently, in this sector, the analysis of information collected 

by some operating companies that belong to the quality assurance program of their flight 

operations – FOQA (Flight Operational Quality Assurance), from which potentially 

dangerous trends in operation and use of components can be identified, even allowing to 

point out the need for training. 

Efforts to develop a particular type of HMS, also considering usage parameters such as 

the count of operating cycles/time and flight data records (FDR) and exceeding 

recommended limits (torques and speeds), focused on rotary-wing aircraft, lead to the 

condition monitoring systems known as HUMS (Health and Usage Monitoring Systems). 

In this case, in addition to following the degradation of dynamic components (engines 

and power systems; landing gear; gearboxes and transmission shafts; structural cells) and 

to the rotor tuning (rotor balance and blade tracking), there are also the benefits of the 

registration of the performance and the indication of exceeding operational limits, which 

may significantly compromise the life expectancy of a component. For this purpose, the 

HUMS relies on a variety of sensors (mainly accelerometers for vibration data collection) 

by integrating a so-called data acquisition system, which can even include both voice and 

flight data recorder functions (CVR and FDR). 

This data can be processed simultaneously with the flight (on board the aircraft or at a 

ground station via data cards, provided they are properly interpreted, modify 

(anticipate/postpone) the required maintenance schedule as well as the crew's operational 

actions even before the next landing. 

Complete systems such as HUMS are expected to perform acquisition, analysis, 

communication, and storage of data from sensors permanently monitoring critical items 

and, therefore, are expected to be essential to flight safety, aiming to limit the risk of 

human and/or material damage to an acceptable level, as defined from Risk Assessment 

strategies. 

In this context, one must note many rotating and critical systems acting on helicopters, a 

peculiarity whose effects are classified as catastrophic events in the category of the 

severity of defects (aircraft and human lives). Thus, the vibration magnitude monitoring 

technology for the detection of associated faults arises from the demand for early 

diagnostics and effective predictions. And so the HUMS has expanded its acceptance as 

a strategy aligned with the effectiveness of the maintenance philosophy and, nowadays, 

has been used as a complementary method to ensure continued airworthiness, defined as 

guaranteeing the certified level of safety throughout the life cycle of operation of the 

product (aircraft and/or its systems), as stated in aeronautical regulations, such as, for 

example, the RBAC 01 from ANAC [11]. 
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3.2 An introduction to predictive maintenance for helicopters 

From the point of view of safety and continued airworthiness, aeronautical maintenance 

is known as an activity of inspection, review, repair, cleaning, conservation, or 

replacement of parts of an aircraft and its components [11]. 

Helicopter operating costs are extremely high mainly due to maintenance (24%) and 

insurance (29%) costs, given the relevant civil and legal liabilities, as well as the 

perceived levels of danger associated with society [12]. So, as for maintenance costs, they 

are around a quarter of the total cost of operation [13]. 

There are compelling prospects for reducing both the consolidation of predictive 

maintenance and its results in aviation safety and reliability. 

Each efficient maintenance program implies the adoption of elements of three types of 

philosophy that reflect the acquired technological capacity: corrective maintenance; 

preventive maintenance and predictive maintenance. 

Corrective Maintenance is the oldest and most common until the 1950s. It is a reactive 

fault management technique, expensive because it usually involves major repairs and 

inopportune times. It emerged when the performance data deficiency of the components 

involved was mastered. On the surface, the idea of being less costly is conveyed, but the 

costs increase due to production losses (loss of profits) and the resulting secondary 

damage, in addition to excessive time to remedy the problem; however, it is useful when 

sudden failure does not threaten production, such as a drinking fountain, for example. It 

applies to items classified in the manual as Condition Monitoring – replacement is 

recommended only in case of discrepancies. Also, the fail-safe design concept allows for 

corrective, effective, and timely maintenance to be carried out at more favorable times 

and conditions, such as in major overhauls, allowing much greater tolerances for cracks, 

a clear practical advantage in areas that are commonly difficult to access. 

Preventive Maintenance establishes the second generation. It is based on the predictability 

of operational behavior, acquired from experimental and statistical observations, and 

imposed by restrictions on certification specifications that are more suited to the risk 

peculiarities of the aeronautical activity. For the first time, these conditions were created 

for proactive maintenance and anticipating failures. In the general context, it includes all 

maintenance management programs triggered by time, such as operating hours and/or 

cycles of the items (counted by landing, engine shutdown, etc.), in which they are 

removed. There may be situations in which they are still usable at the moment of 

replacement, and there may be also some cases, undesirable ones, in which they may be 

replaced only after they fail. They are discarded via recording “scrap” or mutilation to 

avoid unintentional reapplication based on manufacturers' performance projections. It is 

a highly conservative position, with the disadvantage of wasting time and material by 

replacing an item with an appreciable useful life when one could act more frequently than 

necessary. For a machine that could still operate satisfactorily for a longer time, stopping 

it just for a check does not seem reasonable. It is worth reflecting that opening/closing 

increases the probability of introducing human factor errors. On the other hand, one 

should not wait for a breakdown to be corrected, and, therefore, the best solution is to 

intervene at the ideal moment. 
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Predictive Maintenance is based on measurements (which must be representative and 

consistent) of the actual conditions of the equipment on a continuous and periodic basis, 

according to the criticality level of the item. But some measurements are unfeasible, and 

imprecise, while some components have a low replacement cost, such as replacing the 

lubricating oil, for example. In this case, vibration is a vital parameter to define the 

dynamic conditions of rotating machines. The Predictive Maintenance Philosophy was 

first born in the analysis of lubricating oil implemented by American Naval Aviation in 

the 1950s. From there it spread, establishing itself as the third generation from the 1960s 

onwards, bringing new paradigms to the maintenance logistics function. 

The industry continues to evolve in technology, motivated by the relentless search for 

financial results associated with operational efficiency, which depends on safety and 

availability. In this sense, as it allows for a better understanding of the dynamics of the 

phenomena involved, mastery of manufacturing processes, as well as the ability to 

measure and process evidence of performance, this methodology for having the aircraft 

at hand has advanced (from the Latin “manutention”: the action of holding in the hand): 

the philosophy based on the condition. As techniques have become more sensitive, failure 

predictions give way to condition changes, keeping failure at bay. 

Predictive Maintenance is positioned as a philosophy that, unlike the reactive doctrine of 

Corrective Maintenance, is proactive to unpredictable failures to increase the reliability 

and safety of operation. Based on component condition and integrity, rather than time/life 

cycle, it identifies the tendency to future failure according to some deviation from the 

standard of thermal, acoustic, and vibratory quantities (mainly in helicopters), which 

reveal the known behavior of the system. One can mention the following issues: 

• oil spectrometric analysis;  

• ferrography (as part of Tribology - investigation of friction wear);  

• analysis of particles in hydraulic fluid; 

• thermographic analysis; 

• noise analysis; 

• and vibration analysis (the most important parameter in the case of helicopters).  

It is the philosophy most associated with computational resources – it is based on the 

trend graph (curve) and spectral analysis (if an increase beyond the tolerable is detected). 

The experience accumulated in the database facilitates the association of each frequency 

for the diagnosis of each type of failure. 

Trends of the fourth generation of these quality tools have recently emerged, 

characterized by the application of continuous monitoring systems associated with 

systems for supervising failures. These systems are equipped with signal analysis 

algorithms (Fast Fourier Transform – FFT, and/or Wavelet, and/or Hilbert), and/or 

artificial intelligence techniques (Artificial Neural Networks – ANN and/or neuro-fuzzy 

systems, among others), to provide the diagnosis and prognosis of incipient failures. In 

search for higher reliability, there is Reliability Centered Maintenance - RCM, which has 

become popular for its methodologies such as FMEA (Failure Mode and Effect Analysis), 

FTA (Fault Tree Analysis), and Probabilistic Risk Analysis - PRA. For Root Cause 

Failure Analysis, see [14]. 
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3.3 Historical developments and market evolution of HUMS 

The nature of the aircraft maintenance tasks being performed reflects the technological 

capacity acquired through time. In the early days of aviation, reactive maintenance 

prevailed, due to the lack of performance data of the components involved. In this case, 

no maintenance action was necessary, until a failure occurred, featuring a low level of 

safety and high costs, both direct (major repairs) and indirect (unavailability). 

Considering the peculiarities of the risk in an aeronautical activity, the specifications of 

the related certification processes became more restrictive over time, leading to advances 

in manufacturing processes that create more reliable items. The predictability of their 

behavior, acquired from the experimental observations and operating statistics, created 

conditions for proactive maintenance procedures, anticipating failures. The first one, 

based on time/operation cycles, was established under a preventive philosophy. 

In this situation, each component is replaced according to previous appointments, 

according to its design concept being fail-safe, Safe Life, or Damage Tolerance. Thus, for 

decades, high-cost components were removed and discarded, based on manufacturers' 

performance projections. Several times, this removal could have happened well before 

the component was unusable and sometimes this removal may have happened only after 

the failure of the component. In the relentless pursuit of efficiency of operation (and, 

obviously, on the financial results associated with it), dependent on safety and 

availability, the industry continued to evolve in technology. With a better understanding 

of the dynamics of the phenomena involved, a mastery of the manufacturing processes, 

as well as with the ability to measure and process evidence of performance, progress has 

been made in yet another methodology of “having the aircraft at hand”: the philosophy 

based on condition monitoring. In this case, aircraft components and systems are 

monitored to project when their failure is likely, under pre-established criteria of risk 

analysis. Therefore, ideally, the components are used for the entirety of their useful life, 

and without the need for premature replacement, reducing operating costs and keeping 

the preponderant advantage of always being replaced before the failures, potentially 

increasing the aircraft safety and reliability. 

Furthermore, the HUMS gained prominence in the transition between the traditional 

preventive maintenance philosophy and the new condition-based philosophy. The HUMS 

had its first certified flight in 1991, aboard a transport helicopter in support of offshore 

activities in the United Kingdom (North Sea). Commissioned by the British Civil 

Aviation Authority (CAA), an investment was made in the development of systems that 

could provide the early detection of defects and, as far as possible, the ability to 

predict/manage a window of safe fleet operation. Later, the American civil aviation 

authority - FAA (Federal Aviation Administration) issued the airworthiness requirements 

for normal category helicopters AC-27-1B [15] and transport category helicopters AC-

29-2C [16], as a guideline for the certification of HUMS installation. 

To inhibit possible compromising distractions of the pilots from the flight situation 

awareness, there is a tendency, in the operations, in waiving the cockpit performance 

trend notification - essential data only to the evaluation at the monitoring center, on the 

ground. 
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The acceptance of the HUMS is growing, and the US Military continues to develop 

HUMS capabilities for more accurate diagnoses and prognoses. For example, it is worth 

mentioning the HUMS are already standard and fully operational on the helicopters 

Sikorsky S-92 and S-76 C+, and on the Airbus Helicopters H-135; also, the system is 

offered as an option on the AgustaWestland AW-139, among others. More details on 

HUMS Technology can be found in [17]. 

The HUMS is also operational on the Brazilian Armed Forces Airbus Helicopters H-

225M aircraft, which are equipped also with CVR/FDR in the system. The Brazilian 

offshore market already has advanced systems technologies such as the HOMP 

(Helicopters Operation Monitoring Program), a system that monitors each flight in detail, 

standardizes operations, and identifies in advance any quality problem. These systems are 

associated with the HUMS, having been recently added to the S-92 and S-76 C++ aircraft, 

for example. In parallel, many other operators are adapting their helicopter fleets to this 

new equipment. 

The list of major HUMS manufacturers includes Smiths Industries of the United 

Kingdom, which acquired SHL - responsible for the research that culminated in the 

pioneer flight; and the American Goodrich, a large and traditional supplier of this type of 

systems to the global civil and military market. 

This market has new entrants from the area of structures, whose strategic planning focuses 

on expanding the number of customers through the development of low-cost similar 

systems. More information on HUMS for Light Commercial Helicopters can be found in 

[18]. 

For example, Smiths HUMS systems are installed in: Canadian Armed Forces (Bell 412); 

Airbus Helicopters H-225; Sikorsky S-61 and S-76; Safran Arriel engine; 

AgustaWestland EH-101; and Bell-Agusta 609 tiltrotor. Several units of this HUMS are 

in service and accumulating flight hours aboard the Boeing HC Mk II Royal British Air 

Force Chinooks, which continuously monitor the tracking and balancing of the rotors, 

thus dispensing extra flight tests and the use of specific balancing and tracking equipment 

on board. 

Goodrich, in turn, is the supplier of the first HUMS incorporated on the Sikorsky S-92, 

and their mastery of diagnostics covers from failures in gears and bearings of gearboxes 

transmission to infiltration of water between the layers of composite blades. Their 

products are already in the 3rd and 4th generations. The company has demonstrated its 

ability to balance the Chinook's tandem main rotors without the use of a specific infrared 

detection device for tracking. 

The algorithm built in their Integrated Mechanical Diagnostic HUMS (IMD-HUMS) can 

determine more accurate solutions to adjust rotating systems by making more detailed 

calculations related to the vibrations detected by the accelerometers in the helicopter 

cabin. In other words, a better use was made of the data usually collected by the HUMS. 

The trackerless concept by Goodrich presents faster results, eliminates repetitive and 

costly test flights, and has been proven on other IMD-HUMS equipped aircraft such as 

Sikorsky CH-53, H-60 BlackHawk, and MH-60R SeaHawk; and Bell AH-1 Cobra and 

UH-1. 
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A vibration monitoring equipment (HVM) is equipped in Bell 412 and 212 series, and 

Agusta A109 and A119 helicopters are supplied by IAC and Altair Avionics, which has 

been acquired by the Canadian engine manufacturer Pratt & Whitney aeronautics. The 

Altair SmartCycle+ system, with multiple channels, monitors the use of engines from the 

gas generator and turbine parameters such as torque, speed, and temperature; in addition 

to vibration levels and other HUMS parameters such as main rotor speed, outside 

airspeed, and temperature, and also altitude. 

3.4 HUMS description and architecture 

Briefly, the basic architecture of an HMS can be described as formed by sensors that 

transform the variables of interest of each aircraft into electrical signals, which are then 

processed and compared, using computational algorithms, with a historical database 

(reference) of the variable in question, and presented to an operator on board, or to a 

central monitoring system on the ground, to assess the current state of the component and 

its probability of failure, as shown in Figure 16. 

 
Figure 16: Simplified diagram of a Health Monitoring System (HMS) (adapted from 

[9]) 

Figure 17 shows a typical vibration spectrum, which is characteristic of each helicopter 

and acts as its fingerprint at a particular time or flight condition, to be added to the 

helicopter vibratory database. When analyzing this database, for each frequency band, 

any significant variations in the vibration at a particular frequency may be related to 

discrepancies of a corresponding dynamic component (rotating parts of engines, rotors, 

gearboxes, transmission shafts, etc.) or even a fixed element (such as fuselage stabilizers, 

etc.). 

 
Figure 17: Vibration spectrum (signature) of a helicopter (Adapted from [9]) 
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The sensors are essential to track aircraft conditions and can be primarily of magnetic, 

temperature, or inertial types. The inertial-type sensors include the accelerometers, which 

are responsible for collecting the oscillations of the fuselage in response to the external 

excitations, as seen in Figure 17. Some of these elements are built of quartz or ceramic, 

and HUMS use them under strict requirements of performance and reliability. 

Most accelerometers need to be airtight to ensure efficient insulation in environments 

with high humidity and contaminants. Bandwidth, or frequency response, is the most 

important parameter in accelerometer selection. No accurate data is acquired if the 

bandwidth of the accelerometer does not include the frequency of the motion, vibration, 

or shock you are willing to measure. The sensitivity of an accelerometer defines at what 

rate the sensor converts mechanical energy into an electric signal (the output), and this 

will define the acceleration measurement range of the accelerometer.  Sensitivity is 

usually expressed as mV/g (millivolts or per g) or pC/g (picocoulombs per g), where g is 

the acceleration due to gravity. The frequency response specification shows the maximum 

deviation of sensitivity over a frequency range. Great sensitivity and wide frequency 

response is a desirable feature for accelerometers, to ensure signal identification without 

significant sampling errors. As an example, high-quality accelerometers may present 

sensitivity in the order of 25 mV/g at 20,000 Hz (+15%). 

Vibration-based damage detection techniques are associated with the combined condition 

and use monitoring (HUMS) or, more recently, condition management and prognosis 

(Prognostic and Health Management - PHM) systems. In a little more detail, in HUMS 

the monitoring of the mechanical or functional condition of a component or system aims, 

especially, to detect or possibly diagnose incipient degradations that could lead to a 

failure. 

Condition management, on the other hand, describes the process of dealing with the 

information obtained from monitoring and prognosis to establish the real-time situation 

of the item and possibly, as desired, propose methods to extend the life of the item or 

limit its operation. The term “monitoring usage” means determining the lifetime 

consumption of critical components and systems according to operating records (cycles 

and hours) and loading history [12]. The generation of alerts is a differential of the HUMS 

and it boils down to establishing thresholds for each vibration condition and generating 

alerts as changes in the values in the trend reach them. In many cases, these thresholds 

need to be inferred from operational observation of HUMS in service, since there is no 

previous experience for helicopter manufacturers to issue their recommendations. 

Threshold levels are not effective when applied to fleets due to the indication variations 

between components and aircraft. Therefore, these levels have been raised individually 

by automatic techniques that register those that were previously classified as statistically 

significant, through reasonableness tests and other processes [19]. Trends emerge from 

research suggesting that the performance of diagnostics can be improved by advances in 

the signal processing process and by advances in sensors [12]. To illustrate some 

performance statistics, information from the Civil Aviation Authority of the United 

Kingdom indicates that 69% of the increasing threats registered to continued 

airworthiness (mostly problems of balance and tracking in the rotor) were successful in 

detecting the failure, 17% had their evidence, but they did not carry out the alert, and only 

14% of the cases the failures were not detected. 
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Provided that the results presented by the HUMS are properly interpreted under a risk 

analysis framework associated with the severity of the failure, the aim is to: 

• guarantee the continued airworthiness of the aircraft - defined as the guarantee of the 

certified level of safety during the entire operational life cycle of the product [11]; 

• increase flight safety by increasing the situational awareness of the crew and supporting 

their operational decision-making; and 

• reduce operating costs through Reliability Centered Maintenance (RCM) – which offers 

to track (anticipating/postponing) the best intervention opportunity (increasing 

availability); and to offer savings in the reduction of maintenance flights to adjust the 

main rotor, consumable material (sealants, sealing rings, lubricants, cleaning items, etc.), 

man-hours and the optimization of logistical support for spare parts. 

HUMS must provide the precise status of the current use of critical components such that 

statistical models can be used to estimate the point in time when parts must be replaced, 

as well as indicate the presence of incipient damage that could lead to failure before the 

end of his cherished life in the safe-life philosophy. As for PHM systems, in general 

terms, it can be said that their prognosis is the prediction of the remaining life of this 

component or system. This requires propagation models of detected defects as a better 

approximation than monitoring usage [12]. 

The ultimate objective of HUMS and PHM is to allow predictive maintenance of the 

helicopter, that is, according to the philosophy that dictates that interventions should only 

occur associated with a predicted failure. However, for this, robust, reliable, and accurate 

HUMS or PHMs are necessary, which are not yet available in the current state of the art 

[12]. Meanwhile, manufacturers adopt it, at least, as a backup to primary conservative 

maintenance measures, according to safety factors and design redundancies, and 

frequently scheduled replacements in a safe-life context, complemented by damage 

tolerance techniques (fail-safe). 

HUMS developers maintain a growing database of current vibration information inherent 

to the diagnostic function of HUMS associated with more than thirty faults detected and 

evidenced by vibration monitoring that can be related to maintenance actions. This 

information is used in the assistance service to different operators operating in different 

environments. 

Brian D. Larder [19] categorizes the failures into classic and new in the diagnostic 

process, when he summarizes ten examples among more than twenty classes that make 

up this data in the HUMS library. The first ones refer to those that are the result of a 

known failure mechanism or that the associated indicators are a constant focus of 

attention, based on theoretical knowledge or bench tests. The failures of the so-called new 

category are those that do not allow for anticipation by the HUMS, nor are there any 

established indicators to recognize its effects. These can only be pointed out through 

lessons learned. The necessary experience can be maximized by combining information 

from the HUMS supplier, its operators, and the aircraft manufacturer [19]. 
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3.5 HUMS advantages and benefits 

Statistical information documented in the North Sea by the CAA indicates a high success 

rate in detecting failures, some of which could have turned into potentially catastrophic 

events, or could have even resulted in accidents. The benefits/return on investment in 

HUMS may include a reduction in inspections and maintenance test flights; and a 

decrease in unscheduled interventions. The advantages can be grouped into three main 

approaches: reliability, operational availability, and lower operating costs. 

A- Increased reliability and flight safety level 

Scheduled inspections (by calendar or lifecycle) in preventive maintenance are necessary 

for the reliability of components and systems, favoring flight safety. However, sometimes 

no damage (cracks, corrosion pits, deformations, etc.) is encountered, and also unforeseen 

failures may occur between two inspection deadlines, a situation that may culminate in 

accidents, as shown in Figure 18. 

The employment of HMS-type tools, such as HUMS, offers constant monitoring which 

enables the identification of a future failure trend, according to some deviation from the 

known behavior pattern of the system. In this way, a predictive maintenance intervention 

could have been performed according to an established schedule, thus avoiding the 

occurrence of a failure, while still protecting against latent risks associated with 

manufacturing defects. Therefore, from the point of view of aviation safety, the main 

advantage is the fact that the components are always replaced before failures. Hence the 

potential of HUMS to improve safety and reliability, and reduce operating costs. 

 
Figure 18: Condition (state) of the material over time using scheduled maintenance, 

based on time/cycles; and using predictive, condition-based maintenance (Adapted 

from [9]) 
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B- Operational availability 

The early identification of trends/variations in the amplitudes of aircraft vibration 

frequencies related to rotor assembly problems in helicopters often eliminates the need to 

carry out rotor flights for tuning the dynamic sets (balance and tracking adjustments). It 

should be noted that this feature allows the management of a Reliability Centered 

Maintenance (RCM) program to evaluate the possibility of defining the best opportunity 

to stop the aircraft, considerably increasing its availability in a company's operating 

schedule: operating units equipped with HUMS may fly more missions and may maintain 

a higher availability rate than units not equipped with these systems. 

C- Reduction of operating costs 

The maintenance cost reduction attributed to HUMS is a consequence of the reduction of 

dedicated or non-scheduled intervention actions themselves, due to scheduling 

optimization and the corresponding logistic support coordination, which allows the 

reduced use of consumable material (sealants, O-rings, lubricants, cleaning items, etc.), 

man-hours and spare parts storage. 

This cost reduction is obtained through accurate and automated condition monitoring of 

equipment use; reduction of false failure events known as NFF (no-fault-found); 

reduction or consequential damages with the aid of early diagnosis; and improvement of 

the analysis of lessons learned from the trinomial event/incident/accident. 

The use of HMS-type programs reduces maintenance delays and flight cancellations, 

avoids unnecessary maintenance, and reduces the price of insurance due to the reduction 

in the number of accidents and incidents and related expenses arising from claims. 

Furthermore, when associated with systems such as HOMP via satellite (offshore 

activity), which monitors aircraft information (position, altitude, minimum altitude alert, 

take-off, and landing notifications), the system offers mission planning reports and 

reports of possible occurrences of non-conformities and condition alarms, which allow 

full control of the fleet, including computerized analysis of prevention reports. 

The FAA estimates that aircraft employing state-of-the-art condition monitoring 

equipment may provide significant cost savings per year due to reduced fuel, 

maintenance, and direct costs related to accidents. 

From the point of view of the manufacturer or the maintainer of an aircraft engine, who 

usually needs to provide warranties regarding the engine, it is desired to follow exactly 

the life condition and any possible abuse or misuse of the equipment. 

3.6 HUMS disadvantages and limitations 

There are records of incidents whose investigation pointed to the HUMS as contributing 

factors. In one of these cases, a sensor was inoperative. In another case, there was a serious 

incident due to the inability of the crew to confirm the correct diagnosis of the ongoing 

problem. 

This latter case highlights the importance of considering and monitoring, also, the benefits 

of research on human factors and the cabin, crew, or corporate resources management 

(CRM), and/or the maintenance resources management (MRM), as both cases may affect 

predictions and the decision-making intrinsic to flight safety. 
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Therefore, the need for training and the challenges inherent in a change of organizational 

culture are decision-making factors whose costs should not be discarded. 

Introducing fault detection information without the risk analysis associated with the 

severity of failure or their prognosis can be seen as a disadvantage due to the potential to 

increase unnecessary maintenance needs from the perspective of not compromising the 

continuity of airworthiness. 

No operator wants to deal with the situation of an accident related to a known fault, no 

matter how well reasoned and structured the decision-making process, because will be 

charged for has been not having acted before. 

The resulting civil liability would be unacceptable, with potentially dire ramifications for 

new insurance contracts, and the image and subsequent survival of the organization, in 

terms of continuity of its business. 

Thus, forecasts with updated limits and continuous monitoring and diagnostics are 

essential resources to an HMS. 

Another potential disadvantage of the HMS relates to the limits of prognosis. If, within 

the maximum level of uncertainty established for the continuous operating safety, they 

translate values consistently lower than half the range of traditional scheduled 

maintenance, the opportunity targeted for significant flexibility in maintenance 

management will be reduced and may limit the application of the HMS - unless the 

definitions of those intervals are based on statistical failure probabilities (based in the 

historical performance) and should be more conservative than the limits of prognosis 

adopted for HMS. 

HUMS false alarms linked to NFF created by software or sensor errors also negatively 

affect operational availability, so that a rate of 10% of those in, for example, a fleet of 

122 aircraft, would reduce operational availability by 4% (five units and 2,000 hours of 

flight/year). 

With its current limitations, the maturity of the HMS philosophy still does not guarantee 

monitoring that covers the entire aircraft. For reasons of compromise between accuracy 

and cost viability, the HMS may never be able to provide the desired cost-effective 

follow-up of a component of a particular system or subsystem, and therefore it may 

always be necessary to require a combination with time-based maintenance. This 

limitation will vary depending on the nature of the system/subsystem and needs to be 

evaluated properly. 

It is worth mentioning, considering the advantages mentioned in the previous section, that 

disadvantages and limitations will always be identified as new technology is adopted in 

the operational theater. The actors involved (manufacturers, maintainers, suppliers, users, 

and civil aviation authorities) should tirelessly discuss and refine these disadvantages and 

limitations to create viable alternatives to circumvent them or reduce them to acceptable 

risk levels, reaching a positive balance in favor of aviation safety. 
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3.7 HUMS certification challenges 

Certification is understood to be proof that the project meets the requirements for its safe 

operation. The basic requirements for type certification (of an aeronautical product) are: 

• qualification and installation of the system/equipment that collects, stores and presents 

the information; 

• activities of validation/demonstrations of compliance with requirements (which involve 

the understanding of the physics involved in the failure mechanism) and of the 

methodology (means of each compliance by which it’s analyzed how well HUMS can 

dictate maintenance actions based on the analysis of the condition and of use of data); 

and 

• instructions for continued airworthiness, which implies, among others: instructions for 

operation life cycle and control for each item; procedures in case of inoperability; and 

training program and requirements for mitigation actions. 

The criticality is defined here as the level of severity of the unintended consequences of 

using the HUMS in-flight safety. Through a Functional Hazard Assessment (FHA), this 

term is classified by the FAA into five categories (in decreasing sequence): catastrophic, 

potential danger, major, minor, and no effect), which determine the rigor of the 

certification process for the aeronautical product (equipment, software, or systems). 

In this context, the unique challenge of certification lies in the creation and analysis of 

different scenarios in which safety must be provided, under the worst hypotheses, where 

there is a huge complexity associated with statistical & probabilistic models, and with the 

integration of multiple subsystems, both on-board and ground-based. 

For these reasons, HUMS have been the focus of attention of civil aviation regulation 

agencies, such as the FAA, which issued certification requirements for the transport 

helicopter category through the circular advisory (AC 29-2C) [16]; and CAA, which 

issued AAD 001-05-99 CAP 693 Acceptable Means of Compliance Helicopter Health 

Monitoring. 

That AC focuses on the aircraft maintenance process and describes a guide to 

requirements needed to certify the installation of an airworthy HUMS, with instructions 

for its continued airworthiness of a wide portfolio of applications, aiming at the approval 

of the aeronautical authority of certification. It is anticipated that developers may suggest 

other methods of proof of requirements beyond those recommended in this document; 

however, any methods must be previously approved by the FAA. The following key 

criticality elements must be met to guarantee safety: 

1. Criticality assessment at application boundaries and effects on the helicopter. In the past, 

the data from the HUMS were already seen as valuable, but they were not critical for 

flight safety, as they were used in parallel to traditional maintenance regimes, or, for 

example, as instruments for after-sales support in monitoring equipment under warranty. 

From the moment the HUMS output information can be used to adjust established 

maintenance practices or whether it may be the only means of indication of the condition 

of the aircraft to the crew, the criticality of the system must be determined, and the rigor 

of certification adopted. It should be noted that the certification process of this system 

must be judicious at the level of possible dangerous consequences of inappropriate 

actions, which can be taken into consideration, as well as the impact of its installation; 
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2. Special considerations for ground equipment are relevant, given that the same criticalities 

of the on-board items must be considered; and as for the so-called off-the-shelf items 

(taken directly from the shelf), that is, without a certified system, considerations should 

be adopted to circumvent the rigors of a software certification; 

3. Validation of monitoring techniques, algorithms, parameters, and rejection criteria; 

4. Intervention actions associated with the monitoring data of the HUMS, which constitute 

extending the life of an item beyond preventive maintenance scheduling, saving costs, or 

reducing the life to avoid failure earlier than anticipated in the time-based maintenance; 

and 

5. Certification actions for mitigation, that is, the establishment of criticality compensation 

factors to a low level, which would be autonomous, continuous, and independent of the 

HUMS. With this, the FAA does not certify any system as catastrophic. 

Even after completing the initial certification process, the effort needs to be continually 

supplemented by information and evidence associated with the operational life cycle 

reality (Service Difficulties), which must be analyzed in the judgment of the effectiveness 

of the HUMS (for the guarantee of issuance of compulsory application service bulletins). 

It is expected that the costs of certification will decline as more project models benefit 

from HUMS and more experience is gained in this process. 

Goodrich HUMS has been certified to perform under the DO-178B Standard (titled 

Software Considerations in Airborne Systems and Equipment Certification), a criterion 

created by the RTCA (Radio Technical Commission for Aeronautics) for embedded 

software certification, and rated level B (potential to cause potentially hazardous/severe 

failures, identified and related to system security). This document determines verification, 

validation, documentation, and management of the software configuration,  and 

disciplines the quality assurance to be used in microcomputer systems, as detailed in the 

advisory circular (AC 20-115C) [20]. As the HUMS is an open-architecture project, third 

parties can develop their systems to integrate with HUMS and still transmit real-time data 

to ground stations, which use common personal computers. 

3.8 Application perspectives for HUMS 

The aeronautical authorities continuously pay attention to the definition of the minimum 

certification requirements to ensure the airworthiness of future-equipped aircraft. 

The new generations of HUMS are moving towards acting with greater reliability and 

integration of functions, increasingly changing the way maintenance is implemented. The 

growth in the use of these systems depends on the increase in the reliability of the sensors. 

Therefore, the critical point is the accuracy of the sensors, which yields much-related 

research, to develop sensors that are more reliable, cheaper, and resistant to a range of 

temperatures, environmental contaminants, and aircraft vibrations. 

The expansion of the HUMS functions and capabilities is being made by improving the 

algorithms to make greater use of the collected data. New directions include transition 

changes, such as detection of the conditions of failure and diagnostics to anticipate the 

indication of potential problems and the diagnosis aimed at the reliable and detailed 

prognosis of the maintenance needs; and automatic usage tracking logbooks for each 

component for its full management, effectively updated by the data collected on the 

aircraft. 
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Composite structures, such as the carbon-fiber-reinforced type, have had their adoption 

expanded in recent projects such as citing in ascending order, the B777, B787, and A380 

because they are lighter than metallic structures and considered equally durable because 

they suffer less fatigue. However, they are also susceptible to wear, often in the form of 

cracks or delamination, which often are not visible to the naked eye. The technology for 

monitoring the structural health condition, commonly known as Structural Health 

Monitoring (SHM), is in continuous development. The studied technology detects 

invisible deformations or cracks through optical fibers that are used as embedded sensors 

or bonded to the aircraft's composite structure. SHM technology uses Artificial Neural 

Network (ANN) systems to emulate the pain signals sent to the brain by the human 

nervous system, when fractures, fissures, or delamination occur, which destroy the fibers, 

interrupting this way the light signal. This interruption, in turn, allows the anomaly is 

identified and located. Challenges in this technology focus on the adoption on a large 

scale at non-prohibitive costs, in the addition of extra weight, and in the commitment to 

the strength of the composite material itself. 

Other structural monitoring technologies are being envisioned, including the premise of 

using acoustic emission sensor devices attached to the surface of this type of structure to 

capture the energy released by crack propagation. 

The near future of HUMS systems in the military arena also points to their integration 

with communication systems such as the Airborne Communications Addressing and 

Reporting System (ACARS), which consists of transmitting automatic in-flight data (thus 

eliminating the onboard storage of cards), to be analyzed in real-time by the monitoring 

stations on the ground. In this way, the operator maintains the immediate condition of its 

fleet, allowing the assessment of the safe length of time between revisions, or time 

between overhauls (TBO). 

Shortly, the consolidation of the HUMS is a widely used item, even by the smallest 

operators (motivated by the most economical operation of their aircraft), is expected to 

contribute to the helicopter industry's goal of reducing the accident rate in the coming 

years. 

HMS has arrived on the aviation market as something more than a new technology: it 

arrived as part of a philosophy that emerges in changing organizational cultures. 

Predictive maintenance, based on the life condition of the components and subsystems, 

in line with continuing technological advances, has met the incessant search for greater 

flight safety and availability of aircraft, and reduction of operating costs, all aspects 

essential to the improvement of the business aviation efficiency, both in the civil and 

military sectors. 

The HUMS, besides the monitoring, also includes aircraft usage parameters and has 

earned more acceptance among aircraft operators, as their prognostic limits are expanded, 

and alternatives to current difficulties are discussed. In their various projects, the HUMS 

tend to become more accessible also with new possible low-cost options, culminating as 

a standard item in the helicopter industry. Under the unprecedented challenges required 

for the careful certification of the relevant authorities, even open-architecture projects can 

count on the guarantee of the required quality. HUMS/CVR/FDR integrations, automatic 

transmissions of data even via the Internet, and structural health (condition) monitoring 

(SHM) technologies in composites are just some of the perspectives that promise to 

guarantee the airworthiness of future equipped aircraft. 
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4 Vibration-based health and usage monitoring systems (HUMS) of dynamic 

components of helicopters: some numerical and experimental applications 

This section is based on excerpts from Technical Reports [21] and [22], concerning the 

Offset Program of Transfer of Technology in Health and Usage Monitoring Systems 

(HUMS) of the aircraft EC-725, a program involving the companies AIRBUS 

HELICOPTERS (former EUROCOPTER), HELIBRAS, and also the Brazilian 

Universities UNIFEI and ITA. 

4.1 Wavelet analysis 

Transient events in time series data if well captured by algorithms provide a lot of 

information about the object that they refer to. The decomposing of a time series into 

time-frequency space enables the capture of both the dominant modes of variability and 

how those modes vary in time [23]. For example, an indication of an abrupt change in the 

data-generating mechanism makes it possible to detect and localize in time. Applications 

of this kind of analysis include faults in machinery and equipment, problems with sensors 

from acquired signals, financial bankruptcies in mass from economic time series, 

seismology, and many others.   

In mathematics, the continuous wavelet transform (CWT) is a non-numerical tool that 

provides an overcomplete representation of a signal by letting the translation and scale 

parameters of the wavelets vary continuously [24]. In an overcomplete basis, the number 

of basis vectors is greater than the dimensionality of the input, and the representation of 

input is not a unique combination of basis vectors. Overcomplete representations have 

been useful because they present greater robustness in the presence of noise. 

The MATLAB® command cwt (Continuous Wavelet Transform [24]) returns the 

continuous wavelet transform of a time signal [25]. The CWT is obtained by using the 

analytic Morse wavelet with the symmetry parameter, gamma (γ), equal to 3 and the time-

bandwidth product equal to 60 [25]. The CWT is superior to the Short-time Fourier 

transform (STFT) for signals in which the instantaneous frequency experiences either a 

fast growth or decline [26]. 

Figure 19 shows an example of a reference signal that keeps its phase all along the 

timeframe shown in this figure. The signal designated as faulty is a departure from the 

reference signal by just a phase change beginning at time 13 s. Applying CWT to the 

faulty signal utilizing the analytic Morlet wavelet, the transient of the faulty signal is 

easily captured by the sudden rise in the magnitude of CWT coefficients (Figure 20). 

 
Figure 19: Example of a fault impacting a time signal 

Jorge, Ariosto B., et al. (2022)           Vibration Analysis and HUMS of Dynamic Components of Helicopters pp. 451-518

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 486



 
Figure 20: Finest-scale CWT coefficients 

The CWT tiling of the plane is useful because many real-world signals have slowly 

oscillating content that occurs on long scales, while high-frequency events tend to be 

abrupt or transient. However, if it were natural for high-frequency events to be long in 

duration, the use of the CWT would then not be appropriate. The result is a poorer 

frequency resolution without gaining any time resolution. The human auditory system 

works this way because it provides much better frequency localization at lower 

frequencies and better time localization at high frequencies. 

The MATLAB® command wcoherence returns the magnitude-squared wavelet 

coherence, which is a measure of the correlation between signals x and y in the time-

frequency plane [27]. Wavelet coherence is useful for analyzing nonstationary signals. 

By using this command inputting the reference and faulty signals shown in Figure 19, the 

image in Figure 21 properly detects the phase change of the faulty signal relative to the 

reference one. The vectors change is a measure of the phase difference between the input 

signals (90o). 

 
Figure 21: Wavelet coherence 

Another example to demonstrate the capacity of wavelet analysis concerns the Earth’s 

climate. Ice cores provide evidence for greenhouse gas concentration variations over the 

past 800,000 years. Both CO2 and CH4 vary between glacial and interglacial phases, and 

concentrations of these gases correlate strongly with temperature [28] [29] [30]. Figure 

22 shows a data compilation of CO2 concentration and temperature for the last 340 

thousand years starting in the year 1870. The high correlation between the two variables 

is easy to observe. Higher temperatures due to higher CO2 concentration lead to plant and 

algae proliferation, which, in turn, will absorb the carbon dioxide triggering a temperature 

drop in a second phase. 
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Figure 22: Ice core data indicate a strong correlation between temperature and CO2 

concentration [28] [29] [30] 

The wavelet coherence and cross-spectrum showed in Figure 23 reveal a strong 

correlation along the time of the collected data for the periods ranging from 67 to 84 

thousand years. This range encompasses three times the precession period of the rotation 

axis of the Earth. However, this correlation is not within the area delimited by the white 

circle and therefore it must be discharged. There is another high correlation coefficient 

revealed in Figure 23, for a period ranging from 16 to 33 thousand years with a time lag 

between the parameters. This fact should be taken into consideration, as it fits well with 

the precession period of the Earth’s rotation axis of 26,000 years. 

 
Figure 23: Wavelet coherence and cross-spectrum of CO2 concentration and 

temperature data 

Around the period of 10,000 years, some correlation is also tracked. This can be explained 

by a quick analysis of the graphs in Figure 22, as it reveals that the CO2 concentration 

rise on some occasions is accompanied by the temperature surge with a delay of 

approximately 10,000 years. 

Any time-frequency transform that uses filters, like wavelets in the case of the CWT, or 

modulated windows in the case of the short-time Fourier transform, necessarily smears 

the picture of the signal in time and frequency. The uncertainty in the localization of the 

signal's energy in time and frequency comes from the spread of the filters in time and 

frequency. Synchrosqueezing is a technique that attempts to compensate for this smearing 

by "squeezing" the transform along the frequency axis [31].  
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4.2 M’ARMS system 

The Modular Aircraft Recording and Monitoring System (M’ARMS) is a sophisticated 

system that encompasses a HUMS subsystem.  

The main objectives for the development of the M’ARMS were [32]: 

1. Satisfy JAR OPS3’s compliances relative to flight data parameters 

2. Automation of flights and their analysis 

3. Provide a maintenance report and optimize help for maintenance  

4. Deliver a diagnostic for the main mechanical “critical parts”.   

The M’ARMS system is comprised basically of three subsystems: 

1. HUMS 

2. CVFDR (Cockpit Voice and Flight Data Recorder) 

3. UMS 

Functions of UMS and usage 

• Monitoring Counters associated with helicopter components to inform maintenance about 

time reached and alarms displayed in flight 

• Counting about Time in operation, counting flying time, counting landings, counting NR 

cycles, counting engines cycles N1(NG) et N2 (NF). 

The main purpose is to monitor any exceedance of the usage threshold to: 

1. Generate overshooting message in case of overshooting with the flight manual. 

2. TQ1+TQ2 for Overtorque detection (damaging on MGB), 

3. Engines exceedances (limitation on these 3 modes T4, NG, NF) 

4. NR exceedance NR max (MRP damaging) 

Engine Power checks basic functions on EC 225 will be done from VMS. M’ARMS 

system will record data for trend following. All these functions will be automatically 

linked with the operator after downloading data in the flight report. They will be saved 

inside GSC.  

Reference [33] brings more details and information on fault diagnosis in helicopter 

HUMS, on some commercial solutions for HUMS, and specifically on the M’ARMS. 
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4.3 Description of the M’ARMS evolution: onboard MOD45 indicator. 

A M’ARMS improvement enabled the HUMS systems on the EC225 and EC725 to 

indicate the cabin of a parameter during the flight. This is the first time that the HUMS 

system in a EUROCOPTER aircraft was used to control the condition of a specific 

component during flight. The certification of such usage was a technological step forward 

regarding the application of the HUMS [34]. Up to this milestone, the HUMS on 

helicopters has only been employed to provide maintenance crew with additional data to 

evaluate a possible degradation of the performance of different dynamic components, on 

the ground. Based on the scalar level of an indicator, the maintenance crew shall take 

actions to prevent an in-flight component failure. Thus way, the HUMS is considered a 

maintenance support tool, capable of monitoring and recording the usage and condition 

of different dynamic components. It mainly affects aircraft availability by providing a “no 

go.” Thanks to this evolution, the M’ARMS system is now being used to improve the 

aircraft rate of dispatch. 

The M’ARMS evolution described previously is presented in the Alert Service Bulletin 

No.EC725–45A008 and corresponds to mainly modifications 0726978 and 0726994. Its 

application is mandatory and is part of several improvements to the EC225/EC725 aircraft 

family following technical incidents that took place in 2012 [34]. 

Modification 0726994 installed two HUMS indicator lights on the instrument panel, 

which indicate the OM45 status for the pilot and copilot (Figure 24), while modification 

0726978 consists of all the software and configuration updates to be performed. The 

application software version that was installed in the ACMS MFDAU++  at that time is 

version 1.6 and requires specific configuration files. 

 

Figure 24: New "HUMS" indicator lights on the instrument panel, as presented in 

the  

EC 725 AP Flight Manual SUP 7 [34] 

It is important to notice that the ACMS MFDAU++ software version 1.6 is compatible 

with a limited combination of software and configuration files on the FDRS MFDAU++ 

card and the VPU (Vibration Processing Unit). The Information Notice 2100-I-45 

provides all the information necessary to define the applicable combination for each 

aircraft configuration. The Alert Service Bulletin also presents additional maintenance 

aspects related to the M’ARMS modifications, as well as updated Technical Publication 

material. 
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The continuous monitoring of the OM45 is only executed in flight. During aircraft power-

up, the system starts the power-on built-in test (Pbit), to assess its proper functioning. 

From the moment the aircraft is energized to the moment the Pbit has successfully been 

performed, the HUMS indicator lights on the instrument panel and in the M’ARMS 

control panel will be lighted (Figure 25). When the message “TEST MOD45 DONE” is 

presented in the M’ARMS control panel, all the HUMS indicator lights are shut off. 

 
Figure 25: M’ARMS control panel, as presented in the  EC 725 AP Flight Manual 

SUP 7 [34] 

When airborne, the message “MOD45 RUNNING” is displayed when the indicator 

OM45 is being monitored. This happens approximately every five minutes when the 

aircraft is inside the monitoring flight envelope: indicated airspeed higher than 60 knots 

and torque over 60%. 

In the event of OM45 acquisition exceeding the maximum threshold (0.5 grms), the 

message “MOD45 EXCEED” is displayed and the HUMS indicators lights light up. In 

this case, the maximum continuous torque is limited to 65% and in level flight must 

remain above 60 knots IAS. The maximum flight time in MOD45 exceed is limited to 

two hours.   

Another possible situation is the failure of the in-flight OM45 monitoring. In that case, 

the airspeed must remain between 60 and 120 knots IAS (Indicated Airspeed), while 

torque is above 60% of maximum continuous torque. 
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4.4 System Errors (Signal/Electrical Errors): Case Study and Proposed Error 

Indicators 

A- Introduction 

In certain situations, the vibration signature obtained from a particular accelerometer may 

not represent a mechanical problem, but an error in the acquisition system itself, which 

may have appeared due to some type of signal failure such as an electrical problem in the 

acquisition system, problems in the sensors, problems in the signal processing, etc. In this 

Section, this type of problem is referred to as a “system error.” 

The objectives of the present Subsection are: 

1. Extract lessons from a case study: to investigate different real cases in which a 

possible system error may have appeared, and to present the typical characteristics of 

this signal, in terms of values and plots of the different functions of interest that may 

be evaluated from the signal data 

2. Error indicators: to propose possible error indicators and study these different error 

indicators regarding: 

o their ability to point out correctly the situations in which the system error is 

present; and 

o Their robustness to variations in the signal properties coming from other error 

sources, such as mechanical failures (i.e., their ability to present low false alarm 

rates). 

Several sets of vibration data were made available for study, as shown on Table 2. 

Table 2: sets of vibration data 

Helicopter 

model 
Accelerometer name / position 

Number of 

acquisitions 

Total Flight 

Hours 

Helicopter # 1 MGB LH first reduction pinion 208 291,5 

Helicopter # 2 MGB Bevel Shaft and Wheels #6 5263 3514,9 

Helicopter # 2 MGB Bevel Shaft and Wheels #6 4528 3555,2 

Helicopter # 2 MGB Bevel Shaft and Wheels #6 12169 6499,8 

The vibration data refers to the bevel wheel and shaft, a vertical shaft rotating at 2401 

rpm, with an upper bevel wheel of 45 teeth and a lower oil pump wheel of 70 teeth, as 

shown in Figure 26, adapted from Reference [1]. The vibration data refers to 

accelerometer No 17 (11RK8), with synchronization at 2405 rpm, according to Reference 

[2]. 
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Figure 26: MGB Health monitoring and related sensors [33] 

The vibration data available is processed data, obtained after a synchronous averaging 

procedure on the raw vibration data.  This procedure is shown in Figure 27, adapted from 

Reference [35]. The objective of the synchronous averaging procedure is just to eliminate 

random vibration, keeping the periodic components which are multiples of the shaft 

rotation speed. For example, each revolution may be sampled generating 1024 points. 

After N samplings, an average of the N values is evaluated for each sampling point, 

generating a plot for the 1024 points of the signal average. 

 
Figure 27: Signal treatment: synchronous averaging for eliminating random 

vibration [35] 
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For the averaged signal, a root-mean-square (RMS) indicator is evaluated. The value of 

RMS represents the total energy of the signal. Typically, most faults involving damage 

will increase the energy of the vibration signal. The RMS indicator can be evaluated as 

the area below the curve of the signal, either in the time domain or in the frequency 

domain. Figure 28 (adapted from Reference [1]) shows a plot of the signal in the 

frequency domain (obtained applying a Fast Fourier Transform (FFT) on the original 

signal in the time domain). The energy of the signal (the RMS value) is related to the area 

below the plotted curve. 

 
Figure 28: RMS value of the signal: area below the curve [35] 

A plot of all the RMS values, for the 12169 cases available in the data described in Table 

2, for the vibration of the bevel wheel and shaft, is shown in Figure 29. 

 
Figure 29: Bevel wheel & shaft RMS vibration (Helicopter # 2) [21] 
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From Figure 29, one can see two different cases: 

1. The case in which the energy of the signal was high (thus, an alarm was triggered). In this 

case, with this RMS indicator only, if the energy of the signal is physically reasonable, 

no conclusion could be made whether the problem is of mechanical origin or system 

origin. Only when the energy of the signal is too high (which would be physically 

impossible) then one could infer that the defect was due to a system failure. 

2. The case in which the energy of the system was too low (thus, no alarm was triggered). 

The system should be still vibrating, and it’s not possible to have such a low level of 

energy, leading to the conclusion that there must be some type of system failure.  

The RMS values for the vibration of the other aircraft described in Table 2 are plotted in 

Figure 30 to Figure 32. 

 
Figure 30: Bevel wheel & shaft RMS vibration (Helicopter # 2) [21] 

 
Figure 31: Bevel wheel & shaft RMS vibration (Helicopter # 2) [21] 
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Figure 32: MGB LH first reduction pinion RMS vibration (Helicopter # 1) [21] 

B- Signal analysis: parameters and characteristics of interest from the signal data 

In this Subsection, a signal treatment is proposed, using correlation functions and phase 

diagrams, and error indicators are proposed, to capture the characteristics of a typical 

signal with system failure, trying to separate this case from the case of the signal that 

would come from mechanical failures.  

Autocorrelation of signal x: Rxx(t) 

Goal: To present a cleaner plot (of Rxx versus t), in which noise was filtered (comparing 

to the original signal), keeping the periodic characteristics of the original signal. 

For a continuous case, the cross-correlation function is defined in Eq. (3) as 

𝑅𝑥𝑥(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡

+𝑇/2

−𝑇/2

 (3) 

where  is a parameter related to time.  

For the cases being discussed, the available signals are presented in a discrete form, where 

N points are available, and the discrete cross-correlation function is given in Eq. (4) as 

𝑅𝑥𝑥(𝑘) =
1

𝑁 + 1 − 𝑘
∑ 𝑥𝑖𝑥𝑖+𝑘

𝑁−𝑘

𝑖=0

 (4) 

 where k is a time lag, and the sequence will have (N+1-k) terms. 
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Cross-correlation between signal x and y: Rxy (t) 

Goal: like Subsection A, to present a cleaner plot (of Rxy versus t), in which noise was 

filtered (comparing to the original signal), keeping the periodic characteristics of the 

original signal. In this case, the coherence between the periodic characteristics of the 

original signal x and the new signal y is enhanced. Thus, if signal y preserves the same 

periodic content as signal x, the correlation plots of Rxx and Rxy are expected to coincide. 

On the other hand, if signal y has different periodic content than x, the amplitude of the 

cross-correlation Rxy is expected to be small for all time t (the same behavior for Rxy is 

expected if y presents no periodic content at all, such as in the case of random signal). 

For a continuous case, the cross-correlation function is defined in Eq. (5) as 

𝑅𝑥𝑦(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑡)𝑦(𝑡 + 𝜏)𝑑𝑡

+𝑇/2

−𝑇/2

 (5) 

where  is a time parameter.  

For the cases being discussed, the available signals are presented in a discrete form, where 

N points are available, and the discrete cross-correlation function is given in Eq. (6) as 

𝑅𝑥𝑦(𝑘) =
1

𝑁 + 1 − 𝑘
∑ 𝑥𝑖𝑦𝑖+𝑘

𝑁−𝑘

𝑖=0

 (6) 

 where k is a time lag, and the sequence will have (N+1-k) terms. 

Phase diagram for the correlation R: plot of dR/dt versus R 

Goal: this diagram presents: 

- a clearly defined plot of a smooth curve, for the case of the correlation function of a 

periodic signal; 

- similar (almost identical) plots for the phase diagrams of the autocorrelation Rxx (of the 

reference signal) and the cross-correlation Rxy (between the current signal - at some time 

later - and the reference signal) if the periodic components of the signal have not changed 

between the two cases. In this case, the signal preserves the same amplitude and phase 

for all its spectral components; and 

- a cloud of points for the cases of the autocorrelation function of a random signal x and 

the lack of coherence between two signals x and y (signals x and y having different 

periodic content). 

Hypothesis for the typical response expected from system error 

The signal y is expected to change its behavior concerning the original signal x, for a 

system without error. Thus, if this hypothesis holds: 

- the amplitude of the cross-correlation Rxy is expected to be small, and 

- the phase diagram of dRxy/dt versus Rxy is expected to present a cloud of points without 

clearly defined curves. 
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Simulated example 

An example of the expected typical response for signal error was simulated, in which a 

periodic signal (with noise) was simulated, and the signal was modified as a non-periodic 

signal, with erratic steps. The original signal x and the error signal y were generated and 

analyzed. The results of this simulation are presented in Figure 33 to Figure 35. 

 

Figure 33: Plot of the original signals x and y [21] 

From Figure 33, one can see that not much information can be obtained directly from the 

original signals, without processing. 

 
Figure 34: Plot of the correlations Rxx(t)  and Rxy(t) [21] 

From Figure 34, one can see the very low values of the cross-correlation coefficient, 

relative to the original autocorrelation, as expected. 
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Figure 35: Plot of the phase diagrams of: a) dRxx/dt versus Rxx, b) dRxy/dt versus Rxy, 

and c) dRyy/dt versus Ryy [21] 

From Figure 35, one can see the neat curve plotted in the phase diagram of the original 

autocorrelation (case a), and the cloud characteristic present both in the cross-correlation 

plot (case b) and in the autocorrelation of the error signal (case c), as expected. 

C- Cases studied 

From the RMS data of aircraft Helicopter # 1 (Figure 32), one possible system failure was 

identified, described in Subsection C.1. 

From the RMS data of aircraft Helicopter # 2 (Figure 29), several possible system failures 

were identified, described below in Subsections C.2 to C.5. 

The available RMS data for aircraft Helicopter # 2 (Figure 30) and Helicopter # 2 (Figure 

31) were not used in the discussion in Subsection C and will be used later for evaluation 

of the error indicators proposed in Section D.    

C.1 Sampling errors: frequency sampling may be too low  

This case refers to helicopter # 1, where the data (Figure 36), representing correlation 

functions of the signal, does not present clear periodic curves, which would be expected 

from the vibration of the helicopter mechanical component. The shape of the obtained 

curve suggests the presence of an error of conversion from the continuous signal to a 

discrete set of points (analog to digital conversion). This type of error typically is present 

when the sampling frequency is too low and does not follow Shannon’s theorem, which 

states that the sampling frequency must be at least two times higher than the highest 

frequency component present in the analog signal (Reference [4]). 

In this case, all signals analyzed contain this problem, including the reference signal x, 

used to obtain the cross-correlation functions plotted in Figure 36.     
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Figure 36: Correlation function for signals (Helicopter # 1) [21] 

The phase diagram for this case (shown in Figure 37) indicates that the periodic 

components are not correctly represented, after the digitalization of the original signal. 

The hole in the plot shows that the lower frequencies are still well represented in the 

digital signal, but the cloud of points (around this hole) indicates that the high frequencies 

are not well represented in the digital signal. A good representation of the lowest 

frequencies combined with a poor representation of the highest frequencies corroborates 

the fact that there is a frequency sampling error in this data. 

 
Figure 37: Phase diagram of correlations Rxx and Rxy (Helicopter # 1) [21] 
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C.2 – Signal with low gain errors: amplification gain may be close to zero 

This case refers to Helicopter # 2. In Figure 29, some cases were identified as having a 

signal with a very low RMS value. Figure 38 and Figure 39 show a comparison between 

the reference case and one of these faulty cases. In Figure 38, the cross-correlation Rxy 

(between the faulty and the reference signal) is compared with the autocorrelation Rxx (of 

the reference signal). 

 
Figure 38: Correlation function for signals (Helicopter # 2) [21] 

In Figure 39, the phase diagrams of Rxy (between the faulty and the reference signal) and 

Rxx (of the reference signal) are compared. 

 
Figure 39: Phase diagram of correlations Rxx and Rxy (Helicopter # 2) [21] 
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The plot of the cross-correlation function presents a very small amplitude in Figure 38 

and a very small size (almost like a point, as indicated by the arrow) in Figure 39. If the 

picture is enlarged, one can see that the format of the green plot, relative to the phase 

diagram of the cross-correlation function Rxy, is similar (almost identical in shape) to the 

phase diagram of the autocorrelation function of the reference signal, except for a scaling 

factor. A non-faulty signal should present a correlation function and phase diagram almost 

like their equivalent plots of the autocorrelation function Rxx, as mentioned before. Thus, 

Figure 38 and Figure 39 suggest that, in this case, there is no mechanical problem, but a 

system problem, probably due to a low amplification of the electric signal generated by 

the accelerometer. In this case, the signal y(t) preserves the periodic components of the 

reference signal x(t), only with a much smaller amplitude. 

Investigating the available data recorded and other registers in the HUMS helped to 

clarify some issues. In this case, the data in Figure 29 presented several acquisitions with 

very low RMS amplitude. The data for the period reveals a fault described as “NO 

SIGNAL RECORDED,” and a maintenance action related to ATA Chapter 45 was 

required (Central Maintenance System - CMS). After this acquisition point, the RMS 

results were back to normal values, indicating that the maintenance action solved the 

issue. 

C.3 – Signal with time delay errors: may be due to poor synchronous averaging 

This case refers to Helicopter # 2. Figure 40 shows that the two plots (of the 

autocorrelation function Rxx and the cross-correlation function Rxy) are quite similar, but 

one plot has a time delay concerning the other.  

 
Figure 40: correlation function for signals (Helicopter # 2) [21] 

This time difference in the correlation functions means that the starting time of the signal 

collection for the synchronous averaging process may be varying from one case to the 

other. If the starting points for the two cases were the same, the two plots should match, 

if there is no mechanical or system problem. By visual inspection, one can see that a shift 

of one curve on top to the other will give two curves very similar, which may indicate 

that there is no other problem with the aircraft component in the discussion, besides the 

difference in the starting point of the data collection for the two cases. Figure 41 shows 

the phase diagram of Rxx and Rxy for this case. 
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Figure 41: phase diagram of correlations Rxx and Rxy (Helicopter # 2) [21] 

From Figure 41, one can note that the time difference, present in Figure 40, represents no 

significant difference in the phase diagrams of both correlation functions. This graph 

reveals that no physical difference exists between the two cases, except for the triggering 

time for the data collection, which can only be seen in Figure 41.  

In this case, the acquisition is triggered by a magnetic captor located at the Phonic Wheel, 

giving a synchronization “top” to start and end the acquisition of the signal by the 

accelerometer. 

According to maintenance staff, this problem does not represent a particularly critical 

problem, as it represents no mechanical or system failure. The only action that could be 

advised, in this case, would be to perform an inspection or maintenance procedure in the 

magnetic captor at the phonic wheel. 

For this work, this type of problem might not be relevant to be captured or identified by 

the error indicators that would be proposed in Subsection D. 

C. 4 – Signal high amplitude errors: signal amplitude may be too high, with peaks 

corresponding to a non-physical possibility (too much energy in the signal)  

This case refers to Helicopter # 2.  In Figure 29, some cases were identified as having a 

signal with a very high RMS value and having no physical significance. In this case, no 

physical system, when vibrating, will have such high energy, as compared to the energy 

of the reference case. Figure 42 and Figure 53 show a comparison between the reference 

case and one of these faulty cases. In Figure 42, the cross-correlation Rxy (between the 

faulty and the reference signal) is compared with the autocorrelation Rxx (of the reference 

signal). 
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Figure 42: correlation functions for signals (Helicopter # 2) [21] 

In Figure 43, the phase diagrams of Rxy (between the faulty and the reference signal) and 

Rxx (of the reference signal) are compared. 

 
Figure 43: phase diagram of correlations Rxx and Rxy (Helicopter # 2) [21] 

The plot of the autocorrelation function Rxx presents a very low amplitude (when 

compared to the cross-correlation function Rxy) in Figure 42 and a very small size (almost 

like a point, as indicated by the arrow) in Figure 43. 

Differently from the low gain case seen in Subsection C.2, in this case, the signal y is 

random, as highlighted by the phase plot in the form of a cloud in Figure 43, for the cross-

correlation function Rxy. The signal y does not preserve the periodic components of the 

reference signal x and has a very high amplitude. 

Thus, Figure 42 and Figure 43 suggest that, in this case, there is no mechanical problem, 

but a system problem, probably due to the high amplification of a random signal generated 

by an error in the acquisition system. 
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C.5 – Signal with low amplitude and different periodic components 

This case refers to Helicopter # 2 and concerns a case where a low RMS was noted, in 

Figure 29. 

In Figure 44, one can see that the plot of the cross-correlation function Rxy presents lower 

amplitudes than the plot of the autocorrelation function Rxx. Also, different periodic 

components can be seen in the plot of the cross-correlation function Rxy, that were not 

present in the plot of the autocorrelation function Rxx. 

 
Figure 44: Correlation function for signals (Helicopter # 2) [21] 

In Figure 45, the phase diagrams of Rxy (between the faulty and the reference signal) and 

Rxx (of the reference signal) are compared. 

 
Figure 45: phase diagram of correlations Rxx and Rxy (Helicopter # 2) [21] 

Figure 45 corroborates the fact that signal y has low energy (the size of the diagram is 

smaller, as both the amplitudes of R and dR/dt are lower for the cross-correlation Rxy, 

when compared to the autocorrelation Rxx). In addition, the change in the periodic 

components of the signal y is seen in Figure 45, as the shape of the phase diagram of Rxy 

has changed concerning the phase diagram of Rxx. The plot of the phase diagram of Rxy 

shows a clear change both in the correlation and phase and shows that y is not a random 

signal (as it has periodic components). Some of the periodic components of signal x are 

present in signal y, but signal y has additional periodic components, which were not seen 

in the reference signal x. 
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Figure 46 presents the correlation functions in the frequency domain, also indicating that 

the periodic components of signal x are still present in signal y (but with lower amplitude) 

and that a different component has appeared in signal y, at a high frequency (higher than 

the frequency components existing in signal x), which was not present in signal x. 

 
Figure 46: Correlation functions in the frequency domain (Helicopter # 2) [21] 

The signal behavior seems to indicate both the possible presence of a system error (low 

amplitude of the cross-correlation Rxy, and different periodic components in signal y) and 

the possible presence of a mechanical problem (some periodic components of reference 

signal x are still present in signal y, although with a low amplitude). With the available 

information, no conclusion can be made regarding the origin of the defect being either a 

mechanical problem or a system error, or both. 

According to maintenance staff, in this case, the RMS data in Figure 29 has not presented 

acquisitions with a clear problem. Instead, the problem for this case was only seen when 

analyzing the plots related to the data in the time domain, as seen in Figure 44 and Figure 

45. No fault was detected in the period of interest, and no maintenance action was required 

to be performed, related to the component of interest or the acquisition system.   

D – Proposed error indicator 

D.1 – Indicator based on evaluating phase diagram plots of Rxx and Rxy  

As described in Subsection C.3, the phase diagram for the correlation R is a plot of dR/dt 

versus R. A typical phase diagram for Rxx and Rxy is presented in Figure 47. 

 
Figure 47: Phase diagram for Rxx and Rxy The arrows indicate the distances between 

points in the two plots for the same parameter n [21] 
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The proximity between the graphs is given by a point-by-point function d(n), which 

represents the distance between two points, one in the Rxx graph and the other in the Rxy, 

with the same parameter n. This distance is indicated by arrows in Figure 47. A residual 

case can be built as the summation of all distances d(n), for all n points in the plot, as 

indicated in Equation (7).  

𝐷 =
1

𝑵
∑ 𝑑(𝑛)

𝑁

𝑛=1

  , 𝑑(𝑛) = √[𝑅𝑥𝑥(𝑛) − 𝑅𝑥𝑦(𝑛)]2 + [𝑅𝑥𝑥(𝑛)̇ − 𝑅𝑥𝑦(𝑛)̇ ]
2
 (7) 

If the residual between the two curves is small, the autocorrelation Rxx and the cross-

correlation Rxy are expected to represent a system with the same behavior, which means 

that both signal x and signal y would have practically the same periodic content, and thus 

signal y would not represent a system with errors (neither mechanical problem, nor system 

errors). On the contrary, if the residual is high, there are some causes: 

i) The phase diagram of Rxy is very small in shape (when compared to the phase diagram 

of Rxx). This case may represent a random signal y with lower amplitude (phase diagram 

is a cloud, but is almost a point in the plot), or a periodic signal y with lower amplitude 

(phase diagram is a well-defined curve, but is almost a point in the plot); 

ii) The phase diagram of Rxy has a shape of a cloud (with the same magnitude (general 

size) as the phase diagram of Rxx). This case may represent a random signal y with a 

certain amplitude (energy); 

iii) The phase diagram of Rxy is very big in shape (when compared to the phase diagram 

of Rxx). This case may represent a random signal y with higher amplitude (phase diagram 

is a big cloud, and the phase diagram of Rxx is almost a point in the plot), or a periodic 

signal y with higher amplitude (phase diagram is a big, well-defined curve, and phase 

diagram of Rxx is almost a point in the plot); 

In the above-described cases, a correlation is expected, between a change in the signal 

(from x to y, as in cases i, ii, and iii) and a high value of the residual. Thus, an error 

indicator may be defined by high values of this residual, while small values in the residual 

would not represent an error in the signal. 

E – Numerical results for cases identified from given data 

E.1 – Sampling errors: frequency sampling may be too low 

Figure 48 shows the plot of the residuals of the correlations (Rxx and Rxy) in the phase 

diagram, for 208 cases of vibration data for Helicopter # 1. The plot of the residuals is 

given by the sum of the geometric distances between the pairs of points in the phase 

diagram, one given for the reference case, and the other for the faulty case, both for the 

same value of the time parameter. As seen in Figure 48, sampling errors were identified 

in this case, as the time plot presented a non-physical shape.   
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Figure 48: Residuals of distances in the phase diagram for vibration data with 

sampling errors [21] 

In Figure 48, all acquisitions were poorly sampled (sampling frequency was not high 

enough, leading to errors in the analog-digital conversion), thus no clear information of 

possible system errors can be obtained from the residual in this case. 

E.2 – Signal with low gain errors: amplification gain may be close to zero 

Figure 49 shows the plot of the residuals of the phase diagram for the correlations (Rxx 

and Rxy), for 500 cases (out of the 12169 cases) of vibration data for Helicopter # 2, 

containing the case in which a signal with a very low amplitude was identified in Figure 

3.4 (acquisition number 110, in Figure 49). 

 
Figure 49: Residuals of in-phase diagram for vibration data with low amplitude 

errors [21] 

In the discussion of cases 2 to 5, due to the high variation of the amplitudes of the residual, 

the vertical axis of the plot was set on a logarithmic scale, so all points (of high and low 

amplitudes) could fit in the plot. 

The region where the signal has low amplification appears as a flat region in the plot (a 

“plateau”, between acquisition numbers 110 to 145). One can see that the residual values 

in this region fit in the range of the residual values obtained in other regions, where no 

failure is envisaged. Thus, this indicator does not provide a clear indication of the failure 

region (in which signal amplification is low), as its value in this failure region remains 

inside the range of residual values typically obtained. 
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D.3 – Signal with time delay errors: may be due to poor synchronous averaging 

Figure 50 shows the plot of the residuals of the phase diagram for the correlations (Rxx 

and Rxy), for 500 cases (out of the 12169 cases) of vibration data for Helicopter # 2, 

containing several cases in which a signal with a time delay (such as the one presented in 

Figure 5.3.1) was seen by inspection of the signals in the time domain. This case has 

appeared several times in the data analyzed. 

 
Figure 50: Residuals of in-phase diagram for vibration data with signal phase errors 

[21] 

From expert information by the HUMS team, this problem does not represent a 

particularly critical problem, as it represents no mechanical or system failure, and 

typically no maintenance action is advised, in this case. For this case, the error indicator 

provided by this residual does not point to any region, and, thus, one can infer that this 

indicator is robust to this time delay error in the signal.  

D. 4 – Signal high amplitude errors: signal amplitude may be too high, with peaks 

corresponding to a non-physical possibility (too much energy in the signal)   

Figure 51 shows the plot of the residuals of the phase diagram for the correlations (Rxx 

and Rxy), for 500 cases (out of the 12169 cases) of vibration data for Helicopter # 2, 

containing the case in which a signal with a very high amplitude was identified in Figure 

3.4. This case is represented in the plot of Figure 51 (acquisition case 155). 

 
Figure 51: Residuals of in-phase diagram for vibration data with high amplitude 

errors [21] 

The region where the signal has high amplification appears as a clear spike in the plot. 

Thus, the error indicator provided by this residual points out this type of system defect 

(in which signal amplification is high). 
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D.5 – Signal with low amplitude and different periodic components 

Figure 52 shows the plot of the residuals of the phase diagram for the correlations (Rxx 

and Rxy), for 500 cases (out of the 12169 cases) of vibration data for the EC 225, 

containing one case in which a signal with low amplitude and different periodic 

components (such as the one presented in Figure 5.5.1) was seen by inspection of the 

signals in the time domain. This case is represented in the plot of Figure 51 as acquisition 

case 494. 

 
Figure 52: Residuals of in-phase diagram for vibration data with high signal noise 

errors [21] 

From web HUMS information, no alarm was triggered at the time this acquisition was 

performed. For this case, the error indicator provided by this residual does not point to 

any region, and, thus, the indicator has not captured this type of system error.  

5 Mechanical models for tail drive shaft 

In this Section, the development of a mechanical model for helicopter tail drive shaft and 

Gaussian and Mixture Model algorithms are applied [36]. The phenomenon of the flexible 

coupling layer buckling is very complex, and it was analyzed using the software Abaqus®. 

The main objective was to check if the same opening between layers would be reproduced 

by the model. It is important to point out that this type of dynamic phenomenon may have 

an impact on the component life.  

Statement of the problem 

During a laboratory test, it was observed a buckling of the flexible coupling (Flectors) 

mounted on one side of the MGB shaft. A simplified diagram of the assembly is displayed 

in Figure 53. 

 
Figure 53: Schematic of assembly [36] 
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Since such a buckling would represent increased stress applied in the region, possibly 

anticipating fatigue damage, a study of the implication of misalignment and its 

relationship with the buckling phenomenon was performed. 

It is assumed that the bench shaft bearing is rigid and the MGB shaft bearing is flexible. 

The main objective of the present analysis is to reproduce and explain buckling with radial 

and angular misalignment, as per Figure 54: 

 
Figure 54: Misalignment modeling [36] 

To properly verify the impact of such misalignment in the structure, a finite element 

model of the assembly was created on Abaqus®. 

Finite element static model 

A 3D finite element model was created to address the buckling issue [36]. The mesh was 

generated with Abaqus 6.12.1 [37]. The shafts are thin cylinders (4000 elements each 

shaft) and the Flector is modeled including layers (1900 elements each layer), bolds, and 

a washer (rigid link). Geometry and mesh are displayed in Figure 55. 

(A) (B) 

  
Figure 55: FEM model (A) Geometry (B) Mesh [36] 

All degrees of freedom but the one related to axis rotation were set to zero on the left end 

of the shaft while a displacement was imposed on the other end as well as a torque 

equivalent to the one under which the structure is submitted when in operation, as 

displayed in Figure 56.  

 
Figure 56: Boundary conditions and Loads applied [36] 

Jorge, Ariosto B., et al. (2022)           Vibration Analysis and HUMS of Dynamic Components of Helicopters pp. 451-518

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 511



The total displacement was set to obtain an angle of misalignment of 1o, for the shaft by 

determining Uy and Uz. And an analysis considering geometric nonlinearities and 

frictionless contact between each layer of the Flector was carried out. Due to the geometry 

of the problem, the zone expected to have the greater values for stress is right in the middle 

of the Flector, nevertheless, after 19o of misalignment is applied the response is as shown 

in Figure 57. 

 
Figure 57: Difference on maximum stress spot – Expected vs. Calculated [36] 

The unexpected stress concentration may be explained by a separation of the outer 

laminae of the coupling in what could be called a buckling phenomenon. One can check 

in Figure 59 that this buckling provides a stress concentration that increases the stress on 

that spot. The buckling observed by the model is coherent with the phenomenon observed 

in the laboratory. 

 
Figure 58: Maximum Stress spot after 1º of misalignment is applied [36] 

By selecting the points right on the opening zone, a difference between their total 

displacements will be a good approximation for the value of the gap opening. This value 

is not exactly since one cannot guarantee that the maximum separation is not in the 

interior of the structure. The evolution of the separation while applying the displacement 

(Loads and boundary conditions as seen in Figure 56) is shown in Figure 59. 
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Figure 59: Evolution of the gap opening (mm) vs Degree of Shaft Misalignment [36] 

One can notice, from Figure 59, a smooth, non-linear variation of the gap opening with 

the shaft misalignment. Along each revolution, the “breathing” of the gap between Flector 

layers will account for important phenomena which might require further dynamic 

analysis to determine the possible influence on the component vibration behavior and 

fatigue life. 

Finite element dynamic model 

The same model from Figure 55 was then submitted to dynamic analysis. Before the 

implicit dynamic step, a torque step and a misalignment step were carried out. A 

representation of the model may be seen in Figure 60. 

  
Figure 60 – Schematic modeling of the shaft for dynamic analysis [36] 

In the model, the bearing and its support are considered rigid. Boundary conditions were 

applied similarly as displayed in Figure 56. According to the applied boundary condition, 

the reaction forces and moments are measured on the bearing region to simulate the 

response obtained in a real aircraft setup, which is presented in Figure 61. 
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Figure 61: Aircraft simulated setup [36] 

The procedure for analysis follows: 

1. Static analysis is carried out in which displacements are imposed (black arrows) to 

simulate a 1° misalignment angle 

2. Keeping the 1 degree of shaft misalignment, a torque equivalent to 28daNm is applied, 

simulating the torque transmitted through the tail drive shaft 

3. A dynamic analysis is then started, with rotating speed increasing in a ramp, as displayed 

in Figure 62. The initial angular acceleration applied must be small, to avoid convergence 

issues to take place and to be physically consistent with the real operational conditions. 
(A) (B) 

  
Figure 62: Initialization of applied rotational speed from rest (A) per revolution (B) 

vs. time (s) [36] 

The results were analyzed and the Fast Fourier Transform of the force and moment 

response on the bearing location was calculated for the portion of the analysis where the 

rotational speed was constant. An average was made between the 6 turns similarly 

presenting constant speed as the synchronous average is calculated on the embedded 

system. This arrangement simulates an accelerometer set on the bearing and monitors the 

6-axis of freedom on the region. The FFT of reaction response is shown in Figure 63. 
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Figure 63: FFT of the reaction response for the 6 degrees of freedom [36] 

From the figure, as expected and stated in the literature, a high peak at 1Ω and 2Ω are 

obtained. This is the typical response for a parallel-angular misalignment simulated by 

the conditions applied. The response is much clearer, and a special study must be carried 

out for Mx and Mz. These reaction moments presented high values that could be the root 

cause and explain the cracks that appeared on the coupling during the test. Another 

analysis, like the one here presented, is to be carried out with a crack on the outer layer 

of the coupling for the sake of comparison. 
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5 Concluding Remarks 

This chapter presented a compilation of technical material and research work compiled 

or prepared by the authors and collaborators on the topics of vibration analysis and Health 

and Usage Monitoring Systems (HUMS) of dynamic components of helicopters. 

The chapter concentrated on a discussion of vibration analysis techniques and the use of 

a framework of Health and Usage Monitoring Systems (HUMS) for helicopter dynamic 

components. 

Some helicopter vibration reduction techniques focused on balancing and tracking the 

helicopter rotors are discussed in a separate chapter, concentrated on model-based 

parameter identification for balancing and tracking a helicopter's main rotor using once-

per-revolution vibration data. 
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Abstract 

 This chapter presents a compilation of the research work accomplished by authors 

and collaborators on the topics of model-based balancing and tracking of the 

helicopter main rotor using once-per-revolution vibration data. Simplified analytical 

modeling is presented for the analysis of vibration signal in the monitored structure of 

any rotorcraft for the detection of defects, equivalent to a hub blade unbalancing and 

out-of-tracking blades. Those degradations are common in the main rotor and are the 

greatest source of periodic excitations transmitted to the fuselage. The vibratory 

responses under analysis are limited to the one-per-rev fundamental frequency of the 

main rotor and were numerically simulated both in FORTRAN and in MATLAB(R) 

environments. The direct problem is presented in two parts: The rotor-fuselage system 

is initially modeled as isotropic, and then anisotropies are introduced in the 

formulation, to simulate defects that generate vibration information (in amplitude and 

phase) at the selected points where accelerometers were located. The application of 

the model involves comparisons of the results from the obtained non-linear system of 

equations with either the information contained in the maintenance manual (for the 

case study of a four-blade main rotor helicopter) or with preliminary experimental data 

obtained by flight tests (for the case study of a three-blade main rotor helicopter. The 

comparison between the simulation results and either the maintenance manual 

information or the flight test measurements considered the accelerometers placed at 

the points of the fuselage as defined in the flight manual by the aircraft manufacturer. 

Keywords: vibration of the helicopter rotor; vibration analysis; helicopter dynamic 

components 
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1 Helicopter vibration reduction techniques of balancing and tracking of the 

main rotor: introduction and chapter outline  

This chapter discusses helicopter vibration reduction techniques focused on balancing 

and tracking the helicopter rotors and concentrated on a discussion of model-based 

parameter identification for balancing and tracking a helicopter's main rotor using once-

per-revolution vibration data. 

Signal-based vibration analysis techniques and the use of a framework of Health and 

Usage Monitoring Systems (HUMS) for helicopter dynamic components and aircraft 

engines are discussed in a separate chapter. Some HUMS systems include built-in features 

for the use of vibration data to help main-rotor and tail-rotor balancing and tracking. 

1.1 Introduction 

In the study of helicopter dynamics, rotor-induced vibration can be seen to arise from 

flapping and lead-lag blade motion, in different flight conditions. For detailed discussions 

on helicopter aerodynamics and dynamics, see references (Bramwell et al., 2001), 

(Bielawa, 2006), (Johnson, 2013a), (Venkatesan, 2015), (Padfield, 2018). Throughout the 

operational life cycle of a helicopter, routine corrective maintenance - reactive to the 

failure that has already occurred - is carried out to counter problems of maladjustment 

and misalignment of its rotating systems, including also problems due to other 

components secondarily degraded as a result of these defects in the rotor system. These 

maintenance procedures increase the helicopter operating costs, i. e., material, man-hours, 

and execution of test flights, including the loss of profit associated with the aircraft's 

unavailability. Mass unbalance and blade tip trajectory misalignment (out-of tracking) are 

the most common degradations foreseen in the main rotor, which are, for dynamic 

reasons, the source that contributes the most to the periodic excitations transmitted to the 

fuselage. For references on main rotor balancing and tracking models and procedures, see 

(Rosen & Ben-Ari, 1997), (Ben-Ari & Rosen, 1997), (Ventres & Hayden, 2000), (Wang 

& Danai, 2003), (Wang et al., 2005), (Miller & Kunz, 2008). For references on tail rotor 

balancing and tracking models and procedures, see (Kunz & Newkirk, 2009), (Damy, 

2017). 

1.1.1 Dynamics of structures: some concepts on vibration 

In engineering, the term “structure” can be described as a system created to support loads, 

which are vector quantities, and, as such, it is a necessary and sufficient condition that 

they are defined by their magnitude, direction, and point of application. A load is said to 

be dynamic when any of these vector characteristics are functions of time, and thus the 

structure is also said to be dynamic. Deterministic dynamic loads can assume periodic 

forms, that is, they are repeated in time (harmonic or not), or non-periodic forms (transient 

or arbitrary). This study is restricted to deterministic periodic harmonic response loads. 

In the sense of state variation (position, velocity, etc.), the dynamic displacement 

associated with the second problem, in its most basic form, is represented by the harmonic 

function (sine or cosine trigonometric function). This function is the product of the 

amplitude of motion X0 by a periodic function whose argument is the phase (composed 

of the initial phase at t=0) added to the product of time and the linear frequency f: X = X0 

sin(Ωt). Figure 1(a) shows a representation in time and frequency, in which the 

displacement “X” of a point refers to a linear quantity of length. 
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(a) (b) 

Figure 1: (a) Discrete (harmonics - dashed lines) and total (solid line) vibration curves in 

the time domain; (b) Representations in the time domain (on the left) and the frequency 

domain (on the right) - adapted from (Mobley, 1999) 

These displacement profiles can be presented in the time domain (abscissa in s, for 

example) or frequency domain (abscissa in Hz, for example), as can be inferred from 

Figure 1(b). Their conversion takes place by techniques based on the application of the 

Fourier Transform. 

When vibration information is plotted as amplitude or phase versus time, it is the time 

domain information profile, also called the global method for seeing the composition of 

all frequencies. However, these data are difficult to use in continuous systems modeled 

as multibody ones, as they represent the total displacement. This time-domain 

representation makes it difficult to verify the contribution of each oscillation source even 

after discretization as multiple degrees of freedom. And when the complex signal is 

composed of several sources and harmonics, one might have the effect of masking the 

defects. In obtaining graphical information, approximate methods of graphical analysis 

such as peak value, peak-to-peak, or peak RMS value can be used. Meanwhile, in the 

frequency domain, everything is clearer through the identification of amplitude and 

phase, which refer to the Theory of Complex Numbers associated with the solution of the 

governing differential equations of the oscillating systems. 

1.1.2 Vibration: peculiarities of rotary-wing aircraft 

Since helicopter engineering demands a dynamic set composed of a large number of 

rotating elements (in constant change of position in time), such as motors, transmission 

shafts, pumps, and fans, in addition to the rotors themselves, the helicopter is subject to a 

wide spectrum of vibration. In this chapter, the study is limited to working with vibrations 

associated only with the main rotor. 

Helicopter rotor vibrations are evidence of the aeroelastic phenomena related to the 

dynamics of the rotating movement of the blades, submitted to the complex interaction 

of periodic inertial and aerodynamic forces of a non-linear nature with their flexible and 

damped structures. As they greatly influence the flight qualities, together with the 

structural loads, they delineate the boundaries of the operational flight envelope as shown 

in Figure 2. 
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Figure 2: Vibrations (in terms of frequency and amplitude), delineating limits to flight 

envelopes in flight mechanics modeling - adapted from (Padfield, 2007) 

The main rotor, due to its dimensions and vibration emission spectrum, is the main source 

of vibration, whose transmitted frequencies are multiples of the product of the number of 

blades “N” by the angular frequency of rotation “Ω”. The amplitude of the periodic efforts 

decreases as their harmonic frequencies are increased, that is, multiples of the 

fundamental frequency. The blades' responses to the aerodynamic and inertia forces 

(forces and moments) that excite them interfere at the level of the rotor hub, where they 

are joined. Therefore, it acts as a filter during the transmission of forced vibrations 

(resulting from all blades) to the fuselage, adding and subtracting amplitudes. The 

fuselage, generally of a semi-monocoque design (which is a structure consisting of thin 

coverings fixed to frames and spars), reacts according to its flexible vibratory modes (in 

flexion and torsion). The vibration at a particular point in the helicopter depends on the 

fuselage's response to these forces transmitted by the rotor hub. To calculate the fuselage 

response it is necessary to know the frequencies and the modal shapes of the fuselage, 

which are difficult to obtain. Helicopter rotors are subject to high periodic forces due to 

the highly flexible blades and the severity of the non-stationarity of the aerodynamic 

environment, which leads to the wear of critical components to the airworthiness of these 

aircraft (Ganguli et al., 1998). The generation of oscillating aerodynamic loads at 

frequencies multiples of the rotational speed are fundamental to the rotor's operation in 

forwarding flight, and therefore these forced vibrations cannot be eliminated. Figure 3(i) 

illustrates the different velocity components that make up the linear velocity, as well as 

its variations throughout the blade rotation cycle, with the variation of lift on the blade. 

This behavior characterizes the lift asymmetry of the rotor when moving forward, which 

also brings the phenomena, shown in Figure 3(ii) that limit its performance under high 

displacement speeds (Müller et al., 1999). Among these are the disturbing interaction of 

vortices at the tip of the predecessor blade, detachments on the leading blade (due to shock 

wave rides linked to air compressibility) and reverse flow in the trailing blade (flow from 

the trailing edge to the leading edge), with temporal loss of sustain-dynamic stall 

(Padfield, 2007). Added to this is the Gyroscope Effect (manifestation of the Principle of 

Conservation of the Angular Momentum of the rotating system), of an inertial nature, 

which forces the design of the chain of command/cyclic platters to compensate for the 

displacement of the rotor response, in its majority, at 90º about the command input. 
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(i) (ii) 
Figure 3: (i) For forwarding flight, distributions of (a) speed components in the rotor 

plane; (b) support on the blade at 90º and 270º of azimuthal angle - adapted from 

(Prouty, 1985); (ii) Limiting phenomena of rotor performance in high-speed flights - 

adapted from (EUROCOPTER, 2012) 

Vibrations at the fundamental frequency of once-per-rev (1/rev), the focus of this 

research, are distributed in the vertical and lateral (rotational) planes. Another effect, the 

Coriolis effect, is related to the Coriolis force, acting on a rotating body and applied 

tangentially to its rotation. Thus, acting by flapping on the blade, creates the lead-lag 

motion. This effect is present by the tendency of the body to maintain its angular 

momentum (hence it’s another inertial force) when simultaneously some of its mass 

elements are being moved radially in the plane of the disk, as a component in the blade 

flapping movement. For the detection of rotor defects, it is necessary to know the 

relationship between a defective blade and the response behavior of the aircraft. This 

knowledge can be numerically obtained by computer simulations of models based on the 

dynamics of these systems, where techniques based on artificial intelligence, until a 

properly trained artificial neural network, can be implemented permanently embedded in 

an aircraft to detect and identify damage (Ganguli et al., 1998). The literature reports 

several works regarding the detection of defects through vibration, as well as solutions to 

absorb or isolate unwanted permanent vibrations not associated with damage to systems. 

In (Ganguli et al., 1998) an aeroelastic analysis is presented based on finite elements in 

time and space to simulate a defective articulated rotor, both in hover and in flight in front 

of an SH-60 aircraft, validated through flight tests. In that work, it is stated that only 

localized structural damage such as cracks and delamination in the blades are not 

detectable by the global methodology. Several defect simulations indicate that global 

faults, such as lag damper defects, tab damage, pitch-link mismatches, or imbalances 

along the blade string, are detectable by remote measurements of global parameters such 

as fuselage vibration and deflection of the blades. Hence, those authors cite those special 

methods such as robust laser interferometer, photoelastic and ultrasonic techniques, and 

application of acoustic emission sensors complement these methods. 
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The combination of these approaches allows the design of devices for monitoring the 

condition of systems of this type. Simulated faults can be primary (only one type of rotor 

fault) or composite (a combination of more than one). The detection of the latter is 

important to highlight catastrophic failures such as cracks among the other fault types 

(Ganguli et al., 1998). However, for simplicity's sake, only primary faults are numerically 

simulated, such as rotor unbalance and maladjustment (out-of-tracking) of the blade tip 

trajectory, on one blade at a time. 

1.1.3 Rotor unbalance and blade tracking problems 

The oscillatory movement under consideration in this study presents itself as a vibration 

of lateral and vertical components (in 1Ω) and is associated with the imbalance and 

tracking misfits. However, for completeness, it is worth mentioning other less common 

causes, for example: in articulated rotor helicopters (such as in Sikorsky’s Sea King 

helicopter), defective dampers can cause the blades to be out of phase, producing the same 

effect. The lateral and vertical vibrations acting on the rotor interact in a complex way, in 

such a way that the practice recommends correcting the trajectory of the blades first, 

followed by the balancing of the masses, according to the procedures described in the 

maintenance manual (MET, in the case of this study) and with the aid of specialized 

equipment that suggests corrections from the processing measures the vibration amplitude 

(the accelerometer), its phase angle (the “phasor”) and the difference in the trajectory of 

the blades (the “strobex”). The correction of vibrations due to unbalance occurs in the 

phases of hovering inside the ground effect (IGE) and outside the ground (OGE), while 

the corresponding correction by trajectory difference (tracking) occurs in displacements 

in maximum continuous power (MCP) – straight and level flight, and also a curve at 45º. 

In the hover phases, the ground effect can occur, in which the presence of the ground 

changes the intensity and direction of the airflow around the rotor (IGE). With the rotor 

at a height of one rotor diameter, there is no more ground effect (OGE). 

Main rotor imbalance issues 

Unbalance is the most common cause of vibration. The main rotor is statically unbalanced 

when its center of gravity is outside the axis of rotation of this rotor. Among the two 

adjustment alternatives, there is the so-called single-plane balancing, which involves 

changing the axis of the bearing supports (impractical) or changing the rotor masses 

(Figure 4-A). The other case is the dynamic unbalance, established when its main axis of 

inertia (which contains its center of gravity) does not coincide with the structural axis of 

its tree due to the eccentric mass(es). In this situation, when the centrifugal forces and 

associated moments overcome the opposing forces of reaction in the bearings, the 

flexibility of the shaft allows oscillatory displacements in 1Ω in the plane of the main 

rotor (longitudinal and lateral). The corrective actions consecrated as a maintenance 

solution to carry out the balancing (said in two planes) consist of the redistribution of 

weights in the rotor (generally acting on the blade handle, according to the decomposition 

of the balancing mass, and according to the number of blades) in such a way that those 

two axes coincide (Figure 4-B). The second case can compromise the first, however, if 

the former is satisfied, then the latter is also resolved (which alone does not guarantee the 

latter). 
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Figure 4: Blade adjustments for unbalance: (A) static moment and (B) dynamic moment 

- adapted from (EUROCOPTER, 2010) 

Main rotor blade tracking issues 

The maladjustment (out-of-tracking) in the trajectory of the tip of the blades referring to 

the plane of rotation is related to differences in lift between the blades. These differences 

result from changes in the blade’s pitch angle and generate vertical vibrations at 1Ω. 

However, these height variations create the Coriolis Effect, arising from components of 

the instantaneous mass distribution, changed radially in that plane, thus also generating 

lateral vibrations. Due to this effect and the difference in drag of the blades, the trajectory 

of the blades is first corrected, to later conduct the balancing of the masses. Corrective 

actions aim to intervene in the blade height through the blade pitch angle by intervening 

in the length of the blade pitch control rod (pitch link), which promotes a uniform rotation 

throughout the blade around its pitch axis and/or by modifying the position of the 

compensators (or tab) available for this (changes the bowing of the blade profile, 

generally, in its outermost sections, promoting structural twists around the elastic axis of 

the blade by the action of aerodynamic forces resulting from the alteration of the blade 

lift distribution, therefore dependent on the azimuthal position, whose effect reverses that 

undesirable height of the blade. In the present work, for simplicity in the adopted 

modeling, there is no torsional degree of freedom for the blade. Hence, tab adjustment 

cannot be a corrective action in this case. 

1.2 Chapter outline 

Section 2 presents a discussion and details of vibration reduction techniques for helicopter 

rotors, from the point of view of the operational user and the technical maintenance of the 

helicopter. Section 3 presents a discussion and details of model-based helicopter main 

rotor balancing and tracking (case study: a 4-blade helicopter), including a subsection 

with perspectives on the inverse problem. Section 4 presents a discussion and details of 

model-based helicopter main rotor balancing and tracking (case study: a 3-blade 

helicopter), with modeling adapted from the previous 4-blade helicopter case. Section 5 

presents some concluding remarks. 
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2 Vibration reduction techniques for helicopter rotors 

This section is based on the article (Jorge & Torres Filho, 1989), presented at “XI 

Simpósio de Segurança de Aviação da MB”, SIPAERM, 1989, Rio de Janeiro, RJ. 

2.1 Vibration reduction for rotors  

The vibration reduction techniques available for the helicopter users are concentrated in 

the correction of the trajectory traveled by the blade tips (adjustment of the blade “track”) 

of the main and tail rotors, and/or in the correction of any imbalance present in these 

rotors. The statement of the problem, at the user level, is detailed below. In addition to 

vibration reduction techniques, some details of the equipment used for these purposes are 

described, as well as some prospects for the future. 

2.2 Objectives of the Vibration Reduction  

The reduction of vibrations has, among others, the objectives of: 

a) Reduce the probability of failures in structural components before useful life expires. 

Components have an estimated life based on a certain magnitude of cyclic loads. In this way, 

considering that there is a direct relationship between the vibration level of the structure and 

the cyclic loads acting, a high level of vibration shows that the structural components of the 

helicopter are being subjected to unforeseen efforts consequently, present a high probability 

of in-service fatigue failures. 

b) Minimize the effects of tiredness and fatigue on the crew. Prolonged and repeated exposure 

to vibrations of different frequencies, amplitudes, and directions can cause various types of 

aggressions that essentially consist of headaches, tinnitus, general malaise, feeling of 

drowsiness, general weakness, irritability, a reduction in the will and the ability to 

concentrate, a reduction in reflexes, a psychic depression as well as fatigue of the eyes and 

ears. These disturbances, depending on their intensity and persistence, can decisively 

contribute to pilot fatigue, as well as helicopter accidents. 

Just for illustration, helicopter main rotors typically rotate between 3 and 7 Hz and the 

main vibrations perceived in the structure vary between 3 and 22 Hz; tail rotors and other 

accessories rotate at higher frequencies. 

2.3 Causes of Vibration in helicopter rotors 

The most common causes for the occurrence of vibration are categorized in 2 groups, 

according to operator procedures to mitigate the efforts that caused the vibration: 

a) Unavoidable causes: 

I. The variable aerodynamic forces resulting from the cyclic movement of the blades are 

necessary for translational flight. It is found that such forces predominantly induce 

vibrations at the multiple frequencies of the aircraft's main rotor rotation times the number 

of blades, that is, for a 4-blade helicopter with a main rotor rotation speed of 340 RPM 

(5.7 Hz), the cyclical variation of the pitch of this rotor blades will cause efforts that will 

induce vibrations in the frequencies of 22.8 Hz, 45.6 Hz, 91.2 Hz, etc., in the aircraft. 

These efforts increase with the aircraft's translational speed. 

II. Centrifugal forces resulting from CG variation from the flapping motion of the blades, 

are necessary to maintain translational flight. The resulting vibration occurs in the plane 

of the rotor, at the rotation frequency of the main rotor.  

III. Aerodynamic forces arise from the airflow over the rotors, acting on the helicopter 

fuselage, or from turbulence and gusts on the aircraft. 
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b) Avoidable causes 

I. Unbalance of rotating parts and rotors: unbalance always exists, to a greater or lesser 

degree, in any set or rotating part and is characterized by vibration that occurs once per 

rotation as shown in Figure 5. 

 
Figure 5: Unbalance (rotating parts / rotors) [Adapted from (Jorge & Torres Filho, 

1989)] 

Imbalance occurs when the center of mass of the rotating body is different from, or farther 

from, the center of rotation of that body. If the center of mass and the center of rotation are 

equal, the system is said to be balanced. As the center of rotation cannot be moved, the 

solution is to move the center of mass, adding weights in opposition to the inertia force 

produced by the imbalance, which is of form F = M.r.ω2, where: (i) F = Force produced by 

unbalancing; (ii) M = Mass of the set; (iii) r = Radius (radial position of the center of mass); 

and (iv) ω = Angular Velocity. 

Vibration at the frequency of once per revolution is not always due to unbalance but could be 

indicative of another problem (such as mechanical backlash). The characteristics of unbalance 

are: (i) the vibration occurs at the frequency of once per revolution; (ii) the phase is stable. 

For example, if we are trying to balance a tail rotor that exceeds established vibration limits 

and the phase indication is not stable, this could be an indication of mechanical clearances 

rather than unbalance; and (iii) the amplitude of vibration increases with increasing rotational 

speed. 

II. Helicopter rotor blades 

1. Flying out-of-track causes elevated levels of vibration in the direction perpendicular to 

the rotor's plane of rotation at a frequency of once per revolution. The fact that all the 

blades are flying in the same plane does not always mean, however, that the aircraft will 

fly smoothly. Other aerodynamic forces may be involved and adjusting the blades to fly 

slightly out of the plane could as appropriate, counterbalance these dynamic forces to 

provide a smoother flight for the aircraft. 

The rotor blades of a helicopter must always travel the same path, which often does not 

occur, causing the aircraft to vibrate. If each blade on a rotor were identical in profile, 

torsion, weight distribution, stiffness distribution, and head installation, then, in steady 

flight, it would fly along the same path as the blade that preceded it in motion. In practice, 

however, not all blades are identical in these characteristics and the loss of track can 

always be related to effects classified as aerodynamic, dynamic, or a combination of the 

two, which is indeed aeroelasticity. 
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The major cause for out-of-track blades is when identical blades present unequal itch 

angles rotor and therefore generates different lifts. As this can easily occur, all helicopters 

have pitch control rods whose length can be adjusted in small increments between the 

rotating swashplate and the blades. Another common source of track loss is when the 

blades are attached to the head with the same collective pitch angle but produce different 

lifts because they are not identical. In this case, an adjustment to the pitch control rod 

may or may not bring the blade into the perfect track. If the differences between the blades 

are in the airfoil profile or the torsion distribution, adjustments are made to the trailing 

edge of the blade, slightly tilting an appropriate trim tab or the trailing edge itself, when 

possible. These changes have two effects: they change the zero-lift angle of the airfoil 

and produce a local pitching moment during flight, which tends to twist the blade to a 

different torsion distribution when in forward flight when compared to the existing 

torsion distribution of the blade when at rest. 

The fact that the blades are out of track can also sometimes be related to a difference in 

balance along the chord between two otherwise identical blades. Centrifugal forces, 

operating on the mass elements close to the leading and trailing edges, produce a torque 

whose pitching moment tends to decrease the angle of attack of the blade profile, causing 

it to fly low. If this effect is greater on one blade than the other, due to the different weight 

distribution, that blade will twist downward more than the other and therefore have a 

lower lift in flight. 

2. Unbalanced: cause vibration problems in the rotor plane at the frequency of once per 

revolution, as seen above (Avoidable Causes, item I). Thus, for the main rotor we will 

have vibrations in the lateral and longitudinal directions, and for the tail rotor, in the 

vertical and longitudinal directions. 

3. With defects in the assembly, components, or installation: if the defect affects only one 

blade, we will have a vibration at the frequency of once per revolution. An indication of 

this type of defect appears in situations where, when trying to balance or track, the phase 

becomes unstable before we reach a specified threshold. If the defect occurs in items or 

installations that affect all rotor blades, we will have high levels of vibration at foot pass 

frequencies (2, 3, 4, etc. times per rotation, depending on the number of rotor blades). 

2.4 Vibration Reduction Techniques for helicopter rotors 

a) Balancing the main rotor 

1) Amplitude and phase of vibration. 

Helicopter vibrations are caused by external forces, due to unbalanced rotors. These 

efforts are periodic and generate a vibratory movement at all points on the aircraft. For 

this case of forced vibrations, the amplitudes of displacement (X), velocity (V), and 

acceleration (A), for a given excitation frequency, are related in the form A = ωV = ω 2X, 

where ω is the vibration frequency. 

In terms of phase, we have that acceleration is 90 degrees out of phase with velocity and 

180 degrees out of phase with displacement. For a given frequency, the time delay 

between the forced response (vibration at a point of the structure, in a given direction) 

and the excitation (an external effort that caused this vibration) can be expressed in terms 

of the clockwise phase, whose angular value ( measured in degrees or hours of a watch) 

can be measured directly on the rotor, by using vibration sensors (accelerometers) and 

synchronism signal generating devices at that frequency (magnetic pick-up, optical 

pickup, etc. .) or reference points (such as reflective tape). 
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2) Types of Balancing 

Unbalance only occurs in the rotor plane (the plane perpendicular to the rotor's axis of 

rotation) and, therefore, it is sufficient to apply static balancing techniques. Normally, 

field balancing is chosen, with the rotor installed in the aircraft and its normal rotation 

regime, with the following advantages: (i) the removal of aircraft rotors is avoided; (ii) 

inaccuracies resulting from friction in the static balance benches are avoided; and (iii) the 

vibration measuring equipment is portable. 

3) Field balancing methods 

a) Balance chart. The amplitude and phase of vibration are measured and plotted on suitable 

balance charts, which provide the values of the necessary balance masses, as well as their 

installation position on the rotor. However, it may be necessary to make corrections to the 

balance chart to adapt it to the aircraft, because the vibration amplitude and phase vary as a 

function of the mass and stiffness of the structure. Thus, differences may occur between the 

"average" aircraft used by the manufacturer in determining the chart and the aircraft whose 

rotor is being balanced. The correction in the chart is made by direct comparison between 

the results obtained and those predicted. 

b) Method of the two measures. The method consists of obtaining the vibration amplitude and 

phase values before and after the addition of a known balancing mass at a defined location 

on the rotor and, from these data, the position and value of the balancing mass to be placed 

are graphically or analytically determined. 

c) Three-mass method (four measures). This method is used when the measuring equipment 

of the vibration phase is not available. The method consists of placing a known balance 

mass in three angular positions: 0, 90, and 180 degrees and using the difference of the 

vibration phase and amplitude values about the initially measured value, to determine the 

position and value of the balance mass. 

During the balancing procedure, any unexpected phase change after the addition of 

balancing masses may represent the existence of gaps in the set to be balanced (Avoidable 

Causes, item V, above). In this situation, the balancing process must be interrupted until 

the origin of the gap is found and the problem corrected since the existence of gaps 

prevents the use of Balance Charts and the 2- or 4- measurement methods. 

b) Equalization of the lift force of the main rotor blades (adjustment of a track) 

Equalization is performed by changing the length of the rotor pitch control rods, which 

modifies the angle of attack equally along the length of the blade and, consequently, the 

blade lift; or by changing the angle of the blade tab (sometimes known as trim tab), which 

changes the blade pitch incrementally along its length, due to the variation in its torsion. 

A rod length adjustment modifies the blade lift force in all flight conditions, while a tab 

adjustment only works when the aircraft is moving at higher forward speeds. While for 

the first case the angular variation of the blade pitch is of mechanical origin, for the second 

case this angular variation of the blade pitch is of aerodynamic origin. Thus, the variation 

in the blade torsion introduced by the tab is proportional to the air displacement over the 

blade section, the pitch angular variation becomes dependent on the forward flight speed. 

Figure 6 shows the variation in the position of the tip of the blades of a helicopter as the 

flight conditions change. For each blade, we have the position of the aircraft on the 

ground, in hover, and at 3 forward flight speeds. If the blade tends to fly high or low in 

all flight conditions, the typical adjustment will be at the control rod. If the blade tends to 

go out of track as forward flight speed increases, the typical adjustment will be in the tab. 
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Figure 6: Blade tip path versus flight condition: a visualization of required adjustments 

– adapted from (Jorge & Torres Filho, 1989) 

c) Main rotor blades: coupling between balancing and equalization of the lift force 

If the main rotor blades do not produce the same lift force (L), they will be in equilibrium 

with different flap angles (θ), as shown in Figure 7. Thus, the loss of track is characterized 

by the blade tips rotating in different planes (different θ angles). 

 
Figure 7: Blade equilibrium conditions – adapted from (Jorge & Torres Filho, 1989) 

With L.a = Fc.b and sinθ = b/a = L/Fc. Equal blades (same Lift L) lead to the same Fc, and 

thus to the same angle θ, which means that the blade’s track is perfect. Blades with 

different L (that is, different blades) lead to different Fc, and thus the angle θ will be 

different for each blade, which means that the blades are out of track. The center of gravity 

of the blade which is flying higher (than the other blades) approaches the axis of rotation 

of the rotor. Thus, blades of the identical static moment (first moment of cross-sectional 

area) may have different centrifugal forces and therefore appear to be unbalanced, when 

they were producing different lift forces. Figure 6 also illustrates the case of blades with 

different static moments, but with the same lift. These blades will be out of track and may 

induce vertical vibration at the main rotor frequency of 1Ω, due to the difference in the 

vertical components of their lift forces. Therefore, the lift balancing and equalization 

operations must be carried out interspersed, until satisfactory results are obtained, for 

vertical and lateral vibration levels at 1Ω. 

d) Balancing and equalization of the lift force of the tail rotor blades 

The same theoretical considerations and techniques described for the case of the main 

rotor are applied in the case of the tail rotor. The existence of problems of lift difference 

is less common in the tail rotor case, due to the fixed-pitch adjustment of the blades and 

the lower susceptibility to aeroelastic effects. Normally, it is sufficient to statically 

balance the blades or field balance the rotor with the aircraft on the ground, or both, 

depending on the aircraft model.  
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By way of illustration, we describe the characteristics of two cases (Jorge & Torres Filho, 

1989): 

1. AS 332 SUPER PUMA: a tail rotor malfunction originates a vibration characterized by 

three times the rotation of the main rotor when in forward flight (frequency coupling). 

2. AS 350 SQUIRREL: the tail rotor resonant frequency occurs when the main rotor rotation 

is around 310 RPM, and therefore, at start-up and final cut-off, the tail rotor passes 

through this frequency. If the vibration level measured near the tail rotor is greater than 1 

IPS (inches per second) during this transient, the tail rotor must be statically balanced 

before field balancing is applied. 

3 Model-based parameter identification for unbalanced and out-of-track 

helicopter rotor blades: a case study of a 4-blade main rotor  

This section is based on the Master’s Thesis (Jorge, 1992), for the Specialized Masters 

Program in Helicopter Techniques at ENSICA, Toulouse, France, 1992. 

Case study of a 4-blade main rotor: model development and comparison with 

maintenance manual (Jorge, 1992) 

Helicopter vibrations are one of the problems that require a lot of maintenance effort. 

Various practical procedures already exist relating the measured vibrations to the possible 

corrections to be introduced at the main rotor head. This work formulates a theoretical 

background that leads, from corrections, to the vibrations measured at the fuselage. The 

problem was split into two parts: the calculation of the isotropic rotor equilibrium and, 

then, the introduction of the defects from this equilibrium position. 

The model here considered defects that generate vibrations in 1Ω (one-per-revolution), 

2-D aerodynamics, rigid blades, articulated rotor, a rigid fuselage, and flight conditions 

without load factor. From the equations found, a software was created for different flight 

conditions and configurations of weight and balance. The results obtained were consistent 

with those from the aircraft’s maintenance manual (MET) The algorithm obtained can be 

inserted into an on-board software, as part of a system of the HUMS type, providing 

information on rotor defects to reduce the maintenance time and cost. 

3.1 Introduction 

GENERAL 

Vibration is, for a helicopter, one of the problems that require the most effort, either for 

the designers and manufacturers or for the users. In the design offices, during the 

conceptual design of the aircraft, a complete set of methods is used to tackle the problem, 

the origin of the vibratory forces, its transmission to the fuselage, and the response of the 

fuselage to this excitation. 

When the helicopter is delivered to the user, it is already tuned and balanced. However, 

during its operational life, problems of maladjustment and unbalance appear on the 

various rotating systems, which requires a maintenance effort on the part of the user, with 

periodic adjustment procedures with, therefore, a very high maintenance cost, due to the 

maintenance flight hours required to perform the tasks of the various adjustments until an 

acceptable vibration level, measured at the fuselage, is reached. The necessary 

maintenance flight hours have an intrinsic or direct cost (fuel consumption, etc.) and a 

cost associated with the unavailability of the aircraft for its operational use, and therefore 

must be minimized. 
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The purpose of this study is the conceptual design of a system that can detect various 

defects at the rotor head, using fuselage vibration measurements, during normal or 

operational use of the helicopter, and that also can propose the adjustments or corrective 

procedures to be conducted at the next shutdown of the aircraft. Such a system leads to a 

reduction in maintenance time since it can replace maintenance flight hours for fault 

finding by flight hours in operational use. 

This system also leads to an increase for in-flight safety, since it will detect faults when 

they appear, while in the current adjustment procedures (which are scheduled, with some 

periodicity), it will be necessary to reach a scheduled moment in the life of the device to 

be able to detect a fault. In this way, without such a system, a helicopter could fly for a 

certain time in a degraded configuration, with a defect in its rotor which could increase 

the risk of the appearance of various problems, such as the appearance of cracks in 

rotating parts subjected to alternating efforts and even, at the limit, a reduction in the 

operational performance of the crew due to human fatigue in a more degraded vibration 

environment. This study of vibration problems generated by faults in the main rotor can 

be generalized to vibration problems generated by faults in other rotating systems such as 

the tail rotor or the engines. Such a fault detection system can be installed onboard a 

helicopter in the context of HUMS (Health and Usage Monitoring Systems) type systems. 

MODELING 

Within the framework of sensitivity studies on the vibratory level of a helicopter, in all 

directions, due to the forces at the rotor head caused by defects of a geometric, kinematic, 

structural nature, etc... and of any origin (manufacture, maladjustment, wear, damage, 

etc.), a simulation will be performed of these defects on a helicopter rotor-structure 

model, to obtain the vibration level at different locations of the structure, to be able to 

carry out, in a next step, the inverse problem, i.e., from the vibrations measured at known 

points of the fuselage, being able to capture to the rotor defects. 

The hypotheses 

The model will study defects that generate vibrations in 1Ω (one-per-revolution), that is, 

once the rotation of the main rotor. This frequency, lower than 6 Hz (as is the case of 

some aircraft from Airbus Helicopters - former Eurocopter France), being lower than the 

first resonance frequency of the fuselage (around 12 Hz for the Super Puma, for example), 

allows us to have a model where we will retain: (i) the 6 degrees of freedom of the 

fuselage, seen as a rigid body; and (ii) the degrees of freedom in flapping, drag, and pitch 

of each blade, also seen as a rigid body linked to the main rotor through the joints. 

The application case, for comparison between the model results and practical results, will 

be the Super Puma (AS 332 MKI long version and AS 332 MKII) helicopter. For the 

calculation of the aerodynamic forces, the approach will retain a two-dimensional steady-

state aerodynamic model, with the hypotheses of small angles of incidence, flapping, 

drag, and pitch. In this model, two flight conditions with zero load factor will be 

considered: (i) hover; and (ii) stabilized level flight. 
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The settings 

The parameters relating to the device, considered as "a priori" known data, necessary to 

initialize the system are: (i) the mass of the aircraft; (ii) the mass center; (iii) forward 

flight speed; and (iv) atmospheric density. These are the parameters necessary to establish 

a particular flight condition, where one can calculate the pitch, the flapping, and the drag 

of a rotor considered to be isotropic, without defects. From this flight condition, defects 

will be introduced on the different blades of the rotor. 

Faults and possible corrections on a blade 

Possible defects: (i) mass imbalance on one or more blades or even on the hub-rotor mast 

assembly; (ii) "detracking" (blade flying out of position) in flapping and/or drag; (iii) 

incorrect or inadequate twisting on a blade; (iv) the maladjustment of a pitch control rod 

and/or a slack/mechanical clearance of this rod; (v) the loss of stiffness and/or damping 

on a drag adapter of a blade; (vi) incorrect adjustment or locking of the tabs of a blade, 

etc... For all problems, whatever their origin, the Maintenance Manual offers the user only 

two options: (i) perform possible corrections and adjustments on a blade; or (ii) change 

the defective element, in the cases provided for, where it is no longer possible to adjust. 

The modeling of the inverse problem must consider the maximum admissible values of 

the corrections to be introduced, to determine whether the calculated correction should be 

carried out or a replacement of a defective element (correction exceeding a threshold). 

The possible corrections and adjustments on a blade are: (i) the variation of the collective 

pitch of a blade from the variation in the length of the pitch control rod; (ii) the variation 

of the mass of a blade (and, consequently, of its static moment and of its inertia in flapping 

and in drag) by introducing or removing balancing weights (at the point of attachment 

between sleeve and blade, in our case study, i.e., the Super Puma); and (iii) The variation 

of the bracketing of the tab located most at the end of the blade. 

The assumption in this model is that the various defects can be reduced to "equivalent 

defects" at the points where the corrections will be introduced. This "equivalence" means 

that a defect will generate a vibration in the fuselage equal to that which would be 

generated by the "equivalent defect(s)". The goal to be achieved is to introduce a 

correction (i.e., an "equivalent defect" of the same amplitude but opposite sign to the one 

just detected) to balance the rotor (if it is possible) and not to find the exact origin of the 

actual defect. Thus, the model is not going to simulate the real defect, but, instead, its 

"equivalent defect" at the points of introduction of the corrections. 

PROJECT STAGES 

Study of the equilibrium of the isotropic rotor 

Initially, the model will take into account a so-called "isotropic" rotor, ie, without defects. 

All the blades being considered equal, we will have: (i) from the balance of moments 

around the joint, the equations of the movements of the blade, in flapping and in drag, 

which will be functions of 1 Ω; (ii) through the integration of the elementary forces on a 

current element of the blade, we will have the force of a blade on the rotor head; (iii) the 

summation of the forces of all the blades on the hub, including the moments introduced 

by the frequency adapters, gives us the wrench of the forces at the rotor head, which is 

constant concerning the azimuthal position of the blades (and, therefore, concerning in 

time) due to the hypothesis of an isotropic rotor that restricts in this study to the frequency 

1 Ω; (iv) from the forces at the rotor head and other forces external to the helicopter, we 

will have the balance of the fuselage for this flight condition. We will retain, as external 
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forces: the thrust of the rear rotor, the own weight of the helicopter, the drag of the 

fuselage, and the downforce of the horizontal stabilizer. From the equations of the balance 

of the fuselage, we will obtain the longitudinal attitudes (in pitch), roll, and yaw. In 

addition to the assumption of stabilized flight (zero acceleration, that is to say, constant 

attitudes over time) we will assume that the flight is not skidded and that the yaw attitude 

is zero, retaining, instead, as unknown, the tail rotor thrust necessary to obtain this zero 

attitude. 

Study of the effect of the introduction of defects 

"Equivalent defects" will be introduced into the model, which is consistent with the 

reality, to study their effect: (i) on the rotor head forces; (ii) on the acceleration of the 

center of gravity of the fuselage; and (iii) on the acceleration of any point of the fuselage 

where it is planned to install accelerometers. The equations of the balance of the fuselage 

will no longer be equations in static equilibrium but dynamic equilibrium. The forces at 

the rotor head will no longer be constants, but functions of 1Ω, which brings us to inertial 

forces and, therefore, accelerations of the fuselage, also in 1Ω, neglecting the higher 

harmonics of the fuselage movement, which could be originated from the rotor head 

excitations in 1Ω. 

Study of the inverse problem 

The model 

We have seen that, from the position of the equilibrium and the defects, one can obtain 

the forces at the rotor head and also the acceleration of the fuselage. For the inverse 

problem, we need to know the position of the equilibrium (as before) and the accelerations 

of the fuselage. The full motion of the fuselage, which was assumed to be rigid, is 

measured by accelerometers which record the fuselage's 6 degrees of freedom. The 

measurements of the accelerometers are then brought back to the movement of the center 

of gravity of the fuselage, through a formulation step which is the inverse of that which 

was previously made. This inversion is always possible. The movement of the fuselage is 

passed from the helicopter frame to the fixed rotor frame and then to the rotating rotor 

frame, so that: (i) the movement of the blade will therefore be its displacement plus the 

displacement of the fuselage; and (ii) the rotor head forces will be the sum of the constant 

forces, obtained from the balance of the isotropic rotor, plus the variable forces in the 

frequency 1Ω. As the model has more unknowns (defects) than information obtained from 

the accelerometers, certain restrictions must be imposed and the transformation can be 

called a “pseudo-inverse”. 

The optimization 

The optimization will consist of seeking the optimal distribution of the accelerometers to 

minimize the calculations for obtaining the inverse of the “pseudo-inverse”. For that, one 

must look for: (i) either defect decoupling or minimum coupling; (ii) harmonization of 

the orders of magnitude between the various "defect-acceleration" pairs; and (iii) the 

minimum number of calculation operations. 
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The application 

The transition from simulation software to embedded software 

Here, it is necessary to consider constraints and to operational limitations: (i) maximum 

collective pitch; (ii) maximum admissible movements in flapping and in drag; (iii) 

maximum admissible forces in connecting rods; (iv) maximum bracketing of tabs; (v) 

maximum balancing weight that can be inserted in the sleeve (in the rotor head); and (vi) 

accelerometer limitations: sensitivity, threshold, accuracy. 

The expert system 

This software can be inserted into a more complete embedded system, such as the HUMS, 

with: (i) setting of priorities and rules for the corrections to be introduced; (ii) the choice 

between the corrections or the replacement of the defective component; (iii) the use of 

this acceleration and force information for updating the calculation of the service life of 

vital parts; and (iv) the information on flight safety. For helicopters with a system for 

measuring the pitch of the blades, it is possible to consider, as an option, the pitch input 

as a parameter of the system, instead of the speed of forward flight. This system, in its 

first stage, i.e., the calculation of the balance of the isotropic rotor, could, therefore, 

provide us, in addition, the speed of flight, functioning as an anemometer, for example, 

for low speeds where conventional anemometry systems are inaccurate. 

3.2 Balance study of the system: main rotor plus fuselage study of the articulated 

rotor in flapping and drag 

Introduction 

In this part, we will study a rotor composed of blades articulated in flapping and dragging. 

We are going to attack more particularly the establishment of the analytical expression of 

the wrench of the efforts in the rotor head. The assumption made was that the blade had 

a flapping angular movement (β) independent of the dragging angular movement (δ), 

followed by a small dragging movement
0 1C 1 1S 1cos t sin t =  +   +   , which is a 

function of the flapping angular movement. 

Calculation of rotor head efforts 

Each of the blades that constitute the rotor is subjected to inertia and aerodynamic forces. 

As a resultant effect, the fundamental principle of dynamics applied to the blade gives: 

the resultant of the efforts of connections at the level of the flapping joint is determined 

by the preceding relationship, which gives: 
R

blade hub aerodynamic i
e

R R M.dm→ = −  . On the other hand, to calculate the moments at the 

rotor head, the Dynamic Moment Theorem is applied at the hub: 

blade hub fuselage hubhub/ Rg M M→ → = + . As the rotor hub is rotating at a constant speed, the 

dynamic moment δ° cube/Rg is zero and: hub fuselage blade hubM M→ →= . We will note in the 

sequence the components of the wrench of efforts in the rotor head: 

 
blade hub x y z

eff 0
blade hub x y z0 0

F .X F .Y F .ZR
T

M M .X M .Y M .Z

→

→

 + +    
= =   

+ +      

. Let's now calculate these components 

for a blade. We will then make the sum according to the number of blades to obtain the 

wrench of the efforts of the complete rotor. 
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Calculation of the dynamic resultant 

The blade is simply articulated in flapping and drag. Let M be a current point of the blade 

of radial coordinate r. The coordinates are represented in Figure 8. 

 
Figure 8: Representation of the coordinates – adapted from (Jorge, 1992) 

We will calculate the acceleration of this point M in the fixed rotor frame and then 

integrate the obtained expressions along the blade. We have, in the fixed rotor frame: 
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As β and δ are small angles, the following assumptions will be made: sinβ ≈ β; sinδ ≈ δ; 

cosβ ≈ 1-(β2/2); cosδ ≈ 1; sinβsinδ ≈ 0; cosβsinδ ≈ δ (noting that, if taking cosβ ≈ 1, 

then terms that are not negligible will not be taken into account), leading to: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2•• • •• •
2

x t t.t ti i i i

22 • • ••
2

t t t.ti i i i

2• •• •
2

t t.t ti i i

e cos 2 r e sin r e cos r e 1  cos
2

      r e 1 cos 2 r e sin r e cos r e cos
2
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The final expression of the blade acceleration is obtained in the fixed rotor frame by 

integrating the acceleration of an element of mass dmi: 

( )

R

i i i
e x

R R

i i i i si
e ex

R

i i i
e x

m dm

m dm    Avec r e  dm m

m dm

••

••

••

 = 

 =  − =

 = 



 



 

What gives us: 
2 2 2

2 2
t t t.ti x i i si i i i i

2 2

2
t t t.t t t.t tsi i i i i i i i

m m e cos m 2 sin 1 cos cos 1 cos
2 2

  m 2 sin cos cos sin sin 2 cos sin

• • ••



• • •• • •• •

     
= −   +    − −  −  − −     

    

 
+    −   −    +    −   −    +   

  

 

2 2 2
2 2

t t t.ti y i i si i i i i

2 2

t t t.t t t.t tsi i i i i i i

2

m m e sin m 2 cos 1 sin sin 1 sin
2 2

          m 2 cos sin sin cos cos 2 sin

                     

• • ••



• • •• • •• •

     
= −   +    − −  −  − −     

    


+    −   −    +    −   −   



+  icos 

 

2 22

t tt.t t ti z si sim m 1 m 2
2

                    

•• • • • •



    
=  − − + −    −      

      

  

Jorge, Ariosto B., et al. (2022)               Parameter Identification Helicopter Main Rotor Balancing & Tracking pp. 519-616

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 538



Aerodynamic loads 

We are now interested in the aerodynamic forces generated in flight. Figure 9 shows the 

wind direction concerning the fixed rotor frame as well as the decomposition of the wind 

velocity into velocity tangential to the rotor plane (and perpendicular to the blade span) 

(UT), and velocity perpendicular to the rotor plane (UP). 

 
Figure 9: Representation of the forces acting on a blade – adapted from (Jorge, 1992) 

The resulting speed is 2 2

T PU =  U  + U   and tan𝜑 ≈ φ ≈ UP/UT. Additional notation 

adopted: β̇𝑡 =
𝑑β

𝑑t
=

𝑑β

𝑑ψ

𝑑ψ

𝑑t
= 𝛺�̇�, with �̇� =

𝑑𝛽

𝑑𝜓
. 

Let us first calculate the velocity of a current point M (r) of the blade about the Galilean 

frame of reference (a reference frame where ar/Rg gV  = VX ), leading to: 

M blade/Rg M blade/fixed rotor M fixed rotor/air M air/RgV  = V  + V  + V . The velocity of the 

current point of the blade can be obtained as the sum of the velocity due to blade rotation, 

flapping, and drag bladeV  , ,    plus the velocity due to forward flight blade VV , plus the 

velocity component due to the induced velocity blade VV
i, where 

( ) ( )
f

f f

blade f f
R

R R

dOM dOM
V R / R OM

dt dt


   
= = +     

   

  

(3) 

with: Rf: fixed rotor reference frame 

 Rt: rotating rotor reference frame 

 Rp: blade reference frame 

 OM  : in the Rf reference frame 
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and, subsequently: 
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The same treatment can be done to the velocity due to forward flight: 
V
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in the aerodynamic reference frame (Ra). A rotation (αD) around Ya = Y  leads us to Rf 
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A rotation of (β) around 
i pY  = Y'  leads us to R'p, with flapping by: 
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A rotation of (-δ) around p pZ' Z    leads us to Rp (flapping followed by drag motion) 
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Finally, the relative motion of the blade due to the induced velocity is: 

Vi

p

blade

i
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0

V 0
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(7) 

The blade velocity is: 

( ) ( ) ( ) ( )
, , V Vi
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R R RR  
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 (8) 

The relative wind velocity is: 

( ) ( )
p p
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R R

zp

U

U U V

U




= = −


 

 

(9) 

One can see that there is a third component of U along the blade span, that is, along with 

Xp, thus one can assume that its contribution to lift (L) and drag (D) is negligible. 

Assuming a two-dimensional aerodynamics problem for the profile of the current point 

of the blade, with the direction of Up and UT shown in the figure above. The wind velocity 

U will be taken as the composition of UT and Up. Therefore, we have tangential and 

vertical components of the velocity given as UT = -Uyp; Up = -Uzp (Note: Uxp gives 

negligible aerodynamic efforts and is neglected). One has, finally: 

𝑈𝑇 = 𝑉 𝑐𝑜𝑠 𝛼𝐷 𝑠𝑖𝑛 𝜓𝑖 𝑐𝑜𝑠 𝛿 + 𝑉 𝑐𝑜𝑠 𝛼𝐷 𝑐𝑜𝑠 𝜓𝑖 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛿 
        + 𝑉 𝑠𝑖𝑛 𝛼𝐷 sin𝛽 𝑠𝑖𝑛 𝛿 + 𝛺 [(𝑟 − 𝑒) 𝑐𝑜𝑠 𝛽 + 𝑒 𝑐𝑜𝑠 𝛿] 

𝑈𝑝 = 𝑉 𝑐𝑜𝑠 𝛼𝐷 𝑐𝑜𝑠 𝜓𝑖 𝑠𝑖𝑛 𝛽 + 𝑉 𝑠𝑖𝑛 𝛼𝐷 𝑐𝑜𝑠 𝛽 + 𝑉𝑖 
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Let sinβ ≈ β; sinδ ≈ δ; cosβ ≈ 1; cosδ ≈ 1; sinβsinδ ≈ 0; (r-e)cosβ+ecosδ ≈ r, then: 
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(10) 

The UT speed is the sum of the speeds due to (i) the blade rotation (Ω r) and (ii) the 

translation of the helicopter  The UP speed is the sum of the speeds due to (i) the induced 

speed (
D iV . sin  + V ), (ii) the flapping speed [

𝑑𝛽

𝑑𝑡
(𝑟 − 𝑒)],and (iii) the translation of the 

helicopter (V . cos𝛼𝐷 . cos𝜓𝑖 𝛽). 
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Also, as t

d

dt

• •
=  =  , then:  
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. The lift (L) and drag (D) forces for 

the element are, respectively, perpendicular and parallel to the plane of velocity U. 
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2

D = U  c C  dr
2


 


 

 

(11) 

Figure 9 shows us the lift and drag forces for the element. In the reference frame Rp, we 

have, for blade i: 

p

a

i
R

0

dF =  Lsin  -  D cos

 Lcos   Dsin


    
   

 + 

 
 

(12) 

A rotation of (δ) leads us to R' p: 

( )

( )

p

a

i R '

cos    -sin    0 0

dF sin     cos     0 L sen   -  D cos

   0         0      1 L cos   D sen

Lsin  -  D cos sin

             Lsin D cos cos

L cos   D sen

    
   =          

 +    

−    
 

=  −   
  +  

 

A rotation of (-β) leads us to Rt: 

( ) ( )

( )

( ) ( )
t

a

i R

- L sen  - D cos sen  cos  - L cos  + D sen sen

dF L sen Dcos cos

- L sen  - D cos sen  sen + L cos  + D sen cos

       
 

=  −      
        

 

ξ, β and δ being small angles, we have: sinξ ≈ ξ = θ-ϕ ≈ θ-tanϕ = θ-Up/UT; cosξ ≈ 1; sinβ 

≈ β; sinδ ≈ δ; cosβ ≈ 1; cosδ ≈ 1; sinξ sinδ ≈ 0; sinδ sinβ ≈ 0; sinξ sinβ ≈ 0. Assuming: 

U2 = UT
2 + Up

2 ≈ UT2, as Up << UT, and a + Cd0 ≈ a, as Cd0 << a, leads to: 

  ( )

( )
t

a

R

L D

dF L D

L D

−  + 


=  −  −
 +  − 

 

 
(13) 

What gives: 

a 2 2d0
xi T p T T

a 2 2 2d0
yi T p T p T

a 2

zi T p T

cCaC
dF = -  (U  - U U ) dr +  U   dr

2 2
cCaC

 dF =  U  - 2U U U  dr +  U  dr
2 2

aC
dF =  U  - U U  dr

2


 




   +  


   

 

 

 

(14) 

 

 

Jorge, Ariosto B., et al. (2022)               Parameter Identification Helicopter Main Rotor Balancing & Tracking pp. 519-616

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 542



Introducing the following coefficients: 

 DVcos
 

R


 = =


 is called the advance coefficient, which is the relationship between the 

component of velocity over the disc and the velocity at the tip of the blade; and 

 D iVsen V
 

R

 +
 = =


 is the axial flow parameter, which is the relationship between the 

component of velocity perpendicular to the disk and the velocity at the tip of the blade; 

- e

r e
 e 

R R
 =  = ; con tw

r

R
 =  +   (θtw: twist); 

con 0 1c i 1s i =  +  cos  +  sen      . Thus: 

𝑑𝐹𝑥𝑖
𝑎 = 𝜌𝑎𝑐(𝛺𝑅)2 {−

𝛽

2
[𝜃(𝜒 + 𝜇𝑠𝑒𝑛𝜓𝑖 + 𝜇𝛿 𝑐𝑜𝑠 𝜓𝑖)

2

− (𝜆 + (𝜒 − 𝜒𝑒)𝛽 + 𝛽𝜇 𝑐𝑜𝑠 𝜓𝑖) 

          (𝜒 + 𝜇𝑠𝑒𝑛𝜓𝑖 + 𝜇𝛿 𝑠𝑒𝑛𝜓𝑖)]+
𝐶𝑑0

2𝑎
𝛿(𝜒 + 𝜇𝑠𝑒𝑛𝜓𝑖 + 𝜇𝛿 𝑐𝑜𝑠 𝜓𝑖)

2} 𝑑𝑟 

 

𝑑𝐹𝑦𝑖
𝑎 = 𝜌𝑎𝑐(𝛺𝑅)2 {−

1

2
[2𝜃(𝜒 + 𝜇𝑠𝑒𝑛𝜓𝑖 + 𝜇𝛿 𝑐𝑜𝑠 𝜓𝑖) (𝜆 + (𝜒 − 𝜒𝑒)𝛽

+ 𝛽𝜇 𝑐𝑜𝑠 𝜓𝑖) 
         − (𝜒 + 𝜇𝑠𝑒𝑛𝜓𝑖 + 𝜇𝛿 𝑐𝑜𝑠 𝜓𝑖)

2𝜃2

− (𝜆 + (𝜒 − 𝜒𝑒)𝛽

+ 𝛽𝜇𝑐𝑜𝑠()2)]−
𝐶𝑑0

2𝑎
(𝜒 + 𝜇𝑠𝑒𝑛𝜓𝑖 + 𝜇𝛿 𝑐𝑜𝑠 𝜓𝑖)

2}] 

 

𝑑𝐹𝑧𝑖
𝑎 =

𝜌𝑎𝑐

2
(𝛺𝑅)2 {𝜃(𝜒 + 𝜇𝑠𝑒𝑛𝜓𝑖 + μδcosψ

𝑖
)
2

− (𝜒 + 𝜇𝑠𝑒𝑛𝜓𝑖 + μδcosψ
𝑖
)(λ+(χ-χ

𝑒
)β+βμcosψ

𝑖
)}𝑑𝑟 

 

 

 

(15) 

For the evaluation of the axial flux parameter , the Meijer-Drees modeling is used 

(Meijer Drees, 1949). This allows the consideration of a cyclic variation of the parameter 

. The Meijer-Drees formulation leads us to: 

( )

0 1c i 1s i

T
D x i y i

2 2 2

cos sen

C
tg 1 K cos K sen

3
2 1

2

 =  +    +   

=   + +   +  
 

−   +  
 

 

 

(16) 

Where 

( )
2

2

x

y

4
K 1 1,8 1

3

K 2

 
  

 = −  + − 
    
 

= − 

 

 

(17) 

Which gives the cyclic components: 

𝜆0 = 𝜇𝑡𝑔𝛼𝐷 +
𝐶𝑇

2 (1 −
3
2

𝜇2)√𝜆2 + 𝜇2
  

 

 

 

(18) 

𝜆1𝑐 =
2𝜇𝐶𝑇

3 (1 −
3
2

𝜇2)
[

1

√𝜆2 + 𝜇2(√𝜆2 + 𝜇2 + 𝜆)
− 1,8] 
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𝜆1𝑠 = −
𝜇𝐶𝑇

(1 −
3
2

𝜇2)√𝜆2 + 𝜇2
 

0 is calculated by an iterative method (Meijer Drees, 1949); get 1c,  1s by replacing  

with 0.  

Let S = ac (R)2. Integrating dFxi
a, dFyi

a, dFzi
a along the blade leads to: 

𝐹xi
𝑎 = S ∫ {−

𝛽

2
[[

𝑟

𝑅
+μsenψ

𝑖
+μδcosψ

𝑖
]

2

[𝜃con +
𝑟

𝑅
𝜃tw]

𝑅

𝑒

− [
𝑟

𝑅
+μsenψ

𝑖
+μδcosψ

𝑖
] 

          [𝜆0+λ1c

𝑟

𝑅
cosψ

𝑖
+λ1s

𝑟

𝑅
senψ

𝑖
+

r-e

𝑅
β+βμcosψ

𝑖
]] +

𝐶d0

2a
𝛿 (

𝑟

𝑅
+μsenψ

𝑖
+μδcosψ

𝑖
)
2

} dr 

𝐹yi
𝑎 = S ∫ [−

1

2
[
𝑟

𝑅
+μsenψ

𝑖
+μδcosψ

𝑖
]

𝑅

𝑒

[𝜃con +
𝑟

𝑅
𝜃tw] χ2+  

         χ [𝜆0+λ1c

𝑟

𝑅
cosψ

𝑖
+λ1s

𝑟

𝑅
senψ

𝑖
+

r-e

𝑅
β+βμcosψ

𝑖
] +

1

2
[𝜆0+λ1c

𝑟

𝑅
cosψ

𝑖
+λ1s

𝑟

𝑅
senψ

𝑖
+...]

2

 

       [...+
r-e

𝑅
β+βμcosψ

𝑖
]
2

[𝜃con +
𝑟

𝑅
𝜃tw]

2

−
𝐶d0

2a
[
𝑟

𝑅
+μsenψ

𝑖
+μδcosψ

𝑖
]
2

] dr 

𝐹zi
𝑎 = 

𝑆

2
 ∫ [[

𝑟

𝑅
+μsenψ

𝑖
+μδcosψ

𝑖
]

2

[𝜃con +
𝑟

𝑅
𝜃tw]

𝑅

𝑒

− [
𝑟

𝑅
+μsenψ

𝑖
+μδcosψ

𝑖
] 

          [𝜆0+λ1c

𝑟

𝑅
cosψ

𝑖
+λ1s

𝑟

𝑅
senψ

𝑖
+

r-e

𝑅
β+βμcosψ

𝑖
]] dr 

 

 

 

 

 

(19) 

After integration leads to: 

𝐹𝑥𝑖
𝑎

𝑆
=

1

3
[
𝑅3 − 𝑒3

𝑅2
+ 3(𝑅 − 𝑒)𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2

+ 3
𝑅3 − 𝑒3

𝑅
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] (−𝜃𝑐𝑜𝑛

𝛽

2
+

𝐶𝑑0

2𝑎
𝛿) 

        −
𝛽

2
[
𝑅4 − 𝑒4

4𝑅3
+ 2𝜇

𝑅3 − 𝑒3

3𝑅2
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

+ 𝜇2
𝑅2 − 𝑒2

𝑅2
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2] 𝜃𝑡𝑤 

        +
𝛽

2
[
𝑅2 − 𝑒2

2𝑅
+ 𝜇(𝑅 − 𝑒)(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] (𝜆0 + 𝜇𝛿 𝑐𝑜𝑠 𝜓𝑖) 

        +
𝛽

2
[
𝑅3 − 𝑒3

3𝑅2
+ 𝜇

𝑅2 − 𝑒2

2𝑅
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] (𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽

•

) 

        − 𝑒𝛽
• 𝛽

2
[
𝑅2 − 𝑒2

2𝑅
+

𝑅 − 𝑒

𝑅
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] 

𝐹𝑦𝑖
𝑎

𝑆
= − {(𝑅 − 𝑒) (𝜆0 −

𝑒

𝑅
𝛽
•

+ 𝜇𝛽 𝑐𝑜𝑠 𝜓𝑖) 𝜇 (𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)𝜃𝑐𝑜𝑛 

               +
𝑅2 − 𝑒2

2𝑅
(𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽

•

) 𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)𝜃𝑐𝑜𝑛} 
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         + [
𝜃𝑐𝑜𝑛

2

2
−

𝐶𝑑0

2𝑎
] [

𝑅3 − 𝑒3

3𝑅2
+ 𝜇

𝑅2 − 𝑒2

2𝑅
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

+ 𝜇2(𝑅 − 𝑒)𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)
2] 

         +
(𝑅 − 𝑒)

2
(𝜆0

2 + 𝛽2𝜇2 𝑐𝑜𝑠2 𝜓𝑖 + 2𝜆0𝛽𝜇 𝑐𝑜𝑠 𝜓𝑖 − 2
𝑒

𝑅
𝛽
•

(𝜆0 + 𝛽𝜇 𝑐𝑜𝑠 𝜓𝑖)

+
𝑒2

𝑅2
𝛽
•
2) 

         +
𝑅2 − 𝑒2

2𝑅
[−(𝜆0 −

𝑒

𝑅
𝛽
•

+ 𝜇𝛽 𝑐𝑜𝑠 𝜓𝑖) (𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)𝜃𝑡𝑤 + 𝜃𝑐𝑜𝑛) 

                        + (𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽
•

) (𝜆0 + 𝛽𝜇 𝑐𝑜𝑠 𝜓𝑖 −
𝑒

𝑅
𝛽
•

)] 

         +
𝑅3 − 𝑒3

3𝑅2
[− (𝜆0 −

𝑒

𝑅
𝛽
•

+ 𝜇𝛽 𝑐𝑜𝑠 𝜓𝑖) 𝜃𝑡𝑤 −(𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽
•

) 

                        (𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)𝜃𝑡𝑤 + 𝜃𝑐𝑜𝑛) +
𝜆1𝑐

2

2
𝑐𝑜𝑠2 𝜓𝑖 +

𝜆1𝑠
2

2
𝑠𝑖𝑛2 𝜓𝑖 +

𝛽
•
2

2
 

                        + 𝜆1𝑐𝜆1𝑠 𝑐𝑜𝑠 𝜓𝑖 𝑠𝑖𝑛 𝜓𝑖 + 𝛽
•

(𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖)] 

        −
𝑅4 − 𝑒4

4𝑅3
𝜃𝑡𝑤 (𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽

•

) 

        + [
𝑅4 − 𝑒4

4𝑅3
+ 2𝜇

𝑅3 − 𝑒3

3𝑅2
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

+ 𝜇2
𝑅2 − 𝑒2

2𝑅
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2] 𝜃𝑡𝑤𝜃𝑐𝑜𝑛 

        +
𝜃𝑡𝑤

2

2𝑅2
[
𝑅5 − 𝑒5

5𝑅2
+

𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2𝑅
(𝑅4 − 𝑒4)

+
𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2

3
(𝑅3 − 𝑒3)] 

𝐹𝑧𝑖
𝑎

𝑆
=

1

2
{[

𝑅3 − 𝑒3

3𝑅2
+ (𝑅 − 𝑒)𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2

+
𝑅2 − 𝑒2

𝑅
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] 𝜃𝑐𝑜𝑛 

               + [
𝑅4 − 𝑒4

4𝑅3
+ 2𝜇

𝑅3 − 𝑒3

3𝑅2
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

+ 𝜇2
𝑅2 − 𝑒2

𝑅2
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2] 𝜃𝑡𝑤 

               − [
𝑅2 − 𝑒2

2𝑅
+ 𝜇(𝑅 − 𝑒)(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] (𝜆0 + 𝜇𝛿 𝑐𝑜𝑠 𝜓𝑖) 

               − [
𝑅3 − 𝑒3

3𝑅2
+ 𝜇

𝑅2 − 𝑒2

2𝑅
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] (𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽

•

) 

               + 𝑒𝛽
• 𝛽

2
[
𝑅2 − 𝑒2

2𝑅
+

𝑅 − 𝑒

𝑅
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)]} 

Jorge, Ariosto B., et al. (2022)               Parameter Identification Helicopter Main Rotor Balancing & Tracking pp. 519-616

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 545



In general, the ratio e/R is very small. In the case of the Super Puma main rotor, one has 

R = 7.80 m and e = 0.27 m, which gives e/R = 0.035. Simplifying assumptions considered: 

R2 - e2 ≈ R2; R3 - e3 ≈ R3; R4 - e4 ≈ R4; R5 - e5 ≈ R5 (the only simplifying assumptions 

that will not be made is R - e ≈ R), which will lead us to an error of 0.15% in the efforts 

calculations, which will be disregarded.  

Thus, one obtains: 

( ) ( ) ( )

( ) ( )

( ) ( )

a
22 d0xi

i i i i con

22

i i i i tw

i i 0 i

CF R
R e sin cos R sin cos

S 3 2 2a

R R R
          2 sin cos sin cos

2 4 3 2

R e
          R e sin cos cos

2 2 R

R
          

2 3

•

  
= + −   +   +   +    − +  

   

  
− +   +   +   +    

 

    
+ +  −  +    +   −   

   


+ ( )i i 1c i 1s i

R
sin cos cos sin

2

•   
+   +     +   +      

 

( ) ( ) ( )

( )

a

yi

0 i

i i con i i

tw 1c i 1s i

1c i 1s i

i i

F e
cos

S R

R R
         R e sin cos sin cos

2 2

R R
              cos sin

3 2

         cos sin

R R
               sin cos

2 3

•

•

•

 
=  +   −  

 


− −   +   +  −   +  



 
+  +   +   +  

 

 
−   +   +  

 

  +   + ( )

( ) ( ) ( )

( ) ( )

( )

con i i tw

2
22con d0

i i i i

22

tw con i i i i

2
2tw

i i

R R
sin cos

3 4

C R
         R sin cos R e sin cos

2 2a 3

R R R
         2 sin cos sin cos

4 3 2

R R
         sin cos si

2 5 2

 
 +   +   +  

 

   
+ − +   +   +  −  +     

  

 
+   +   +   +   +   

 


+ +   +   +  ( )

( )

2

i i

2 2

0 i 1c i 1s i

R
n cos

3

R e e R
         cos cos sin

2 R 6

• •

 
 +   

 

−    
+  +   −  +   +   +   

  

 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

a
22zi

i i i i con

22

i i i i tw

i i 0 i

i i

F 1 R
R e sin cos R sin cos

S 2 3

1 R R R
        2 sin cos sin cos

2 4 3 2

1 R e
        R e sin cos cos

2 2 R

1 R R
        sin cos

2 3 2

•

 
= + −   +   +   +    

 

 
+ +   +   +   +    

 

   
− +  −  +    +   −   

   


+ +   +  


1c i 1s icos sin

•  
  +   +    

 

Calculation of the resultant effort in the rotor head 

The resultant is obtained by applying the above relationship. The reference frame for the 

aerodynamic forces (calculated in the rotating rotor reference frame) is changed, as: 

{

𝐹𝑥 = 𝐹𝑥𝑖
𝑎 𝑐𝑜𝑠 𝜓𝑖 − 𝐹𝑦𝑖

𝑎 𝑠𝑖𝑛 𝜓𝑖 − 𝑚𝑖𝛾𝑥

𝐹𝑦 = 𝐹𝑥𝑖
𝑎 𝑠𝑖𝑛 𝜓𝑖 − 𝐹𝑦𝑖

𝑎 𝑐𝑜𝑠 𝜓𝑖 − 𝑚𝑖𝛾𝑦

𝐹𝑧 = 𝐹𝑧𝑖
𝑎 − 𝑚𝑖𝛾𝑧

 
 

(20) 
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With miγx, miγy, miγz, Fxi, Fyi, Fzi: components as previously calculated. What gives: 

𝐹𝑥𝑖
𝑎

𝑆
= [

𝑅

3
+ (𝑅 − 𝑒)𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2 + 𝑅𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] 

             [(−
𝛽

2
𝜃𝑐𝑜𝑛 +

𝐶𝑑0

2𝑎
) 𝑐𝑜𝑠 𝜓𝑖 − 𝑠𝑖𝑛 𝜓𝑖 (

𝜃𝑐𝑜𝑛
2

2
−

𝐶𝑑0

2𝑎
)] 

        + [
𝑅

4
+ 2𝜇

𝑅

3
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖) + 𝜇2

𝑅

2
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2] 

             [−
𝛽

2
𝜃𝑡𝑤 𝑐𝑜𝑠 𝜓𝑖 − 𝑠𝑖𝑛 𝜓𝑖 𝜃𝑡𝑤𝜃𝑐𝑜𝑛] 

        + (𝜆0 + 𝜇𝛽 𝑐𝑜𝑠 𝜓𝑖 −
𝑒

𝑅
𝛽
•

) 

             [
𝛽

2
𝑐𝑜𝑠 𝜓𝑖 (

𝑅

2
+ 𝜇

𝑅

2
(𝑅 − 𝑒)(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)) 

              + 𝑠𝑖𝑛 𝜓𝑖 [(𝜇(𝑅 − 𝑒)(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖) +
𝑅

2
𝜃𝑐𝑜𝑛)

+ (
𝑅

3
+ 𝜇

𝑅

2
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)) 𝜃𝑡𝑤 

               −
𝑅

2
(𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽

•

)]] 

        + (𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽
•

) 

             [
𝛽

2
𝑐𝑜𝑠 𝜓𝑖 (

𝑅

3
+ 𝜇

𝑅

2
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)) 

              + 𝑠𝑖𝑛 𝜓𝑖 [(
𝑅

2
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖) +

𝑅

3
) 𝜃𝑐𝑜𝑛

+ (
𝑅

3
+ 𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖) +

𝑅

4
)]] 

        − 𝑠𝑖𝑛 𝜓𝑖

𝜃𝑡𝑤
2

2
[
𝑅

5
+ 𝜇

𝑅

2
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖) + 𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2
𝑅

3
] 

        − 𝑠𝑖𝑛 𝜓𝑖

(𝑅 − 𝑒)

2
(𝜆0 + 𝜇𝛽 𝑐𝑜𝑠 𝜓𝑖 −

𝑒

𝑅
𝛽
•

)
2

 

        − 𝑠𝑖𝑛 𝜓𝑖

𝑅

6
(𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽

•

) 

        +
𝑚𝑖

𝑆
𝑒𝛺2 𝑐𝑜𝑠 𝜓𝑖 

        −
𝑚𝑠𝑖

𝑆
[2𝛽𝛽𝑡

•

𝛺 𝑠𝑖𝑛 𝜓𝑖 − 𝛽
•
2 (1 −

𝛽2

2
) 𝑐𝑜𝑠 𝜓𝑖 − 𝛽𝛽

••

𝑡.𝑡 𝑐𝑜𝑠 𝜓𝑖

− 𝛺2 (1 −
𝛽2

2
) 𝑐𝑜𝑠 𝜓𝑖] 

        −
𝑚𝑠𝑖

𝑆
[2𝛺𝛿𝑡

•

𝛿 𝑠𝑖𝑛 𝜓𝑖 − 𝛿𝑡

• 2

𝑐𝑜𝑠 𝜓𝑖 − 𝛿
••

𝑡.𝑡𝛿 𝑐𝑜𝑠 𝜓𝑖 + 𝛿𝑡

• 2

𝛿 𝑠𝑖𝑛 𝜓𝑖 

                    −𝛿
••

𝑡.𝑡 𝑠𝑖𝑛 𝜓𝑖 − 2𝛿𝑡

• 2

𝛺 𝑐𝑜𝑠 𝜓𝑖 + 𝛺2𝛿 𝑠𝑖𝑛 𝜓𝑖] 
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And: 

( ) ( ) ( )

( ) ( )

a
2yi 2

i i i i

2

d0 con d0
con i i

22

i i i i

tw i

F R
R e sin cos R sin cos

S 3

C C
                  sin cos

2 2a 2 2a

R R R
          2 sin cos sin cos

4 3 2

                  sin c
2

 
= + −   +   +   +   

 

   
−  +  +  −  

  

 
+ +   +   +   +   

 


−   +

( ) ( )

( ) ( )

( )

i tw con

0 i

i i i

i i i con

i i

os

e
          cos

R

R
                  sin R e sin cos

2 2

R
                    cos R e sin cos

2

R R
                   sin cos

2 3

•

 
   

 

 
+  +   −  

 

  
 +  −  +   

  

 
−   −  +   +  

 


+  +   +



( )

( ) ( )

tw 1c i 1s i

1c i 1s i i i i

i i i con i i tw

R
cos sin

2

R R
          cos sin sin sin cos

2 3 2

R R R R
                    cos sin cos sin cos

2 3 3 4

•

•

  
 −   +   +   

  

   
+   +   +   +   +     

   

    
−    +   +  +   +   +     

    

( ) ( )

( )

2
22tw

i i i i i

2 2

i 0 i i 1c i 1s i

2i
i

2

si
t i t

R R R
          cos sin cos sin cos

2 5 2 3

R e e R
          cos cos cos cos sin

2 R 6

m
          e sin

S

m
          2 cos 1

S

• •

• •





  
+  +   +   +   +   

 

−    
+   +   −  +    +   +   

  

+  


+ −    −  −

2 2
2

t.ti i i

2 2 2 2

si
t.tt i t i i t i

2

2
t.t i t i i

sin sin 1 sin
2 2

m
          2 cos sin sin cos

S

                     cos 2 sin cos

•

• • •• •

•• •

    
 −   −  −     

    


− −    −   −    −   




−   −    −    



 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

a
22zi

i i i i con

22

i i i i tw

i i 0 i

i i 1

F R
R e sin cos R sin cos

S 3

R R R
         2 sin cos sin cos

4 3 2

R e
         R e sin cos cos

2 R

R R
         sin cos

3 2

•

 
= + −   +   +   +    

 

 
+ +   +   +   +    

 

   
− + −   +    +   −   

   

 
− +   +    

 

t . t

c i 1s i

2 22
si si

t t t t

cos sin

m m
         2 1 2 2

S 2 S

•

•• • • • •

 
 +   +  

 

    
−  − −  − −    −      
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Calculation of the resultant moment in the rotor head 

As seen above, by isolating the rotor hub we will be able to determine the rotor head 

moment M blade → hub., as indicated in Figure 10. 

 
Figure 10: Resulting moment at the rotor head – adapted from (Jorge, 1992) 

iti i i iK . C
•

  =  +    (Torsional moment due to drag adapter) 

blade hubx i

i z

blade huby i

i z

blade hubz i

ti y i x i i

M OK F .X

     esin .F

M OK F .Y

     e cos .F

M OK F .Z

     e cos .F esin .F K C

→

→

→

•

 

 = 
 

= 

 = 
 

= 

 = 
 

=  −  + + 

 

It is obtained directly: 

( ) ( ) ( )

( ) ( )

( ) ( )

22

x i i i i con i

22

i i i i tw i

i i 0 i i

S R
M e R e sin cos R sin cos sin

2 3

R 2 R
                R sin cos sin cos sin

4 3 2

R e
                R e sin cos cos sin

2 R

    

•

 
= + −   +   +   +     

 

 
+ +   +   +   +     

 

   
− + −   +    +   −    

   

( )i i 1c i 1s i i

2 22

t.t t tsi i t t

R R
            sin cos cos sin sin

3 2

b
          m esin 1 2

2

•

•• • • • •

   
− +   +     +   +         

  
−   − − −    −    

  

 

( ) ( ) ( )

( ) ( )

( ) ( )

22

y i i i i con i

22

i i i i tw i

i i 0 i i

S R
M e R e sin cos R sin cos sin

2 3

R 2 R
                R sin cos sin cos sin

4 3 2

R e
                R e sin cos cos cos

2 R

     

 
= + −   +   +   +     

 

 
+ +   +   +   +     

 

   
− + −   +    +   −    

   

( ) ( )i i 1c i 1s i i

2 22

t.t t tsi i t t

R R
           sin cos cos sin cos

3 2

b
          m ecos 1 2

2

•• • • • •

 
− +   +     +   +    

  

  
−   − − −    −    
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𝑀𝑧 = 𝑆𝑒 [
𝑅

3
+ (𝑅 − 𝑒)𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2 + 𝑅𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] (
𝜃𝑐𝑜𝑛

2

2

−
𝐶𝑑0

2𝑎
) 

          + [
𝑅

4
+ 2𝜇

𝑅

3
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖) +

𝑅

2
𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2] 𝜃𝑡𝑤𝜃𝑐𝑜𝑛 

          − (𝜆0 + 𝜇𝛽 𝑐𝑜𝑠 𝜓𝑖 −
𝑒

𝑅
𝛽
•

) [(
𝑅

2
+ (𝑅 − 𝑒)𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)) 

                      + −
𝑅

2
(𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽

•

)] 

          − (𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽
•

) [(
𝑅

3
+

𝑅

2
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)) 𝜃𝑐𝑜𝑛 

                                                         + (
𝑅

3
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖) +

𝑅

4
) 𝜃𝑡𝑤] 

          + [
𝑅

5
+

𝑅

2
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖) +

𝑅

3
𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2]
𝜃𝑡𝑤

2

2
 

          + (𝜆0 + 𝜇𝛽 𝑐𝑜𝑠 𝜓𝑖 −
𝑒

𝑅
𝛽
•

)
2 (𝑅 − 𝑒)

2
+

𝑅

6
(𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽

•

)
2

 

          + 𝑚𝑠𝑖𝑒 (2𝛽𝛽
•

𝑡𝛺 + 2𝛿𝑡

•

𝛺𝛿 + 𝛿𝑡

• 2

𝛿 − 𝛿
••

𝑡.𝑡 + 𝛺2𝛿) + 𝐾𝑖𝛿 . 𝛿 + 𝐶𝑖𝛿𝛿𝑡

•

 

Application to a rotor with N blades 

The expressions we have just established are valid for each of the blades which compose 

the rotor. To get the overall effort wrench, it is needed to make a sum of the components 

for the total number of blades, as shown below. 

       

   

N N

x x x xrotor blade i rotor blade i
i 1 i 1

N N

y y y yrotor blade i rotor blade i
i 1 i 1

N

z zrotor blade i
i 1

F F                                   M M

F F                                 M M

F F         

= =

= =

=

= =

       = =       

=

 

 

    
N

z zrotor blade i
i 1

                          M M
=

= 

 

 

 

(21) 

Equilibrium equations 

The blade is simply articulated in flapping and drag, one can apply the dynamic moment 

theorem, as indicated in Figure 11. 

 
Figure 11: Application of the dynamic moment theorem – adapted from (Jorge, 1992) 
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𝛿𝑏𝑙𝑎𝑑𝑒/𝑅𝑔
𝐾𝑖 = �⃗⃗⃗�𝐹𝑜𝑟𝑐𝑒𝑠 ext→𝑏𝑙𝑎𝑑𝑒

𝐾𝑖  

𝑂𝑟 

𝛿𝑏𝑙𝑎𝑑𝑒/𝑅𝑔
𝐾𝑖 = ∫ 𝐾𝑖𝑀⃗⃗⃗⃗⃗⃗⃗⃗⃗

𝑅

𝑒

𝛬𝛾𝑀⃗⃗⃗⃗⃗⃗ 𝑑𝑚𝑖

 

with M  t be calculated in what follows. 

[𝐾𝑖𝑀⃗⃗⃗⃗⃗⃗⃗⃗⃗𝛬𝛾𝑀⃗⃗⃗⃗⃗⃗ ]
𝑅𝑓

= [

(𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜓𝑖 − (𝑟 − 𝑒) 𝑠𝑖𝑛 𝛿 𝑠𝑖𝑛 𝜓𝑖

(𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜓𝑖 − (𝑟 − 𝑒) 𝑠𝑖𝑛 𝛿 𝑐𝑜𝑠 𝜓𝑖

(𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝛽

𝛬 [

𝛾
••

𝑥

𝛾
••

𝑦

𝛾
••

𝑧

 

 

(22) 

[𝐾𝑖𝑀⃗⃗⃗⃗⃗⃗⃗⃗⃗𝛬𝛾𝑀⃗⃗⃗⃗⃗⃗ ]
𝑅𝑓

=

[
 
 
 
 
 
 [(𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜓𝑖 + (𝑟 − 𝑒) 𝑠𝑖𝑛 𝛿 𝑐𝑜𝑠 𝜓𝑖]𝛾

••

𝑧 − (𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝛽 𝛾
••

𝑦

−[(𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜓𝑖 − (𝑟 − 𝑒) 𝑠𝑖𝑛 𝛿 𝑠𝑖𝑛 𝜓𝑖]𝛾
••

𝑧 + (𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝛽 𝛾
••

𝑥

[(𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜓𝑖 − (𝑟 − 𝑒) 𝑠𝑖𝑛 𝛿 𝑠𝑖𝑛 𝜓]𝛾
••

𝑦

      − [(𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜓𝑖 + (𝑟 − 𝑒) 𝑠𝑖𝑛 𝛿 𝑐𝑜𝑠 𝜓𝑖]𝛾
••

𝑥

 

One can pass to the rotating rotor reference frame through a rotation of (- i) 

[𝐾𝑖𝑀⃗⃗⃗⃗⃗⃗⃗⃗⃗𝛬𝛾𝑀⃗⃗⃗⃗⃗⃗ ]
𝑅𝑓

=

[
 
 
 
 
 
 
 𝛾
••

𝑧(𝑟 − 𝑒) 𝑠𝑖𝑛 𝛿 + (𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝛽 (𝛾
••

𝑥 𝑠𝑖𝑛 𝜓𝑖 − 𝛾
••

𝑦 𝑐𝑜𝑠 𝜓𝑖)

−𝛾
••

𝑧(𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛽 + (𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝛽 (𝛾
••

𝑐𝑜𝑠 𝜓𝑖 − 𝛾
••

𝑦 𝑠𝑖𝑛 𝜓𝑖)

[(𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜓𝑖 − (𝑟 − 𝑒) 𝑠𝑖𝑛 𝛿 𝑠𝑖𝑛 𝜓]𝛾
••

𝑦

      − [(𝑟 − 𝑒) 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜓𝑖 + (𝑟 − 𝑒) 𝑠𝑖𝑛 𝛿 𝑐𝑜𝑠 𝜓𝑖]𝛾
••

𝑥

 

This gives us, for small angles: 

[𝐾𝑖𝑀⃗⃗⃗⃗⃗⃗⃗⃗⃗𝛬𝛾𝑀⃗⃗⃗⃗⃗⃗ ]
𝑅𝑓

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 (𝑟 − 𝑒)2 {𝛿 [𝛽

••

𝑡.𝑡 (1 −
𝛽2

2
) − 𝛽

•

𝑡

2

𝛽 − 2𝛿
•

𝑡𝛽
•

𝑡𝛿 − 𝛿𝑡
2𝛽]

+𝛽 [2𝛺𝛽
•

𝑡𝛽 + 2𝛺𝛿
•

𝑡𝛿 + 𝛿𝑡
2𝛿 − 𝛿

••

𝑡.𝑡 + 𝛺2𝛿]}

(𝑟 − 𝑒)2 {(1 −
𝛽2

2
) [−𝛽

••

𝑡.𝑡 (1 −
𝛽2

2
) + 𝛽

•

𝑡

2

𝛽 + 2𝛿𝑡𝛽
•

𝑡𝛿 + 𝛿
•

𝑡

2

𝛽] + 𝛽 [−𝛽
••

𝑡.𝑡𝛽 −]}

−(𝑟 − 𝑒)𝑒𝛽𝛺2

(𝑟 − 𝑒)2 [(1 −
𝛽2

2
) (2𝛺𝛽

•

𝑡𝛽 + 2𝛺𝛿
•

𝑡𝛿 + 𝛿
•

𝑡

2

𝛿 − 𝛿
••

𝑡.𝑡 + 𝛺2𝛿)

+𝛿 (−𝛽
••

𝑡.𝑡𝛽 − 𝛽
•

𝑡

2

(1 −
𝛽2

2
) − 𝛺2 (1 −

𝛽2

2
) − 𝛿

•

𝑡

2

− 𝛿
••

𝑡.𝑡𝛿 − 2𝛿
•

𝑡𝛺)] + (𝑟 − 𝑒)𝑒𝛿𝛺2
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[𝐾𝑖𝑀⃗⃗⃗⃗⃗⃗⃗⃗⃗𝛬𝛾𝑀⃗⃗⃗⃗⃗⃗ ]
𝑅𝑓

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (𝑟 − 𝑒)2 {𝛿 [𝛽

••

𝑡.𝑡 (1 −
𝛽2

2
) − 𝛽

•

𝑡

2

𝛽 − 2𝛿
•

𝑡𝛽
•

𝑡𝛿] + 𝛽 [2𝛺𝛽
•

𝑡𝛽 + 2𝛺𝛿
•

𝑡𝛿 − 𝛿
••

𝑡.𝑡 + 𝛺2𝛿]}

(𝑟 − 𝑒)2 [−𝛽
••

𝑡.𝑡 (1 −
𝛽4

4
) + 2(1 −

𝛽2

2
)𝛿𝑡𝛽

•

𝑡𝛿 + 𝛿
•

𝑡

2 𝛽

2

3

− 𝛿
••

𝑡.𝑡𝛿𝛽 − 2𝛿
•

𝑡𝛽𝛺]

−(𝑟 − 𝑒)𝛽𝛺2 (𝑒 + (𝑟 − 𝑒) (1 −
𝛽2

2
))

(𝑟 − 𝑒)2 [−2𝛺𝛽
•

𝑡𝛽 (1 −
𝛽2

2
) + 𝛺𝛿

•

𝑡𝛿𝛽2 + 𝛿
•

𝑡

2

𝛿
𝛽2

2
+ 𝛿

••

𝑡.𝑡 (1 −
𝛽2

2
+ 𝛿2)

+𝛽
••

𝑡.𝑡𝛽𝛿 + 𝛽
•

𝑡

2

𝛿 (1 −
𝛽2

2
)] + (𝑟 − 𝑒)𝑒𝛿𝛺2

 

Where one can assume: 1+β4/4 ≈ 1 and e+(r-e)cosβ ≈ e+(r-e)(1-β2/2) ≈ r. We will 

also disregard the triple products of angles about the double products, since ,  and  are 

small angles, what finally gives: 

[𝐾𝑖𝑀⃗⃗⃗⃗⃗⃗⃗⃗⃗ Λ 𝛾𝑀⃗⃗⃗⃗⃗⃗ ]
𝑅𝑡

=

[
 
 
 
 (r-e)

2 [𝛿𝛽
••

t.t+β (−𝛿
••

t.t+Ω2𝛿)]

(r-e)2 [−𝛽
••

t.t-2𝛿
•

𝑡βΩr] − (r-e)βΩ2𝑟

(r-e)2 [-eΩ𝛽
•

𝑡β+𝛿
••

t.t] − (r-e)δΩ2𝑒 ]
 
 
 
 

 

 

 

(23) 

With 

•• •• • •     •• •• • •
2 2 2 2

t.tt.tt.t t
β =Ω β; β =Ω β; δ =Ω δ;  δ =Ω δ  

Flapping motion equations 

The dynamic momentum theorem gives us a projection on the yi axis: 

 

 

 

(24) 

The static moment of the blade is: ( )
R

i
e

ms r e mdr= − .The flapping inertia of the blade 

is: ( )
R 2

e
I r e mdr = − .  

Writing: (r-e) r = r2 - re = (r-e)2 + e (r-e), we obtain 

( ) a

R
i

zi2 e

e.ms 1
1 2 r e dF

I I

• •

 

 
+ + +  = − 

  
  

 

(25) 
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Introducing the previously obtained expression for dFzi
a, we have 

𝛽
••

+ [1 + 2𝛿
•

+
𝑒.𝑚𝑠𝑖

𝐼𝛽
] 𝛽 =

𝜌𝑎𝑐𝑅2

2𝐼𝛽
∫ (𝑟 − 𝑒) [𝜃 (

𝑟

𝑅
+ 𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖))

𝑅

𝑒

 

                                               − (
𝑟

𝑅
+ 𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖))(𝜆 +

𝑟𝛽
•

𝑅
−

𝑒

𝑅
𝛽
•

+ 𝛽𝜇 𝑐𝑜𝑠 𝜓𝑖)]𝑑𝑟 

                               =
𝜌𝑎𝑐 𝑅2

2𝐼𝛽
∫ (𝑟 − 𝑒) [(𝜃con +

𝑟

𝑅
𝜃tw)

𝑅

𝑒

(
𝑟

𝑅
+ 𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖))

2

  

−(
𝑟

𝑅
+ 𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖))(𝜆0 + 𝜆1𝑐

𝑟

𝑅
𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠

𝑟

𝑅
𝑠𝑖𝑛 𝜓𝑖 +

𝑟𝛽
•

𝑅
−

𝑒𝛽
•

𝑅

+ 𝛽𝜇 𝑐𝑜𝑠 𝜓𝑖)]𝑑𝑟 

 

And, after calculating the integral: 

𝛽
••

+ [1 + 2𝛿
•

+
𝑒.𝑚𝑠𝑖

𝐼𝛽
] 𝛽 =

𝜌𝑎𝑐𝑒

2𝐼𝛽
𝑅2 {[

𝑅3 − 𝑒3

3𝑅2
+ (𝑅 − 𝑒)𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2 

                                                     +
𝑅2 − 𝑒2

𝑅
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] 𝜃con 

                                               + [
𝑅4 − 𝑒4

4𝑅3
+

2

3
𝜇

𝑅3 − 𝑒3

𝑅2
(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖) 

                                                     +
𝑅2 − 𝑒2

2𝑅
𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2] 𝜃tw 

                                               − [
𝑅2 − 𝑒2

2𝑅
+ (𝑅 − 𝑒)𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] 

                                                     (𝜆0 + 𝜇𝛽 𝑐𝑜𝑠 𝜓𝑖 −
𝑒

𝑅
𝛽
•

) 

                                               − [
𝑅3 − 𝑒3

3𝑅2
+

𝑅2 − 𝑒2

2𝑅
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] 

                                                     (𝜆0 + 𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽
•

)} 

+
𝜌𝑎𝑐

2𝐼𝛽
𝑅2 {[

𝑅4 − 𝑒4

4𝑅3
+

𝑅2 − 𝑒2

2
𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2

+
2(𝑅3 − 𝑒3)

3𝑅
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] 𝜃con 

                + [
𝑅5 − 𝑒5

5𝑅3
+

𝑅3 − 𝑒3

3𝑅2
𝜇2(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)

2

+
𝑅4 − 𝑒4

2𝑅2
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] 𝜃tw 

                − [
𝑅3 − 𝑒3

3𝑅2
+

𝑅2 − 𝑒2

2
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] (𝜆0 + 𝜇𝛽 𝑐𝑜𝑠 𝜓𝑖 −

𝑒

𝑅
𝛽) 

                − [
𝑅4 − 𝑒4

4𝑅2
+

𝑅3 − 𝑒3

3𝑅2
𝜇(𝑠𝑖𝑛 𝜓𝑖 + 𝛿 𝑐𝑜𝑠 𝜓𝑖)] (𝜆0 + 𝜆1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜆1𝑠 𝑠𝑖𝑛 𝜓𝑖 + 𝛽

•

)} 
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Using the simplifications R2 - e2 ≈ R2; R3 - e3 ≈ R3; R4 - e4 ≈ R4; R5 - e5 ≈ R5 and the 

Coleman Transformation (Coleman & Feingold, 1957) (
con 0 1c i 1s icos sin =  +   +   ,

0 1c i 1s icos sin =  +  +  , and 
0 1c i 1s icos sin =  +   +   ), leads to: 

( ) ( )

( ) ( )

22 2i
i i

i i 0 1c i 1s i

e.ms ace R
1 2 R R e sin cos

I 2I 3

                                                  R sin cos cos sin

R
                                               

4

•• •

 

   
+ + +  = + −   +    

  

+   +    +   +  

+ ( ) ( )

( ) ( )

22

i i i i tw

i i 0 i

i

R R
2 sin cos sin cos

3 2

R e
                                               R e sin cos cos

2 R

R R
                                               sin c

3 2

•

 
+   +   +   +    

 

   
− + −   +    +   −   

   

− +   + ( )

( ) ( ) ( )

( ) ( )

i 0 1c i 1s i

2 2
22 2 2

i i i i 0 1c i 1s i

2 2 2
22

i i i i tw

os cos sin

ac R R 2
R sin cos R sin cos cos sin

2I 4 2 3

R R R
                sin cos sin cos

5 3 2

               

•



   
  +   +   +        

  
+ +   +   +   +    +   +   

 

 
+ +   +   +   +    

 

( )

( )

2 2

i i 0 i

2 2

i i 0 1c i 1s i

R R e
 sin cos cos

3 2 R

R R
                sin cos cos sin

4 3

•

•

   
− +   +    +   −   

  

   
− +   +    +   +   +    

  

 

 

 

 

 

 

 

(26) 

To decouple the different parameters involved in this equation, the following operators 

will be applied to the flapping equation: 
1

2𝜋
∫ (… )𝑑𝜓

2𝜋

0
, 

1

2𝜋
∫ (… )𝑐𝑜𝑠𝜓𝑑𝜓

2𝜋

0
 and 

1

2𝜋
∫ (… )𝑠𝑖𝑛𝜓𝑑𝜓

2𝜋

0
. Disregarding the double products of angles concerning the angles 

themselves, the influence of the drag angle on the flapping motion will be disregarded. 

After some transformations and intermediate calculations, the following three equations 

are then obtained: 

( )

2
2 2si

0 0 0 tw 1s tw 0 1c 1s

e
2 2 2 2 2

2 2

1c 0 0 1s tw tw

e.m ace R e R R R
1 R e

I 2I 2 3 4 2 2 2 2

r e R R R R R
                                               

2R 4 4 3 5 6

       

 

    −    
 +  = −   +  +  +  +  −  +  −     

    

 − 
−  +  +   +  +  +  


2 2

0 1s

R R
                                 

3 6


−  −  



 

2 2 2si 1s
1c 1c 0 1s 1c 1c 1s

2 2 2 2 2 2
2 2

0 1c 1c 1s 1c 1s 1s

e.m eac R R R e R e R R
R e

I 2I 3 2 4 4 3 3 2

R R R Re R R R
                                

3 8 4 3 4 4 8

 

  − − 
  = −  +  +   +   −  −  + 

 


−  +   −  +  +  −  −   
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( )
( )2 2si

si 1s 1s 0 tw 0

2 1c
1c 1s 1c

2 2
2

1s 1s

3 R ee.m ac R 2R
R e R R e

I 2I 3 4 3

eR e R R
                                                

4 2 3 3

R 3R
                                       

4 8

 

 −
  = −  +   +  +  − −  

 

− 
−   − −  +  



+  +  
2 2 2 2

2

0 tw 0 1c

2 2

1c 1s 1c

2R R R R

3 2 2 8

Re R R
                                       

3 4 4

+  +  +  −  


−  −  +  



 

Introducing the Lock Number: 
4R

ac
I

 =  , one obtains: 

( )
( )

( )

22
2si

0 tw 1c tw 1s 0 1s2

22 2
2

0

R 2e R ee.m 4R 5eR
1 e 2 2

I R 40 8R

R 2e R e2R 3eR 3R 4eR
                                  

24 8 24



   − −  − 
 +  =  −   +   +  −  −      

      

− − − − 
+   +    

   

 

 

 

 

 

 

(27) 
( )

( )

( )

2 2 2
2si

1c 1c 1s 1s 02

2

1c 1s 1c

R 2e R ee.m 4eR 6e 2R 3eR

I R 16 24 12

3R 4eR
                         

24



 − −  − − +   
  =  −  +  +       

     

− 
+  − −   

 

 

( )

( )
( )

2 2 2
si

si tw 1s 1c 1s 0 1c2

2

1s 1c 0

e.m 3R 4eR 2R 3eR 6e 4eR
2

I R 24 6 24

R 4e R e
                         3 4

16



 − − −     
  =  +  +  −  +   +      

     

− − 
+  −  −    

 

 

Drag motion equations 

The motion of interest is now around the drag axis, that is, p pZ Z' . But to have the 

reference frame, without changing it, one must apply the theorem in the reference frame 

Rt, for the component around Zi (given that Ki is a joint, so it is articulate), assuming that 

the restitution moment due to the frequency adapter is also along the Zi axis, as it was 

done previously for the calculation of Mz. The dynamic momentum theorem gives us, in 

projection onto the Zi axis: 

 

 

(28) 

And as ( )
R 2

e
I I r e mdr = = − , we have, then:  

( ) a

R
si

yi2 2 e

C e.m K 1
2 r e dF

I I I I

•• • •
 

   

 
+ + +  = + −     
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Introducing the previously obtained expression of dFyi
a , we have: 

( )
( ) ( )( )

( ) ( )( )

2
R

si
i2 2 e

2
2

i i

ac RC e.m K 1
2 R e 2 x sin

I I I I 2

                                               x xe cos x sin

                                         

•• • •
 

   

•

    
+ + +  = + −  −   +         

 
 + − +   − −   +   

 



( ) ( )( )
2

2
d0

i i

C
      x xe cos x sin dr

2a

•   
−  + − +   − −   +   

  

 

 

 

(29) 

After calculating the integral, we have: 

( ) ( )

( )( )

si

2

2 2 2

0 i i i con

3 3 2 2

i i tw con 1c i 1s i

3 3 2 2

e.m KC

I I I

acR e R e
2 cos sin cos e R e

I R 2

R e R e
sin cos e cos sin

3R 2R

R e R e
e

3R 2R

•• •


  

• •



•

 
+ + +     

  −  
= +  +   −    +    − + −   

    

− −   
+   +    +  − + +   +   +   

  

− −
− +

( ) ( )( )

4 4 3 3

tw 1c i 1s i2 2

3 3 2 2

i i con i i tw con

24 4 3 3 5 5 4 4
con d0

tw2 2 3 3

R e R e
e cos sin

4R 3R

R e R e
sin cos e sin cos

3R 2R

CR e R e R e R e
e e

4R 3R 5R 4R 2 2a

•− −    
−  + +   +   +      

    

 − − 
  +    − + +   +    +   

 

 − − − −   
+ −  − + −   

   

( )
( )

( ) ( )

( )
( )

( )

4 4 3 3

2 2

3 3 2 2 2 2
22

i i i i

3 35 5 4 4 4 4

tw con i i3 3 2 2

22

i i

R e R e
e

4R 3R

2 R e R e R e
sin cos e sin cos e R e

3R R 2

2 R eR e R e R e
e sin cos e

5R 4R 2R 3R

R
sin cos

 − − 
−  

   

 − − − 
+  +   − +   +   − −       

  −− − − 
+  − +   +   +        

+  +  

( )
( )

( )

( )

23 3 2 2 6 6 5 5
tw

4 4

5 5 4 4 4 4 3 3
22

i i i i3 3 2 2

2 2 2

0 i 1c i 1s

e R e R e R e
e e

3R 2R 2 6R 5R

2 R e R e R e R e
sin cos e sin cos e

5R 2R 4R 3R

R ee R e 1
cos e cos sin

R 4 2 2

•

 − − − −   
− + −    

    

 − − − − 
+  +   − +   +   −       

− − 
+  +   −  − +   +   

   

2

i

4 4 3 3

2 2

R e R e
e

4R 3R

• 
 +  

 

− − 
−  
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Making the assumptions: R2 - e2 ≈ R2; R3 - e3 ≈ R3; R4 - e4 ≈ R4; R5 - e5 ≈ R5; 
R6 - e6 ≈ R6; R-2eR+2e2 ≈ R-2eR = R(1-2e), leads to: 

( ) ( )

( )( ) ( ) ( )

( )

si

2

2

0 i i i con

i i tw con 1c i 1s i

tw 1c i 1s i

e.m KC

I I I

acR e R
2 cos sin cos R 2e

I R 2

R R
sin cos 2R 3e cos sin 2R 3e

6 6

R
3R 4e cos sin

12

•• •


  

• •



•

•

 
+ + +     

   
= +  +   −    +    −  

  

 
−   +    +  − +   +   +  − 

 

 
− − +   +   +  

( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

i i con

i i tw con tw

2

con d0
i i

22

i i tw con i i

2

i

R
sin cos 2R 3e

6

R R
sin cos 3R 4e 4R 5e

12 20

C R R
3R 4e sin cos 2R 3e

2 2a 12 3

R R R
sin cos 2R 3e 4R 5e sin cos 3R 4e

2 20 6

sin


  +    −  


−   +    +  − −  − 



  
+ − − +   +   −  

 

 
+  +   − +   − +   +   − 

 

+ ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2
2 tw

i i i

2
22

i i 0 i

2

1c i 1s i

R R R
cos 2R 3e 5R 6e sin cos 4R 5e

6 2 30 10

R e R
sin cos 3R 4e cos R 2e

12 R 2

1 R
cos sin 3R 4e

2 12

•

•

 
+   − + − +   +   − 

 

  
+  +   − +  +   −  − 

  

 
+   +   +  −    

with 

 

𝜃𝑐𝑜𝑛 = 𝜃0 + 𝜃1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝜃1𝑠 𝑠𝑖𝑛 𝜓𝑖 
𝛽 = 𝛽0 + 𝛽1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝛽1𝑠 𝑠𝑖𝑛 𝜓𝑖  

     𝛽
•

= −𝛽1𝑐 𝑠𝑖𝑛 𝜓𝑖 + 𝛽1𝑠 𝑐𝑜𝑠 𝜓𝑖 
𝛿 = 𝛿0 + 𝛿1𝑐 𝑐𝑜𝑠 𝜓𝑖 + 𝛿1𝑠 𝑠𝑖𝑛 𝜓𝑖 

     𝛿
•

= −𝛿1𝑐 𝑠𝑖𝑛 𝜓𝑖 + 𝛿1𝑠 𝑐𝑜𝑠 𝜓𝑖 

     𝛿
••

= −𝛿1𝑐 𝑐𝑜𝑠 𝜓𝑖 − 𝛿1𝑠 𝑠𝑖𝑛 𝜓𝑖 

 

 

(30) 

Next, we will disregard the terms, of triple products of angles (eg: 0 1c 1s= , etc.) 

concerning the double products, since   and  are small angles.  
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Applying the operators: 
1

2𝜋
∫ (… )𝑑𝜓

2𝜋

0
, 

1

2𝜋
∫ (… )𝑐𝑜𝑠𝜓𝑑𝜓

2𝜋

0
 and 

1

2𝜋
∫ (… )𝑠𝑖𝑛𝜓𝑑𝜓

2𝜋

0
 leads 

to (after some intermediate calculations): 

( ) ( )

( ) ( )

si
02

22 2 2
2 2 20 0 d0 1s

0 1c 1c 1s 0 0 1c2

2 2 2 2 2 2 2 22 2
2 1c 1s 1s 1c

0 1s 0 1c 1s 1s 1c

1c
0 0 tw

e.m K

I I

CacR R e e
R 2e

I 2 2 R 2 2 2a 2R 2

3 3e R
2R 3e

R 2 16 8 16 8 8 6

e

R 2

 



 
+    

     
= −  −  − +  +  +  +     

  

        
+   +  + + + + −   +   + −


−  + −( ) ( )

( ) ( )

( )
( ) ( )

2
0

1s 1s 1c 1s 1c 0 1s tw 0

20 1s
0 d0

1c 1c 1s 0 1c 0 tw

2 2 2 2 2 2
1s 1c 1s tw 1s 1s 1c 1c 1c 1c

tw 1s tw 1s 1c 1c

2

1c 1c 1

2 2

e
CRR 3R 4e

2 2 12 2 2a

2 4 4 4 2 4 2 4

4

 
−  +  −  −  −  +   +  


 −     

+ − +  +  −   + − −  + −   
 



 −          
+  +  + +   + + − + −  −  +

  
+ + ( ) ( )

2 2

s 1s tw tw
1c tw 0

R R
4R 5e 5R 6e

2 4 2 20 30 2

  
+ −   + −   + − 

 
 

 

 

 

 

 

(31) 

 

( )

( )

si
1c 1s 1c 0 1s2

2 2
1c 1s

0 0 0 1s 1c 0 1s 0 1c

2
2 0

1s 1c 1c 1s 0 1c 0 1s 0 1s

C e.m K1
2

2 I I I

acR R e e e
R 2e

I 2 R 8 R 8 R 8

e 3 e 3 R e
2R 3e

4 R 4 R 4 8 6 2 R

 

  



  
− +  + +  −         

     
= −   −   −  −  −  +    

 

    
+   −    +    −   + − −  − 



( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
0 1c 1s

1c 1c 1s 1s 1c 1c 1s 1c 1s tw 1c

1s tw
1c 1c 1c 1s tw 1s 1s 1c 0 1s

0 0 1c tw tw 1c
1c 1s 1s 1s

2 8 8 4 8

3 R e
3R 4e

4 8 12 2 R

R
4R 5e

2 2 20 2 2





    
+ − +  +  −  −  −  +  +   +  

    
+  − +  +  + − −  +  +  + − −  −   

  

        
−  +  + + − −  +  +  

  



 

 

 

 

 

(32) 

 

( )

( )

si
1s 1c 1s 0 1c2

2 2 2
0 1s

0 0 1c 1c 0 1s 0 1c

2
2 21c 0

0 1s 1c 1s 0 1s 1c

0
t

C e.m K1
2

2 I I I

3acR R e e 3
R 2e

I 2 2 R 8 R 8 8

e e e R e
2R 3e

8 R 4 R 4 R 4 6 2 R

2

 

  



  
− +  + +  −         

    
= −  +   −  −   −   



      
−  −  +  −  +   + − −    

  


+ −( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

2 2 2

0 d0 1s 1s tw
w 1s 1s 1c 1s 1c 1s

2

1c 1c 1c 1s
1c 1s tw 1s 1s 1c 1c 1c 1s

tw 0 0 1s
1c 1s 1c tw 0

tw
1s 1c

C 3 3 3

2 2a 8 8 8

8 8 8 8

R e
3R 4e

12 2 R 2 2

R
4R 5e

20 2

     
−  +  +  +  − −  −  + +  

 

    
−  +  + + − −  +  −  + − +  +  



     
+ − −  −  +  + +   




+ − −  −  +

2

tw 1s tw

2 2

   
+  

 

 

 

 

 

 

 

(33) 

There are, therefore, three equations that give us ( )0 1c 1s,  e      a function of the setting 

of the pitch ( )0 1c 1s,  e      and the flapping ( )0 1c 1s,  e     . 
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Calculation of Fuselage Balance and Pitch Setting for the Isotropic Rotor Case 

We will return to the expressions of the wrench of the external forces calculated 

previously, and then apply them to the case of a rotor composed of N strictly identical 

blades. In this hypothesis, we can apply the Coleman Transformation to our expressions. 

Thus, we will obtain a linear formulation: in effect, each component will be written in the 

form of a linear combination of the flight parameters. Next, let's disregard: (i) the triple 

products of angles concerning the double products in the expressions of Fx, Fy, Mz; and 

(ii) the double products of angles about the angles themselves in the expressions of Fz, 

Mx, My. 

Application of the Coleman Transformation 

The set of coefficients necessary for the calculations is explained in the reference 

(Coleman & Feingold, 1957). After some intermediate calculations, the components of 

the wrench of efforts are then obtained as: 

 
( )

( )

( )

x 2 2rotor
0 1c 1c 1s 1c 1c 1s 1s 0 0

2 d0
0 1c 0 1s 1c 0 1c 1c 0 0 1c 1s 1s

d0
0 1s tw 1s 1s 1c

F R e e e
8 2 6 8

NS 16 R R

C R e
              6 2 3 2 2

a 8 R

Ce
              2 2

R a

−   
= −   +  − −   +   +  +   

 

  
+    −   +   +  +   +   −  +   

 

−   +  − +  −  + − 

( ) ( )

( ) ( )( )

2 2 2

0 0 tw 0 tw

d0
0 1c 1c 1c tw 0 1c tw 1s 1s 0 1c 1s

2 2 2

1c tw 1c 1s 1c 1c 1s 1c 1s 1s 1c 1s 1c 1c 1s

2

CR e
              2 3 4 2 2

12 a R

R
             2 2 4 6 6 2

32

      

 
+  −  +   

 

 
+ −  +  +   +  −  −  +  −  +   +  

 

+ −   +  −  −  +  −   +   −  −  +   − 

( )
2

2 si 1s 0
tw 1c 1s

m
       6

S 2

  
+   −  +

 

 
( )

( ) ( )

( ) ( )
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0 1s 1c 1s 1s 1s 1c 1c 0 0

2 d0
0 1s 1c 1s 0 1s 1c 1s 0 1c 0

0 1s 1c 1c tw 1c 1c 1s

F R e e e
8 2 2 2 12

NS 16 R R

C R e e
              5 8 3 5 2 2

a 8 R R

              3 2 2 4

−   
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+    +  +  +  −  +  +   +    

 

+   −  +  +   −  −  + − 

( ) ( )
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d0
0 0 1c 1s 0

d0
0 1s 1s 1c 0 1c 1s 1c 1s tw 1s 0 tw

1s tw 1s 1s 1c 1s 1c 1s 1c 1c 1s 1s 1s 1c 1c 1s

C
2

a

CR e
              2 3 2 2 4

12 a R

R
             2 10 4 6 7 5 2 2

32

      

 
 +   +  

 

 
+  − +  −  +   −  −  +  +   −   

 

+ −   +  −   +   −   +   +   −   −  

( )
2

2 si 1s 0
tw 1s 1c

m
       5 2

S 2

  
+   +  −

  2
z 2rotor

0 0 tw 1c 1s tw 0 1s

F 1 R e R R R e e R

NS 2 2 3 4 2 R 2 2 2

 − −   
=   +  +  −   +  +  −  −   

  
 

 
( )

2
x 2rotor 1c 1s 1s 1c si

1s 1c 0 0 tw 1s

M mR e R e R
3

N.S.e 4 4 4 R 2 6 2 2 2 2.S

   −      
=  − − +  − + +  − + +       
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{𝑀𝑦}
𝑟𝑜𝑡𝑜𝑟

𝑁. 𝑆. 𝑒
=

1

2
[
𝑅 − 𝑒

8
𝜇2(𝜃1𝑐 − 𝛽1𝑠) +

𝑅

4
[𝜇𝛽0 −

𝑒

𝑅
𝛽1𝑠] +

𝑅

6
(𝜆1𝑐 + 𝛽1𝑠 − 𝜃1𝑐)]

−
𝑚𝑠𝑖

2. 𝑆
𝛺2𝛽1𝑐 

{𝑀𝑧}𝑟𝑜𝑡𝑜𝑟

𝑁. 𝑆. 𝑒
=

𝑅 − 𝑒

16
[8𝜆0

2 +
4𝑒2

𝑅2
(𝛽1𝑠

2 + 𝛽1𝑐
2)

+ 8𝜇 (𝜆0(𝛽1𝑐 − 𝜃1𝑠) −
𝑒

𝑅
(𝛽1𝑐𝜃0 + 𝛽1𝑠𝛽0)) 

               + 𝜇2 (4𝜃0
2 + 𝜃1𝑐

2 + 3𝜃1𝑠
2 −

4𝐶𝑑0

𝑎
− 2𝛽1𝑐𝜃1𝑠 − 𝛽1𝑠𝜃1𝑐 + 4𝛽0

2 + 3𝛽1𝑐
2

+ 𝛽1𝑠
2)] 

               +
𝑅

8
[𝜃0(2𝜃𝑡𝑤 − 4𝜆0) + 2

𝑒

𝑅
𝛽1𝑠(𝜃1𝑐 − 𝜆1𝑐 − 𝛽1𝑠) −

2𝑒

𝑅
𝛽1𝑐(𝜃1𝑠 − 𝜆1𝑠 + 𝛽1𝑐) 

               + 𝜇 (2𝜃0(2𝜃1𝑠 − 𝜆1𝑠) + 2𝛽0(𝜆1𝑐 + 𝛽1𝑠 − 𝜃1𝑐) −
2𝑒

𝑅
𝛽1𝑐𝜃𝑡𝑤) + 2𝜇2𝜃𝑡𝑤𝜃0]

+
𝑅

10
𝜃𝑡𝑤

2 

               +
𝑅

12
[2𝜃0

2 + 𝜃1𝑐
2 + 𝜃1𝑠

2 − 2
𝐶𝑑0

𝑎
− 4𝜆0𝜃𝑡𝑤 − 2𝜃1𝑐(𝜆1𝑐 + 𝛽1𝑠) +2𝜃1𝑠(𝛽1𝑐

− 𝜆1𝑠) 

               + 𝜆1𝑐
2 + 𝜆1𝑠

2 + 𝛽1𝑠
2 + 𝛽1𝑐

2 + 𝜆1𝑐𝛽1𝑠 − 2𝜆1𝑠𝛽1𝑐

+ 2𝜇𝜃𝑡𝑤(2𝜃1𝑠 − 𝜆1𝑠) + 𝜇2𝜃𝑡𝑤
2] 

               + [𝑚𝑠𝑖

𝛺2

. 𝑆
+

𝐾𝑖𝛿

𝑆𝑒
] 𝛿0 

Therefore, the rotor head forces are expressed as a function of the different flight 

parameters, where: (i) the induced velocity coefficients (λ0, λ1c, λ1s) are determined by the 

Drees formulation (Meijer Drees, 1949); (ii) the twist θtw is given; (iii) the coefficients of 

the flapping motion (β0, β1c, β1s) are calculated, using the previously obtained equilibrium 

equations, as a function of (θ0, θ1c, θ1s) (and also of other parameters already known or 

calculated); and (iv) the drag coefficients (δ0, δ1c, δ1s) are calculated, using previously 

obtained equilibrium equations, as functions of (θ0, θ1c, θ1s) and (β0, β1c, β1s). The six 

equations for the rotor head efforts are, therefore, functions of just three parameters: (θ0, 

θ1c, θ1s). 

Fuselage balance equations 

The known parameters are the dimensions and the limits (of mass and mass center) of the 

helicopter (in this study, the AS 332L-Super Puma – elongated version): 
• the total mass of the helicopter: M (minimum and maximum mass limits). 

• the centering (position of the helicopter's CG, about the rotor head) (forward and rearward 

limits). 

 XCG = XCG – XRp = XCG – 4.67m ( > 0 for aft CG; < 0 for forward CG);  

 YCG ( > 0 to the right; < 0 to the left); -ZCG = 4p = 2.45m

 

• The air density (ρ). 

• The forward flight speed (V) is limited by the Vne of the helicopter. 
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• The inclination of the main rotor mast of the helicopter (αm = 5°). 

• 

The position of the helicopter tail rotor (relative to the rotor head):  XRa = 9.4m; YRa = 0; 

-ZRa = 4p -4a = 2.45 – 2.1 = 0.35m

 

• 

The position of the fuselage drag center (A), assumed to be independent of the 

longitudinal base (angle of attack relative to horizontal axis): (relative to the rotor head). 

XA = 0; YA = 0; -ZA = 0.1m

 

• The CxS of the fuselage assumed independent of the base of the helicopter: (CxS)f = 2,35 

m2 

• The position of the center of the horizontal empennage (stabilizer), is assumed 

independent of the fuselage base: (relative to the rotor head). 

 Xeh = 9.4 - 0.1 = 9.3m;  

 Yeh = -2.113/3 ≈ -0.7m (assuming the empennage center at 1/3 of its wing span); 

 -Zeh = 2.45 - 2.1 + 0.4 = 0.75m (approx. value, taken directly from the figure)

 

• the negative lift effect of the horizontal tail, assumed equal to Teh = 1/2 ρV2 (CzS)eh where 

(CzS)eh is assumed constant and equal to: (CzS)eh = 0.135 m2 (independent of the 

helicopter base), which gives us, for V = 280 km/h, a negative lift of Teh = 500 N. In the 

helicopter reference frame, we have: 

( )eh Rh

eh

0

T 0

T




= 
−

 

• the anti-torque rotor thrust (TAR) is what is needed to balance the main rotor reaction 

couple on the fuselage. The TAR value is obtained to give a zero base rotation (f), that 

is, no skidding of the fuselage in forward flight. We have, in the helicopter reference 

frame: 

( )Ra RaRh

0

T T

0




= −


 

One has, as unknowns: (i) the rotor head efforts, which are a function of only three 

parameters: (θ0, θ1c, θ1s); (ii) The angular inclinations (tilts) of the fuselage: longitudinal 

(pitch) (αf), lateral (roll) (γf); and (iii) The anti-couple rotor thrust (TRa) (obtained by 

assuming the rotation in yaw (ψf) is zero). The nose-tail balance (pitch) is illustrated in 

Figure 12. 

 
Figure 12: nose-tail balance (pitch) – adapted from (Jorge, 1992) 
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with: 
f D m =  − ; rotor plane and CG limits (forward and aft) are indicated in Figure 

13. 

 
Figure 13: nose-tail balance (pitch): rotor plane; CG limits – adapted from (Jorge, 1992) 

The rolling balance (roll) is illustrated in Figure 14, as seen from the front of the 

helicopter. 

 
Figure 14: rolling balance (roll): rotor plane (front view) – adapted from (Jorge, 1992) 

The rolling balance (roll) is illustrated in Figure 15, as seen from the rear of the helicopter. 

 
Figure 15: rolling balance (roll): rotor plane (rear view) – adapted from (Jorge, 1992) 
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The directional balance (yaw) is illustrated in Figure 16. 

 
Figure 16: directional balance (yaw) – adapted from (Jorge, 1992) 

A rotation of (- αm) leads from the fixed rotor reference frame to the helicopter frame. 

 

 

 

 

 
 

   

 
   

h

h

h h
h

x x x m z mrotor rotor rotor rotorm m

y y yrotor rotorrotor

m m
z x m z mrotor rotor rotorz Rrotor R

F F F cos F sincos    0   sin

F    0        1          0 F F

sin    0      cos F F sin F cosF

     −  −     
   = = 
        +     

 
 
 
 
 

 

 

 

 

(34) 

 

 

 

 

 
 

   

 
   

h

h

h h
h

x x x m z mrotor rotor rotor rotorm m

y y yrotor rotorrotor

m m
z x m z mrotor rotor rotorz Rrotor R

M M M cos M sincos    0   sin

M    0        1          0 M M

sin    0      cos M M sin M cosM

     −  −     
   = = 
        +     

 
 
 
 
 

 

The forward speed (and therefore the relative wind (V)) was expressed in the aerodynamic 

reference frame. We pass from the aerodynamic reference frame to the helicopter frame 

by a rotation of 
f D m =  − : 

 
f f f

Rh

f f fRa

 cos     0   sin V cosV

V      0        1       0 0       0

sin    0   cos 0 Vsin

      
    = =
    
−   −     

 

 

(35) 

In the case considered here (horizontal forward flight, stabilized, with constant speed), 

the aerodynamic reference frame and the Galilean reference frame are confounded. The 

helicopter's net weight (Mg) is passed from this Galilean reference frame to the helicopter 

reference frame by a rotation of (-f) around Yg = Yh, and then a rotation of (-f) around 

Xh. 

 
g ff f

g Rh

f f g g fRg

M sin cos     0   -sin    0

M      0        1       0    0       0

sin       0    cos M M cos

    
   = =
   

  − −        

 

 

(36) 

 

 
g f g f

f f g f fg Rh

g ff f g f fRg

M sin M sin1       0             0

M 0   cos     sin       0 M sin cos

M cos0   -sin    cos M cos cos

    
   =   = −     

−    −        

 

 

(37) 
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The equilibrium, in the helicopter reference frame, gives us: 

  ( )

h

h

x

2

x g f x frotor

F 0

1
F M sin C S V 0

2

=

+  +  =


 

 

 

 

(38) 

 
h

h

y

y g f f Ra
rotor

F 0

F M sin cos T 0

=

+   − =


 

  ( )

h

h

z

2

z g f f z ehrotor

F 0

1
F M cos cos C S V 0

2

=

+   +  =


 

Taking the balance of moments around the rotor hub: 0M 0=  

( )

( )

h

h

h

2
x fx g fCG A

y CG g f f A

ACG g f fz
rotor

eh Ra

eh Ra Ra

2
eh Raz eh

1 C S VM M sinx x 2

M y M sin cos y 0

0zz M cos cosM

x x0 0

y 0 y T

1z z 0C S V
2

                  +  −   +            −           

 
      
      +  +  −
     

      

Ra A A

0

0

0

with : y x y 0

 
 =

  
 

= = =

 

What gives us: 

  ( )
h

2

x CG g f f CG g f f eh z Ra Raehrotor

1
M y M cos cos z M sin cos y V C S z T 0

2
 + −   +   −  + =    

 

(39)   ( ) ( )
h

2 2

y CG g f f CG g f A x eh zf ehrotor

1 1
M x M cos cos z M sin z V C S x V C S 0

2 2
 + −   +  −  +  = 

 

 
hz CG g f f CG g f Ra Ra

rotor
M x M sin cos y M sin x T 0 + −   +  − =   

And we arrive at the six fuselage equilibrium equations: 

    ( ) 2

x m z m g f xrotor rotor f

1
F cos F sin M sin C S V 0

2
 −  +  +  =   

 

 

 

(40) 

 y g f f Rarotor
F M sin cos T 0−   − =  

    ( )2

x m z m g f f zrotor rotor eh

1
F sin F cos M cos cos V C S 0

2
 +  −   −  =  

   

( )

x m z m CG g f f CG g f frotor rotor

2

eh z Ra Raeh

M cos M sin y M cos cos z M sin cos

1
y V C S z T 0

2

 −  −   +  

−  + =
 

  ( ) ( )2 2

y CG g f f CG g f A x zf ehrotor

1 1
M x M cos cos z M sin z C S V xeh V C S 0

2 2
+   −  +  +  =  

   x m z m CG g f f CG g f Ra Rarotor rotor
M sin M cos x M sin cos y M sin x T 0 +  −   −  − =  
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The hypothesis of small angles: cosαm ≈ cos 𝛼𝑓≈ cos𝜑𝑓 ≈ 1; sinαm ≈ αm; sinαf ≈ αf; 

sinφf ≈ φf leads to: 

 

    ( ) 2

x z m g f xrotor rotor f

1
F F M C S V 0

2
−  +  +  =   

 

 

 

(41) 

 y g f Rarotor
F M T 0−  − =  

    ( )2

x m z g zrotor rotor eh

1
F F M V C S 0

2
 + − −  =  

    ( )2

x z m CG g CG g f eh z Ra Rarotor rotor eh

1
M M y M z M y V C S z T 0

2
−  − +  −  + =  

  ( ) ( )2 2

y CG g CG g f A x zf ehrotor

1 1
M x M z M z C S V xeh V C S 0

2 2
+ −  +  +  =  

   x m z CG g f CG g f Ra Rarotor rotor
M M x M y M x T 0 + −  −  − =  

With the wrench of the rotor head efforts (in the fixed rotor reference frame) previously 

obtained, with the rotor incidence equal to 
0 f m =  +   and with:  

 

( )

 z zrotor rotor
T 2

F F a
C .

NS RA R


= =

 
, where the rotor rigidity is defined as: 

Nc

R
 =


. With the 

flapping and drag equations, therefore, we have a system of twelve nonlinear equations 

with twelve unknowns (
0 1c 1s f f Ra 0 1c 1s 0 1c 1s, , , , ,T , , , , , ,           ). 

3.3 Study of the effect of the introduction of defects in the main rotor 

Analysis of Influential Parameters 

To calculate the wrench of the forces on the rotor head, in any azimuthal position (ψi) 

(corresponding to a certain time: t = ψi/Ω, after passing the blades through the reference 

position, 
i 0 = , which corresponds to the synchronism signal given by the magnetic 

sensor in the rotor head), it is necessary and sufficient to know 

i i i i i i i( ), ( ), ( ), ( )        , the parameters of the blades (R, e, c), and their profile (Cd0, 

a), the advance rate µ, the air density (ρ), the mass of the blades (mi), the static moment 

of the blades (msi) and the inertia of the blades (Iβi). Analyzing each of the variables: 

• A static moment of the blades (msi):  
R R

si i
e e

m rdm rmdr= =  , where m is the mass per 

unit of the linear length of blade i.  (msi may be different for each blade, because of 

anisotropies). 

• Blade masses (mi):  
R R

i i
e e

m dm mdr= =  . 

• The inertia of the blades (Iβi):  
R R

2 2

i i
e e

I r dm r mdr = =   (mi and Iβi may also be 

different for each blade, due to anisotropies). 

The three parameters: mi, msi, and Iβi are interdependent. A change in mi leads to a 

corresponding change in the values of msi and Iβi. One can distinguish in the rotor: 
• rotor hub, or rotor cube, is integral with the rotating mast, which supports the forces from 

the blades through four spherical joints made of laminated rubber (spherical abutments). 

• the flapping part, consisting of a metal sleeve and a composite blade. 
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The rotor parts are illustrated in Figure 17, for the helicopter in the study 

 
Figure 17: rotor parts: hub, sleeve, and blade – adapted from (Jorge, 1992) 

• The balance masses (shot spheres), between 0 and 1 kg, can be inserted at the end of the 

sleeve, i.e., r = 1.0 m. 

• The insertion of an equilibrium mass (Δmi) leads us to changes in the parameters of blade 

i, from the isotropic values of msi and of Iβi.: 

 mρi = mρ iso + Δmi, where mρ iso = 88.2kg 

 msρi = msρ iso + Δmi(0.7), where msρ iso = 331.7kg.m 

 Iβi = Iβ iso + Δmi(0.7)2, where Iβ iso = 1675kg.m2 

• Air density (ρ): depends on pressure altitude and temperature. It is a parameter given, for 

example, from the standard atmosphere tables. 

• Advance ratio (μ): depends on the speed of the helicopter relative to the air (V) and the 

pitch of the rotor disk (αD). Note: The longitudinal attitude of the fuselage (αf) depends 

on αD and the tilt of the rotor mast (αm) so that: αf = αD - αm (αf is smaller than αD). 

• The parameters of the blades (R, e, c) and their profile (Cd0, a) can cause anisotropies 

but, within the scope of this study, they will be considered as constants, independent of 

the blades. All blade anisotropies will be considered to be "equivalent" anisotropies at the 

blade adjustment positions. In this way, an anisotropy in mi (and, consequently, in msi 

and Iβi) can be considered as an "equivalent" mass change in the radial position where the 

equilibrium mass can be added (in the Super Puma case, r = 1.0 m, i.e. at the end of the 

sleeve). 

In the same way, anisotropies to the lift of the profiles can be considered as "equivalent" 

variations of the blade pitch (θi(ψi)) which can be changed by regulating the length of the 

blades' pitch rods, or pitch links (which changes the collective pitch θo of blade i) and the 

deflection of the tabs (which gives a moment around the axis iX , introducing efforts on 

the rods (which will be transmitted to the fuselage) and, at the same time, giving a 

variation of the blade lift, which is supposed to be proportional to the speed of forward 

flight (i.e., assuming that the bracketing of the tabs does not affect the taper (conicity) 

(β0) of the rotor in stationary flight, that its effect increases with μ and that it is more 

important on the advancing blade side, and less important on the retreating blade side. 

Thus, we will be simulating the deflection of tabs as anisotropy in θis. 

In this way, if θis   0 (all the other parameters equal to zero) in the flapping motion 

equations, for stationary flight (μ = 0), one obtains: β0 = 0; β1c ≈ - θ1s; β1s ≈ 0. And for 

the forward flight, we will have: β0 = constant μ - θ1s, which shows that there will be an 

increase in the taper (conicity) (β0) that will be proportional to θis and μ, as we want to 

simulate. 

• The induced velocity: depends on the advance rate (μ), the rotor disc inclination (αD), the 

lift coefficient (CT) (which expresses the lift (thrust) of the helicopter (Fz) and considers 

the air density (ρ)) and the azimuthal position (ψi). We will assume that there is no 

anisotropy on the induced velocity and, therefore, that λ does not depend on blade i. 
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• The blade pitch: θi (ψi): It depends on the azimuthal position (ψi) and the balance of the 

helicopter (that is, of the fuselage), exposed to external forces and considered in stationary 

flight or forward flight with a constant speed. For the balance of the fuselage, one has 

assumed, as external efforts: (i) rotor head efforts; (ii) the net weight of the helicopter (the 

mass and the balance, i.e. the position of the fuselage center of gravity); (iii) the drag of 

the fuselage (assumed as applied a fixed point (A) and as independent of the longitudinal 

base of the fuselage); (iv) the negative lift effect of the horizontal empennage (assumed 

to be applied at a fixed point, and independent of the longitudinal attitude (tilt) of the 

fuselage); (v) the thrust of the anti-torque rotor, necessary to balance the torque applied 

on the main rotor. 

The calculation of θi (ψi) is divided into two steps: 1°) assuming that there is no anisotropy 

on the rotor, we will have the blade pitch (θ0, θ1c, θis) from the isotropic rotor equilibrium 

equations, as seen in the previous section; and 2°) the anisotropies are introduced on a 

blade (θ0i, θ1si) assuming that the fixation of the other blades will not change. 

• The flapping movement βi (ψi): As previously seen, βi depends on the azimuthal position 

(ψi), the fixation of the pitch θi (ψi), the induced velocity λ (ψi), the air density (ρ), on the 

blade parameters (R, e, c, a, msi, Iβi), on the advance rate (μ). We will divide the 

calculation of βi (ψi) into two steps: 

1°) We will assume that there is no anisotropy on the rotor. All blades have the same: 

mass (m), static moment (ms), the moment of inertia (Iβ), the value of pitch (θ), and the 

pitch angle is calculated from the balance of the helicopter, as previously seen. We will 

have an expression of β(ψi) which is valid for all blades; 

2°) The anisotropies to be studied on the blade (i) are introduced: (i) equilibrium mass 

on the sleeve (change of mi, msi, Iβi); (ii) adjustment of the blade control rod (change of 

θi); (iii) deflection of the tab (change of θ1si). 

The flapping of this blade (βi (ψi)) is calculated again, assuming that it will not influence 

the flapping movements of the other blades. 

• The drag motion δi(ψi): We’ve seen above that δi depends on ψi, θi, λi, βi, the air density 

(ρ), the advance rate (μ), and the blade parameters (R, e, c, a, msi , Iβi). Like what was 

done for θi and βi, we will split the calculation into two steps: 1°) assuming that there is 

no anisotropy on the rotor, the drag (δ0, δ1c, δ1s) will be obtained from the isotropic rotor 

equilibrium equations, as seen previously; and 2°) anisotropies are introduced on the 

blade (i) if this blade not influence the dragging motion of the other blades. 

Apart from the change in δ due to the already mentioned variations in θ and β, one can 

also have a variation in the angle δ due to anisotropy in a frequency adapter (either in its 

stiffness Kδi, or in its damping Cδi). In the case of the isotropic rotor, the rotor head forces 

are constant (for a certain equilibrium position). These efforts are applied to a fuselage, 

assumed rigid, in equilibrium, either in stationary flight, or in forward flight at a constant 

speed, where, consequently, all the fuselage accelerations are null (the linear accelerations 

of the center of gravity of the fuselage and the angular accelerations around this center of 

gravity), and the balance, previously calculated as a static equilibrium, gave us the values 

of the attitudes of the fuselage, longitudinal (αf), lateral (φf) and in rotation (ψf), which 

are all constant. 

The introduction of anisotropies and the calculation of the new angles θ, β, and δ leads us 

to new rotor head forces, which will no longer be constant but will be functions of ψi, that 

is, they will be forces at the frequency 1Ω (one-per-revolution of the rotor). Assuming 

the fuselage attitudes are constant functions plus the functions in 1Ω. The constant part 

of these attitudes is the one previously calculated, which is assumed to be unchanged after 
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the introduction of anisotropies on the rotor. This means that the introduction of 

anisotropy will not change the stationary attitudes of the fuselage but will introduce 

variations of these attitudes around the equilibrium position and that these variations will 

be functions of 1Ω, which will lead us to accelerations of the fuselage which will also be 

functions of the 1Ω frequency. 

Incorporation of defects into the formulation 

Introduction 

The wrench of the rotor head efforts, and the flight parameters (θ, β, δ, αf, ψf, TRa) are 

calculated, for an isotropic rotor. With the application of the Coleman Transformation 

(Coleman & Feingold, 1957), the rotor head efforts, as well as the flight parameters, are 

constant concerning time. 

When a defect is introduced, the rotor head efforts will be functions of ψi (and therefore 

functions of time, since t = ψi/Ω), which will be introduced in the fuselage balance 

equations which, at this moment, will no longer be homogeneous (right-hand term equal 

to zero), as previously calculated, since there will be accelerations transmitted to the 

fuselage, due to the variable efforts in the rotor head. Whenever a defect is introduced on 

a blade, the flapping (β) and drag (δ) of the other blades are assumed to be unchanged, 

and we will recalculate, for a blade (i), the flapping (β0i, β1ci, β1si) and the drag (δ0i, δ1ci, 

δ1si) with the correspondent previously derived equations, since the defect to be 

introduced is known a priori: (i) Mass defects: change in mi, msi and Iβi; (ii) Rod defects: 

change in θ0i; (iii) Tab defects: change in θ1si. 

We will assume that the introduction of defects does not lead to average attitude changes 

of the fuselage and, therefore, that the accelerations that we will have on the fuselage will 

not have constant terms, but only terms in 1Ω. In this way, for the center of gravity of the 

fuselage, we will have the accelerations: 

( )

( )

( )

2 2
t.t ic is

2 2

ic ist.t

2 2
t.t ic is

x x x cos x sin

y y y cos y sin

z z z cos z sin

•• ••

•• ••

•• ••

=  =  −  − 

=  =  −  − 

=  =  −  − 

 

 

 

 

 

 

 

 

(42) 

( ) ( )

( ) ( )

( ) ( )

t . t
1c 1s

t . t 1c 1s

t . t 1c 1s

2 2
f f f f

2 2
f f f f

2 2
f f f f

cos sin                pitch

cos sin                row

cos sin                yaw

•• ••

•• ••

•• ••

 =   =  −  −  

 =   =  −  −  

 =   =  −  −  
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Efforts on the rotor head after the introduction of defects 

The efforts on the rotor head will have, after the introduction of the defects, a constant 

component (the one previously calculated, with the isotropic rotor equilibrium) plus the 

cyclic components, that is, in 1Ω. Therefore, we will have: 

       

       

       

0 1c 1s

0 1c 1s

0 1c 1s

x x x xrotor rotor rotor rotor

y y y yrotor rotor rotor rotor

z z z zrotor rotor rotor rotor

F F F cos F sin

F F F cos F sin

F F F cos F sin

= +  + 

= +  + 

= +  + 

 

 

 

 

 

(43) 

       

       

       

0 1c 1s

0 1c 1s

0 1c 1s

x x x xrotor rotor rotor rotor

y y y yrotor rotor rotor rotor

z z z zrotor rotor rotor rotor

M M M cos M sin

M M M cos M sin

M M M cos M sin

= +  + 

= +  + 

= +  + 

 

 where the index "0" indicates the constant efforts, calculated assuming the isotropic rotor. 

These efforts are obtained from a sum, according to the number of blades, of the efforts 

due to each blade, as previously derived. For blade i, the new angles of pitch (θi), flapping 

(βi), and drag (δi), were calculated as previously derived. The rotor head forces, for blade 

i, will be the ones due to these new angles, by using the previously derived expressions 

for forces and moments, knowing that these efforts and their resultant have cyclic 

components in sinψ and cos𝜓, in addition to the constant component. 

To make the components, in sinψ and cosψ, for blade i, appear explicitly, we will apply 

to the expression of efforts the operators: ( )
2

0

1
... sin

2
d



 
   and ( )

2

0

1
... cos

2
d



 
  , 

which leads to the twelve expressions below, where the index "i" of the angles (pitch, 

flapping, and drag) was suppressed for simplicity of the notation. 

1si

2 2
x 2 2 2
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2 2 2 20
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1ci
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 1siz 2 2

1s 0 1c 1s tw 1s 1c

2si
0 1c 1s

F R e R
3 4 2

S 8 6

mR e
          2

4 R S

−
=   −  −   +  +  −  +   

 
+  −  +   

 

 

 

(48) 

 

 1ciz 2 2 2si
1c 1s 1c 1c 1s 0 1s 1c

F mR e R R e

S 8 6 4 R S

−  
=   −   +  −  − + − +  +      

 
 (49) 

 

1si

2 2

x 0 1c 0 1s tw tw 0 1c 1s

R e e R R
M Se 3 3 6 2 3 4 2 3

8 R 6 16

 −  
=   −   +  +  +  +   −  +  −     

  
 (50) 

 

 
1ci

2

x 0 1s 1c 1s 1c

R e e R
M Se 2 2 3

8 R 16

 −  
= −  +   +  −  −   

  
 (51) 

 

 
1si

2

y 0 1s 1c 1s 1c

R e e R
M Se 2 2

8 R 16

 −  
= − −  −   +  −  −   

  
 (52) 

 

1ci

2 2

y 0 1c 0 1s tw tw 0 1c 1s

R e e R R
M Se 2 2 4 2

8 R 6 16

 −  
= −   −   +  +  +  +   −  +  −     

  
 (53) 

 

( ) ( )

( )

1siz 2 2

0 1c 0 0 1c 1s 1c 1s 1c 1s

2

0 1s 1c 0 1c 0 0 1s 1s 0 1s 1c tw 0 1s 1c tw 0

tw 1s 0 1s 1s 1c 1c

M R e e e e e e
Se 8 8 2 6 2 2

2 16 R R R R R

R e
    6 2 2 2 2 2 2 4

12 R

R e
    2 4 4

16 R

 −   
=   +  −   +   −   +  −   

 

 
+    −   −   +    +   −   −   −  +    

 

+   −   −  +  −   ( )

( ) ( ) )

( )   

2 2 20
0 tw 1s 1c 0 1c 1s

2

0 tw 1c 1s 1s 1c 1s 1c 1c 1s 1c 1c 1s 1s tw

2 2 1s 1c
tw 1s 1c tw si 1c 0 1c 0 1s i i

Cd
2 4 4 3

a

    4 2 2 3 2

    3 m e K C
2 2

 

 
−   −  +   − +  + 



−   −  −  −  +  −  −  −  −   −   + 

 
+    −   +  −  −   +  + − 

 

 

 

(54) 

 

( )

( )

( ) ( )

1
0 1 1 1 1 1 0 0 1 1

2

0 1 1 0 1 0 0 1

0 1 1 0 1 1 0

1 0 1 1 1 0 1 1 1

8 2 2 8 4
2 16

2 2 2 6

2 2 2 2
12

2 4 4 2
16

z ci
s s s c c c s

c s s c

c tw s c s tw

tw c c c s s tw c s

M R e e e e e
Se

R R R R

R e

R

R e

R

          

        

        

          

 −   
= − + − + −  

 

+ − − + 

 
+ + − + − 

 


+ − − − + − + +


(

) ( ) 

 

1 1 0 0 1 1

2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1
1 0 1 0 1

2 4 3

2 2 2

2 2

c s c c

c s s s s s s c c s c c tw c s tw

c s
si s s c i im e K C 

      

                

 
    

− +

+ − + − − − + − 

+  + + + + 

 

 

 

 

(55) 
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In order to apply the sum according to the number of blades, as previously derived, for 

the case of this study (rotor with N = 4 blades), we will have: φ1 = φ (yellow blade); φ2 = 

φ + π/2 (blue blade); φ3 = φ + π (black blade); φ4 = φ + 3π/2 (red blade), what gives: 

1 01 1 1 1 1

2 02 1 2 1 2

02 1 2 1 2

3 03 1 3 1 3

03 1 3 1 3

4 04 1 4 1 4

cos sin

cos( / 2) sin( / 2)

      cos sin

cos( ) sin( )

       cos sin

cos( 3 / 2) si

c s

c s

s c

c s

c s

c s

Fx Fx Fx Fx

Fx Fx Fx Fx

Fx Fx Fx

Fx Fx Fx Fx

Fx Fx Fx

Fx Fx Fx Fx

 

   

 

   

 

 

= + +

= + + + +

= + −

= + + + +

= − −

= + + +

04 1 4 1 4

n( 3 / 2)

       cos sins cFx Fx Fx

 

 

+

= − +

 

Finally, we will have: 

1 1 1 1 2 1 3 1 4

1 1 1 1 2 1 3 1 4

{ }  

{ }

c rotor c s c s

s rotor s c s c

Fx Fx Fx Fx Fx

Fx Fx Fx Fx Fx

= + − −

= − − −
 

Likewise, for the other components we will have: 

1 1 1 1 2 1 3 1 4

1 1 1 1 2 1 3 1 4

{ }  

{ }

c rotor c s c s

s rotor s c s c

Fy Fy Fy Fy Fy

Fy Fy Fy Fy Fy

= + − −

= − − +
 

1 1 1 1 2 1 3 1 4

1 1 1 1 2 1 3 1 4

{ }  

{ }

c rotor c s c s

s rotor s c s c

Fz Fz Fz Fz Fz

Fz Fz Fz Fz Fz

= + − −

= − − +
 

1 1 1 1 2 1 3 1 4

1 1 1 1 2 1 3 1 4

{ }  M

{ }

c rotor c s c s

s rotor s c s c

Mx Mx x Mx Mx

Mx Mx Mx Mx Mx

= + − −

= − − −
 

1 1 1 1 2 1 3 1 4

1 1 1 1 2 1 3 1 4

{ }  M

{ }

c rotor c s c s

s rotor s c s c

My My y My My

My My My My My

= + − −

= − − +
 

1 1 1 1 2 1 3 1 4

1 1 1 1 2 1 3 1 4

{ }  M

{ }

c rotor c s c s

s rotor s c s c

Mz Mz z Mz Mz

Mz FMz Mz Mz Mz

= + − −

= − − +
 

 

Fuselage balance after the introduction of rotor defects 

The fuselage balance equations are homogeneous. The balance of external forces gives: 

2
,

,

2
,

{ } { } + +1/ 2 (  )

{ }  

 { } { } 1/ 2 (  )

t trotor rotor m f f

rotor f Ra t t

t tm rotor rotor eh

Fx Fz Mg Cx S V M x

Fy Mg T M y

Fx Fz Mg V Cz S M z

  



 

••

••

••

− =

− − =

+ − − =

 

 

 

(56) 

The equations of moments were previously obtained for the equilibrium concerning the 

rotor head. As we are interested in the movement of the center of gravity of the aircraft, 

these equations must be rewritten to consider the wrench of the external forces, no longer 

at the rotor head, but at the center of gravity. In addition, we will need the fuselage 

moments of inertia about the center of gravity, whose position changes as a function of 
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mass centering: moments of inertia in roll (Ixx), pitch (Iyy), and yaw (Izz), as well as the 

inertia product representing the yaw-roll coupling (Izx). The other couplings are assumed 

to be null. From the moments and products of inertia I=mρ2, we have the radii of gyration. 

From the data of an aircraft with mass M and with moments and products of inertia, the 

radii of gyration will only be a function of the centering. For a helicopter with M = 9,500 

kg (AS 332 MK II), the data is presented in Table 1. 

Table 1: Data for the helicopter of the study case – adapted from (Jorge, 1992) 

 AV centering 

XCG = 4.48 m 

Zero centering 

XCG = 4.67 m 

AR Center 

XCG = 4.95 m 

Ixx (m2kg) 

Iyy (m2kg) 

Izz (m2kg) 

Izx (m2kg) 

16 104 

61 163 

54 101 

3 880 

14 707 

61 104 

52 684 

2 914 

12 650 

61 017 

50 596 

1 491 

ρxx (m) 

ρyy (m) 

ρzz (m) 

ρxz (m) 

1.30 

2.54 

2.39 

0.64 

1.24 

2.54 

2.35 

0.55 

1.15 

2.53 

2.31 

0.40 

The inertias for zero centering were interpolated from the given inertias AV (forward) 

and AR (aft). The radii of gyration for any longitudinal centering can be interpolated from 

Table 1. The equilibrium of moments about the center of gravity is written as: 
2

2

1 2 ( )

0

0

0

0

1 2 ( )

fh CG h A CG

h CG h A CG

h CG h A CGrotor rotor

eh CG Ra CG

eh CG Ra CG

eh CG Reh

CxS VMx x Fx x x

My y Fy y y

Mz z Fz z z

x x x x

y y y y

z z zCzS V





 − −       
        

+ −  + −          
        − −         

 − − 
  

+ −  + −  
  − −   

2 2
2 2 . . .

2 2

. .

2 2
2 2

. . .

0

0

0

0 0

0

Ra

a CG

t t xx t t xz t t
xx xz

yy t t yy t t

xz zz
t t xz t t zz t t

T

z

f f f

f M f

f f f

    
 

   

 
    

•• •• ••

•• ••

•• •• ••

   
   

 − =
   
   −   

   
+

    
    

= =    
    

  +   
   

 

with yRa = xA = yA = 0. Thus, Equation (57) is obtained as: 

      ( ) ( ) ( )2

2 2

. .

1

2
h CG h CG h eh CG Ra CG Rarotor rotor rotor eh

xx t t xz t t

Mx y Fz z Fy y y V CzS z z T

M f f



   
•• ••

− + − − + −

 
= + 

 

 

 

 

 

 

(57) 
      ( ) ( ) ( ) ( )2 2

2

.

1 1

2 2
h CG h CG h A CG eh CGrotor rotor rotor f eh

yy t t

My x Fz z Fx z z V CxS x x V CzS

M f

 

 
••

− − + − + −

=
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      ( ) ( )2

2 2

. .

1

2
h CG h CG h CG Ra CG Rarotor rotor rotor f

xz t t zz t t

Mz x Fy y Fx y V CxS x x T

M f f



   
•• ••

− − − − −

 
= + 

 

 

And finally, Equation (58) is obtained as: 

       ( )  

( ) ( ) ( )2 2 2

. .

1

2

h h m CG m CG hrotor rotor rotor rotor rotor

eh CG Ra CG Ra xx t t xz t teh

Mx Mz y Fx Fz z Fy

y y V CzS z z T M f f

 

    
•• ••

− − + +

 
− − + − = + 

 

 

 

 

 

 

(58) 
     ( )    ( ) ( ) ( )

( ) ( )

2

2 2

.

1

2

1

2

CG m CG m A CGrotor rotor rotor rotor rotor f

eh CG yy t teh

My x Fx Fz z Fx Fz z z V CxS

x x V CzS M f

  

  
••

+ + − − + −

+ − =

 

         ( ) ( )

( )

2

2 2

. .

1

2
m CG CG m CGrotor rotor rotor rotor rotor f

Ra CG Ra xz t t zz t t

Mx Mz x Fy y Fx Fz y V CxS

x x T M f f

  

   
•• ••

+ − + − −

 
− − = + 

 

 

with : 

ρxx: radius of gyration of the fuselage concerning the Xh axis (roll) 

ρyy: radius of gyration of the fuselage about the Yh axis (pitch) 

ρzz: radius of gyration of the fuselage to the Zh axis (yaw) 

And with:  

0 1 1

0 1 1

0 1 1

cos sin

cos sin

cos sin

f f c s

f f c s

Ra Ra Ra c Ra s

f f

f f

T T T T

     

     

 

= + +

= + +

= + +

 

where αf0, φf0, and TRa0 were previously obtained from the fuselage equilibrium with the 

isotropic rotor and TRa1c, TRa1s are the components of the tail rotor thrust needed to make 

the ψf1c and ψf1s components of the rotational motion null. Since ψf1c and ψf1s are assumed 

not to be zero in the calculation of �̈�𝑓𝑡,𝑡, then TRa1c = TRa1s = 0 (therefore it is assumed 

that the tail rotor does not provide the cyclic thrust that could cancel the cyclic motion in 

yaw). To find the twelve unknowns of the fuselage accelerations: 

( )2

1 1 1 1 1 1 1 1 1 1 1 1, , , , , , , , , , ,c s c s c s c s c s c sx x y y z z f f f f f f     − , we will apply, to the 

equilibrium equations, the operators: ( )
2

0

1
... sin

2
d



 
   and ( )

2

0

1
... cos

2
d



 
  . 

The rotor head efforts, after intermediate calculations, lead to Equations (59) to (70): 

   1 1 21 1.
2 2 2 2

s srotor rotor s s
m

Fx Fz f x
Mg M


− + = −   (59) 

 

   1 1 21 1.
2 2 2 2

c crotor rotor c c
m

Fx Fz f x
Mg M


− + = −   (60) 

 

 1 21 1

2 2 2

s rotor s s
Fy f y

Mg M


− = −   (61) 
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 1 21 1

2 2 2

c rotor c c
Fy f y

Mg M


− = −   (62) 

 

   1 1 2 1.
2 2 2

s srotor rotor s
m

Fx Fz z
M − = −   (63) 

 

   1 1 2 1.
2 2 2

c crotor rotor c
m

Fx Fz z
M − = −   (64) 

 

         1 1 1 1 1

2 2 21 1

2 2 2 2 2

2 2

s s s s srotor rotor rotor rotor rotor
m cg m cg cg

s c
xx xz

Mx Mz Fx Fz Fy
y y z

f f
M

 

 
 

− − − + =

 
= −  + 

 

 

 

(65) 

 

         1 1 1 1 1

2 2 21 1

2 2 2 2 2

2 2

c c c c crotor rotor rotor rotor rotor
m cg m cg cg

c c
xx xz

Mx Mz Fx Fz Fy
y y z

f f
M

 

 
 

− − − + =

 
= −  + 

 

 

 

(66) 

 

 
( )

 
( )

 1 1 1 2 2 1

2 2 2 2

s s srotor rotor rotor s
cg m cg cg cg m yy

My Fx Fz f
x z x z M


  + − + + = −   (67) 

 

 
( )

 
( )

 1 1 1 2 2 1

2 2 2 2

c c crotor rotor rotor c
cg m cg cg cg m yy

My Fx Fz f
x z x z M


  + − + + = −   (68) 

 

         1 1 1 1 1

2 2 21 1

2 2 2 2 2

2 2

s s s s srotor rotor rotor rotor rotor
m cg cg cg m

s s
xz zz

Mx Mz Fy Fx Fz
x y y

f f
M

 

 
 

+ − + −

 
= −  + 

 

 

 

(69) 

 

         1 1 1 1 1

2 2 21 1

2 2 2 2 2

2 2

c c c c crotor rotor rotor rotor rotor
m cg cg cg m

c c
xz zz

Mx Mz Fy Fx Fz
x y y

f f
M

 

 
 

+ − + −

 
= −  + 

 

 

 

(70) 

Passing the accelerations from the fuselage C.G. to the given measurement points 

Fuselage helicopter vibration is measured through accelerometers, installed at given 

measurement points. The position vector of point (M) of the fuselage (assumed rigid) 

concerning its CG (G) is written in the Galilean reference frame, parallel to the 

aerodynamic frame, after rotation (-f, -f,  -f) from the helicopter reference frame Rh. 

cos sin 0 cos 0 sin 1 0 0

sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

f f f f M G

f f f f M G

f f f f M G

X X

GM Y Y

Z Z

   

   

   

   − −  
     

= − −     
     − −     

 
 

(71) 

with: X, Y, Z the coordinates of the points in the frame Rh.  
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The vector position is: 

𝐺𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ =

[
 
 
 
 
 
 
 

(𝑋𝑀 − 𝑋𝐺) 𝑐𝑜𝑠 𝜓𝑓 𝑐𝑜𝑠 𝛼𝑓 + (𝑌𝑀 − 𝑌𝐺)(𝑐𝑜𝑠 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 + 𝑠𝑖𝑛 𝜓𝑓 𝑐𝑜𝑠 𝜙𝑓)

+(𝑍𝑀 − 𝑍𝐺)(− 𝑐𝑜𝑠 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 + 𝑠𝑖𝑛 𝜓𝑓 𝑠𝑖𝑛 𝜙𝑓)

(𝑋𝑀 − 𝑋𝐺)(− 𝑠𝑖𝑛 𝜓𝑓 𝑐𝑜𝑠 𝛼𝑓) + (𝑌𝑀 − 𝑌𝐺)(− 𝑠𝑖𝑛 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 + 𝑐𝑜𝑠 𝜓𝑓 𝑐𝑜𝑠 𝜙𝑓)

+(𝑍𝑀 − 𝑍𝐺)(𝑠𝑖𝑛 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 + 𝑐𝑜𝑠 𝜓𝑓 𝑠𝑖𝑛 𝜙𝑓)

(𝑋𝑀 − 𝑋𝐺) 𝑠𝑖𝑛 𝛼𝑓 + (𝑌𝑀 − 𝑌𝐺)(− 𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓) + (𝑍𝑀 − 𝑍𝐺)(𝑐𝑜𝑠 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓)

 

 

The first derivative of the vector position is written as: 

𝑑𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗

𝑑𝑡
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (𝑋𝑀 − 𝑋𝐺) (− 𝑠𝑖𝑛 𝜓𝑓 𝑐𝑜𝑠 𝛼𝑓 𝜓

•

𝑓𝑡 − 𝑐𝑜𝑠 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝛼
•

𝑓𝑡)

+(𝑌𝑀 − 𝑌𝐺) (− 𝑠𝑖𝑛 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜓
•

𝑓𝑡 + 𝑐𝑜𝑠 𝜓𝑓 𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝛼
•

𝑓𝑡 + 𝑐𝑜𝑠 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜙
•

𝑓𝑡

+𝑐𝑜𝑠 𝜓𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜓
•

𝑓𝑡 − 𝑠𝑖𝑛 𝜓𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜙
•

𝑓𝑡)

+(𝑍𝑀 − 𝑍𝐺) (𝑠𝑖𝑛 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜓
•

𝑓𝑡 −𝑐𝑜𝑠 𝜓𝑓 𝑐𝑜𝑠 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 𝛼
•

𝑓𝑡 + 𝑐𝑜𝑠 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜙
•

𝑓𝑡

+𝑐𝑜𝑠 𝜓𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜓
•

𝑓𝑡 + 𝑠𝑖𝑛 𝜓𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜙
•

𝑓𝑡)

(𝑋𝑀 − 𝑋𝐺) (− 𝑐𝑜𝑠 𝜓𝑓 𝑐𝑜𝑠 𝛼𝑓 𝜓
•

𝑓𝑡 + 𝑠𝑖𝑛 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝜓
•

𝑓𝑡𝛼
•

𝑓𝑡)

+(𝑌𝑀 − 𝑌𝐺) (− 𝑐𝑜𝑠 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜓
•

𝑓𝑡 − 𝑠𝑖𝑛 𝜓𝑓 𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝛼
•

𝑓𝑡 − 𝑠𝑖𝑛 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜙
•

𝑓𝑡

−𝑠𝑖𝑛 𝜓𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜓
•

𝑓𝑡 − 𝑐𝑜𝑠 𝜓𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜙
•

𝑓𝑡)

+(𝑍𝑀 − 𝑍𝐺) (𝑐𝑜𝑠 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜓
•

𝑓𝑡 +𝑠𝑖𝑛 𝜓𝑓 𝑐𝑜𝑠 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 𝛼
•

𝑓𝑡 − 𝑠𝑖𝑛 𝜓𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜙
•

𝑓𝑡

−𝑠𝑖𝑛 𝜓𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜓
•

𝑓𝑡 + 𝑐𝑜𝑠 𝜓𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜙
•

𝑓𝑡)

(𝑋𝑀 − 𝑋𝐺) 𝑐𝑜𝑠 𝛼𝑓 𝛼
•

𝑓𝑡 + (𝑌𝑀 − 𝑌𝐺) (𝑠𝑖𝑛 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝛼
•

𝑓𝑡 − 𝑐𝑜𝑠 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜙
•

𝑓𝑡)

+(𝑍𝑀 − 𝑍𝐺) (− 𝑠𝑖𝑛 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 𝛼
•

𝑓𝑡 − 𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜙
•

𝑓𝑡)

 

The second derivative of the vector position is evaluated in Rg. The acceleration of M is: 
2 2 2

2 2 2
´

d d d
GM G G GM

dt dt dt
= +  

 

(72) 

Point G' in Galileo's frame coincides with G at this instant. The acceleration of the CG is: 

.

2

.2

.

´

t t

t t

Rh

t t

x

d
G G y

dt

z

••

••

••

 
 

  
=  

  
 
 

 
 

(73) 

Thus, in the helicopter reference frame: 

2 2

2 2

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

f f f f

f f f f

Rh Rg
f f f f

d d
GM GM

dt dt

   

   

   

    − 
      

= −      
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𝑑2

𝑑𝑡2
𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗]

𝑅ℎ

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (𝑋𝑀 − 𝑋𝐺) (𝛼

•

𝑓𝑡

2
− 𝑐𝑜𝑠 𝛼𝑓 𝜓

•

𝑓𝑡

2

)

+(𝑌𝑀 − 𝑌𝐺) (2 𝑐𝑜𝑠 𝜙𝑓 𝛼
•

𝑓𝑡𝜙
•

𝑓𝑡 + 𝑠𝑖𝑛 𝜙𝑓 𝛼
••

𝑓𝑡 + 𝑐𝑜𝑠2 𝛼𝑓 𝜓
••

𝑓𝑡 − 𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜙
•

𝑓𝑡

2

−2𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛 𝛼𝑓 𝜓
•

𝑓𝑡𝜙
•

𝑓𝑡)

+(𝑍𝑀 − 𝑍𝐺) (2 𝑠𝑖𝑛 𝜙𝑓 𝛼
•

𝑓𝑡𝜙
•

𝑓𝑡 − 𝑐𝑜𝑠 𝜙𝑓 𝛼
••

𝑓𝑡 + 2𝑐𝑜𝑠2 𝛼𝑓 𝜓
•

𝑓𝑡𝜙
•

𝑓𝑡 + 𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛 𝛼𝑓 𝜓
••

𝑓𝑡

+𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜙
•

𝑓𝑡

2

)

(𝑋𝑀 − 𝑋𝐺)( (2 𝑐𝑜𝑠 𝜙𝑓 𝑠𝑖𝑛 𝛼𝑓 𝜓
•

𝑓𝑡 𝛼
•

𝑓𝑡 − 𝑐𝑜𝑠 𝜙𝑓 𝑐𝑜𝑠 𝛼𝑓 𝜓
••

𝑓𝑡 − 𝑠𝑖𝑛 𝜙𝑓 𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛 𝛼𝑓 𝜓
•

2
𝑓𝑡

−𝑠𝑖𝑛 𝜙𝑓 𝛼
••

𝑓𝑡) + (𝑌𝑀 − 𝑌𝐺) (−𝜙
•

𝑓𝑡

2

− 2𝑐𝑜𝑠2 𝜙𝑓 𝑠𝑖𝑛 𝛼𝑓 𝜓
•

𝑓𝑡 𝜙
•

𝑓𝑡 − 𝑐𝑜𝑠2 𝜙𝑓 𝜓
•

𝑓𝑡

2

− 𝑠𝑒𝑛2𝜙𝑓𝛼
•

𝑓𝑡

2

−𝑠𝑒𝑛2𝛼𝑓𝑠𝑒𝑛
2𝜙𝑓𝜓

•

𝑓𝑡

2

− 2𝑠𝑖𝑛 𝜙𝑓 𝑠𝑒𝑛2𝛼𝑓𝜓
•

𝑓𝑡𝜙
•

𝑓𝑡 − 2𝑐𝑜𝑠 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜓
•

𝑓𝑡𝛼
•

𝑓𝑡)

+(𝑍𝑀 − 𝑍𝐺) (2 𝑐𝑜𝑠2 𝜙𝑓 𝑐𝑜𝑠 𝛼𝑓𝑓 𝜓
•

𝑓𝑡𝛼
•

𝑓𝑡 +𝑐𝑜𝑠2 𝜙𝑓 𝑠𝑖𝑛 𝛼𝑓 𝜓
••

𝑓𝑡 + 𝜙
••

𝑓𝑡

−2𝑐𝑜𝑠 𝜙𝑓 𝑠𝑖𝑛 𝜙𝑓 𝑠𝑖𝑛 𝛼𝑓 𝜓
•

𝑓𝑡𝜙
•

𝑓𝑡 − 𝑐𝑜𝑠 𝜙𝑓 𝑠𝑖𝑛 𝜙𝑓 𝛼
•

𝑓𝑡𝜓
•

𝑓𝑡

2

+ 2𝑠𝑖𝑛 𝜙𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑐𝑜𝑠 𝛼𝑓 𝜙
•

𝑓𝑡𝜓
•

𝑓𝑡

+𝑠𝑖𝑛 𝜙𝑓 𝑐𝑜𝑠 𝜙𝑓 𝛼
•

𝑓𝑡

2
+ 𝑠𝑖𝑛 𝜙𝑓 𝑠𝑖𝑛2 𝛼𝑓 𝜓

••

𝑓𝑡 +𝑠𝑖𝑛2 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜓
•

𝑓𝑡

2

)

(𝑋𝑀 − 𝑋𝐺) (2 𝑠𝑖𝑛 𝜙𝑓 𝑠𝑖𝑛 𝛼𝑓 𝜓
•

𝑓𝑡𝛼
•

𝑓𝑡 − 𝑠𝑖𝑛 𝜙𝑓 𝑐𝑜𝑠 𝛼𝑓 𝜓
••

𝑓𝑡 + 𝑐𝑜𝑠 𝜙𝑓 𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛 𝛼𝑓 𝜓
•

𝑓𝑡

2

+𝑐𝑜𝑠 𝜙𝑓 𝛼
••

𝑓𝑡) + (𝑌𝑀 − 𝑌𝐺) (−2 𝑠𝑖𝑛 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜙
•

𝑓𝑡𝜓
•

𝑓𝑡 − 𝑠𝑖𝑛 𝜙𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜓
•

𝑓𝑡

2

+𝑠𝑖𝑛 𝜙𝑓 𝑐𝑜𝑠 𝜙𝑓 𝛼
•

𝑓𝑡

2
+ 𝑠𝑖𝑛2 𝛼𝑓 𝑐𝑜𝑠 𝜙𝑓 𝑠𝑖𝑛 𝜙𝑓 𝜓

•

𝑓𝑡

2

+ 2𝑐𝑜𝑠 𝜙𝑓 𝑠𝑖𝑛2 𝛼𝑓 𝜓
•

𝑓𝑡𝜙
•

𝑓𝑡

−𝑠𝑖𝑛 𝛼𝑓 𝜓
••

𝑓𝑡 + 𝜙
••

𝑓𝑡 − 2𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛2 𝜙𝑓 𝜓
•

𝑓𝑡𝛼
•

𝑓𝑡) + (𝑍𝑀 − 𝑍𝐺) (2 𝑐𝑜𝑠 𝛼𝑓 𝑠𝑖𝑛 𝜙𝑓 𝑐𝑜𝑠 𝜙𝑓 𝜓
•

𝑓𝑡𝛼
•

𝑓𝑡

+𝑠𝑖𝑛 𝜙𝑓 𝑐𝑜𝑠 𝜙𝑓 𝑠𝑖𝑛 𝛼𝑓 𝜓
••

𝑓𝑡 − 𝜙
•

𝑓𝑡

2

+ 2𝑠𝑖𝑛 𝛼𝑓 𝑠𝑖𝑛2 𝜙𝑓 𝜓
•

𝑓𝑡𝜙
•

𝑓𝑡 − 𝑠𝑖𝑛2 𝜙𝑓 𝜙
•

𝑓𝑡

2

−2𝑐𝑜𝑠 𝜙𝑓 𝑠𝑖𝑛 𝛼𝑓 𝑐𝑜𝑠 𝛼𝑓 𝜓
••

𝑓𝑡𝜙
•

𝑓𝑡 − 𝑐𝑜𝑠2 𝜙𝑓 𝛼
•

𝑓𝑡

2
− 𝑐𝑜𝑠 𝜙𝑓 𝑠𝑖𝑛2 𝛼𝑓 𝜓

••

𝑓𝑡 − 𝑠𝑖𝑛2 𝛼𝑓 𝑐𝑜𝑠2 𝜙𝑓 𝜓
•

𝑓𝑡

2

)

 

 

 

 

 

 

 

 

 

 

 

 

 

(74) 

Assuming angles: sinφf ≈ φf; sinαf ≈ αf; sinψf ≈ ψf; cosφf ≈ 1; cosαf ≈ 1; cosψf ≈ 1, and 

disregarding triple products concerning the double products leads to: 

( ) ( )

( )

( ) ( )

( )

2 2

2 2

2

2

2

2

2

ft ft ftft ft ftM G M G f

ft ft ft ftM G f

ftft ft ftM G f M G

Rh
ftft ft ftM G f

M

X X Y Y

Z Z

X X Y Y
d

GM
dt

Z Z

X X

      

    

    

    

• • • • •• ••

•• • • ••

•• •• • •

• • •• ••

   
− − − + − + +   

  

 
+ − − + + 

 

  
− − − + − − −  

    =
  

+ − + + 
 

−( ) ( )

( )
2 2

ftft ft ftG f M G f

ftftM G

Y Y

Z Z

     

 

•• •• •• ••

• •


















   
− + + − − −       


 

+ − − − 
 

 

 

 

 

 

(75) 
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The acceleration of point M is, therefore: 

..

2 2

. .2 2

.
.

'

Mt tMt t

Mt t Mt t

Rh

Mt t
Mt t

xx

d d
G M y y GM

dt dt

z
z

••••

•• ••

••
••

 
 
  

= = +  
  

 
   

 

With accelerations given by : 

( )

( )

( )

2 2
. 1 1

2 2

1 1.

2 2
. 1 1

cos sin

cos sin

cos sin

Mt t M M c M s

M c M sMt t M

Mt t M M c M s

x x x x

y y y y

z z z z

 

 

 

•• ••

•• ••

•• ••

=  =  − −

=  =  − −

=  =  − −

 

The six unknowns (accelerations of point M) can be found after applying the operators: 
1

2𝜋
∫ (… )𝑠𝑖𝑛𝜓𝑑𝜓

2𝜋

0
 and 

1

2𝜋
∫ (… )𝑐𝑜𝑠𝜓𝑑𝜓

2𝜋

0
, what gives, after intermediate calculations: 

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )

1 1 0 1 1 0 1 1

1 1 0 1 1 0 1 1

1 1 0 1 1 0 1 1

1 1 0 1 1 0 1 1

1 1 0 1

M s s M G f f s f s M G f f s f s

M c c M G f f c f c M G f f c f c

M s s M G f f s f s M G f f s f s

M c c M G f f c f c M G f f c f c

M s s M G f f s

x x Y Y Z Z

x x Y Y Z Z

y y X X Z Z

y y X X Z Z

z z X X

     

     

     

     

 

= + − + + − +

= + − + + − +

= + − − − + − +

= + − − − + − +

= + − −( ) ( )( )

( )( ) ( )( )

1 0 1 1

1 1 0 1 1 0 1 1

f s M G f f s f s

M c c M G f f c f c M G f f c f c

Y Y

z z X X Y Y

   

     

− + − − −

= + − − − + − − −

 

 

 

 

 

 

(76) 

The amplitude and phase of the accelerations 

The efforts on the rotor head were expressed as a function of the azimuthal coordinate of 

blade number 1:  =  = Ωt, where t represents the time that elapsed from the moment 

when this blade passed through the origin position ( = 0) and the magnetic sensor 

triggered the signal to synchronize the time. From this moment (t = 0) on, the vibration 

measured in the fuselage is expressed in terms of amplitude and phase, which can be 

calculated from the different components, as summarized in Tables 2 and 3. 

Table 2: Acceleration at the fuselage CG – adapted from (Jorge, 1992) 

Entry data Vibration amplitude Vibration phase 

x1s, x1c 2 2 2

1 1s cAX x x=  +  1

1

arctan c

s

x
X

x
 =  

y1s, y1c 2 2 2

1 1s cAY y y=  +  1

1

arctan c

s

y
Y

y
 =  

z1s, z1c 2 2 2

1 1s cAZ z z=  +  1

1

arctan c

s

z
Z

z
 =  
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Table 3: Acceleration of point M at the fuselage – adapted from (Jorge, 1992) 

Entry data Vibration amplitude Vibration phase 

xM1s, xM1c 2 2 2

1 1M M s M cAX x x=  +  1

1

arctan M c
M

M s

x
X

x
 =  

yM1s, yM1c 2 2 2

1 1M M s M cAY y y=  +  1

1

arctan M c
M

M s

y
Y

y
 =  

zM1s, zM1c 2 2 2

1 1M M s M cAZ z z=  +  1

1

arctan M c
M

M s

z
Z

z
 =  

3.4 Validation of the calculation code 

The Possibilities 

Several procedures for validating the calculation code can be envisaged, not only within 

the scope of the direct problem but also for the opposite inverse, which will be introduced 

in a later section. 

The first possibility is to validate the codes with accelerometers installed as foreseen in 

the Maintenance Manual (MET) of the helicopter, to be able to compare the results 

obtained with the correction maps (which are experimental, obtained in-flight tests) that 

already exist in MET. We’ve simulated, in the scope of this work, some flight conditions, 

to validate the calculation code of the direct problem. 

A second possibility is to validate the codes through flight tests, which can give us, the 

different flight conditions and known corrections introduced in the rotor, the efforts 

measured in the rotor head, as well as the accelerations at different points of the fuselage. 

This validation is adapted not only to the direct problem but also to the inverse problem, 

since it is possible to place the six accelerometers in the fuselage, necessary to find the 

CG accelerations of the fuselage and the efforts that result in the rotor head, as we will 

see in the discussion of the inverse problem, in a later section. 

A third possibility is to validate the code with the help of a helicopter rotor numerical 

code, such as R85, HOST, etc. For references on numerical codes for helicopter rotor 

simulation see (Rabe & Wilke, 2018), (Wilke, 2017), (Johnson, 2013b), (Benoit et al., 

2000).  To be able to compare the codes, it is necessary to put the isotropy of the blades 

as a hypothesis, which leads us to the validation of the part of the code related to the 

isotropic rotor balance. This possibility can lead to a decrease in the workload required in 

the flight tests (second possibility, above), which will serve, therefore, to validate only 

the second part of the code (the introduction of defects in the rotor head). 

Comparison with the MET 

Several possibilities for installing accelerometers are provided in the MET: (i) 

Accelerometers (lateral and longitudinal) positioned on the electrical panel, to the left of 

the 3rd man's seat, at the top; (ii) Accelerometers (vertical, lateral, and longitudinal) 

positioned on the floor to the left, below the co-pilot seat; and (iii) Accelerometer (lateral) 

positioned below the main gearbox (BTP). 
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The calculation code, as previously derived, is composed of two parts: the first part 

corresponds to the calculation of the equilibrium, with the isotropic rotor, while the 

second part corresponds to the introduction of defects. The calculation of the isotropic 

rotor equilibrium is done by calculating the solution of a system of 12 nonlinear equations 

with 12 unknowns. These are the three flapping equations, the three drag equations, and 

the six fuselage balance equations, as seen before. As the equations are non-linear, a 

subroutine of the IMSL library was used in a FORTRAN software, which finds the 

solution of a system of non-linear equations with the Jacobian of this system provided a 

priori. For that, the Jacobian of the system of non-linear equations of isotropic rotor 

equilibrium is calculated as a matrix 12 x12, obtained from all the partial derivatives of 

the twelve equations concerning the twelve unknowns. 

( )
( )

( )

( ) 2 2 2
2 2

0

1 1
1,1

1 2 2 3 4 4

F F acR R e R R R
FJAC e

X I


 



   − 
= = = − + + +  

    
  

 

(77) …. etc, up to 

( )
( )

( )

( )12 12
12,12

12
Ra

Ra

F F
FJAC x

X T

 
= = = −

 
 

The unknowns are angles in radians and, therefore, very small, and a subroutine that 

works in double precision was used. Even with all the precautions from the numerical 

point of view, the system was always very sensitive to two parameters: 

• The criterion to finish the calculation (a relative error criterion). A root is accepted if the 

relative error between two successive approximations of this root is less than the relative 

error criterion. The chosen value of the criterion is very important for the convergence of 

the subroutine; if the relative error criterion is too large, the subroutine fails to find a 

solution that can nullify the system of equations before the difference between two 

successive iterations, for root, be already reached. On the other hand, if the relative error 

criterion is too small, the subroutine may interrupt the iteration because it hasn't made 

good progress. The system of equations is extremely sensitive to the knowledge, with 

good precision, of the unknown parameter values. 

• The approximate guess value of θ is used to initialize the subroutine. This value must be 

provided a priori and slight changes in this value may sometimes prevent the subroutine 

to find the system solution. 

In this way, the simulation of all possibilities in terms of flight conditions, mass, and 

balance, with the subroutine, becomes a problem since, for each case, it is necessary to 

effectively evaluate the relative error criterion and the initial pitch θ values, to be supplied 

to the subroutine. For a more complete simulation, it will be necessary to find a system 

solution subroutine more adapted to this specific problem. The results of the isotropic 

rotor equilibrium can be found for different flight conditions (stationary flight, ground 

level, etc.), with different values for the helicopter mass and centering (mass center 

location). Limits of mass and centering are shown in Figure 18, for this case. 
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Figure 18: limits of mass and centering: helicopter AS332L – adapted from 

(Jorge, 1992) 

For the second part of the calculation code, there are no numerical problems in terms of 

convergence to the solution. Figure 19 shows a rotor balance chart, from the MET. 

Starting from the isotropic rotor, the introduction of an equilibrium mass Δm = 500 g on 

blade n° 2 leads us to a lateral vibration of 0.25 IPS amplitude, and 270° phase (point X 

on the chart). Entering the same mass in the software, for the obtained equilibrium, the 

deviation found (in amplitude and phase) is small (point O on the chart). 

 
Figure 19: Helicopter Maintenance Manual (MET) chart: simulation and predicted 

vibration values – adapted from (Jorge, 1992) 

This small deviation can be explained by the fact that the balance chart is an average 

chart, obtained from the user experience of several aircraft whose characteristics were not 

identical. Furthermore, it is a map that is assumed to be valid throughout the helicopter 

flight domain, when one can see, in the previously obtained formulations, that the 

introduction of the same equilibrium mass under different flight conditions or with 

different configurations (in terms of weight and centering of the aircraft) can lead to 

different efforts on the rotor head and, consequently, to measured vibrations on the 

fuselage which are different, too. In this way, the comparison with the MET serves as an 

initial point of reference, knowing that the complete validation of the system must be 

done, in principle, by flight tests. 

Jorge, Ariosto B., et al. (2022)               Parameter Identification Helicopter Main Rotor Balancing & Tracking pp. 519-616

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 581



A comment on the results 

The subroutine provided by the IMSL library for calculating the isotropic rotor balance 

is very sensitive to variations in the given parameters and the initial values considered for 

the unknown parameters (in particular, the initial pitch angle θ). A subroutine more 

adapted to this specific problem should be sought, to be more robust, that is, less affected 

by variations of parameters that have nothing to do with the flight condition as such, but 

with only numerical constraints (in this case, the need, for the subroutine, to know a priori 

what the maximum permissible error is, and to have initial values of the pitch angle θ, to 

initialize the subroutine. 

It can also be seen that the simple comparison with the MET cannot be taken as a complete 

validation of the system but must be considered as an initial point of reference for more 

complete validation, with flight tests, for different flight conditions and aircraft settings. 

3.5 The inverse problem for identification of unbalanced and out-of-track blades in 

a helicopter main rotor system and the optimization of the accelerometer 

positions– perspectives 

Analysis of the Inverse Problem 

As in the case of the study of the introduction of defects, the problem can be divided into 

two stages: (i) the study of the isotropic rotor; (ii) the study of the inverse problem as such 

from the vibrations measured on the fuselage. 

For this second step, the equilibrium with the isotropic rotor (θ, β, δ,αf, φf, TRa) is, 

therefore, known a priori. From the installation of accelerometers at different points of 

the fuselage, it is possible to have, as input data, the amplitude and phase of the 

accelerations at these locations. It was previously seen the passage of the six accelerations 

(three linear and three angular) to the three linear accelerations of any point M in the 

fuselage. To calculate the inverse, it is necessary and sufficient to have six linear 

accelerations at chosen points on the fuselage (example: the three accelerations in x, y, 

and z of two points: M1 and M2), to find the six accelerations of the CG, the fuselage seen 

as a rigid body. 

From the twelve components (in sines and cosines) of the CG accelerations and the 

knowledge of the fuselage radii of gyration (which are a function of the centering of the 

aircraft, which is known from the isotropic rotor equilibrium), the twelve components (in 

sines and cosines) of the resulting efforts on the rotor head (Fx, Fy, Fz, Mx, My, Mz) are 

found. 

From this point on, the inverse of the previously obtained expressions is no longer 

possible to be obtained without making additional assumptions, since each of the resulting 

efforts in the rotor head was obtained from the sum of the efforts generated by each of 

the four blades. One must note that, at this point, there are twelve equations and forty-

eight unknowns. From the practical experience of balancing the rotors, it can be seen that 

in terms of the measured vibration: (i) the introduction of an equilibrium mass (+Δm) on 

a blade i is equivalent to the removal of the same mass (-Δm) on the blade that is 

diametrically opposite to it (i + 180°); (ii) the increase in rod (pitch link) length (Δθ0) on 

blade i is equivalent to the corresponding decrease (-Δθ0) on the opposite blade (i + 180°). 

In addition, MET maintenance procedures generally prohibit the operator from making 

adjustments to one blade, called standard. For this blade, the rod length, as well as the 

Jorge, Ariosto B., et al. (2022)               Parameter Identification Helicopter Main Rotor Balancing & Tracking pp. 519-616

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 582



adjustment of the tabs and the balance mass at the sleeve will remain unchanged. Thanks 

to this equivalence between the balance corrections to be introduced either on blade i, or 

on blade i + 180°, we will consider only the introduction of corrections for two rotor 

blades (example: blades i and i + 90°), the other two will continue to be unchanged. In 

this way, we now have twelve equations and twenty-four unknowns (the forces generated 

in the rotor head by these two blades being considered), the forces generated for the two 

other blades are obtained with the isotropic rotor hypothesis. Maintenance procedures 

recommend not introducing two simultaneous corrections on two different blades. In this 

way, the process is iterative: corrections are introduced on a blade, the vibration 

measurement is re-done, new corrections are introduced on the same blade or another 

one, the measurements are re-done and so on, in sequence, until obtaining levels of 

vibrations below a certain value, defined a priori as acceptable, and predicted in the 

helicopter maintenance manual (MET). 

We will solve the passage from the resulting efforts at the rotor head to the efforts in the 

rotor head due to a blade i in the same iterative way: (i) It is assumed that the other three 

blades are isotropic, and we will have a system of twelve equations with twelve unknowns 

(the efforts on the rotor head generated by blade i). Then, the corrections to be introduced 

on this blade are calculated (see below); (ii) Next, it is assumed an  isotropic blade i to 

calculate the rotor head efforts generated by blade i + 90° (in our example) and, thus, the 

corrections to be introduced on this blade (see below); and (iii) The calculated correction 

is introduced, and then the accelerometer measurements and also all calculations to obtain 

new corrections are redone, until the vibration level is below an acceptable value. 

For code validation regarding the inverse problem, it is sufficient to take the corrections 

calculated before for blade i and input them in the calculation code of the direct problem, 

to verify if the introduced corrections cause vibrations at the fuselage measurement points 

(M1 and M2), which are of similar amplitude but in phase opposition concerning the 

vibrations measured initially (which were the given parameters in the calculation of the 

inverse problem). Thus, the vibrations caused by the corrections will cancel out those 

from the beginning. It remains to analyze the corrections to be introduced on a blade i. It 

was obtained, above, the efforts in the head of the rotor generated by blade i. It was also 

seen that these efforts come from the introduction of defects in θ0, θ1s, and mp, which 

generated the new flapping (β) and drag (δ) angles. 

The mass effect is more important on "lateral" and "longitudinal" (in the rotor plane) 

vibrations, while the rod and tab effect is more important on "vertical" (orthogonal to the 

rotor plane) vibrations.  In this way, we will separate the problem into two parts: 

• For the efforts in the plane (Fx, Fy, and the moment generated by these two forces: Mz), we 

will assume that there is no variation due to the pitch (). In this way, ,  and  are the angles 

already obtained with the isotropic rotor hypothesis and the unknowns are now: mp, msp, and 

I. Finally, these last three parameters have a relationship with the change in blade mass due 

to the introduction of the equilibrium mass (Δm), which will give us, in the end, the 

equilibrium mass to be introduced or withdrawn on this blade i (Δmi) to obtain the forces Fx, 

Fy and Mz. 
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• For the forces orthogonal to the rotor plane, we will assume that mp, msp, and I are the 

parameters of the isotropic rotor. We will have six equations (Fz, Mx, My, in sines and 

cosines) in addition to the flapping and drag equations, to obtain the new pitch angles (θ), as 

well as the corresponding flapping (β) and drag (δ) angles. This problem can be treated in two 

parts, too. Current rotor balancing procedures are to perform, in the first step, a steady-state 

flight (µ = 0) from which corrections are introduced on the pitch rod. Then, a stabilized level 

flight is carried out, where corrections tab adjustment are introduced since the tabs influences 

restricts to forward flight. 

Thus, for simplicity of calculation, the inverse problem can be calculated: 
• In the first step, for µ = 0, with θ1c and θ1s calculated with the isotropic rotor and the only 

defect is the one in θ0, with the corresponding changes in β and δ; 

• In a second step, for µ ≠ 0, we will assume that θ0 is the one calculated in the first step, and 

will have, as unknowns: θ1s (equivalent to a change of tab, as seen in the analysis done 

previously) and the corresponding terms in β and δ. 

Optimization of the accelerometer positions 

To look for the optimal position of the accelerometers, it is necessary to use the second 

possibility of validating the calculation code, mentioned above, that is, the flight tests. 

The intention is to minimize the calculations to be made, and the possible couplings 

between the different parameters, during the calculation of the inverse problem, and, for 

that, the most adapted validation method is the flight tests. It is at this stage of the work 

that we will consider, also, the constraints or limitations of the problem, such as: (i) The 

maximum permissible balancing mass in the sleeve; (ii) The maximum permissible effort 

on the rod; (iii) The maximum adjustment of tabs, etc. Several possible positions of 

accelerometers should be studied. For example: 
• Three accelerometers (vertical, lateral, and longitudinal) on the floor to the left, below the co-

pilot seat; 

• Two accelerometers (vertical and lateral) on the floor on the right, in the strong frame (Z = 

6,815 mm) (the end of the floor and the beginning of the tail boom); 

• One accelerometer (vertical) on the floor on the left (same frame: Z = 6,815 mm). 

The 2nd step of the optimization process, the effect of the tab, as previously analyzed, can 

be considered as a change in θ1s and, in addition, a change in blade twist, to account for 

the fact that the tab generates a torsion moment on the blade, which can lead to a twisting 

of this blade because the blade has a certain torsional flexibility, which can be considered. 

This can also lead us to calculate the efforts that will be passed to the fuselage through 

the rods and the chain of command. Non-linearities, such as, for example, the play of a 

connecting rod, can also be considered, as well as non-linearities in the operation of drag 

adapters. 
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4 Model-based parameter identification for unbalanced and out-of-track 

helicopter rotor blades: a case study of a 3-blade main rotor  

This section is based on a Master’s Thesis (González, 2012), Post Graduate Program in 

Mechanical & Aeronautical Engineering at ITA, São José dos Campos, Brazil, 2012. 

4.1 Introduction 

Case study: 3-blade main rotor: model development & comparison with flight tests 

Following the steps of the above study for the 4-blade helicopter case, this Section focuses 

on the analytical modeling of the relationship between the simplified dynamics of a 

fuselage-main rotor system and the vibratory level of its response, measured at two points 

on the fuselage, for the case of a 3-blade helicopter. The mathematical model derived by 

(Jorge, 1992) was adapted for the peculiarities of a typical small helicopter with three 

blades. Most of the text from (González, 2012) was retained. Some equations at the 

beginning of these derivations, before adding the total number of blades, are similar to 

the ones obtained in the previous section, for the case of the 4-blade study, and thus their 

Equation numbers are only referenced in the following text, to avoid eventually repeating 

some previously obtained equations. As before, the response is limited to measurements 

of amplitude and phase of once-per-rev vibrations at the circular frequency of the main 

rotor (1-per-rev or 1Ω) on the x, y, and z axes. An additional limitation to this model 

comes from the approximations assumed for some design parameters, not available in the 

literature or manuals, thus adopted as representative of the 3-blade helicopter in the study, 

the AS355 F2 Squirrel model. 

As in Section 3, this section presents mathematical modeling for the analytical expression 

of the wrench of the efforts in the rotor hub, modeled as a set of articulated blades under 

the degrees of freedom in pitch, flapping, and lead-lag. Three distinct phases make up any 

type of analysis: analytical modeling, mathematical modeling, and dynamic behavior. In 

line with good engineering practices to obtain adequate analytical modeling (among 

several always possible), a set of simplifying hypotheses is adopted to reduce a real 

dynamic system to another equivalent of the type represented by mass-spring-damper; 

and the same is represented by a free body diagram that reflects its properties also defined 

by the analyst, such as inertia (mass), rigidity (spring), energy dissipation (damper), and 

type of loading (forces). The model needs to be a compromise solution between the 

sophistication that brings it closer to the complex reality and the simplification that, 

moving away from it, analyzes the corresponding mathematical model viable, with the 

resources and deadlines available. Mathematical modeling includes small vibrations 

around an equilibrium position, and their associated accessory conditions (initial and/or 

boundary conditions). Among the basic and didactic approach techniques for deducing 

the differential equations governing the motion, one can group them into Lagrangian 

Mechanics (according to scalar energy concepts) and Newtonian Mechanics (based on 

vector quantities). Despite complex structures recommending the first (more systematic), 

the latter is chosen in this text, given the more intuitive nature of identifying the efforts 

and their visualization in the free body diagram (necessary in this option), conceived in a 

relatively simple way, given the simplifications to be discussed. The resolution of these 

equations, either in the time or frequency domain, then reveals the dynamic behavior 

resulting from the adopted analytical model, and in this text, it is performed numerically 

in the frequency domain with computational aid. 
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THE HYPOTHESES 

The analytical modeling of the isotropic fuselage-rotor system begins by opting for the 

design of the free-body diagram only for the defect-free rotor system (from this point 

onwards, the term “isotropic” is adopted), or more precisely, of any of its three blades, 

since it concentrates, within the adopted hypotheses, all the dynamic efforts to be 

integrated by the rotor hub and then added up and transmitted to the fuselage (supposedly 

assumed as stationary concerning any other loads). Always looking for a compromise 

solution between the simplicity of the model and the accuracy of the results, for the 

necessary definition of the reference flight configuration, despite directly influencing the 

vibration index, for simplicity, this study adopts: 

1. The fixed value of 1.225 kg/m3 of the air density, which flows through the profiles of 

the blades and empennages, and this is directly proportional to their lift and drag, also 

creates resistance to the fuselage advance. This value corresponds to the standard 

atmosphere ISA (International Standard Atmosphere - model established by the ICAO), 

without ΔT temperature adjustments (non-varied ISA), and at sea level (troposphere, 

under standardized conditions of temperature (15ºC) and pressure (101325N/m2)) 

2. Zero load factor (acceleration of the body dimensionless by the acceleration of gravity 

g, a result of the ratio between the force applied to it and its weight), that is, stationary, 

straight, level, and stabilized flight (structure not subjected to any accelerations); 

3. In the broad spectrum of frequencies, even when aware of the importance of other 

harmonics associated with other defects, for simplicity, only vibrations at the fundamental 

frequency of value 1Ω are considered here, equal to once the rotation of the main rotor, 

as it is still an important item associated with direct intervention actions in maintenance 

practice. 

4. Articulated rotor according to the following degrees of freedom for each blade, under 

small-displacement angles to reduce non-linearities: (i) flapping (flexion out of the plane 

of rotation): as in forward flight it compensates for lift asymmetry; (ii) forward and 

backward movement or lead-lag (flexion in the plane of rotation): as it is due to the non-

linear Coriolis force associated with the flapping motion (although independent of the 

lead-lag), according to a flap-lag coupling, for which relief is required bay means of a 

lead-lag joint normal to that plane; and (iii) variation of pitch or incidence in pitch or 

feathering or torsion (rotation around the elastic axis): as it is the end of the collective 

and/or cyclical chain of action, and its coupling with each of the above degrees of 

freedom. 

For simplicity of the model to be calculated, the torsional freedom of the blade or twist 

associated with the tab adjustments (which here is associated with torsion) is disregarded, 

since it is assumed that it has sufficient stiffness to contain it. There is only the built-in, 

permanent and linear torsion, as a given intrinsic to the project. Furthermore, all 

nonlinearities linked to pitch-flap-lag couplings, represented by the triple products of their 

displacements or associated functions, are disregarded. 

5. Rigid blades, for simplicity of calculations. Therefore, the degree of freedom in the 

flexible mode of torsion of the blade (twist) along its elastic line is disregarded. This 

positioning eliminates the adjustment through the tabs, which also corrects the tracking 

by variation of the lift in the respective section of the blade in which they are installed. 

Jorge, Ariosto B., et al. (2022)               Parameter Identification Helicopter Main Rotor Balancing & Tracking pp. 519-616

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 586



6. Blade submitted to aerodynamic loading resulting from two-dimensional flow 

according to the Blade Element Theory (Johnson, 2013b): adopts a high aspect ratio for 

the profile) in a steady-state, without gust-type disturbances being considered. 

The actual blade is made of composite material and is reasonably flexible in bending and 

torsion, like most of them, so it is subject to aeroelastic effects related to flap-lag, pitch-

flap, pitch-lag, and pitch-flap-lag couplings (only this one is disregarded here in the 

model). This study disregards the effects of flow on the retreating blade (flow 

detachments, dynamic stall and reverse flow), and on the forward blade tip 

(compressibility and associated advances implemented by modern blade tip designs, as 

well as the effects of tip loss), as well as at its root (offset loss), and large flap 

deformations of the blades (source of nonlinearities). 

Aerodynamic forces are well determined by fundamental modes (rigid body movements), 

but excitation in elastic torsional and bending modes by high harmonics of these forces 

can produce large loads on the section, even under small deflections. Hence the natural 

frequency of the blade in these modes must be kept away from the harmonics of Ω 

(Johnson, 2013a). 

7. It is assumed that the fuselage, assumed to be a semi-rigid body, can be dynamically 

equivalent to a rigid body with six degrees of freedom (three components of position and 

three orientation angles). Hence, the configuration of fuselage states can be described in 

terms of only six degrees of freedom, along with and around each of the three axes X, Y, 

and Z (the larger arrows shown in Figure 20) for their equilibrium under external forces, 

such as the aerodynamic forces, which, added to the blade motion equations (at small 

flapping and lead-lag angles) form twelve non-linear differential equations with twelve 

unknowns. 

 
Figure 20: Degrees of Freedom (DoF) of the coupled system rotor-fuselage – adapted 

from (Friedmann & Hodges, 2003) 
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8. The loading on the rotor hub is determined from the sum of the three integrations (on 

each blade) of the efforts considered according to the Blade Element Theory. 

In the modeling adopted in this study, despite all the simplifications that even disregard 

all the flap-torsion, lag-torsion, and flap-lag-torsion couplings, the nature of the system 

of equations of motion of the rotor-fuselage system, which takes the flap-lag, is still non-

linear, and in its numerical resolution process, it is internally linearized by the 

computational algorithm selected in the MATLAB® software environment. 

THE PARAMETERS 

It is necessary to adopt some parameters to establish the aircraft object of the simulation 

and some flight condition(s), where the responses of the isotropic rotor-fuselage system 

will be investigated, and which later serve as a reference for the evaluations of the effects 

of the introduced anisotropies. These parameters are: 

• system mass: fundamental proportionality factor in the evaluation of accelerations 

related to the submitted efforts. It is assumed constant, that is, the reduction due to fuel 

consumption is neglected, when compared to the original mass. 

• aircraft centering: responsible for the positioning of its center of gravity (CG) and the 

definition of the relative moment arms (associated with the fuselage attitude states), as 

well as for the propagation of the vibration characteristics along the fuselage. Generally, 

the CG is presented by the manufacturer in the form of Figure 21, within which its “walk” 

is allowed (in the vicinity of the vertical of the mast and, therefore, of the main rotor 

traction), to guarantee longitudinal and lateral stability. directional, as well as the flight 

qualities desirable to the project. Figure 21 shows the relevant data used, such as the 

forward flight speed. In this study, the cases of null velocity and 222 knots (corresponding 

to the maximum not-to-exceed speed) were considered). 

 

Figure 21: Longitudinal centering diagram for the adopted helicopter (AS355F2 

Squirrel) (Note the 9cm maximum CG range) – adapted from (HELIBRAS, 1994) 
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It is worth mentioning that proprietary confidential information about helicopter design, 

in this work, some estimated values were assumed for the other parameters necessary for 

the application of the model. In the future, as the actual parameters are obtained and/or 

estimated by parameter identification, the model can easily be updated/refined to better 

represent the aircraft of interest. In the absence of better alternatives, the criterion for 

estimating these values which could not be obtained consisted of linearly associating, 

when feasible, the desired parameters with the analogs of the AS 332L Super Puma 

aircraft, shown in Section 3, and originally presented in (Jorge, 1992). 

4.2 Balance study of the system: main rotor plus fuselage 

BLADE MOTION EQUATION 

In continuity, one evolves to mathematical modeling. A large part of the expressions was 

established in (Jorge, 1992), and conveniently adapted for this text. 

Newton's 2nd Law of Classical Mechanics (Fundamental Principle of Dynamics) is used, 

chosen to obtain the equations of motion resulting from two phases: the determination of 

the free-body diagram of the system; followed by the application of this Law in its forms 

for translations and rotations. In this type of approach, care must be taken not to confuse 

the directions of efforts and their reactions, which is the most susceptible error when 

evaluating multibody systems with three-dimensional loads, which is the situation in this 

model. 

BLADE DYNAMIC BALANCE 

In the modeling shown in Figure 22, each of the blades that make up the rotor is subject 

to inertia (

2
R

i2e

d OM
( )dm

dt ) and aerodynamic ( aerodynamicF ) efforts, respectively, constituting 

the parts of the equation that follows. 

 
Figure 22: Rotor hub free-body diagram with efforts (forces F and moments M) applied 

to a blade (a) and their corresponding wrench T (b) – adapted from (González, 2012) 
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Applying Newton's 2nd Law to an element of mass dmi of blade i, located by the position-

vector OM , about the Galilean Reference Frame - Rg (fixed to the center of the Earth, 

and considered non-inertial), one obtains vectorially that: 
2

R

hub blade aerodynamici2e

d OM
( )dm F F

dt
→= + , where: 

 Rf: fixed rotor reference frame (O, X, Y, Z) 

 Rt: rotating reference frame of the rotor (O, Xi, Yi, Zi) 

 Rp: reference frame of the blade beating (O, Xp', Yp', Zp') 

 Rp: blade reference frame in beating followed by lead-lag (O, Xp, Yp, Zp) 

 Ra: aerodynamic reference frame (O, Xa, Ya, Za) 

 Rh: helicopter reference frame (O, Xh, Yh, Zh) 

One has that, in Rg, the resultant of the vector of forces F  of the blade on the hub, applied 

in the flapping joint, is 

2
R

blade hub aerodynamic i2e

d OM
F F ( )dm

dt
→ = −  . Now by applying 

Newton's 2nd Law again in terms of angular movements concerning Rg, around the rotor 

hub by the blade and fuselage, we obtain:  

blade hub fuselage hub

hub / Rg

dH
M M

dt
→ →

 
= + 

 
. As the cube is rotating at a constant 

speed (zero angular acceleration), the time derivative of angular momentum 

hub / Rg

dH

dt

 
 
 

 

is zero. Hence hub fuselage blade hubM M→ →= , that is, the moments applied by the hub to the 

fuselage, symmetrical to those received by the hub, are equivalent to the action of the 

moments applied by the blade to the hub. Given the above, it is clear that it is necessary 

to obtain 
2

R

i2e

d OM
( )dm

dt , aerodynamicF and blade hubM → . The result of these three calculations 

gathers the components, in Rg, of the wrench of the efforts in the rotor hub . A 

wrench, by definition, replaces all forces and moments acting on a rigid body by the 

representation of a force vector and a moment vector, applied at the same point (Beer et 

al., 2019). The zero index is justified since it is constant about the azimuth position of the 

blades (and therefore about time) due to the isotropic rotor hypothesis and that the study 

was limited to the 1 frequency. 

 
blade hub x y z

0
blade hub x y z0 0

F X F Y F ZF
T

M M X M Y M Z

→

→

 + +    
= =   

+ +      
 

After this calculation for a blade, the sum is performed according to the number of blades 

to obtain the wrench of the efforts of the complete rotor applied to its hub. 
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BLADE ACCELERATIONS 

The dynamic resultant, applied to the body of blade i is obtained from the integral in space 

along the blade according to the distance r varying from the eccentricity e to the radius 

R. Thus, given the blade model as simply articulated in flapping and lead-lag, first, there 

is the following relationship between the rotor reference frames according to these 

adopted degrees of freedom. It can be observed that, except for the fixed reference (XYZ) 

to the hub and originating from it, all origins are established in the flapping joint, here 

modeled as the blade attachment point. For generality, any point M located on the blade 

surface at a radial coordinate r is considered, as previously shown in Figure 8. It is 

necessary to calculate the acceleration 
M

 
of this point M in the fixed rotor frame and 

then integrate the obtained expressions along the blade. As seen from the fixed rotor 

reference Rf (O, X, Y, Z), we have the position vector of the point M relative to the origin 

O as in the previously obtained Equation (1). 

The rotor is assumed to rotate at a constant speed i

•

 =  . The position vector from 

Equation (1) is derived twice concerning time, and the acceleration vector of the point M 

concerning reference O is obtained, as previously seen, as Equation (2). As before, a 

simplifying notation is used for the derivatives of β, and similar simplifications are done, 

considering β and δ small angles, leading to the three components of the acceleration 

vector of point M in the fixed frame. Again, the integration 

2
R

i2e

d OM
( )dm

dt is required to 

calculate the inertial efforts on the blade in the fixed rotor frame Rf. 

AERODYNAMIC FORCES ACTING ON A BLADE 

At this point, attention is devoted to the portion of the dynamic resultant due to the 

aerodynamic efforts aerodinâmicoF  applied to the blade, generated in flight, and in reaction 

to the airflow in which it is immersed. 

The first step is to obtain the velocity of a current point M of the blade ( Pa/RgM V ) 

concerning Galileo's frame of reference Rg (Og, Xg, Yg, Zg), because, if referring to the 

ground, one is stationary and immersed in an undisturbed atmospheric flow that blows on 

the blade. Considering the hypothesis of stabilized horizontal forward flight (with 

constant speed), for simplification purposes, the aerodynamic reference frame and the 

Galilean frame are made to coincide (Ra ≡ Rg) under the null wind assumption, that is, 

the velocity of the undisturbed flow that arrives at the blade is the Vx=V itself (the 

displacement of the aircraft), and there are no lateral or vertical components. Hence it can 

be assumed that:  ( )air/Rg VM air/Rg bladeX/Rg
Ra

 V V  = V = V= . Considering OM  the 

Rf frame of reference, the velocity of the blade point M, reasoning from Rf to Rg, can be 

decomposed into the sum of the velocity due to blade rotation, flapping, and lead-lag 

movements ( blade/fixed rotor Ω,β,δ
M blade V =V ), added to the speed due to the forward flight (

fixed rotor/air VM bladeV V= ), plus the induced velocity ( air/Rg ViM blade V V= ), where the first 

term was previously obtained as Equation (3). 
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With the same notation as before, even with the given assumptions of stabilized flight 

(without accelerations), straight flight (contained in the XZ plane), and level flight 

(contained in the XY plane), one cannot consider Rg≡ Rf because constant pitch angles 

αD are assumed in this model. Hence, from the derivative of the vector position, we have 

the velocity of the blade in terms of its degrees of freedom given as the previously 

obtained Equation (4). The same treatment can be done for the velocity due to the forward 

flight VpáV  in the aerodynamic frame of reference Ra (O, Xa (positive against the 

movement of the aircraft, hence V negative), Ya, Za (inclined pitch and αD<0 relative to 

the Z-axis)). A rotation (αD>0), i.e, a linear transformation via director cosines, around 

aY  = Y  (as the element W3,3 is unitary) leads this velocity from Ra to Rf, as previously 

shown in Equation (5). It is now necessary to consider the point M with its degrees of 

freedom (ie, to take from the current Rf to Rp'). 

Similarly, a rotation (-ψi, counterclockwise, by the design of the AS355 F2 aircraft, 

represented in this work) around 
iZ  Z    leads pá pá, , V

V V
  

+  from Rf to Rt. 

Subsequently, a rotation of β (descending blade) around 
i pY  = Y'  leads it from Rt to Rp, 

and a rotation of -δ (blade retreating in ψ) around p pZ' Z    leads it to Rp' (flapping 

followed by lead-lag movement), leading to the previously obtained Equation (6). Finally, 

since Vi is a consequence of the blade motion, whatever the blade position is (ψ, β, and 

δ), the blade’s relative motion (here in the frame Rp') due to the induced velocity Vi is 

given, as before, by Equation (7), and the blade velocity is given, as before, by Equation 

(8). Figure 9 in Section 3 shows the wind direction concerning the fixed rotor reference 

frame Rf (O, X, Y, Z). V=Var/Rg before reaching the blade. Figure 9 also shows the 

decomposition of the wind speed U in the rotating blade reference frame Rp'(O, Xp', Yp', 

Zp') into a velocity component tangential to the rotor plane and perpendicular to the blade 

span (UT), and another velocity component perpendicular to the first one (UP). 

The resultant speed is 2 2

T PU =  U  + U  , with tanϕ ≈ ϕ ≈ UP/UT, where ξ = blade angle 

of attack; Φ = induced angle; and θ = pitch angle. The wind velocity V  in the blade 

reference frame Rp' is given by the previously obtained Equation (9) (where ψ = 0º is the 

phase reference for the blade). There is a third component of U (radial Ur or Uxp') along 

the blade span, that is, along with Xp, whose value of contribution to the lift (L) and the 

drag (D) is assumed to be negligible. 

Noting the assumption of a two-dimensional aerodynamics problem (Cl=Cl0α) for the 

profile of the current point M of the blade (at position ψ = 180º), with the direction of UP 

and UT previously shown in Figure 9. The speed U of the impacting flow will be taken as 

the composition of UT and UP. Satisfying this hypothesis for Cl and Cl0, it is assumed a 

high aspect ratio for the profile, and the absence of stall and compressibility phenomena 

(Johnson, 1980). These assumptions, together with the tangential and vertical velocity 

components in Rp' given as before, and with the previously adopted assumption of small 

angles for β and δ, lead to the previously obtained Equation (10). 
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Hence, it is noted that the velocity component UT is the sum of the velocities due to the 

blade rotation (Ω.r) and the translation (tangential component) of the helicopter 

D i D i(V.cosα .senψ  + Vcosα  cosψ  δ) . The velocity component UP is the sum of the 

velocities due to the helicopter translation (vertical component), plus the induced velocity 

( D iV . sen  + V ), the flapping velocity (derivative in β), and the translation of the 

helicopter (tangential component) D i(V . cos  . cos  )   . 

The elementary lift (L) and drag (D) forces are, respectively, perpendicular and parallel 

to the plane of the resultant velocity U, ( )
pR

U  (now known after transferring Rf to Rp'), 

and are given as previously obtained Equation (11). 

The drag on the main rotor produces the torque associated with it. Figure 23 shows the 

elementary lift and drag forces on an infinitesimal element of the blade radius. 

 
Figure 23: Elementary lift and drag in a blade section at ψ =90º immersed in flow: (a) 

blade view; (b) section view – adapted from (Gessow & Myers, 1952) 

In the reference frame Rp', for blade i, the vector force in the element is given by the 

previously obtained equation (12).  It is now necessary to go from Rp' to Rf: a rotation of 

δ, blade advancing in ψ, around Zp≡Zp' leads it to Rp'. A rotation of –β (blade rising) takes 

it to Rt. With ξ, β and δ being small angles, we have: sinξ ≈ ξ = θ-ϕ ≈ θ-tanϕ = θ-Up/UT; 

cosξ ≈ 1; sinβ ≈ β; sinδ ≈ δ; cosβ ≈ 1; cosδ ≈ 1; sinξ sinδ ≈ 0; sinδ sinβ ≈ 0; sinξ sinβ ≈ 0. 

Assuming: U2 = UT
2 + Up

2 ≈ UT
2, as Up << UT, and a + Cd0 ≈ a, as Cd0 << a, leads to 

previously obtained Equations (13) and (14). For simplification, the following 

dimensionless coefficients are introduced: 

- 
DVcos

 
R


 = =


 is called lead ratio, and is defined as the relationship between the velocity 

component parallel to the disc and the speed of the blade tip; 

- 
D iVsen V

R

 +
 =


 is a parameter of the axial flow, also called induced velocity, throughout 

this text, and is defined as the relationship between the velocity component perpendicular to the 

disk and the speed of the blade tip; 

- χ = r / R and χe = e / R. 

θ(ψ) is expanded in components of a Fourier expansion: con tw

r

R
 =  +  , with θtw being 

the fixed torsion (by design) and con 0 1c i 1s i =  +  cos  +  sen      . These last interventions 

lead to the previously obtained Equation (15), still in the reference frame Rt. 
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For the evaluation of the axial flux parameter λ(ψ), the Meijer-Dress formulation (Meijer 

Drees, 1949) allows the consideration of a cyclic variation of the parameter λ in reference 

frame Rt, according to azimuth ψ. This formulation leads to the previously obtained 

Equations (16) and (17), which give the cyclic components as previously obtained in 

Equation (18). The value of λ0 is calculated by an iterative method (Newton-Raphson), 

and the values of λ1c and λ1s are calculated by replacing λ with the value λ0. The element 

forces dFxia, dFyia, dFzia are spatially integrated along the blade (from ‘e’ to ‘R’), still in 

reference frame Rt. The dynamic pressure is adopted as S = ρac(ΩR)2, leading to the 

previously obtained Equation (19). 

In general, the ratio e/R is small. We have for the AS355 F2 aircraft: R = 5.34 m and e = 

0.67 m, which leads to e/R = 0.12. The simplifying hypothesis n n nR  - e   R  is carried 

out (n being a natural number). In this way, except for R - e ≈ R, the result leads to an 

error of less than 0.12% in the effort calculations, which is neglected. 

RESULTANT FORCE APPLIED TO THE ROTOR HUB 

The resultant is obtained from the previously established relationship: 

blade hub fuselage hub

hub / Rg

dH
M M

dt
→ →

 
= + 

 
. 

However, it is necessary to change the reference frame to the fixed Rf, for the 

aerodynamic efforts (since these were calculated in the rotating rotor frame Rt). The 

efforts of the blade on the hub were previously obtained as Equation (20). Substituting 

Fxia, Fyia, and Fzia, we obtain, in the reference frame Rf, the components of the resultant 

force on the rotor hub. 

RESULTING MOMENTS IN THE ROTOR HUB 

As previously presented, the moment in the rotor hub blade hubM →  (concerning point O) due 

to the forces F acting on the blade, in the reference frame Rf, is determined with 

components given as 

𝑀𝑥 = [OK𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝛬�⃗�blade→ℎ𝑢𝑏]. �⃗�=e senψ

𝑖
𝐹𝑧 

𝑀𝑦 = [OK𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝛬�⃗�blade→ℎ𝑢𝑏]. �⃗⃗�=e cosψ

𝑖
𝐹𝑧 

𝑀𝑧 = [OK𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝛬�⃗�blade→ℎ𝑢𝑏]. 𝑍=e cosψ

𝑖
𝐹𝑦- e senψ

𝑖
𝐹𝑥+ Kiδ+ Ciδ𝛿

•

𝑡 

In the first vector of this dot product, the arm is OK and the inverted “V” denotes the 

cross product. Thus, the three components blade hubM →  in the reference frame Rf are 

obtained directly. 

RESULTING WRENCH IN THE HUB OF A N-BLADE ROTOR 

The six expressions just established are equally valid for each of the blades that make up 

the rotor (so far they are periodic in ψ and therefore non-linear expressions). The global 

wrench of the efforts is obtained as the sum of these rigid body components, according to 

the number of blades, as previously obtained in Equation (21). 
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BLADE DISPLACEMENTS EQUATION - FLAPPING DEGREE OF FREEDOM 

Applying Newton's 2nd Law in the reference frame Rg to the simply articulated blade, now 

taking moments concerning K, as seen in Figure (11), in flapping, followed by lead-lag, 

we obtain:  

i

i

K
R

K

external forces i M i
 on the bladeblade/Rg e

dH
=M (K M Λ γ )dm

dt

 
= 

 
 , where the moment of the 

external forces is 
R

M i

e

( γ )dm and dmi=mdr. 

This time, the time derivative of the angular momentum (H=IΩ) is not zero, since it 

considers the product of the moment of inertia by the time derivative of the product of the 

radius and the linear velocity (in the XiZi plane) of the point M on the blade, which is 

equal to the angular velocity Ω. The value of 'I' is derived, internally, from the integral of 

the linear acceleration in m, and is assumed to be constant (rigid body). Then the 

calculation of the integrand follows the previously obtained Equation (22).  

Through the linear transformation matrix corresponding to a rotation (- ψ) around Z, we 

move to the rotating rotor reference frame Rt. Considering small-displacement angles in 

β, δ, and θ (with the corresponding simplifications), and also neglecting the triple products 

between the angles β, δ and their derivatives, when compared to their double products, 

given that these are small angles, after some intermediate steps, we have, finally, in the 

reference frame Rt the derivative concerning the time of the product of the radius times 

the linear velocity of point M over the blade, as previously obtained in Equation (23). 

Flapping movement equations 

With the above-calculated integrand in hand, we focus on the movement around the 

flapping axis in K, p tY Y . Hence, for the projection on the Yi axis, the 2nd Law applied 

to the joint at K (in flapping), in the reference frame Rt, gives, with dmi=mdr: 

(
𝑑𝐻

𝑑𝑡
)

⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

blade i/Rg
= �⃗⃗⃗�forces on blade i

flapping around K
= ∫ (𝐾𝑖𝑀⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑅

𝑒
 Λ 𝛾𝑀⃗⃗⃗⃗⃗⃗ )𝑌dm𝑖. 

The dynamic momentum theorem, in a projection on the yi axis, after some intermediate 

calculations, leads to the previously obtained Equation (24). Considering the static 

moment and the flapping inertia for the blade as defined, the dynamic moment 

formulation leads to the Eq. (25). By using the aerodynamic forces on blade i, on axis Zt, 

dFziª as previously obtained, calculating the integral on the blade, assuming the cyclic 

nature of ψ, as well as the truncation of the Fourier series expansion of each term 

𝜃con= θ0+θ1ccosψ
𝑖
+ θ1ssenψ

𝑖
, 

0 1c i 1s iβ = β +β cosψ +β senψ , and 

δ = δ0+δ1ccosψ
𝑖
+δ1ssenψ

𝑖
, 

leads to the previously obtained Equation (26). Equation (26) identifies the consecrated 

form of the vibration equation, of a Mass-Spring-Damper System, by its resulting terms 

of stiffness and damping due to mass (inertia), where the latter is in the second coupled 

member with the forcing term (equally divided by the inertia term). To eliminate the 

periodic nature of these ODE obtained above, a change of their domain from t (in ψ) to 
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that of frequency (in cyclic θ) is made through the Coleman operators (Coleman & 

Feingold, 1957), as one of the so-called linear Fourier Transforms, through the Method 

of Operators. This method consists of the simultaneous application of each member of 

the flapping equation within the parentheses of each of the following operators: 
1

2𝜋
∫ (… )𝑑𝜓

2𝜋

0
, 

1

2𝜋
∫ (… )𝑐𝑜𝑠𝜓𝑑𝜓

2𝜋

0
 and 

1

2𝜋
∫ (… )𝑠𝑖𝑛𝜓𝑑𝜓

2𝜋

0
 . In practice, as mentioned 

before, the advantage achieved is shown in converting that ODE into several separable 

algebraic equations according to each of the constant components (β0, β1C, and β1S) 

independent of ψ. The double products of angles compared to the angles themselves are 

neglected. In this way, the influence of the lead-lag angle on the beating movement will 

be neglected, which means to neglect δcosψ or δsinψ in this equation. Following the same 

steps, with intermediate calculations as in Section 3, three algebraic equations are then 

obtained, independent of ψ, as coupled functions of the constant components β0, β1C, and 

β1S. However, it is worth introducing, for simplification, the Lock Number 
4R

ac
I

 =   

(parameter of the blade that relates aerodynamic forces with inertia forces), leading to the 

previously obtained flapping Equation (27). 

BLADE DISPLACEMENTS EQUATION: LEAD-LAG DEGREE OF FREEDOM 

In this case, the aim is to move around the lead-lag axis at joint K, that is, we have that 

p pZ Z' . But in order not to change the referential of the previous results, the 2nd Law in 

rotational movements is applied again in the reference frame Rt, for the component around 

Zi(Rt), assuming that the restoring moment due to the frequency adapter (which avoids 

ground or air resonance by reducing the blade frequency in lead-lag, moving it away from 

the fuselage resonance frequency value) is also by the Zi axis, as considered before for 

the calculation of Mz. This theorem gives, in projection onto the Zi axis, the moment of 

the drag forces of the blade around point K as in the previously obtained Equation (28). 

This degree of freedom is maintained under mechanical artificial damping for reasons of 

dynamic stability (associated with ground and air resonances, which can destroy the 

aircraft in a few seconds). The restoring moment due to the frequency adapter in lead-lag 

is: 
•

itiδ i iδK  δ +C δ . Given that ( )
R 2

e
I I r e mdr = = −  (since the blade is 

assumed to be modeled as a line independent of axes and there is no cross-section), 

introducing the obtained expression for dFyi
a leads to the previously obtained Equation 

(29). 

After calculating the integral on the blade, making the assumptions n n nR  - e   R , the 

truncation in the Fourier Series expansion previously described in Equation (30), and 

neglecting the triple angle terms (eg: θ0 .β1c .δ1s ≈ 0, etc.) against the double products, 

given that θ, β, and δ are small angles, one can resort once again to the application of the 

operators in the differential equation (29) (again representative of a Mass-Spring-Damper 

System), whose result is, finally, the algebraic equations of lead-lag motion previously 

obtained in Equations (31) (for δ0), (32) (for δ1c), and (33) (for δ1s), which describe the 

lead-lag angle ( )0 1c 1sδ δ ,δ  e δ  as a function of the pitch angle ( )0 1c 1sθ θ ,θ  e θ  and the 

flapping angle ( )0 1c 1sβ β ,β  e β . 
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ROTOR-FUSELAGE SYSTEM MODELING EQUATION (STATIONARY) 

THE HYPOTHESES 

We return to the six expressions of the wrench of the efforts on the rotor, as previously 

calculated, and apply them to the case of a rotor composed of N blades considered strictly 

identical. In this way, this wrench can be considered constant over time, and thus can be 

treated as stationary. 

THE PARAMETERS 

 Added to the displacements θ, β, and δ (referring to the rotor state), α, ψ, and TRC are 

considered to correspond to the fuselage attitude, with small angles which are used in the 

numerical simulation in radians. Thus, the parameters treated are the flight parameters 

( )0 1c 1s 0 1c 1s 0 1c 1s 0 1c 1sλ ,λ ,λ ,β ,β ,β ,θ ,θ ,θ ,δ ,δ ,δ , which are added to the fuselage attitude (

0 1c 1s f f Ra 0 1c 1s 0 1c 1sθ ,θ ,θ ,α ,j ,T ,β ,β ,β ,δ ,δ ,δ ). 

APPLICATION OF THE COLEMAN TRANSFORMATION 

In this step, the same integral operators are applied to the six expressions of the previously 

calculated wrench of the efforts on the rotor, as they are then periodic functions, to obtain 

a linear formulation whose effect on each component F and M is its description in the 

form of a linear combination of the flight parameters 

( )0 1c 1s 0 1c 1s 0 1c 1s 0 1c 1sλ ,λ ,λ ,β ,β ,β ,θ ,θ ,θ ,δ ,δ ,δ . Next, for simplification purposes, 

the triple products of angles are neglected against the double products in the expressions 

of Fx, Fy, and Mz, as well as the double products of angles, are neglected against the angles 

themselves in the expressions of Fz, Mx, My. 

The efforts F and M of the rotor hub are expressed, therefore, as a function of the different 

flight parameters, post-Coleman Transformation (Coleman & Feingold, 1957) - now in 

the frequency domain and constant in time, where: 

- the induced velocity coefficients ( )0 1c 1sλ ,λ ,λ  (response or output) are determined by 

the Meijer-Dress formulation (Meijer Drees, 1949); 

- the torsion twθ  is an adopted design data (a built-in fixed-parameter); 

- the coefficients of the flapping movement ( )0 1c 1sβ ,β ,β  (response or output) are 

calculated using the equilibrium equations as a function of 0 1c 1sθ ,θ ,θ  (and other 

parameters already known or calculated); 

- the coefficients of the lead-lag movement ( )0 1c 1sδ ,δ ,δ  (response or output) are 

calculated using the equilibrium equations as a function of ( 0 1c 1sθ ,θ ,θ ) and 

( )0 1c 1sβ ,β ,β . 

The six equations of wrench (the efforts F and M) on the rotor hub are therefore functions 

of only three parameters: 0 1c 1sθ ,θ ,θ  (excitation or input, as a pilot control action through 

collective and cyclic commands). 
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(STATIC) BALANCE OF THE ROTOR-FUSELAGE SYSTEM 

Assumptions: 

• known/adopted design parameters: dimensions and limits (in this case, for AS 355F2). 

• the fuselage, moving immersed in the air, does not produce L but produces D (from 

pressure and friction). 

• the negative lift effect of the horizontal empennage 'Teh', assumed modeled as Teh = 

1/2ρV2(CzS)eh, where (CzS)eh is the equivalent lift area factor, assumed independent of 

the empennage profile (Cl and S). 

• Tail rotor anti-torque thrust (TRC), counterclockwise, is necessary to balance the rotor-

fuselage system in reaction to the action of the main rotor on the fuselage. The value of 

TRC is obtained corresponding to a directional lateral attitude in yaw (γf) null, that is, 

without skidding of the fuselage in forward flight. 

• the negative value: installation of the Squirrel's tail rotor being on the right side (a second 

puller). 

The following variables are still unknown: the efforts F and M of the rotor hub are a 

function of the three parameters 0 1c 1sθ ,θ ,θ  (excitation or input, as the pilot control action 

through collective and cyclic commands). The attitudes (responses or outputs) of the 

fuselage are: longitudinal in pitch (αf), lateral in roll (ψf). The rotor anti-torque thrust 

(TRC) (obtained by assuming zero yaw lateral (γf)). In the case to be studied (stationary 

stabilized horizontal forward flight with constant speed), the aerodynamic reference 

frame and the Galilean frame are confounded Ra≡Rg but, due to the pitch αf, Rh≠Rg. 

As the rotor hub efforts F and M were initially expressed in the fixed rotor frame Rf, a 

linear transformation is necessary according to a rotation (-αm) around Yf. With this, the 

wrench is transformed from the fixed rotor reference Rf into the helicopter reference 

frame Rh, as previously shown in Equation (34). 

Analogously: 

• as the forward flight speed V was expressed in the aerodynamic reference Ra, a rotation 

(αf) around Yf is applied. From there, V is leaded from the aerodynamic reference frame 

Ra to the helicopter reference frame Rh, as previously shown in Equation (35), where: 

f D m =  − . 

• the helicopter's weight (descending) is passed from the Galilean frame Rg to the helicopter 

frame Rh by a rotation (- αf) around Yg = Yh. In continuation, another rotation (-φf) around 

Xh follows, as previously shown in Equations (36) and (37). 

The balance of F along the three axes, in the Rh helicopter frame, leads to the previously shown 

Equation (38). 

The equilibrium of moments M around the rotor hub, relative to which the fuselage 

rotation is zero, in the helicopter reference Rh, gives: 0M 0= , leading to the 

previously shown Equation (39). 

And we finally arrive at the six homogeneous equations, previously shown in Equation 

(40), representing the balance of the fuselage in Rh. As this is an equilibrium equation, 

there are no accelerations (which arise with the introduction of defects in the discussion 

that follows). 
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The previous hypothesis of small angles is maintained to facilitate the mathematical 

treatment of the solution, and we have the wrench of the applied efforts on the rotor hub 

in the Rh reference frame, as previously shown in Equation (41). 

Adding the three equations of flapping, the three equations of lead-lag, and the six 

equations of the rotor wrench, we have a system of twelve non-linear algebraic equations 

in the twelve unknowns ( 0 1c 1s f f Ra 0 1c 1s 0 1c 1s, , , , ,T , , , , , ,           ). 

4.3 Introduction of anisotropies in the main rotor (Direct Problem) 

Here the model of the direct problem is addressed, meaning that here the defect is 

introduced, leading to changes in the vibration signature. The disturbance of equilibrium 

discussed above, by inserted anisotropies, from here on, also treated as defects. Therefore, 

as a system response, the vibrations are measured in the aircraft structure thanks to the 

associated accelerations. All anisotropies inserted in the blades are considered as if they 

were "equivalent" anisotropies to the different ones that are corrected by adjustments to 

the blade inertia (mi) and/or the aerodynamic performance of its profile (θi). 

From the previous equilibrium equations, it is known that, in the case of the conventional 

isotropic rotor, the Coleman Transformation (Coleman & Feingold, 1957) provides that 

the efforts F and M in the rotor hub, as well as the twelve flight parameters (response) θ, 

β, δ (these in their three cyclic components) and αf, ψf, TRa, are constant concerning time 

for each equilibrium position (since it eliminates periodic terms sine(ψi) and cosine(ψi)). 

These efforts applied to a fuselage assumed to be rigid and in balance with external forces 

applied to the fuselage, in the conditions of the stationary flight, or forward flight at 

constant speed. Consequently, in both cases, all the predicted accelerations of the fuselage 

(the linear accelerations of its CG and the angular accelerations around it) are null. From 

this equilibrium position (as static equilibrium), the values of the resulting attitude of the 

fuselage are obtained: longitudinal pitch (αf); lateral or roll (φf); and yaw (ψf). 

The introduction of anisotropies for a blade i (while the other blades are assumed to be 

unchanged) and the calculation of their new angular displacements θ, β, and δ on the rotor 

leads to new forces in the hub, which are no longer constant (being functions of ψi), that 

is, they are time-varying efforts according to the frequency 1Ω. Hence, the fuselage 

equilibrium equations are no longer homogeneous (as previously calculated), as the 2nd 

part (the right-hand side of the equation) leads to fuselage accelerations of the same 

frequency. It is worth mentioning that the displacement of each blade is a result of the 

contribution of constant efforts in time (isotropic equilibrium) and of efforts in these 

variables under 1Ω frequency (small variations around that equilibrium position, with the 

defects generating accelerations). From this point of view, the movement of each blade 

can then be decomposed into the movement of the blade itself (translated by the three 

angular displacements in flapping and the three angular displacements in lead-lag) added 

to that of the fuselage with which the blade is linked (translated by the displacements of 

the rotor - angular displacements αf, φf, TRC, and the input θ0, θ1C, θ1S). In this oscillation, 

it is assumed that a new attitude of the fuselage assumes another variable portion, added 

to the previous one (isotropic equilibrium), which is unique and assumed unchanged after 

the introduction of anisotropies. This means that the defects do not alter the fuselage 

equilibrium attitudes but introduce variations around 1Ω them. In this way, the 

accelerations do not have permanent terms in time and are constituted only by periodic 

parcels (since in the isotropic case they are null) in ψ(t)=Ωt, for the six degrees of freedom 

(DoF) about the fuselage CG, as previously shown in Equation (42). 
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INFLUENTIAL PARAMETERS 

It is worth remembering that any azimuthal position (ψi) of a blade corresponds to the 

angular space (involving the angular frequency of the rotor) associated with time by the 

relation t = ψi / Ω, counted from the moment of the passage of the blades through the 

reference position, ψi = 0. 

This reference, in practice, corresponds to the synchronism signal given by the magnetic 

sensor installed on the fixed plateau of the main rotor mast. To calculate the torque of the 

forces acting on the rotor hub updated with defects, it is necessary and sufficient to know 

the corresponding new values of i i i i i i iλ(ψ ),θ (ψ ),β (ψ ),δ (ψ ) , the mass of the blades 

(mi), the static moment of the blades (msi), and the inertia of the blades (Iβi). It is 

considered that there were no changes in the parameters of the blades (R, e, c) and their 

profile (Cd0, a), and neither in the advancing rate μ nor the air density ρ.  

Regarding the before-mentioned parameters, one has that: 

• mass of the blades: 
R R

i i
e e

m dm mdr= =  . An anisotropy in mi (and consequently in msi and 

Iβi) can be considered as an "equivalent" mass change in the radial position of the rotor, where the 

equilibrium mass (balance platelets, in this case) can be added. 

• static moment of the blades: 
R R

si i
e e

m rdm rmdr= =  , where m is the blade mass; 

• blade inertia: 
i

R R
2 2

i
e e

I r dm r mdr = =  . The three parameters mi, msi, and Iβi can be 

different for each blade, due to the anisotropies. Furthermore, they are interdependent, that is, a 

variation of mi implies a corresponding variation of the values of msi and Iβi. The insertion of an 

equilibrium mass (Δmi), associated with its RME (distance of the balance plate mounting to the 

rotor hub), leads us to changes in the parameters of blade i, based on the isotropic values of msi 

and Iβi ("iso" index, below): 

 
• air density (ρ): this parameter is provided, for example, from the standard atmosphere tables, 

and depends on pressure-altitude and temperature. 

• advancing rate (μ): Dimensionless parameter of the helicopter's speed about the air (V) and of 

the rotor disk inclination (αD) in pitch, which depends on the longitudinal position of the cyclic 

control. The fuselage pitch angle (αf) depends on the inclinations of the disc, rotor (αD), and mast 

(αm) so that αf = αD - αm (it is seen that αf is smaller than αD, justifying the compensation of αm to 

meet maneuverability/flight quality requirements); 

• the parameters of the blades (R, e, c) and their profile (Cd0, a): Although they also constitute 

possible anisotropies, within the scope of this study, they are considered constant and independent 

of the blades; 

• The induced speed λi(ψi): Proportional to the advancing rate (μ) - hence, to the rotor disk 

inclination (αD); to the thrust coefficient (CT) (which is due to the helicopter's thrust - Fz); the air 

density (ρ); and the azimuthal position (ψi). As it is assumed that there is no anisotropy on the 

induced velocity, λ does not depend on blade i; 
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• The blade pitch θi(ψi): As already introduced, anisotropies linked to the blade profiles can be 

considered as "equivalent" variations of the blade pitch θi(ψi), which varies according to the 

azimuthal position (ψi) of the blade and to the balance of the fuselage, in the cases considered of 

stationary flight or forward flight at a constant speed (μ = constant, non-zero). 

For the case of fuselage equilibrium, it is assumed, as external forces acting: 

- the rotor hub efforts; 

- the weight of the helicopter applied at the CG position of the fuselage; 

- the fuselage lead-lag, assumed to be applied at a fixed point (A) and acting independently of the 

fuselage pitch; 

- the negative lift of the horizontal empennage assumed to be applied at a fixed point and acting 

independently of the fuselage pitch; and 

- The anti-torque thrust of the rotor, is necessary to balance the torque applied by the main rotor. 

θi(ψi) can be changed through the length of the blades' control rods (which changes the collective 

pitch θ0 of blade i); and/or 

- the tab angle adjustment, whose profile bending creates an aerodynamic moment around the 

elastic axis of the blade (transmitting forces to the fuselage through the rods), is proportional to 

the forward flight speed. Hence, the tab angle adjustment does not affect the taper (β0) of the rotor 

in stationary flight, however, it is proportional to μ, being more pronounced on the forward blade 

side than on the retreating blade. In this work, the tab angle adjustment is simulated as an 

anisotropy θis. Therefore, making θis ≠ 0 (and other parameters equal to zero) in the flapping 

motion equations, for stationary flight (μ = 0), that is, hovering or vertical flight, one obtains: 

0 1c 1s 1sβ =0  ;  β » -θ   ;  β =0 . Analogously, for the forward flight condition (μ ≠ 0), we have β0 = 

μ - θ1s, which points out to an increase in taper (β0) proportional to θis (rotor pitch in forward 

flight) and μ, as wished. The calculation of θi(ψi) is divided into two steps: 

1 - in the absence of anisotropies on the rotor, the blade pitch (θ0, θ1c, θis) comes from the 

isotropic rotor equilibrium equations, as previously seen; 

2 - the anisotropies are introduced on a blade by adding the desired increment (according to 

only to θ0i, θ1si), under the assumption that the pitch of the other blades is not altered. Then, the 

resulting pitch of the blades (θ0, θ1c, θis) is calculated again, assuming that there is no influence 

on the pitch of the other blades. 

• The flapping movement βi(ψi): As seen before, βi depends on the azimuthal position (ψi), the 

pitch θi(ψi), the induced velocity λ(ψi), the air density (ρ), the parameters of the blade (R, e, c, a, 

msi, Iβi), and of the advancing rate (μ). Analogously to the previous parameter, the calculation of 

βi(ψi) is divided into two steps: 

1 - in the condition of the absence of anisotropies on the rotor, all blades have the same mass 

(m), static moment (ms), a moment of inertia (Iβ), and pitch (θ) (obtained from the helicopter 

equilibrium, as seen before). Thus, we have an expression of β(ψi) which is valid for all blades. 

2 - the three types of anisotropies adopted as equivalent defects on a blade (i) are introduced, 

namely: 

• balance mass on the blade handle (change of mi, msi, Iβi) 

• adjustment of the blade control rod (full change of θi, as it acts on all ψ) 

• the tab angle adjustment (change of θ1si, as it acts according to the flow) 

 

 

Jorge, Ariosto B., et al. (2022)               Parameter Identification Helicopter Main Rotor Balancing & Tracking pp. 519-616

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 601



 Then, the flapping of this blade (βi(ψi)) is calculated again, assuming that there is no 

influence on the flapping movements of the other blades. 

• The lead-lag movement δi(ψi): As seen before, δi depends on ψi, θi, λi, βi, the air density (ρ), the 

advance rate (μ), and the blade parameters (R, e, c, a, msi, Iβi). 

The displacement δ can also be changed due to anisotropies in the frequency adapter (either in its 

stiffness Kδi, or in its damping, Cδi). 

Like what was done for θi and βi, this calculation is divided into two steps: 

1 - in the condition of the absence of anisotropies on the rotor, the lead-lag (δ0, δ1c, δ1s) comes 

from the isotropic rotor equilibrium equations, as seen before; 

2 - the anisotropies considered on a blade i are introduced, assuming that there is no influence 

on the lead-lag movements of the other blades. 

CORRECTIONS APPLICABLE TO THE MAIN ROTOR 

This item addresses the nature of the defects inserted in the mathematical model in use, 

which is adopted according to the corrections available in this research. The defects to be 

introduced are among the following: 

• Inertia or mass defects: change in mi, msi, and Iβi; 

• Defects in the aerodynamic performance of the profile; 

• Length of the pitch link (pitch rod): change in θ0i; and 

• Adjustments in the angle of tab: change in θ1si (not adopted in this work). 

The above discussion referred to the Direct Problem, in which a change is made, leading 

to changes in the vibration signature. In the case of the Inverse Problem, changes in the 

signature lead to the possible rotor variables that may have caused that change, and to a 

suggestion of the possible corrections/adjustments to be performed, to correct the 

unbalance and/or out-of-track blade. It is important to mention that the correction values 

to be suggested (as a diagnosis of defects) according to the results of the Inverse Problem 

must be submitted to the limits recommended in the Manufacturer's Manual, beyond 

which the foreseen action is the replacement of the defective item indicated by the 

algorithm. 

RESULTANT EFFORTS WRENCH IN THE ANISOTROPIC ROTOR HUB 

Carrying out the same calculations as previously described, for blade i, now after 

introducing the defects (using the new values of mi or θ), the new pitch angles (θi), 

flapping angles (βi), and its associated lead-lag (δi). The efforts F and M on the rotor hub 

are due to these new angles. These efforts are updated according to the previously derived 

expressions for forces F and moments M, so the resultant output (associated accelerations) 

has components in sinψ and cosψ (cyclic terms, truncated in 1Ω) added to the 1st constant 

component (index zero - the same as in the case of the isotropic rotor equilibrium), leading 

to the previously derived Equation (43). As before, we will apply to the expression of 

efforts of the operators: ( )
2

0

1
... sin

2
d



 
   and ( )

2

0

1
... cos

2
d



 
   to the periodic 

components in sin𝜓 and cos𝜓 of the blade i, culminating in the constant terms 1C and 

1S. These transformations lead to the twelve expressions previously obtained in 

Equations (44) to (55) (constant terms 1C and 1S), where the index "i" of the various 

angles (the pitch, flapping, and lead-lag) is suppressed for simplicity of notation. To apply 

the sum of the forces acting on each blade, at this time one proceeds differently from 

Section 3. In the case study (N = 3 blades), the azimuth of each of the three blades must 
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be considered, as they are now distinguished from each other, so it is not enough just to 

multiply by N. Adopting ψ1 = ψ (red blade), ψ2 = ψ + 2π/3 (blue blade), and ψ3 = ψ + 

4π/3 (yellow blade), leads to: 

Fx1 =Fx01 + Fx1c1cos ψ + Fx1s1senψ  

Fx2 = Fx02 + Fx1c2cos(ψ + 2π/3) + Fx1s2sen(ψ + 2π/3) = Fx02 + Fx1s2cosψ - 

Fx1c2senψ 

Fx3 = Fx03 + Fx1c3cos(ψ + 4π/3) + Fx1s3sen(ψ + 4π/3) = Fx03 - Fx1c3cosψ - 

Fx1s3senψ 

Finally, by harmonic balance, we have: 

{Fx1c}rotor = Fx1c1 + Fx1s2 - Fx1c3     {Mx1c}rotor = Mx1c1 + Mx1s2 - Mx1c3 

{Fx1s}rotor = Fx1s1 - Fx1c2 - Fx1s3      {Mx1s}rotor = Mx1s1 - Mx1c2 - Mx1s3  

{Fy1c}rotor = Fy1c1 + Fy1s2 - Fy1c3     {My1c}rotor = My1c1 + My1s2 - My1c3  

{Fy1s}rotor = Fy1s1 - Fy1c2 - Fy1s3      {My1s}rotor = My1s1 - My1c2 - My1s3  

{Fz1c}rotor = Fz1c1 + Fz1s2 - Fz1c3     {Mz1c}rotor = Mz1c1 + Mz1s2 - Mz1c3  

{Fz1s}rotor = Fz1s1 - Fz1c2 - Fz1s3      {Mz1s}rotor = Mz1s1 - Mz1c2 - Mz1s3 

 

(DYNAMIC) BALANCE OF THE ROTOR-FUSELAGE SYSTEM 

The previously-derived balance equations of the rotor-fuselage system are no longer 

homogeneous after the introduction of rotor defects, hence the classification of the 

balance as dynamic. The balance of external forces is presented in the previously derived 

Equation (56). One can observe in Equation (56) that the 2nd term (the right-hand side) 

is the product of the total mass of the aircraft by the periodic acceleration of the CG along 

each axis. 

The equations of moments were previously obtained with the equilibrium about the rotor 

hub. As the focus is on the motion of the CG of the aircraft, these equations must be 

rewritten to consider the wrench of the external efforts applied to the rotor hub (index 

zero) and this CG. Furthermore, there is a need to know the fuselage moments of inertia 

(due to its rotating movements) about the CG, which change as a function of the aircraft 

centering. Thus, the moments of inertia in roll (Ixx), pitch (Iyy), and yaw (Izz) are 

considered, as well as the product of inertia representing the yaw-roll coupling (Izx), while 

the other couplings are assumed to be null. 

From the moments and products of inertia and the mass M, the radii of gyration ρ are 

obtained as a function only of the centering XG and YG by the expression I = Mρ2. The 

balance of moments about the CG is described by ∑M=Iα, where M comes from the 

global wrench of efforts on the hub, the linear measures are the moment arms, which leads 

to the previously derived Equations (57) and (58). 

One must note in these Equations (57) and (58) that αf0, φf0, and TRA0 were obtained from 

the fuselage equilibrium with the isotropic rotor, as derived before. Also, TRC 1C and TRC 

1S are the periodic components of the tail rotor thrust required to nullify the ψf1C and ψf1S 

components of the yaw motion (assumed constant). Since ψf1C and ψf1S were assumed not 
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to be zero in the calculation of the second derivative of ψf, then it is required that TRC 1C 

= TRC 1S = 0 (therefore, it is assumed that the tail rotor does not provide cyclic thrust that 

can cancel the cyclic motion in yaw). 

To find the 12 unknowns of the fuselage accelerations (6 linear and 6 angulars): Ω2 (x1c, 

x1s, y1c, y1s, z1c, z1s, αf1c, αf1s, φf1c, φf1s, ψf1c, ψf1s), one must apply again, to the variable 

equilibrium equations (thanks to the expansion of the three angular accelerations), the 

operators: ( )
2

0

1
... sin

2
d



 
   and ( )

2

0

1
... cos

2
d



 
  . The efforts on the rotor hub 

already obtained, leads to the previously derived Equations (59) to (70). 

TRANSFER OF THE CG ACCELERATIONS TO FUSELAGE POINT 'M' 

The accelerations of the rigid fuselage, excited by the rotor and by external forces applied 

to the fuselage, are known and they are applied to CG. Now, they need to be transported 

to the fuselage points indicated by manufacturers in which accelerometers are intended 

to be placed, and the vibration quantities are intended to be obtained. In this context, we 

have the position vector GM of a point (M) of the fuselage about its CG (origin as point 

G) of the helicopter reference frame Rh. From which, through linear transformations 

based on rotations of (-ψf), (-αf), and (-φf), as shown previously in Equation (71), the same 

vector position is written in the Galileo reference frame, parallel to the aerodynamic frame 

(Rg ≡ Ra), with X, Y, Z values of the coordinates of the points in the helicopter frame 

(Rh). Carrying out the necessary algebra, the vector is derived twice concerning time t to 

provide accelerations. Considering, in Galileo's frame of reference, a point G' coincident 

with point G, we have that the acceleration of the CG (point G) has only linear terms 

(because it is a point), and is given by previously obtained Equation (73).  The 

acceleration of point M, in reference frame Rh is given by previously obtained Equation 

(72). From this frame, transforming to the helicopter frame, again, we have (d2GM/ dt2)Rh, 

as previously shown in Equation (74).  Small angles ψf, αf, and φf is again used and, for 

simplification, the triple products of angles are also neglected concerning the double 

products, leading to the previously obtained Equation (75). Considering in X that: 

d2XM/dt2 = Ω2XM = Ω2(-XM1ccosψ- -XM1ssinψ), we will also have the analogue for Y and 

φ. To find the six unknowns of the three linear accelerations of the fuselage point M, we 

will apply, as before, the operators to these three equations. The six unknowns were 

previously detailed in Equation (76). 

AMPLITUDE AND PHASE OF THE RESULTING ACCELERATIONS 

The efforts on the rotor hub are expressed as a function of the azimuth coordinate of the 

red blade: ψ1 = ψ = Ωt, where t represents the time after the red blade passes through the 

nose of the helicopter (home position ψ = 0) when the magnetic sensor triggers the timing 

signal. From this moment (then t = 0), the Theory of Complex Numbers, applied to the 

amplitudes of the sine and cosine vibration measured in the fuselage, allows the 

acceleration to be expressed in terms of amplitude and phase. Thus, from the measured 

information on x (x1s, x1c), y (y1s, y1c), and z (z1s, z1c), we have the amplitudes at the CG 

and point M, as previously detailed in Tables 2 and 3. 
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4.4 Validation of the calculation code 

APPLICATION OF THE MODEL: COMPUTATIONAL SIMULATION 

This computational resource constitutes a valuable tool for simulating the model's 

responses to the excitations associated with introduced anisotropies equivalent to typical 

defects, such as main rotor unbalance and out-of-tracking blades. Thus, the original 

computational code in FORTRAN for a 4-blade helicopter (Jorge, 1992) was written in 

MATLAB(R) for a 3-blade helicopter (González, 2012). 

Within the so-called Direct Problem, the code is divided into two parts, as shown in Figure 

24, by the structuring of the work: a first part for the calculation under the modeling of 

the fuselage-rotor system in equilibrium (this one called isotropic) in terms of the twelve 

parameters α(ψ), β(ψ), δ(ψ), θ(ψ), φ(ψ), TRC, β0i, β1ci, β1si, δ0i, δ1ci, δ1si, θ0i, θ1ci, and θ1si; 

and a second part to calculate the vibratory responses as variations (concerning the 

isotropic case), due to anisotropies, according to the amplitude and phase as obtained at 

a point M on the fuselage. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Record of read operational data associated 

with a tested flight condition 

Arbitrary (carefully chosen) initial estimate for θ and its  

cyclic components (as they are dependent on β and Vi) 

Calculation of Vi (iterative), β(ψ), δ(ψ), and thus of θ(ψ), 
for each respective subroutine in cyclic components 

Calculation of the wrench of efforts (six components)  
acting on the hub in equilibrium, subroutine operates 

the six equations already Fourier transformed 

Subroutine of the balance of hub wrench efforts with 

the fuselage defining αf, ψf, and TRC responses 

Refinement of Vi, θ(ψ), β(ψ), with wrench values. 

The same for refinement of the previous calculation block 

Equilibrium-solution of the homogeneous 

nonlinear algebraic system (12x12) isotropic 

fuselage-rotor (“fsolve” subroutine) 

Introduction of “defects” on a blade: update of mass 
parameters by entering Δm (if balancing “defect”); 

or, analogously, by θ(ψ)0, θ(ψ)1c and θ(ψ)1s  

 (if “out of tracking” “defect”) 

2nd part 
Introduction of equivalent defects in the previous 
fuselage-rotor model to obtain the corresponding 

vibration (amplitude and phase) at point M 

(attachment of sensors to the fuselage) 

Update of Mass properties and/or θ(ψ) 

β(ψ) is updated and 

then tracking is calculated 

Subroutine calculates 1st cyclic components 

of the wrench of efforts and the resultant on 

each hub axis through harmonic balance 

Calculation of CG acceleration 

Calculation of the radius of gyration per axis  
and accelerations at point M 

Amplitude and phase calculation at points M and CG 

1st part 
Modeling the rotor dynamics assumed as 

isotropic equilibrium (iterative procedure) 

Definition by entering the aircraft project  

data that configure the modeled one 

 

Figure 24: Flowchart of the subroutines of the computational code for the Direct 

Problem [Adapted from (González, 2012)] 
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The first part deals with the numerical resolution of a multidimensional system of twelve 

nonlinear algebraic equations (to twelve unknowns) governing the movement of the rotor-

fuselage system, in the frequency domain (after applications of Fourier Integral 

Transform according to Coleman operators, as seen above). This first part requires a lot 

of iterations to define the proper input vector, as the components are linearly dependent 

and unknown. Internally, the solution process of this algebraic system includes its 

linearization by subroutines of the computational algorithm “fsolve”, selected as the most 

adequate among the options available in the MATLAB(R) software environment. 

Structured with aircraft design information, the resolution of these equations uses data 

from the executed flights as input and then reveals the dynamic behavior of the analytical 

model adopted according to small vibrations around the equilibrium. Briefly describing 

the code, Figure 24 presents a flowchart for the code. The code starts with the definition 

of the aircraft design data adopted, as previously presented, followed by the recording of 

obtained data associated with a flight condition. Once these data are gathered, a 

subroutine is activated that operates the previously discussed Meijer-Dress formulation, 

iteratively, according to the Newton-Raphson numerical method, to obtain the first 

estimate of the induced velocity Vi, as it is a requirement for the next task, which is to 

obtain, via the dedicated subroutines, the values of β(ψ), δ(ψ) and θ(ψ), according to their 

cyclic components. These subroutines are initialized from a free but careful initial 

estimate for θ, whose value depends on β and Vi, which are not yet available, proving to 

be quite a sensitive part of the code. Numerical methods are expected to allow modeling 

with minimal simplifications while preserving the precision of the result. However, this 

approach requires a good initial estimation of the input vector to further find the solution 

to the system. In this case, although θ represents the command (from the pilot), around 

which the rotor needs to adapt, the convergence of the method of the 'fsolve' subroutine 

is sensitive to large variations, even though its internal algorithm predicts eventual 

problems of a distant estimate of the real root. These four variables are then used in the 

next subroutine that calculates the six components of the wrench acting on the hub in 

equilibrium, operating the post-Fourier Transform equations (six equations). In sequence, 

subroutines are called to provide the values of αf, φf, and TRC, based on the three 

equilibrium equations of the rotor-fuselage system. With these data, it is possible to 

recalculate, in a refinement step, the values of the first four variables before the next step: 

the calculation of the equilibrium of the fuselage-isotropic rotor nonlinear algebraic 

system. The best result of the 'fsolve' subroutine comes from the internal application of 

numerical optimization techniques that impose robustness to Newton's method in the 

calculation of each step, as offered by the MATLAB(R) software, and which makes use of 

its Jacobian matrix, previously evaluated as Equation (77), also provided by a specific 

subroutine. The result of this algorithm converges to the output vector composed of the 

twelve mentioned values. It is worth mentioning here the sensitivity of the functional 

parameters requested by this subroutine (according to the internal algorithm, the “fsolve” 

and the residual error), for each flight condition, to verify the convergence of the 

numerical method. Most optimization subroutines adopt a termination criterion, to end 

the calculation when the residual error (the difference between two successive iterations 

roots) and/or the difference between each iterative step are less than a value specified by 

the user. Hence, if this value is too large, the subroutine does not manage to find a solution 

that can effectively nullify the system of equations. Otherwise, if it is too small, the 

algorithm reaches the maximum number of iterations before the difference between two 

successive iterations, to obtain the root, has been reached. Having obtained the established 
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scenario for the equilibrium behavior of the system in context, we move on to the second 

part of the Direct Problem, which does not require iterations: the introduction of primary 

anisotropies, that is, one at a time. Firstly, this is done by updating the mass parameters 

(if the balance “defect” is adopted) or the three cyclic components of θ (such as in the 

case of an out-of-tracking type of “defect”) of the selected blade, using the sum of 

increments associated with the last values obtained (these three ones, again, by initial 

estimates). 

From this point on, it is possible to recalculate the first cyclical components of the forces 

and moments that are applied to each blade according to the three adopted Cartesian axes, 

which, as mentioned before, are no longer constant. The following steps are analogous 

calculations of the resulting wrench of efforts on the hub, according to similar terms in 

sine and cosine (harmonic balance); the CG acceleration; the radius of gyration of the 

fuselage, needed to obtain, in the subsequent step, the accelerations at the CG and point 

M; and, finally, the amplitude and phase calculation at these points (the CG and point M). 

VALIDATING THE MODEL: FLIGHT TESTS 

In the task of demonstrating the applicability of the proposed mathematical model, we 

choose to compare the simulated response with real experimental data. Among possible 

sources of the same, it was decided to start a flight test campaign on a platform with the 

same parameters of the considered model. The platform adopted is an Aerospatiale-AS 

355 F2 Squirrel Twin Engine, a representative model of a series, and belonging to the 

then Special Group of Flight Tests - GEEV (currently called Flight Tests and Research 

Institute - IPEV), one of the military organizations of the Department of Aerospace 

Science and Technology - DCTA, located in São José dos Campos, SP, Brazil. 

The tests performed were a valuable instrument to support the research in context, as they 

met the test requirements, and were performed in compliance with the established 

provisions of the test order, which presented the complete analysis of the main risks, with 

a description of the causes, consequences, and the mitigating actions to be taken, as well 

as the emergency procedures to be adopted. The flight test schedule established the 

following registration points, corresponding to the flight profiles provided in the MET 

62.10.00.603 Maintenance Manual for the aircraft (HELIBRAS, 1994): 

• ground turn with the throttle adjusted to flight setting; 

• hovering IGE (in ground effect) at 2 m above the ground, heading with the wind; 

• leveled forward flight in maximum power continuous (PMC); and 

• forward flight at the PMC, underside turns, left and right, leaning 45°. 

 Through these points, representative of the basic operating conditions, the aim is to 

collect vibration characteristics (amplitude and phase) of this aircraft, corresponding to 

balancing and tracking conditions at 1Ω frequency: first, in the condition within the 

tolerances recommended in the MET; and then outside them, as follows: 
• yellow blade: two fewer balance platelets; all other blades balanced and inside tracking; 

• analogous procedure with the red blade; and finally 

• again with the rotor balanced, only the yellow blade is out of the ideal tracking. 

The following references from the MET were adopted, for the case of rotor balanced, 

with adjusted tracking, for 1Ω: (with IPS being: “ inches per second”) 
• ground turning and hovering at 2 m: in the Y direction < 0.2 IPS and tracking < 6 mm; 

• level forward flight in PMC: in the Z direction < 0.2 IPS and tracking < 20 mm; and 

• forward flight with lateral turns at ±45º incline in PMC: in Z < 0.35 IPS. 
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For the vibration data acquisition, a portable equipment ACES P2020 was used, coupled to two 

sets of accelerometers in positions defined in the maintenance manual: one accelerometer 

to capture the amplitudes of the accelerations in the Y-axis (located horizontally on the 

mast of the main rotor – it is a rigid point); another accelerometer to capture the 

accelerations on the Z-axis (vertically on the left front floor); and a magnetic sensor 

located on the fixed plateau to measure the phases, when it passes through the magnetic 

switch (emitter) permanently affixed to the mobile plateau. Figure 25 shows the 

equipment used (except the magnetic sensor) (images taken during the tests). 

 
Figure 25: Flight test instrumentation: (A) strobex; (B), (C) Z-axis accelerometer; 

(D) Y-axis accelerometer; (E) ACES P2020 analyzer; (F) balance sheet;   

(G) platelets fixed to the blade handle; (H) change in platelet configuration 

[Adapted from (González, 2012)] 

ASSESSMENT OF THE (PRELIMINARY) FLIGHT TEST RESULTS 

As for the computational resource adopted to verify the model, the simulation would 

provide better results if the real design values (unavailable) were used. It is noteworthy 

that the consideration of flight conditions becomes a problem, given that, for each case 

of mass and balance, for example, it would be necessary to effectively evaluate the value 

of the initial θ fixation to be provided at the beginning of the code for the isotropic case. 

Therefore, for a more comprehensive simulation in terms of flight conditions/phases and 

the flight envelope of the aircraft, it would be necessary to build a numerical solution 

more adapted in robustness to this specific problem. Nevertheless, in the case limited to 

the range of this initial estimated of θ, as stated above, the code showed convergence after 

twelve iterations, consuming insignificant computational time, whose values were 

subjected to comparisons with the results of the flight tests. Tables 4 and 5 present a 

comparison between flight test and numerical simulation results, for 16 test points (cases 

in which flight tests were originally scheduled). For better use of the evaluation, and by 

the recommendations of the MET, the end signal of each installed accelerometer is 

considered. Therefore, in Tables 4 and 5, the data indicated is highlighted in the grids. In 

each cell corresponding to the reading at a test point, there are two lines for comparisons 

between test data (top line) and numerical simulation (bottom line). The grids guide the 

consideration of lateral vibrations Y (in the rotor plane) for test points 1 and 2, and vertical 

vibrations Z (orthogonal to the rotor plane) for the others, only. 
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Table 4: Comparison of flight test results and numerical simulation: test points 1 to 8 

[Adapted from (González, 2012)] 

Data 1 2 3 4 5 6 7 8 

1Ω Z 

(IPS) 

0,38 

0,347 

0,35 

0,351 

0,08  

0,349 

0,14 

0,349 

0,30  

1,033 

0,08  

1,051 

0,34 

1,406 

0,12 

 1,411 

Phase Z 

(°) 

326,50 

-89,97 

359,50 

89,95 

273 

-89,953 

309 

-89,908 

202,5 

-55,581 

185 

-55,271 

204,50 

-49,200 

189,50 

-49,342 

1Ω Y 

(IPS) 

0,18 

1,478 

0,47 

1,491 

0,05 

1,484 

0,20 

1,162 

0,26 

2,022 

0,44 

2,062 

0,28  

2,898 

0,46 

2,902 

Phase Y 

(°) 

358,50 

-

83,530 

8,50 

-83,601 

358,50 

-83,512 

22,50 

-83,475 

16 

-30,800 

9,50 

-30,181 

6 

-18,777 

13 

-18,942 

Red 

Blade 

-0,5 

0.474 

-1,3 

0.473 

No data 

0.4763 

0,7 

0.478 

No data 

1.444 

-5,8 

1.462 

No data 

1.459 

-6,6 

1.899 

Yellow 

blade 

0,0 

0.475 

0,0 

0.473 

No data 0,0 

0.478 

No data 

1.444 

0,0 

1.462 

No data 

1.459 

0,0 

1.899 

Blue 

blade 

0,0 

0.475 

2,0 

0.474 

No data 0,5 

0.478 

No data 

 

-7,8 

1.462 

No data 

1.459 

-5,5 

1.899 

Table 4 additional details: Flight tests (1st day) Test point & description. Condition & description 

1. Point 1: Ground turn. Condition 1: Rotor balanced and tracking adjusted - test/code. 

2. Point 1: Ground turn. Condition 2: Yellow blade with two fewer platelets - test/code. 

3. Point 3: Hover IGE. Condition 1: Rotor balanced and tracking adjusted - test/code. 

4. Point 3: Hover IGE. Condition 2: Yellow blade with two fewer platelets - test/code. 

5. Point 4: Level forward flight at PMC. Condition 1: balanced and tracking adjusted - test/code. 

6. Point 4: Level forward flight at PMC. Condition 2: Yellow blade with two fewer platelets - test/code. 

7. Point 5: Forward flight + Curves ϕ = 45º at PMC (Right Turn). Condition 1: balanced and tracking adjusted - 

test/code. 

8. Point 5: Forward flight + Curves ϕ = 45º at PMC (Right Turn). Condition 2: Yellow blade with two fewer platelets 

- test/code. 

Table 5: Comparison of flight test results and numerical simulation: test points 9 to 16 

[adapted from (González, 2012)] 

Data 9 10 11 12 13 14 15 16 

1Ω Z (IPS) 0,16  

0,343 

0,04  

0,339 

0,06 

0,349 

0,03 

0,340 

0,37 

1,345 

0,33 

1,356 

0,40 

1,356 

No 

data 

Phase Z (°) 333 

-89,96 

25,5 

89,944 

262 

89,990 

125 

-89,96 

172,5 

-

9,5583 

114 

-

48,974 

170,50 

-

49,537 

No 

data 

1Ω Y (IPS) 0,08 

1,142 

0,21 

1,125 

0,09 

1,172 

0,26 

1,103 

0,24 

2,827 

0,30 

2,817 

0,33 

2,849 

No 

data 

Phase Y (°) 319 

-83,531 

116 

-83,629 

97 

-83,541 

122,50 

-83,540 

22 

-

18.845 

55 

-

18.400 

358 

-

18.807 

No 

data 

Red Blade 
1,0 

0.473 

-0,7 

0.467 

0,0 

0.476 

1,0 

0.471 

-4,8 

1.874 

-0,2 

1.890 

-5,0 

1.882 

No 

data 

Yellow blade 
0,0 

0.473 

0,0 

0.4677 

0,0 

0.476 

0,0 

0.471 

0,0 

1.874 

0,0 

1.890 

0,0 

1.882 

No 

data 

Blue blade 
1,0 

0.473 

0,0 

0.467 

-1,7 

0.476 

-1,7 

0.471 

-5,6 

1.874 

-4,0 

1.890 

-4,6 

1.882 

No 

data 

Table 5 additional details: Flight tests 2nd day. Test point & description. Condition & description 

9. Point 1: Ground turn. Condition 1: Rotor balanced and tracking adjusted - test/code. 

10. Point 1: Ground turn. Condition 2: Yellow blade with two fewer platelets - test/code. 

11. Point 3: Hover IGE. Condition 1: Rotor balanced and tracking adjusted - test/code. 

12. Point 3: Hover IGE. Condition 2: Yellow blade with two fewer platelets - test/code. 

13. Point 4: Level forward flight at PMC. Condition 1: balanced and tracking adjusted - test/code. 

14. Point 4: Level forward flight at PMC. Condition 2: Yellow blade with two fewer platelets - test/code. 

15. Point 5: Forward flight + Curves ϕ = 45º at PMC (Right Turn). Condition 1: balanced and tracking adjusted - 

test/code. 

16. Point 5: Forward flight + Curves ϕ = 45º at PMC (Right Turn). Condition 2: Yellow blade with two fewer platelets 

- test/code. 
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The flight test campaign could not complete the schedule in its entirety due to a failure 

related to the operation of the Main Gear Box (MGB) (presence of swarf/filings in the 

dedicated magnetic sensor), which also contributes to vibrations. This occurrence made 

the aircraft unavailable for a long period, in addition to what was compatible with this 

research work. Thus, there are no data tested from test point 16 (Table 5), nor the tracking 

variation per action in the pitch control rod length adjustments. It is worth mentioning the 

difficulties of the mechanics for the sensitive readjustments of the pitch rod to its original 

position, which is decisive for reference flights. 

As for the flight tests, even though they are the best alternative in terms of the wealth of 

information, they also presented, in smaller numbers, some adverse results than expected 

(for example: in the evolution of trials 5 to 6; and 7 to 8; 13 to 14 - decrease instead of 

the expected increase in the amplitude of the oscillatory response. These inconsistencies 

are attributed to the complexity of the atmospheric environment in which the flight 

dynamics are immersed; to the instantaneous variation of aircraft parameters, including 

those sensitive to the recording instant (eg: speed and vibration reading, which are related 

to the test pilot's ability to identify and sustain the desired condition then reached); and to 

possible disturbances associated with the acting defect and only then detected. All these 

facts can be mitigated by considering an average of a large number of similar flights, 

which was not possible in this research. 

As for the simulations, the same inconsistencies were manifested in the evolution of tests 

3 to 4; 9 to 10; 11 to 12. It is attributed to the series of simplifying considerations that 

were necessary for this study as a determining influence on the small values of the 

variations and to the large ones in the module of the results of the amplitudes relative to 

the experimental data, as well as the large phase variations. Also noteworthy is the 

influence of the rigid blade hypothesis and the absence of relevant real project values, as 

these would be the only guarantee that the same tested aircraft is being simulated. 

The results obtained are preliminary. A few results were encouraging, such as the 

evolution of flight tests 1 to 2; 3 to 5; and 7 to 8 – confirming the increasing trend in the 

amplitude of the oscillatory response. Especially in evolution 1 to 2 and 5 to 6 the phase 

change trend aligned with the experimental test data (taken as a reference for this reading). 

A comment on the vibration absorbers in Z- and Y- directions 

In the flight tests carried out, the accelerometer in the vertical Z-direction was located in 

the front section of the cabin, as shown in Figure 25, reasonably far away from the most 

rigid section of the fuselage (which would be near the station just below the main rotor). 

This front section, at the nose of the aircraft, is a region that oscillates (and therefore has 

important natural modes of vibration) in this Z-direction (due to the elasticity of the 

structure). A suggestion for future work would be to choose a location to install the 

accelerometer and collect vibration data in the Z-direction as another point, in a more 

central region, perhaps near the vertical station below the main rotor. 

Another important aspect is that under the floor of the Squirrel, more or less in the region 

below the pilot's seat, there is a vertical vibration absorber, tuned to the 3Ω frequency, as 

shown in Figure 26. This absorber is located in a station about halfway between the main 

rotor station and the region near the nose of the aircraft, where the accelerometer was 

placed in the flight tests that were carried out. 
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Typically, a linear absorber would not have an important effect on frequencies away from 

its design frequency (in this case, 3Ω), but, in the case of non-linearities in the vibration 

absorber behavior, there is a possibility (to be investigated) that this vibration absorber 

could have influenced the signal in 1Ω captured by the accelerometer. 

The two reasons above (the location of the accelerometer at a forward station near the 

nose of the aircraft; and the presence of a nearby Z-direction vibration absorber) may 

have contributed to the discrepancy found between the flight test results (lower Z-

vibration amplitudes) and the numerical model (higher Z-vibration amplitudes), in this 

cockpit accelerometer, installed in the vertical direction. 

The vibration amplitude measured in the flight tests was about one order of magnitude 

lower than the vibration amplitude calculated by the numerical model, giving a hint that 

maybe some part of the vibration in 1Ω was also attenuated, maybe by some non-linear 

behavior of this vertical vibration absorber in 3Ω. 

 
Figure 26: (AS 350B3 Squirrel) Z-direction vibration absorber (floor below pilot) – 

adapted from (EUROCOPTER, 2010) 

As for the accelerometer in the Y-direction (therefore, practically in the rotor plane), it 

was correctly placed in a more central region, but because the location of this 

accelerometer was at a height very close to the rotor plane, the vibration measured in the 

Y-direction could have been influenced by the presence of the main rotor vibration 

absorber, with its resonator weights, as shown in Figure 27. 

These resonator weights, inside the fairing, form a tuned set to absorb vibrations in the 

rotor plane at the 3Ω frequency. Thus, like the case of the absorber of vertical vibrations 

under the pilot's floor, this in-plane absorber may have influenced the Y-vibration 

measured results. Again, the Y-vibration amplitude measured in the flight tests was one 

order of magnitude lower than the Y-vibration amplitude calculated by the numerical 

model, giving a hint that maybe some part of the vibration in 1Ω was also attenuated, 

maybe by some non-linear behavior of this vibration absorber in 3Ω. 
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Figure 27: (AS 350B3 Squirrel) Y-direction vibration absorber (rotor hub) – 

adapted from (EUROCOPTER, 2010) 

The presence of these vibration absorbers in Z- and Y- directions near the location of the 

corresponding Z- and Y- accelerometers may have contributed to the lower amplitudes in 

the vibration signal obtained in the flight tests, when compared to the corresponding 

amplitudes calculated using the numerical model and may help to explain the differences 

in amplitudes that were found.   

Thus, the presence of a Z- or Y- vibration absorber, in the vicinity of an accelerometer in 

the same Z- or Y- direction, requires further investigation and would demand a change in 

the location of the accelerometer in future test flights, and/or an improvement in the 

numerical model, to include the presence of such vibration absorbers. 
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4.5 Possibilities for future work 

As suggestions for further work, one can consider: 

• a thorough review of the model and its assumptions, to be able to refine and adapt the 

model to attain a higher level of fidelity of the model concerning the real aircraft, to 

properly represent the dynamics of the rotor-fuselage system, including the above-

mentioned vibration absorbers in Z- and Y- directions (see Figures 26 and 27); 

• real aircraft data is required to be used in the model, again to increase model fidelity 

concerning a real aircraft. Proper aircraft parameters must be given, and/or identified 

using data science/pattern recognition techniques (Artificial Neural Networks, for 

example), and must be validated before their use in the numerical model; 

• the numerical model and the flight tests need to represent the same flight conditions, to 

validate the comparisons between numerical and experimental results. The observed 

trends for the code results as compared to the flight test results should present similar 

behavior, to provide evidence of the potential for this model to be used as a tool to help 

maintenance procedures of balancing and tracking of the helicopter main rotor, based on 

vibration measurements in the fuselage. 

• after the model for the Direct Problem (given defects in the main rotor, leading to 

vibration changes (amplitude and phase) at particular fuselage points) is revised and 

validated, the research may concentrate on adequate approaches (optimization methods, 

identification approaches) for the Inverse Problem (vibration changes (in amplitude and 

phase) at particular fuselage points leading to 

detection/localization/classification/identification of defects in the main rotor, and, in 

consequence, leading to the suggestion of corrective maintenance procedures, such as the 

proper adding/subtracting of balance masses, or the increasing/decreasing of the pitch rod 

length). 

5 Concluding Remarks 

In this chapter helicopter, vibration reduction techniques were discussed, focused on 

balancing, and tracking the helicopter rotors, and concentrated on a discussion of model-

based parameter identification for balancing and tracking a helicopter main rotor using 

once-per-revolution vibration data. Details of the models were presented for two study 

cases: a 4-blade main rotor, and a 3-blade main rotor. Simulation results were obtained in 

both cases from the models that were derived in this work. These results were compared, 

for the 4-blade rotor case, with the charts available in the maintenance manual, and for 

the 3-blade rotor case, with some preliminary flight tests that were performed under flight 

profiles recommended in the maintenance manual (MET), as an experimental phase of 

the work. 

The results obtained for both cases showed that the models derived in this study, even 

with all the assumptions and simplifications in the derivation of the equations, are 

promising, and pointed out in the proper direction. 

For the 4-blade case, the model has indicated a correction to be done in the proper blade 

and in the proper direction (for example, for correctly adding or subtracting balancing 

masses). Only the amount of mass to be added/subtracted differs slightly from the model 

to the experimental case. 
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For the 3-blade case, the computer code exhibited significant sensitivity to changes in 

flight conditions and, certainly, was influenced by the deficiency of real design data in 

the simulation, which could have limited the performance of the numerical results. Also, 

environmental factors during the experimental flight, as well as the instantaneous 

parameters in continuous variation, may have contributed to compromise the intentions 

of formal validation of the model. 

The perspectives regarding the potential of the model derived in this work were deemed 

satisfactory, with a valuable experience arising from the investigation and analysis of the 

comparative results, with insights, such as the need to take into account the presence of 

the Z- and Y- vibration absorbers, in the vicinity of the accelerometers in the same Z- or 

Y- direction. 

As suggestions for future work, the coefficients of the obtained equations could be seen 

as parameters to be identified in an inverse problem. With this approach, the values of the 

mass, centering, etc., will be identified for the actual helicopter, and used as the 

parameters in the derived equations, instead of using, in these equations, the 

average/typical values that were used in this work. Doing this model-based parameter 

identification for an already-derived equation should be more efficient and less time-

consuming, when compared to the signal-based identification of the helicopter and rotor 

parameters from scratch, in which only input and output data would be available, without 

any prior knowledge of the mechanics of the system.   
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Abstract

The finite element method (FEM) has been applied to solve engineering problems in
several areas during the last decades, fulfilling an important role, mainly in situations
that present complex, or even non-existent, analytical solutions. As every numerical
technique, this approach has limitations which are directly linked with digital com-
puting capacity, since this method is widely and predominantly implemented using
such tools. Thus, this chapter presents a contextualized and updated introduction to
the FEM, including its fundamentals, such as important considerations about spatial
discretization of the physical domain and formulation at element and global levels.
Using the variational approach, the formulation of two different finite elements is
presented in considerable depth, namely for a quadrilateral, two-dimensional elas-
ticity FE, with four nodes; and for a Kirchhoff-Love plate, equivalent single layer
composite/laminate FE, rectangular, with four nodes. In a second moment, two
examples are discussed, the first of which is concerned with an H-shaped sheet, with
one of its edges clamped, and being subject to a uniform pressure load. The second
example studies a rectangular, four layer composite, clamped on one of its edges.
By means of both of these, one highlights the importance of proper mesh generation
and/or adequate selection of a FE for a given problem; as well as the various types of
structural dynamics’ analyzes one might be interested in performing. Additionally,
most relevant information and discussion is provided concerning parameterization of
FE models, particularly in association to model updating and damage identification.
Particularly, a section is dedicated to model updating based on the sensitivity of
eigenvalues and eigenvectors. Final remarks are also included, to point out most
pertinent directions, in the view of the authors, for interested readers to follow. As a
bonus, MATLAB® codes implemented by the authors, related to the two considered
examples, are made available for download within the chapter material.

Keywords: Finite Element Method; quadrilateral two-dimensional finite element; rectangular
Kirchhoff-Love plate; parameterization; model updating.
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1 Introduction

From the Mathematics standpoint, the Finite Element Method (FEM) is a numerical technique
intended to provided approximate solutions to differential equations. From the engineering per-
spective, the FEM has been conceived to obtain approximate solutions of a range of problems
whose underlying physics are governed by differential equations. Despite the fact that the method
has been originally developed for the analysis of structural systems, it has been widely used for the
modeling of a variety of engineering problems, in the fields of Solid Mechanics, Fluid Mechanics,
Heat Transfer, Electromagnetism, among others. Due to its accuracy, computational efficiency
and modeling flexibility, besides its ease of implementation in digital computers, the FEM has
achieved great diffusion, both in industry and academia, being considered as a high valued tool for
the development of engineering projects and scientific investigations. One can surely say that the
FEM is currently one of the most widely used numerical techniques in science and engineering.
As a result, the method has been taught in most universities around the world, with the support of a
variety of textbooks [Zimmerman, 2006, Lewis et al., 1996, Reddy, 2019, Jin, 2015, Bathe, 2014].
The main motivation for the use of the FEM lies in the fact that for highly complex Engineer-

ing problems, analytical solutions to the underlying differential equations are difficult – or even
impossible – to obtain. In fact, mathematical models of those problems, represented by a single
or a set of ordinary or partial differential equations, can be obtained from the application of well
established physical principles governing the underlying phenomena. Very often, simplifications
are adopted by neglecting effects considered to be less influential. However, the resolution of the
governing equations by using classical mathematical techniques can be unfeasible due to existence
of a number of complicating factors, such as complex geometry, combination of multiple materi-
als, nonlinear behavior, variable material parameters (with time or environmental influences), etc.
These complicating factors are very often present in actual industrial problems.
For illustration, let us consider the heat transfer problem on a thin plate, of arbitrary boundary

shape and material composition, as illustrated in Fig. 1. As in many practical cases, simplification
is made by assuming that, given that the plate is thin, temperature is constant across the thickness,
which implies the absence of heat flux in that direction. Hence, the original three-dimensional
problem is simplified to a two-dimensional counterpart.

𝑥

𝑦

𝑃(𝑥, 𝑦)
\ = \ (𝑥, 𝑦, 𝑡)

−𝑞𝑛 (𝑥, 𝑦, 𝑡) = 𝑞(𝑥, 𝑦, 𝑡)

\ (𝑥, 𝑦, 𝑡) = \̄ (𝑥, 𝑦, 𝑡)

Figure 1: Illustration of a two-dimensional heat transfer problem on a plate of
arbitrary shape.

Upon application of the law of energy conservation and Fourier’s law of heat conduction
to a differential element of the plate, the following partial differential equation, whose solution
provides the transient temperature distribution over the plate, described by the so-called field
variable, \ = \ (𝑥, 𝑦, 𝑡), is obtained:

𝜕

𝜕𝑥

(
𝑘𝑥 (𝑥, 𝑦, \) 𝜕\

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
𝑘𝑦 (𝑥, 𝑦, \) 𝜕\

𝜕𝑦

)
+𝑄(𝑥, 𝑦, 𝑡) − 𝜌(𝑥, 𝑦, \)𝑐(𝑥, 𝑦, \) 𝜕\

𝜕𝑡
= 0, (1)
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where 𝑄(𝑥, 𝑦, 𝑡) is the rate at which energy is generated per unit volume of the plate material,
𝜌(𝑥, 𝑦, \) and 𝑐(𝑥, 𝑦, \) are, respectively, thematerialmass density and specific heat, and 𝑘𝑥 (𝑥, 𝑦, \)
and 𝑘𝑦 (𝑥, 𝑦, \) are the material heat transfer coefficients in directions 𝑥 and 𝑦, respectively.
It should be recalled that the resolution of Eq. (1) must satisfy a set of initial and boundary

conditions. Fig. 1 indicates that these later can be of two different categories, namely: enforcement
of temperature values, \ (𝑥, 𝑦, 𝑡) = \̄ (𝑥, 𝑦, 𝑡) (a Dirichlet boundary condition), and enforcement
of the heat flux in the direction normal to the contour line, −𝑞𝑛 (𝑥, 𝑦, 𝑡) = 𝑞(𝑥, 𝑦, 𝑡) (a Neumann
boundary condition).
The complicating factors involved in Eq. (1) are material heterogeneity and anisotropy (i.e.,

material properties depend on direction and space coordinates) and non-linearity (material proper-
ties depend on the unknown temperature distribution). In addition, the arbitrary shape of the plate,
which defines the domain to be covered by the solution.
Hence, a complicated problem such as this one can only be solved with recourse to numerical

methods, among which, the FEM is a convenient one.
Currently, the Finite Element Method can be found implemented in a variety of commer-

cial packages. Graphical interfaces are most often used, guiding the user across the different
phases of modeling and numerical resolution. However, it is of utmost importance that the user
fully understands the fundamentals of the method so as to be capable of making the appropriate
modeling decisions and correctly interpreting results. In addition, there may be the need for the
implementation of elements with particular characteristics, not available in the package’s standard
element library, and also the performance of the so-called intrusive operations. These later involve
modifications of the FE model in its inner structure, as required in certain types of analyses, such
as model adjustment to experimental data or system optimization. In such situations, mastering of
physical, mathematical, numerical and computational aspects of the method is indispensable.
Therefore, in the subsection that follows, the basic steps involved in typical FE models are

described aiming at, hopefully, providing the necessary understanding of how the method operates
in commercial software and also helping the readers to implement their own code, should this be
needed.

1.1 Fundamentals of the finite element method

Given the scope of the book to which this chapter belongs, an example focused on Solid Mechanics
will be used for the description of the fundamental phases of FE modeling.

𝑥

𝑦

𝑃(𝑥, 𝑦)

Γ(𝑥, 𝑦)

®𝐹1

®𝑖

®𝑗

𝑢(𝑥, 𝑦)®𝑖

𝑣(𝑥, 𝑦) ®𝑗

𝐷 (𝑥, 𝑦)

®𝐹3

®𝐹2
𝑝(𝑥, 𝑦)

Figure 2: Illustration of a two-dimensional elasticity problem on a sheet of arbitrary
shape.
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Figure 2 illustrates a plane-stress elasticity problem, in which a thin sheet defining a domain
𝐷 (𝑥, 𝑦) is subjected to in-plane loads, being constrained on a certain number of points on its bound-
ary, which is indicated by Γ(𝑥, 𝑦). For simplicity, the assumptions of linear load-displacement
material behavior and small displacements and rotations are adopted.
The classical problem to be solved consists in, given the loads and boundary conditions,

determine the displacement Cartesian components 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) of each and every point
𝑃(𝑥, 𝑦) of the sheet, as well as the strain and stress distributions over the solid domain.

1.1.1 Spatial discretization of the domain

The first step of FE modeling is the division of the domain in which the problem is formulated
(in the present example, the sheet and its boundary) in subdomains of predefined, user-selected,
characteristics. These subdomains, called elements, are chosen to have simple geometry (triangles
or quadrilaterals in two-dimensional problems; tetrahedrons or hexahedrons in three-dimensional
problems), having given numbers of notable points, usually located on their edges, called nodes.
Fig. 3 depicts the sheet of interest divided in a relatively large number of quadrilateral and triangular
elements. Also shown is an amplified view of an element 𝐼, and its respective nodes,denoted by
𝑖, 𝑗 , 𝑘, 𝑙. The entire set of elements and their nodes is named the model mesh.
Also indicated in Fig. 3 are the displacements of the four nodes of interest in directions 𝑥

and 𝑦, denoted as ®𝑢𝑖 , ®𝑣𝑖 , ®𝑢 𝑗 , ®𝑣 𝑗 , ®𝑢𝑘 , ®𝑣𝑘 , ®𝑢𝑙, ®𝑣𝑙. In the finite element jargon, these displacements, or,
more generally, the values of the unknown variables of the problem at the mesh nodes are called
degrees-of-freedom (DOFs).

®�1

®D8

®�3

®�2
?(G, H)

®E8 ®D 9

®E 9

®D:

®E:

®D;

®E;

8
9

:;

�

G

H

Figure 3: Illustration of a mesh defined for the discretization of a two-dimensional
elasticity problem, and details of an element.

1.1.2 Interpolation of the field variables

Once defined the model mesh, the most distinguished idea underlying FE modeling is put forward,
namely, the interpolation of the unknown variables, in the present case, the Cartesian components
of the displacement field, within each element of the mesh. Accordingly, for a typical element 𝐼,
these variables are mathematically expressed as follows:

𝑢 (𝐼) (𝑥, 𝑦) = 𝑁𝑖 (𝑥, 𝑦)𝑢𝑖 + 𝑁 𝑗 (𝑥, 𝑦)𝑢 𝑗 + 𝑁𝑘 (𝑥, 𝑦)𝑢𝑘 + 𝑁𝑙 (𝑥, 𝑦)𝑢𝑙, (2a)
𝑣 (𝐼) (𝑥, 𝑦) = 𝑁𝑖 (𝑥, 𝑦)𝑣𝑖 + 𝑁 𝑗 (𝑥, 𝑦)𝑣 𝑗 + 𝑁𝑘 (𝑥, 𝑦)𝑣𝑘 + 𝑁𝑙 (𝑥, 𝑦)𝑣𝑙 . (2b)
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It can be seen that, on each element, the displacement components at any point of coordinates
(𝑥, 𝑦) within the element, are expressed as linear combinations of the corresponding values evalu-
ated at the four nodes. The coefficients of these linear combinations are the functions of the space
coordinates 𝑁𝑖 (𝑥, 𝑦), 𝑁 𝑗 (𝑥, 𝑦), 𝑁𝑘 (𝑥, 𝑦), 𝑁𝑙 (𝑥, 𝑦). These functions, called interpolation functions
or shape functions, are chosen for each particular type of element. In general, they are polynomial
functions whose degrees are chosen according to the number of nodes (and DOFs, as a result)
assigned to the elements.
It should be highlighted that, once the nodal values of the unknowns are determined, the values

of the variables 𝑢 (𝐼) (𝑥, 𝑦) and 𝑣 (𝐼) (𝑥, 𝑦) are obtained as continuous functions of the nodal values,
as given by Eqs. (2). Hence, the primary goal of finite element computations is the determination
of the nodal values, the number of which is finite, as opposed to the number of variables in
the original Solid Mechanics problem, governed by partial differential equations, whose solution
over the entire domain 𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦) must be valid for the infinite number of points comprising
the domain. It can, thus, be stated that the combination of the discretization and interpolation
procedures enables to reduce the original infinite-dimensional problem to an associated finite-
dimensional one, amenable to approximate numerical resolution. This entails transitions from one
type of mathematical model (for the continuous problem) to another (for the discretized problem).
For example, in the case of transient heat transfer problems, the transition leads from a partial
differential equation to a set of (generally coupled) ordinary differential equations having the nodal
temperature values as unknowns; in the case of equilibrium problems of elasticity, the transition is
made from a set of partial differential equations to a set of coupled algebraic equations having the
nodal displacement values as unknowns.

1.1.3 Formulation at element level

The formulation at the so-called element level is carried-out by considering the physics of the
problem, starting either from basic governing principles or, more directly, the differential equations
governing the underlying phenomena. For this purpose, three different formulation approaches can
be followed, which are described next. Irrespective of the approach adopted, the goal is to establish
differential or algebraic relations between inputs applied at the element nodes, and resulting outputs
at the nodes. For example, in heat transfer problems, the inputs are heat fluxes and the outputs are
temperatures; in static elasticity problems, the inputs are forces and the outputs are displacements.
At this level, each element is considered individually, without any interaction with neighboring
elements.

• Direct approach: in this approach, the equations describing the underlying principles are
directly manipulated, in association with interpolation of the field variables to obtain the
above-mentioned input-output relations. As examples, in heat transfer problems, energy
balance and Fourier’s law are jointly used with interpolated temperature field within the
element to obtain relations between heat fluxes applied at the nodes and the corresponding
nodal temperature values; in static elasticity problems, equilibrium equations and material
constitutive laws, together with interpolated displacement fields lead to relations between
forces applied at the nodes and the associated nodal displacement values. In spite of
providing clear physical meaning of the operations performed during the derivation of
the input-output relations at the element level, the direct approach is mostly used in the
formulation of one-dimensional problems, since its extension to two- or three-dimensional
problems tend to involve rather cumbersome manipulations.

• Variational approach: this approach is based on the exploration of the so-called variational
principles, which establish stationarity conditions to be satisfied by certain functionals that,
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in many cases, are integrals expressing the energy of the system. From the mathematical
standpoint, methods for finding the extremals of such functionals are in the scope of a
branch of Mathematics known as Variational Calculus [Weinstock, 1975, Lanczos, 1986].
In the case of mechanical systems of interest here, the most widely used variational prin-
ciples are the Principle of Minimal Potential Energy, which, applied to elastic systems,
states that, among all possible deformed configurations satisfying the prescribed boundary
conditions, the actual configuration developed is the one that minimizes the total potential
energy of the system; and the Hamilton’s Variational Principle, which establishes that, for
dynamic systems, the actual motion evolution, satisfying boundary and initial conditions,
must extremize a functional expressing the net value of the difference between the kinetic
and potential energies.
For the variational formulation at element level, the applicable variational principle is used
in combination with the interpolation of field variables and, searching the conditions to be
satisfied by the aproximate solution to ensure the stationarity of the associated functional.
Eventually, the stationarity conditions are brought to the requirement that the derivatives of
the algebraic form of functional with respect to each DOF of the element must vanish. This
procedure leads to the input-output relations at element level that are searched for.
In spite of being very powerful and elegant, the use of the variational approach is confined
to problems governed by variational principles, which is not always the case.

• Weighted residuals approach: this approach operates directly on the differential equations
governing the problem into consideration. The main idea is to establish the conditions to
be satisfied by the approximated solution in such a way to minimize the solution errors
expressed as mean values of point-wise weighted residual functions, evaluated over an
individual element. The number of errors considered is equal to the number of DOFs of the
element, and each one is obtained from a different weighting function.
The computation of the errors involve the integration of the corresponding weighted residual
functions over the element. The use of Gauss’ Theorem or Green’s Theorem (according
to the dimensionality of the problem) enables one to reduce the maximal order of the
differential operators in the integrand, leading to the so-called weak form of the problem.
Various weight residual methods have been devised, making use of different weighting
functions. Among them, the most popular (at least in the scope of FE modeling) is the
Galerkin Method, in which the shape functions are used as weighting functions.
Similarly to the two previous formulation approaches, the weight residual approach eventu-
ally leads to the searched input-output relations at element level.

1.1.4 Formulation at global level

In the formulation at element level, each element of the mesh is considered individually, without
any physical interaction among them. This means that, at that level, the formulation leads to a set of
uncoupled equations expressing the input-output relations for each and every element of the mesh.
However, as can be seen in Fig. 3, all the elements of the mesh will have at least one neighboring
element with which it shares nodes and DOFs. This means, from the physics perspective, that at
nodes shared by neighboring elements, the continuity of the field variables must be ensured, as well
as other requirements depending of the specific nature of the problem, such as force equilibrium
and null net heat flux. These conditions are enforced by appropriate modification and combination
of the input-output relations previously established for each element at element level, which leads to
relations between outputs and inputs at global level, represented, respectively by vectors containing
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the whole set of nodal DOFs and nodal loads. These two vectors are related to each other by a
square multiplicative matrix (known as global stiffness matrix in Solid Mechanics problems.
From the algorithmic standpoint, enforcement of the above-mentioned conditions is made by

a sequence of well-defined matrix operations, known as matrix/vector assembling [Zienkiewicz
et al., 2013, Reddy, 2019].

1.1.5 Enforcement of boundary conditions

Upon completion of matrix/vector assembling, the input-output relations for the whole FE model
are available, nonetheless without any constraints imposed to the DOFs. Hence, the global matrices
and vectors must be further modified to account for the boundary conditions. In Solid Mechanics
problems, for example, very often those conditions represent specific values assigned to particular
DOFs associated to nodes located on the boundary of the body.

1.1.6 Numerical resolution

The finite element equations at global level have to be solved by using appropriate numerical
procedures. According to the nature of the problem, different types of equations must be solved:
for equilibrium or steady-state problems, one has systems of algebraic equations, while for dynamic
or transient problems, systems of ordinary differential equations are to be solved. Furthermore,
within these broad categories of problems, some specific numerical problems may emerge. For
example, static or dynamic stability problems require the resolution of eigenvalue problems, while
the frequency response analysis in structural dynamics require the resolution of a series of sets of
linear algebraic equations, each one corresponding to a discrete value of frequency.
In addition to the calculation of the primary unknowns of the FE model, by the resolution of

the equations mentioned above, further computations are required to determine other quantities
derived from those unknowns. As an example, in linear elasticity problems, most often the primary
unknowns are the nodal displacements. In these cases, strain distributions must be determined
by applying the appropriate differential operators to the displacement distributions at element
level, according to the strain-displacement relations. Then, stress distributions are computed by
making recourse to the stress-strain relations at element level, which involve the matrix of elastic
parameters. These additional computations are most-often referred to as post-processing of the
primary solution of the underlying problem.
At this point it is important to point-out that the efficiency of the FE method highly depends

on the efficiency of the numerical algorithms used for the resolution of the different types of
mathematical equations mentioned above. This is due to the fact that, to provide the necessary
accuracy, complex finite elementmodelsmust use highly refined discretizationmeshes, which leads
to large numbers of DOFs and numbers of equations to be solved simultaneously (of the order of 105

to 107). In addition, in the majority of applications of practical interest (model updating based on
experimental data, structural optimization, uncertainty propagation, etc.) the numerical resolution
of the mathematical equations must be made multiple times. As a result, computational burden
tend to be typically high and must be properly managed to render the computations feasible for the
computer resources available. Besides the search for increasingly efficient numerical methods, the
alleviation of computation cost can be achieved by employing techniques of model condensation
and metamodeling [Zu-Qing, 2004, Gratiet et al., 2017, Sargsyan, 2017, Chen and Schwab, 2017].
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2 Modeling of Problems in Solid Mechanics (Variational Approach)

The application and formulation of the FEM for problems in Solid Mechanics can be carried out
using various strategies, as briefly explained in the previous section. Here, the variational approach
is adopted, due to its versatility and relatively simple background requirements. While previous
knowledge on Variational Calculus should not be required to follow the developments presented
next, the reader can consult other material available on the matter if he/she has desire to do so
[Weinstock, 1975, Lanczos, 1986].
Additionally, one assumes the reader to be reasonably familiar with Solid Mechanics. Various

concepts invoked in the sequence can be found in more specific literature, e.g. [Fung et al., 2017].
Within the framework of the variational formulation of the FEM, one seeks tomake a functional

stationary. In the case of structural dynamics problems, such functional is directly related to the
Lagrangian, L, given by the difference between kinetic K and potentialU energies:

L = K −U . (3)

Both contributions arise due to the motion of a solid body. Referring to Fig. 4, let us denote the
velocities of an arbitrary point by ¤𝑢(𝑥, 𝑦, 𝑧, 𝑡), ¤𝑣(𝑥, 𝑦, 𝑧, 𝑡) and ¤𝑤(𝑥, 𝑦, 𝑧, 𝑡) along the three Cartesian
coordinate directions, where (¤) ≡ d( )/d𝑡. The kinetic energy of the solid body can therefore be
obtained by:

K(𝑡) =
∭

Ω𝑡

1
2
𝜌(𝑥, 𝑦, 𝑧) [ ¤𝑢2(𝑥, 𝑦, 𝑧, 𝑡) + ¤𝑣2(𝑥, 𝑦, 𝑧, 𝑡) + ¤𝑤2(𝑥, 𝑦, 𝑧, 𝑡)] d𝑥 d𝑦 d𝑧, (4)

where 𝜌 denotes the mass density, and Ω𝑡 the volume occupied by the body at time 𝑡. In essence,
the previous equation is the continuum counterpart of that one related to a collection of discrete
particles; it can be interpreted as the (Riemann) sum of half the mass times the square of the
velocity magnitude of each continuum (differential) particle.

𝑥

𝑦

𝑧

(𝑥, 𝑦, 𝑧)
𝑢(𝑥, 𝑦, 𝑧, 𝑡)

𝑣(𝑥, 𝑦, 𝑧, 𝑡)

𝑤(𝑥, 𝑦, 𝑧, 𝑡)

Ω𝑡

𝜕Ω𝑡

Figure 4: Snapshot of a solid body during its motion, at time 𝒕, with volume 𝛀𝒕 and
boundary 𝝏𝛀𝒕.

With regards to the potential energy, it can encompass various contributions (due to elasticity,
gravity, ...), but all being related to conservative loads, i.e. those whose mechanical work do not
depend on the load-path. Considering that the theory of elasticity holds (i.e. small/infinitesimal
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displacements and strains are assumed),U can be obtained using:

U(𝑡) = 1
2

∭
Ω𝑡

[
𝜎𝑥𝜖𝑥 + 𝜎𝑦𝜖𝑦 + 𝜎𝑧𝜖𝑧 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑥𝑧𝛾𝑥𝑧 + 𝜏𝑦𝑧𝛾𝑦𝑧

]
d𝑥 d𝑦 d𝑧 −Wext, (5)

where𝜎𝑖 = 𝜎𝑖 (𝑥, 𝑦, 𝑧, 𝑡) and 𝜏𝑖 𝑗 = 𝜏𝑖 𝑗 (𝑥, 𝑦, 𝑧, 𝑡) (𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧}) stand for the Cartesian components
of the engineering stress tensor; and 𝜖𝑖 = 𝜖𝑖 (𝑥, 𝑦, 𝑧, 𝑡) and 𝛾𝑖 𝑗 = 2𝜖𝑖 𝑗 = 𝛾𝑖 𝑗 (𝑥, 𝑦, 𝑧, 𝑡) (𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧})
represent the Cartesian components of the infinitesimal strain tensor and shear angles, respectively.
Additionally,Wext represents the work done by conservative external forces. It can be calculated,
in general, according to:

Wext(𝑡) =
∭

Ω𝑡

[
𝑢(𝑥, 𝑦, 𝑧, 𝑡) 𝑓 𝑥𝑏 (𝑥, 𝑦, 𝑧, 𝑡) + 𝑣(𝑥, 𝑦, 𝑧, 𝑡) 𝑓 𝑦𝑏 (𝑥, 𝑦, 𝑧, 𝑡)

+ 𝑤(𝑥, 𝑦, 𝑧, 𝑡) 𝑓 𝑧𝑏 (𝑥, 𝑦, 𝑧, 𝑡)
]

d𝑥 d𝑦 d𝑧

+
∬

𝜕Ω𝑡

[
𝑢(𝑥, 𝑦, 𝑧, 𝑡) 𝑓 𝑥𝑠 (𝑥, 𝑦, 𝑧, 𝑡) + 𝑣(𝑥, 𝑦, 𝑧, 𝑡) 𝑓 𝑦𝑠 (𝑥, 𝑦, 𝑧, 𝑡)

+ 𝑤(𝑥, 𝑦, 𝑧, 𝑡) 𝑓 𝑧𝑠 (𝑥, 𝑦, 𝑧, 𝑡)
]

d𝑆, (6)

where 𝑓 𝑥𝑏 , 𝑓
𝑦
𝑏 and 𝑓 𝑧𝑏 represent body forces (forces per unit volume, such as the one due to gravity)

and 𝑓 𝑥𝑠 , 𝑓
𝑦
𝑠 and 𝑓 𝑠𝑠 correspond to surface forces (forces per unit area, e.g. tractions, pressures,

concentrated loads). The boundary of the body, on which surface forces can be applied, is denoted
𝜕Ω𝑡 , and d𝑆 represents a differential area/surface element.
Additional equations need to be taken into account to allow for specification of the solid’s

material behavior. These equations are known as constitutive equations. If the solid behavior
is in accordance with linear elasticity, and its properties are the same in every direction (i.e. the
material is isotropic), then its constitutive equations correspond to Hooke’s law. In the case of
three-dimensional elasticity, it reads:

𝜎𝑥 = 𝐸
(1+a) (1−2a)

[(1 − a)𝜖𝑥 − a𝜖𝑦 − a𝜖𝑧
]

; (7a)

𝜎𝑦 = 𝐸
(1+a) (1−2a)

[−a𝜖𝑥 + (1 − a)𝜖𝑦 − a𝜖𝑧
]

; (7b)

𝜎𝑧 = 𝐸
(1+a) (1−2a)

[−a𝜖𝑥 − a𝜖𝑦 + (1 − a)𝜖𝑧
]

; (7c)

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦; (7d)
𝜏𝑥𝑧 = 𝐺𝛾𝑥𝑧; (7e)
𝜏𝑦𝑧 = 𝐺𝛾𝑦𝑧 , (7f)

with 𝐸 , a and 𝐺 = 𝐸/[2(1 + a)] corresponding to the material’s Young’s modulus, Poisson’s ratio
and shear modulus, respectively. Of course, more general constitutive relations can be considered,
depending on the material one wants to model.
Other important equations which need to be recalled relate strains to the displacements expe-

rienced by the solid body during its motion. From the theory of linear elasticity, the following
holds:

𝜖𝑥 =
𝜕𝑢

𝜕𝑥
; 𝜖𝑦 =

𝜕𝑣

𝜕𝑦
; 𝜖𝑧 =

𝜕𝑤

𝜕𝑧
; 𝛾𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+ 𝜕𝑣

𝜕𝑥
; 𝛾𝑥𝑧 =

𝜕𝑢

𝜕𝑧
+ 𝜕𝑤

𝜕𝑥
; 𝛾𝑦𝑧 =

𝜕𝑣

𝜕𝑧
+ 𝜕𝑤

𝜕𝑦
, (8)

where dependencies have been omitted for conciseness.
As discussed in section 1 of this chapter, within the context of the FEM, the continuum solid

body is replaced by a mesh, formed by finite elements and their respective nodes. In this process,
the unknown displacement fields 𝑢, 𝑣 and 𝑤 have their spatial dependency become expressed in
terms of nodal DOFs. In this sense, inside the domain of a given finite element, the displacement
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fields are interpolated (approximated) based on the nodal DOFs. Mathematically, for a generic
element 𝑒 of the mesh, we have, akin to Eqs. (2), for example:

𝑢 (𝑒) (𝑥, 𝑦, 𝑧, 𝑡) =
∑︁𝑛(𝑒)

𝑘=1
𝑁 (𝑒)
𝑢𝑘 (𝑥, 𝑦, 𝑧)𝑞 (𝑒)

𝑘 (𝑡) = N(𝑒)
𝑢 (𝑥, 𝑦, 𝑧)q(𝑒) (𝑡); (9a)

𝑣 (𝑒) (𝑥, 𝑦, 𝑧, 𝑡) =
∑︁𝑛(𝑒)

𝑘=1
𝑁 (𝑒)
𝑣𝑘 (𝑥, 𝑦, 𝑧)𝑞 (𝑒)

𝑘 (𝑡) = N(𝑒)
𝑣 (𝑥, 𝑦, 𝑧)q(𝑒) (𝑡); (9b)

𝑤 (𝑒) (𝑥, 𝑦, 𝑧, 𝑡) =
∑︁𝑛(𝑒)

𝑘=1
𝑁 (𝑒)
𝑤𝑘 (𝑥, 𝑦, 𝑧)𝑞

(𝑒)
𝑘 (𝑡) = N(𝑒)

𝑤 (𝑥, 𝑦, 𝑧)q(𝑒) (𝑡), (9c)

where the vector q(𝑒) (𝑡) ∈ R𝑛(𝑒)×1 collects the element nodal DOFs, in a total of 𝑛(𝑒) . These could
comprise, for instance, the displacements of the nodes. Matrices such asN(𝑒)

𝑢 (𝑥, 𝑦, 𝑧),N(𝑒)
𝑣 (𝑥, 𝑦, 𝑧)

and N(𝑒)
𝑣 (𝑥, 𝑦, 𝑧), of size 1 × 𝑛(𝑒) , contain the so-called interpolation functions or shape functions

of the finite element. They enable us to compute the displacements of any point within the finite
element domain in terms of its nodal DOFs, after these have been obtained.
An important note in this regard is that each type of finite element has its own particular set

of interpolation functions. Hence, the choice of a finite element to be used in a particular analysis
directly translates to which interpolation functions are used. This is important to be recognized
because the interpolation functions can hinder its corresponding finite element from adequately
representing certain behaviors. This is another reason for which it is of utmost significance for one
to become aware of the formulation of the FEM, as well as of documentation and/or manuals of
various commercial finite element packages.
Traditionally, in the formulation of finite elements, interpolation functions are chosen to be

polynomials, although this is not the only option, nor necessarily the better. For instance, non-
uniform rational B-splines (NURBS) can be used, as considered in the so-called isogeometric finite
element analysis [Cottrell et al., 2009].
In the following, instead of presenting the mathematical formulation of a finite element method

for three-dimensional elasticity, we favor the case of two-dimensional elasticity. A finite element
for the more complicated case can be obtained following similar steps to those outlined next.

2.1 Quadrilateral finite element for two-dimensional elasticity problems

2.1.1 Element geometry and interpolation of field variables

The two-dimensional elasticity finite element we consider here has four nodes, and its geometry is
quadrilateral, cf. Fig. 5.

(−1, 1) (1, 1)

(1,−1)(−1,−1)

b

[

(𝑥3, 𝑦3)
(𝑥4, 𝑦4)

(𝑥1, 𝑦1) (𝑥2, 𝑦2)

b
=

1b
=
−1

[ = −1

[ = 1

𝑥

𝑦

1
2

3
4

𝑢2
𝑣2𝑢1

𝑣1

𝑢3
𝑣3

𝑢4
𝑣4

1 2

34

Figure 5: Geometry of a quadrilateral finite element with four nodes, and its corre-
sponding representation in the natural coordinate space (𝝃, 𝜼).
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The degrees of freedom of the element are chosen to correspond to the displacements at the
nodes. In this way, we have:

q(𝑒) (𝑡) = {
𝑢1(𝑡) 𝑣1(𝑡) 𝑢2(𝑡) 𝑣2(𝑡) 𝑢3(𝑡) 𝑣3(𝑡) 𝑢4(𝑡) 𝑣4(𝑡)

}T
, (10)

in which 𝑢𝑖 (𝑡), 𝑣𝑖 (𝑡) correspond to the displacements of node 𝑖 along the 𝑥 and 𝑦 directions,
respectively. At this stage, we drop the superscript (𝑒) to avoid clutter – it will be used again later
when needed to avoid possible confusion.
Having this at hand, we must select an interpolation scheme for evaluating the displacement

fields inside the element domain. For this purpose, we choose the following polynomials:

𝑢(𝑥, 𝑦, 𝑡) = 𝑎00(𝑡) + 𝑎10(𝑡)𝑥 + 𝑎01(𝑡)𝑦 + 𝑎11(𝑡)𝑥𝑦 =
[
1 𝑥 𝑦 𝑥𝑦

] 

𝑎00(𝑡)
𝑎10(𝑡)
𝑎01(𝑡)
𝑎11(𝑡)




; (11a)

𝑣(𝑥, 𝑦, 𝑡) = 𝑏00(𝑡) + 𝑏10(𝑡)𝑥 + 𝑏01(𝑡)𝑦 + 𝑏11(𝑡)𝑥𝑦 =
[
1 𝑥 𝑦 𝑥𝑦

] 

𝑏00(𝑡)
𝑏10(𝑡)
𝑏01(𝑡)
𝑏11(𝑡)



, (11b)

for any (𝑥, 𝑦) ∈ Ω(𝑒)
𝑡 . The time-dependent weights 𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 (𝑖, 𝑗 ∈ {0, 1}) can be determined by

enforcing the value of the displacement fields at the element nodes, i.e.,



𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)
𝑢4(𝑡)



=




𝑢(𝑥1, 𝑦1, 𝑡)
𝑢(𝑥2, 𝑦2, 𝑡)
𝑢(𝑥3, 𝑦3, 𝑡)
𝑢(𝑥4, 𝑦4, 𝑡)



=



1 𝑥1 𝑦1 𝑥1𝑦1
1 𝑥2 𝑦2 𝑥2𝑦2
1 𝑥3 𝑦3 𝑥3𝑦3
1 𝑥4 𝑦4 𝑥4𝑦4






𝑎00(𝑡)
𝑎10(𝑡)
𝑎01(𝑡)
𝑎11(𝑡)




⇒

⇒



𝑎00(𝑡)
𝑎10(𝑡)
𝑎01(𝑡)
𝑎11(𝑡)



=



1 𝑥1 𝑦1 𝑥1𝑦1
1 𝑥2 𝑦2 𝑥2𝑦2
1 𝑥3 𝑦3 𝑥3𝑦3
1 𝑥4 𝑦4 𝑥4𝑦4



−1 


𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)
𝑢4(𝑡)




; (12a)




𝑣1(𝑡)
𝑣2(𝑡)
𝑣3(𝑡)
𝑣4(𝑡)



=




𝑣(𝑥1, 𝑦1, 𝑡)
𝑣(𝑥2, 𝑦2, 𝑡)
𝑣(𝑥3, 𝑦3, 𝑡)
𝑣(𝑥4, 𝑦4, 𝑡)



=



1 𝑥1 𝑦1 𝑥1𝑦1
1 𝑥2 𝑦2 𝑥2𝑦2
1 𝑥3 𝑦3 𝑥3𝑦3
1 𝑥4 𝑦4 𝑥4𝑦4






𝑏00(𝑡)
𝑏10(𝑡)
𝑏01(𝑡)
𝑏11(𝑡)




⇒

⇒



𝑏00(𝑡)
𝑏10(𝑡)
𝑏01(𝑡)
𝑏11(𝑡)



=



1 𝑥1 𝑦1 𝑥1𝑦1
1 𝑥2 𝑦2 𝑥2𝑦2
1 𝑥3 𝑦3 𝑥3𝑦3
1 𝑥4 𝑦4 𝑥4𝑦4



−1 


𝑣1(𝑡)
𝑣2(𝑡)
𝑣3(𝑡)
𝑣4(𝑡)



. (12b)

Combining these results with Eq. (11), we obtain:

𝑢(𝑥, 𝑦, 𝑡) = [
1 𝑥 𝑦 𝑥𝑦

] 

𝑎00(𝑡)
𝑎10(𝑡)
𝑎01(𝑡)
𝑎11(𝑡)



=
[
1 𝑥 𝑦 𝑥𝑦

] 

1 𝑥1 𝑦1 𝑥1𝑦1
1 𝑥2 𝑦2 𝑥2𝑦2
1 𝑥3 𝑦3 𝑥3𝑦3
1 𝑥4 𝑦4 𝑥4𝑦4



−1 


𝑢1
𝑢2
𝑢3
𝑢4




= 𝑁1(𝑥, 𝑦)𝑢1(𝑡) + 𝑁2(𝑥, 𝑦)𝑢2(𝑡) + 𝑁3(𝑥, 𝑦)𝑢3(𝑡) + 𝑁4(𝑥, 𝑦)𝑢4(𝑡); (13a)

𝑣(𝑥, 𝑦, 𝑡) = [
1 𝑥 𝑦 𝑥𝑦

] 

𝑏00(𝑡)
𝑏10(𝑡)
𝑏01(𝑡)
𝑏11(𝑡)



=
[
1 𝑥 𝑦 𝑥𝑦

] 

1 𝑥1 𝑦1 𝑥1𝑦1
1 𝑥2 𝑦2 𝑥2𝑦2
1 𝑥3 𝑦3 𝑥3𝑦3
1 𝑥4 𝑦4 𝑥4𝑦4



−1 


𝑣1
𝑣2
𝑣3
𝑣4
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= 𝑁1(𝑥, 𝑦)𝑣1(𝑡) + 𝑁2(𝑥, 𝑦)𝑣2(𝑡) + 𝑁3(𝑥, 𝑦)𝑣3(𝑡) + 𝑁4(𝑥, 𝑦)𝑣4(𝑡), (13b)

from which the expressions for 𝑁𝑖 (𝑥, 𝑦) (𝑖 ∈ {1, 2, 3, 4}) can be identified. While the expressions
for these shape functions can be established analytically (using symbolic algebra software, for
example), they result relatively complicated and long, being for this reason omitted here.
It is sometimes more convenient in the formulation of finite elements to adopt a different

strategy, which relies on the use of a natural coordinate system (b, [), instead of the Cartesian
(𝑥, 𝑦) one. In this setting, the positions of the nodes of a finite element assume normalized values,
as can be seen in Fig. 5. Using the natural coordinate system, we can write:

𝑢(b, [, 𝑡) = [
1 b [ b[

] 

1 b1 [1 b1[1
1 b2 [2 b2[2
1 b3 [3 b3[3
1 b4 [4 b4[4



−1 


𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)
𝑢4(𝑡)




= 𝑁1(b, [)𝑢1(𝑡) + 𝑁2(b, [)𝑢2(𝑡) + 𝑁3(b, [)𝑢3(𝑡) + 𝑁4(b, [)𝑢4(𝑡); (14a)

𝑣(b, [, 𝑡) = [
1 b [ b[

] 

1 b1 [1 b1[1
1 b2 [2 b2[2
1 b3 [3 b3[3
1 b4 [4 b4[4



−1 


𝑣1(𝑡)
𝑣2(𝑡)
𝑣3(𝑡)
𝑣4(𝑡)




= 𝑁1(b, [)𝑣1(𝑡) + 𝑁2(b, [)𝑣2(𝑡) + 𝑁3(b, [)𝑣3(𝑡) + 𝑁4(b, [)𝑣4(𝑡), (14b)

where now it is easy to express 𝑁𝑖 (b, [) (𝑖 ∈ {1, 2, 3, 4}):

𝑁1(b, [) = 1
4 (1 − b) (1 − [) ; 𝑁2(b, [) = 1

4 (1 + b) (1 − [) ;

𝑁3(b, [) = 1
4 (1 + b) (1 + [) ; 𝑁4(b, [) = 1

4 (1 − b) (1 + [) . (15)
We should note, at this stage, that the position of an arbitrary point on the domain of a given

finite element (of the considered type) can be obtained using the same interpolation functions
presented above, i.e.

𝑥(b, [) = 𝑁1(b, [)𝑥1 + 𝑁2(b, [)𝑥2 + 𝑁3(b, [)𝑥3 + 𝑁4(b, [)𝑥4; (16a)
𝑦(b, [) = 𝑁1(b, [)𝑦1 + 𝑁2(b, [)𝑦2 + 𝑁3(b, [)𝑦3 + 𝑁4(b, [)𝑦4. (16b)

Finite elements for which the same functions are used to interpolate the coordinates of a point on
the element domain and unknown field variables (such as 𝑢 and 𝑣 in our presentation) are known
as isoparametric finite elements [Bathe, 2014, Zienkiewicz et al., 2013].
As will be shown in developments which will follow soon, functions which depend on 𝑁𝑖 (𝑥, 𝑦),

as well as on their spatial derivatives, will need to be integrated on the domain of a finite element
– so that relevant structural matrices can be obtained. Since one has favored the use of a natural
coordinate system, we must be able to perform coordinate transformation between (𝑥, 𝑦) and (b, [).
By employing the chain-rule of differentiation:

{
𝑥 = 𝑥(b, [)
𝑦 = 𝑦(b, [)

⇒



𝜕 ( · )
𝜕b

𝜕 ( · )
𝜕[



=



𝜕𝑥

𝜕b

𝜕𝑦

𝜕b

𝜕𝑥

𝜕[

𝜕𝑦

𝜕[






𝜕 ( · )
𝜕𝑥

𝜕 ( · )
𝜕𝑦




and




𝜕 ( · )
𝜕𝑥

𝜕 ( · )
𝜕𝑦



=



𝜕𝑥

𝜕b

𝜕𝑦

𝜕b

𝜕𝑥

𝜕[

𝜕𝑦

𝜕[



−1 


𝜕 ( · )
𝜕b

𝜕 ( · )
𝜕[



, (17)
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based on which we define the Jacobian matrix related to an element:

J =



𝜕𝑥

𝜕b

𝜕𝑦

𝜕b

𝜕𝑥

𝜕[

𝜕𝑦

𝜕[


, (18)

whose entries, from Eqs. (15) and (16), can be obtained as:

𝐽11 =
𝜕𝑥

𝜕b
= −1

4
(1 − [) 𝑥1 + 1

4
(1 − [) 𝑥2 + 1

4
(1 + [) 𝑥3 − 1

4
(1 + [) 𝑥4; (19a)

𝐽12 =
𝜕𝑦

𝜕b
= −1

4
(1 − [) 𝑦1 + 1

4
(1 − [) 𝑦2 + 1

4
(1 + [) 𝑦3 − 1

4
(1 + [) 𝑦4; (19b)

𝐽21 =
𝜕𝑥

𝜕[
= −1

4
(1 − b) 𝑥1 − 1

4
(1 + b) 𝑥2 + 1

4
(1 + b) 𝑥3 + 1

4
(1 − b) 𝑥4; (19c)

𝐽22 =
𝜕𝑦

𝜕[
= −1

4
(1 − b) 𝑦1 − 1

4
(1 + b) 𝑦2 + 1

4
(1 + b) 𝑦3 + 1

4
(1 − b) 𝑦4. (19d)

Having in mind the expression put forward for q(𝑒) (𝑡), cf. Eq. (10), we can see that:

𝑢 (𝑒) (b, [, 𝑡) = N(𝑒)
𝑢 (b, [)q(𝑒) (𝑡)

=
[
𝑁1(b, [) 0 𝑁2(b, [) 0 𝑁3(b, [) 0 𝑁4(b, [) 0

]
q(𝑒) (𝑡); (20a)

𝑣 (𝑒) (b, [, 𝑡) = N(𝑒)
𝑣 (b, [)q(𝑒) (𝑡)

=
[
0 𝑁1(b, [) 0 𝑁2(b, [) 0 𝑁3(b, [) 0 𝑁4(b, [)

]
q(𝑒) (𝑡). (20b)

2.1.2 Formulation at element level

Having established the interpolation of the field variables of the problem at hand, now one aims
toward obtaining expressions for the Lagrangian of an element, directly involving its nodal DOFs.
After the Lagrangian is obtained, it can established the dynamic equilibrium equations which one
seeks here, based on the stationarity of the relevant functional.
For this, firstly, interpolation relations for the relevant strains are derived. By combining

Eqs. (8) and (20), it is possible to arrive at:

𝜖 (𝑒)𝑥 (b, [, 𝑡) = 𝜕𝑢 (𝑒)

𝜕𝑥
=

𝜕N(𝑒)
𝑢 (b, [)
𝜕𝑥

q(𝑒) (𝑡) = B(𝑒)
𝑥 (b, [)q(𝑒) (𝑡); (21a)

𝜖 (𝑒)𝑦 (b, [, 𝑡) = 𝜕𝑣 (𝑒)

𝜕𝑦
=

𝜕N(𝑒)
𝑣 (b, [)
𝜕𝑦

q(𝑒) (𝑡) = B(𝑒)
𝑦 (b, [)q(𝑒) (𝑡); (21b)

𝛾 (𝑒)
𝑥𝑦 (b, [, 𝑡) =

𝜕𝑢 (𝑒)

𝜕𝑦
+ 𝜕𝑣 (𝑒)

𝜕𝑥
=

𝜕N(𝑒)
𝑢 (b, [)
𝜕𝑦

q(𝑒) (𝑡) + 𝜕N(𝑒)
𝑣 (b, [)
𝜕𝑥

q(𝑒) (𝑡) = B(𝑒)
𝑥𝑦 (b, [)q(𝑒) (𝑡).

(21c)

By invoking Eq. (17), explicit expressions can be established for the strain interpolation matrices,
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if so desired:

B(𝑒)
𝑥 =

1
8 det J(𝑒)



(1 − [)𝑦2 − (b − [)𝑦3 − (1 − b)𝑦4
0

−(1 − [)𝑦1 + (1 + b)𝑦3 − (b + [)𝑦4
0

(b − [)𝑦1 − (1 + b)𝑦2 + (1 + [)𝑦4
0

(1 − b)𝑦1 + (b + [)𝑦2 − (1 + [)𝑦3
0



T

; (22a)

B(𝑒)
𝑦 =

1
8 det J(𝑒)



0
−(1 − [)𝑥2 + (b − [)𝑥3 + (1 − b)𝑥4

0
(1 − [)𝑥1 − (1 + b)𝑥3 + (b + [)𝑥4

0
−(b − [)𝑥1 + (1 + b)𝑥2 − (1 + [)𝑥4

0
−(1 − b)𝑥1 − (b + [)𝑥2 + (1 + [)𝑥3



T

; (22b)

B(𝑒)
𝑥𝑦 =

1
8 det J(𝑒)



−(1 − [)𝑥2 + (b − [)𝑥3 + (1 − b)𝑥4
(1 − [)𝑦2 − (b − [)𝑦3 − (1 − b)𝑦4
(1 − [)𝑥1 − (1 + b)𝑥3 + (b + [)𝑥4
−(1 − [)𝑦1 + (1 + b)𝑦3 − (b + [)𝑦4
−(b − [)𝑥1 + (1 + b)𝑥2 − (1 + [)𝑥4
(b − [)𝑦1 − (1 + b)𝑦2 + (1 + [)𝑦4
−(1 − b)𝑥1 − (b + [)𝑥2 + (1 + [)𝑥3
(1 − b)𝑦1 + (b + [)𝑦2 − (1 + [)𝑦3



T

, (22c)

where det J(𝑒) = 𝐽 (𝑒)11 𝐽 (𝑒)22 − 𝐽 (𝑒)12 𝐽 (𝑒)21 .
Now, to facilitate manipulations, it is more convenient to arrange the strains in a single vector,

as follows:

ϵ(𝑒) (b, [, 𝑡) =


𝜖 (𝑒)𝑥 (b, [, 𝑡)
𝜖 (𝑒)𝑦 (b, [, 𝑡)
𝛾 (𝑒)
𝑥𝑦 (b, [, 𝑡)



=


B(𝑒)
𝑥 (b, [)

B(𝑒)
𝑦 (b, [)

B(𝑒)
𝑥𝑦 (b, [)


q(𝑒) (𝑡) = B(𝑒) (b, [)q(𝑒) (𝑡). (23)

Next, having a way to evaluate strains inside the finite element domain, one aims to establish
how stresses can be interpolated as functions of the element nodal DOFs. For an isotropic material,
one can recourse to Hooke’s law, which has been given in Eq. (7) for three-dimensional problems.
Since two-dimensional elasticity is being considered, Hooke’s law can be simplified, in order to
address the two available possibilities:

(i) Plane stress In this case, 𝜎 (𝑒)
𝑧 = 𝜏 (𝑒)𝑥𝑧 = 𝜏 (𝑒)𝑦𝑧 ≡ 0. The remaining stresses can be evaluated

using:

σ(𝑒) (b, [, 𝑡) =


𝜎 (𝑒)
𝑥 (b, [, 𝑡)

𝜎 (𝑒)
𝑦 (b, [, 𝑡)

𝜏 (𝑒)𝑥𝑦 (b, [, 𝑡)



= 𝐸

1−a2


1 a 0
a 1 0
0 0 1−a

2




𝜖 (𝑒)𝑥 (b, [, 𝑡)
𝜖 (𝑒)𝑦 (b, [, 𝑡)
𝛾 (𝑒)
𝑥𝑦 (b, [, 𝑡)




= D(𝑒)ϵ(𝑒) (b, [, 𝑡) = D(𝑒)B(𝑒) (b, [)q(𝑒) (𝑡). (24a)

Sales, Thiago P., et al. (2022) Finite Element Method for Structural Integrity Problems pp. 618-665

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 632



Matrix D(𝑒) can be directly identified in the previous equation. While there is no stress on
the plane whose normal is directed along 𝑧, a normal strain arises, due to the Poisson effect:

𝜖 (𝑒)𝑧 (b, [, 𝑡) = − a

𝐸

[
𝜎 (𝑒)
𝑥 (b, [, 𝑡) + 𝜎 (𝑒)

𝑦 (b, [, 𝑡)
]
. (24b)

The geometry of the solid is such that one of its characteristic dimensions (along 𝑧) is much
smaller than the others, i.e. the solid is essentially a sheet, flat and thin. Applied loads are
assumed to be distributed uniformly along the thickness.

(ii) Plane strain In this case, 𝜖 (𝑒)𝑧 = 𝛾 (𝑒)
𝑥𝑧 = 𝛾 (𝑒)

𝑦𝑧 ≡ 0. The stresses can be obtained from:

σ(𝑒) (b, [, 𝑡) =


𝜎 (𝑒)
𝑥 (b, [, 𝑡)

𝜎 (𝑒)
𝑦 (b, [, 𝑡)

𝜏 (𝑒)𝑥𝑦 (b, [, 𝑡)



= 𝐸

(1+a) (1−2a)


1 − a a 0
a 1 − a 0
0 0 1−2a

2




𝜖 (𝑒)𝑥 (b, [, 𝑡)
𝜖 (𝑒)𝑦 (b, [, 𝑡)
𝛾 (𝑒)
𝑥𝑦 (b, [, 𝑡)




= D(𝑒)ϵ(𝑒) (b, [, 𝑡) = D(𝑒)B(𝑒) (b, [)q(𝑒) (𝑡), (25a)

and:
𝜎 (𝑒)
𝑧 (b, [, 𝑡) = a𝐸

(1 + a) (1 − 2a)
[
𝜖 (𝑒)𝑥 (b, [, 𝑡) + 𝜖 (𝑒)𝑦 (b, [, 𝑡)

]
. (25b)

Matrix D(𝑒) can once again be determined for this case by inspecting the relations just
presented. The case of plane strain is associated to solids which have one characteristic
dimension (along 𝑧)much larger than the others, i.e. they correspond to right prisms. Applied
loads are assumed to be distributed uniformly along the length (𝑧-dimension) of the solid.

As can be seen, irrespective of the considered case, the relevant stresses can be obtained using
a relationship of the type σ(𝑒) (b, [, 𝑡) = D(𝑒)ϵ(𝑒) (b, [, 𝑡), with the constitutive matrix D(𝑒) taking
distinct forms to accommodate for the possible scenarios.
We can now plug developed expressions in Eqs. (4) and (5) to evaluate the kinetic and potential

energies related to the finite element under consideration. With regards to the first, we have:

K (𝑒) =
∭

Ω(𝑒)
𝑡

1
2
𝜌 (𝑒) (𝑥, 𝑦, 𝑧)

{[
¤𝑢 (𝑒) (𝑥, 𝑦, 𝑧, 𝑡)

]2
+
[
¤𝑣 (𝑒) (𝑥, 𝑦, 𝑧, 𝑡)

]2
}

d𝑥 d𝑦 d𝑧

=
∫ 𝐿𝑧

0
d𝑧

∫ 1

−1

∫ 1

−1

1
2
𝜌 (𝑒) (b, [)

{[
¤𝑢 (𝑒) (b, [, 𝑡)

]2
+
[
¤𝑣 (𝑒) (b, [, 𝑡)

]2
}

det J(𝑒) db d[

= 𝐿𝑧

∫ 1

−1

∫ 1

−1

1
2
𝜌 (𝑒)

[
¤q(𝑒)TN(𝑒)

𝑢

T
N(𝑒)
𝑢 ¤q(𝑒) + ¤q(𝑒)TN(𝑒)

𝑣

T
N(𝑒)

𝑣 ¤q(𝑒)
]

det J(𝑒) db d[

=
1
2
¤q(𝑒)T(𝑡)

{
𝐿𝑧

∫ 1

−1

∫ 1

−1
𝜌 (𝑒)

[
N(𝑒)
𝑢

T
N(𝑒)
𝑢 + N(𝑒)

𝑣

T
N(𝑒)

𝑣

]
det J(𝑒) db d[

}
¤q(𝑒) (𝑡)

=
1
2
¤q(𝑒)T(𝑡)M(𝑒) ¤q(𝑒) (𝑡), (26)

where we note, for instance, that ¤𝑢 (𝑒) = N(𝑒)
𝑢 ¤q(𝑒) = ¤q(𝑒)TN(𝑒)

𝑢

T
, since ¤𝑢 (𝑒) is a scalar quantity; and

this implies that
( ¤𝑢 (𝑒) )2 can be evaluate through ¤q(𝑒)TN(𝑒)

𝑢

T
N(𝑒)
𝑢 ¤q(𝑒) . Similar remarks hold for the

other terms which contribute to the kinetic energy expression. One also should point out that 𝐿𝑧

corresponds to the thickness of the finite element. From the last two lines of the previous equation,

M(𝑒) = 𝐿𝑧

∫ 1

−1

∫ 1

−1
𝜌 (𝑒)

[
N(𝑒)
𝑢

T
N(𝑒)
𝑢 + N(𝑒)

𝑣

T
N(𝑒)

𝑣

]
det J(𝑒) db d[, (27)

which is recognized as the finite element mass matrix. It is symmetric, positive definite, and can
be evaluated analytically, with the aid of symbolic algebra software; or using numerical integration
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techniques, such as Gauss-Legendre quadrature (as is done in codes which are made available
with this material). This latter option is interesting because the integration of polynomials can be
performed exactly, while demanding a low computational cost. While not directly related to the
formulationwhich is being considered here, numerical integration of finite elementmatrices or load
vectors can also be resorted to: (i) for avoiding issues related to locking-phenomena (which depends
on the finite element formulation), by performing reduced integration of relevant quantities; and/or
(ii) for enabling nonlinear analyzes, in which system matrices and/or load vectors change with
respect to the system configuration [Bathe, 2014, de Borst et al., 2012].
With regards to the potential energy contribution due to externally applied forces, we have:

W (𝑒)
ext =

∭
Ω(𝑒)
𝑡

[
𝑢 (𝑒) (𝑥, 𝑦, 𝑡) 𝑣 (𝑒) (𝑥, 𝑦, 𝑡)] { 𝑓 𝑥𝑏 (𝑥, 𝑦, 𝑡)

𝑓
𝑦
𝑏 (𝑥, 𝑦, 𝑡)

}
d𝑥 d𝑦 d𝑧

+
∬

𝜕Ω(𝑒)
𝑡

[
𝑢 (𝑒) (𝑥, 𝑦, 𝑡) 𝑣 (𝑒) (𝑥, 𝑦, 𝑡)] { 𝑓 𝑥𝑠 (𝑥, 𝑦, 𝑡)

𝑓
𝑦
𝑠 (𝑥, 𝑦, 𝑡)

}
d𝑆

= 𝐿𝑧

∫ 1

−1

∫ 1

−1

[
𝑢 (𝑒) (b, [, 𝑡) 𝑣 (𝑒) (b, [, 𝑡)] { 𝑓 𝑥𝑏 (b, [, 𝑡)

𝑓
𝑦
𝑏 (b, [, 𝑡)

}
det J(𝑒) db d[

+ 𝐿𝑧

∫ 1

−1

[
𝑢 (𝑒) (−1, [, 𝑡) 𝑣 (𝑒) (−1, [, 𝑡)] { 𝑓 𝑥𝑠 (−1, [, 𝑡)

𝑓
𝑦
𝑠 (−1, [, 𝑡)

} √︄(
𝜕𝑥

𝜕[

)2
+
(
𝜕𝑦

𝜕[

)2
������
b=−1

d[

+ 𝐿𝑧

∫ 1

−1

[
𝑢 (𝑒) (1, [, 𝑡) 𝑣 (𝑒) (1, [, 𝑡)] { 𝑓 𝑥𝑠 (1, [, 𝑡)

𝑓
𝑦
𝑠 (1, [, 𝑡)

} √︄(
𝜕𝑥

𝜕[

)2
+
(
𝜕𝑦

𝜕[

)2
������
b=1

d[

+ 𝐿𝑧

∫ 1

−1

[
𝑢 (𝑒) (b,−1, 𝑡) 𝑣 (𝑒) (b,−1, 𝑡)] { 𝑓 𝑥𝑠 (b,−1, 𝑡)

𝑓
𝑦
𝑠 (b,−1, 𝑡)

} √︄(
𝜕𝑥

𝜕b

)2
+
(
𝜕𝑦

𝜕b

)2
������
[=−1

db

+ 𝐿𝑧

∫ 1

−1

[
𝑢 (𝑒) (b, 1, 𝑡) 𝑣 (𝑒) (b, 1, 𝑡)] { 𝑓 𝑥𝑠 (b, 1, 𝑡)

𝑓
𝑦
𝑠 (b, 1, 𝑡)

} √︄(
𝜕𝑥

𝜕b

)2
+
(
𝜕𝑦

𝜕b

)2
������
[=1

db

= q(𝑒)T
{
𝐿𝑧

∫ 1

−1

∫ 1

−1

[
N(𝑒)
𝑢

T(b, [) N(𝑒)
𝑣

T(b, [)
] { 𝑓 𝑥𝑏 (b, [, 𝑡)

𝑓
𝑦
𝑏 (b, [, 𝑡)

}
det J(𝑒) db d[

}

+ q(𝑒)T


𝐿𝑧

∫ 1

−1

[
N(𝑒)
𝑢

T(−1, [) N(𝑒)
𝑣

T(−1, [)
] { 𝑓 𝑥𝑠 (−1, [, 𝑡)

𝑓
𝑦
𝑠 (−1, [, 𝑡)

} √︄(
𝜕𝑥

𝜕[

)2
+
(
𝜕𝑦

𝜕[

)2
������
b=−1

d[

+ 𝐿𝑧

∫ 1

−1

[
N(𝑒)
𝑢

T(1, [) N(𝑒)
𝑣

T(1, [)
] { 𝑓 𝑥𝑠 (1, [, 𝑡)

𝑓
𝑦
𝑠 (1, [, 𝑡)

} √︄(
𝜕𝑥

𝜕[

)2
+
(
𝜕𝑦

𝜕[

)2
������
b=1

d[

+ 𝐿𝑧

∫ 1

−1

[
N(𝑒)
𝑢

T(b,−1) N(𝑒)
𝑣

T(b,−1)
] { 𝑓 𝑥𝑠 (b,−1, 𝑡)

𝑓
𝑦
𝑠 (b,−1, 𝑡)

} √︄(
𝜕𝑥

𝜕b

)2
+
(
𝜕𝑦

𝜕b

)2
������
[=−1

db

+ 𝐿𝑧

∫ 1

−1

[
N(𝑒)
𝑢

T(b, 1) N(𝑒)
𝑣

T(b, 1)
] { 𝑓 𝑥𝑠 (b, 1, 𝑡)

𝑓
𝑦
𝑠 (b, 1, 𝑡)

} √︄(
𝜕𝑥

𝜕b

)2
+
(
𝜕𝑦

𝜕b

)2
������
[=1

db



= q(𝑒)T(𝑡)Q(𝑒)
𝑏 (𝑡) + q(𝑒)T(𝑡)Q(𝑒)

𝑠 (𝑡), (28)

where we considered d𝑆 = d𝑧 d𝑙, with d𝑙 corresponding to a differential length on the boundary
of the finite element. The sides of the element (which in our case are straight lines) can be
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described by the parametrizations (𝑥([), 𝑦([)) for b = ±1 or (𝑥(b), 𝑦(b)) for [ = ±1, such that

d𝑙 =
√︂(

𝜕𝑥
𝜕[

)2
+
(
𝜕𝑦
𝜕[

)2
d[ or d𝑙 =

√︂(
𝜕𝑥
𝜕b

)2
+
(
𝜕𝑦
𝜕b

)2
db, respectively. The square-root terms in the

previous expressions for d𝑙 are necessary to take into account the parametrization adopted for the
boundary curves. It is also worth noticing that, for evaluating the load vector Q(𝑒)

𝑠 (𝑡), the finite
element boundary is split — contributions due to the each side of the finite element are treated
separately, for convenience.
In order to evaluate both Q(𝑒)

𝑏 (𝑡) and Q(𝑒)
𝑠 (𝑡), it is useful to consider that:

f (𝑒)𝑏 =

{
𝑓 𝑥𝑏 (b, [, 𝑡)
𝑓
𝑦
𝑏 (b, [, 𝑡)

}
=

{
𝑓 𝑥𝑏 (b, [)𝑔𝑥𝑏 (𝑡)
𝑓
𝑦
𝑏 (b, [)𝑔

𝑦
𝑏 (𝑡)

}
=

[
𝑓 𝑥𝑏 (b, [) 0

0 𝑓
𝑦
𝑏 (b, [)

] {
𝑔𝑥𝑏 (𝑡)
𝑔
𝑦
𝑏 (𝑡)

}
= f̄ (𝑒)𝑏 (b, [)g(𝑒)

𝑏 (𝑡);

(29a)

f (𝑒)𝑠 =

{
𝑓 𝑥𝑠 (b, [, 𝑡)
𝑓
𝑦
𝑠 (b, [, 𝑡)

}
=

{
𝑓 𝑥𝑠 (b, [)𝑔𝑥𝑠 (𝑡)
𝑓
𝑦
𝑠 (b, [)𝑔𝑦𝑠 (𝑡)

}
=

[
𝑓 𝑥𝑠 (b, [) 0

0 𝑓
𝑦
𝑠 (b, [)

] {
𝑔𝑥𝑠 (𝑡)
𝑔
𝑦
𝑠 (𝑡)

}
= f̄ (𝑒)𝑠 (b, [)g(𝑒)

𝑠 (𝑡).

(29b)

Furthermore, we assume that the surface loads can vary linearly between the finite element’s nodes:

{
𝑓 𝑥𝑠 (b,−1)
𝑓
𝑦
𝑠 (b,−1)

}
=

{
𝑝𝑥

12,1
𝑝
𝑦
12,1

}
1
2
(1 − b) +

{
𝑝𝑥

12,2
𝑝
𝑦
12,2

}
1
2
(1 + b); (30a)

{
𝑓 𝑥𝑠 (1, [)
𝑓
𝑦
𝑠 (1, [)

}
=

{
𝑝𝑥

23,2
𝑝
𝑦
23,2

}
1
2
(1 − [) +

{
𝑝𝑥

23,3
𝑝
𝑦
23,3

}
1
2
(1 + [); (30b)

{
𝑓 𝑥𝑠 (b, 1)
𝑓
𝑦
𝑠 (b, 1)

}
=

{
𝑝𝑥

34,3
𝑝
𝑦
34,3

}
1
2
(1 + b) +

{
𝑝𝑥

34,4
𝑝
𝑦
34,4

}
1
2
(1 − b); (30c)

{
𝑓 𝑥𝑠 (−1, [)
𝑓
𝑦
𝑠 (−1, [)

}
=

{
𝑝𝑥

41,4
𝑝
𝑦
41,4

}
1
2
(1 + [) +

{
𝑝𝑥

41,1
𝑝
𝑦
41,1

}
1
2
(1 − [), (30d)

in which 𝑝𝑥
𝑖 𝑗,𝑖 , 𝑝

𝑦
𝑖 𝑗,𝑖 represent loads per unit area applied on node 𝑖 along the finite element side

between nodes 𝑖 and 𝑗 .
Based on the previous developments, we can see that:

Q(𝑒)
𝑏 (𝑡) = 𝐿𝑧

{∫ 1

−1

∫ 1

−1

[
N(𝑒)
𝑢

T(b, [) N(𝑒)
𝑣

T(b, [)
]

f̄ (𝑒)𝑏 (b, [) det J(𝑒) db d[
}

g(𝑒)
𝑏 (𝑡); (31)

Q(𝑒)
𝑠 (𝑡) = 𝐿𝑧




∑︁
b̄ ∈ {−1,1}

∫ 1

−1

[
N(𝑒)
𝑢

T(b̄, [) N(𝑒)
𝑣

T(b̄, [)
]

f̄ (𝑒)𝑠 (b̄, [)
√︄(

𝜕𝑥

𝜕[

)2
+
(
𝜕𝑦

𝜕[

)2
������
b= b̄

d[

+
∑︁

[̄ ∈ {−1,1}

∫ 1

−1

[
N(𝑒)
𝑢

T(b, [̄) N(𝑒)
𝑣

T(b, [̄)
]

f̄ (𝑒)𝑠 (b, [̄)
√︄(

𝜕𝑥

𝜕b

)2
+
(
𝜕𝑦

𝜕b

)2
������
[=[̄

db



g(𝑒)
𝑠 (𝑡).

(32)
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Having established Eq. (28), we consider Eq. (5) in order to obtain:

U (𝑒) =
1
2

∭
Ω(𝑒)
𝑡

[
𝜎 (𝑒)
𝑥 𝜖 (𝑒)𝑥 + 𝜎 (𝑒)

𝑦 𝜖 (𝑒)𝑦 + 𝜏 (𝑒)𝑥𝑦 𝛾
(𝑒)
𝑥𝑦

]
d𝑥 d𝑦 d𝑧 −Wext

=
1
2
𝐿𝑧

∫ 1

−1

∫ 1

−1
σ(𝑒)T(b, [, 𝑡)ϵ(𝑒) (b, [, 𝑡) det J(𝑒) db d[ − q(𝑒)T [

Q(𝑒)
𝑏 (𝑡) + Q(𝑒)

𝑠 (𝑡)
]

=
1
2

q(𝑒)T
{
𝐿𝑧

∫ 1

−1

∫ 1

−1
B(𝑒)TD(𝑒)B(𝑒) det J(𝑒) db d[

}
q(𝑒) (𝑡) − q(𝑒)T [

Q(𝑒)
𝑏 (𝑡) + Q(𝑒)

𝑠 (𝑡)
]

=
1
2

q(𝑒)T(𝑡)K(𝑒)q(𝑒) (𝑡) − q(𝑒)T(𝑡)
[
Q(𝑒)

𝑏 (𝑡) + Q(𝑒)
𝑠 (𝑡)

]
, (33)

where Eqs. (24a), (25a) were used, together with the fact that D(𝑒) is a symmetric matrix. We see
that:

K(𝑒) = 𝐿𝑧

∫ 1

−1

∫ 1

−1
B(𝑒)TD(𝑒)B(𝑒) det J(𝑒) db d[, (34)

which is known as the finite element stiffness matrix – which is symmetric, and positive semi-
definite.
By considering the earlier developments, the Lagrangian becomes:

L (𝑒) =
1
2
¤q(𝑒)T(𝑡)M(𝑒) ¤q(𝑒) (𝑡) −

{
1
2

q(𝑒)T(𝑡)K(𝑒)q(𝑒) (𝑡) − q(𝑒)T(𝑡)
[
Q(𝑒)

𝑏 (𝑡) + Q(𝑒)
𝑠 (𝑡)

]}
. (35)

Now, according to the Variational Principles of Mechanics, to make the relevant action func-
tional stationary, the Lagrangian must be such that it complies with the Euler-Lagrange equations
[Lanczos, 1986]:

d
d𝑡

(
𝜕L (𝑒)

𝜕 ¤q(𝑒)

)
− 𝜕L (𝑒)

𝜕q(𝑒) = Q(𝑒)
nc , (36)

whereQ(𝑒)
nc collects the non-conservative generalized loads. (These can be obtained by calculating

the virtual work of the non-conservative actions.) The derivatives of the scalar function L (𝑒)

with respect to the vectors q(𝑒) and ¤q(𝑒) produce vectors, whose components are given by the
derivative of L (𝑒) with respect to the components of q(𝑒) and ¤q(𝑒) , respectively. By substituting
the Lagrangian expression given in Eq. (35), we are finally able to obtain the equations of motion
for the finite element:

M(𝑒) ¥q(𝑒) (𝑡) + K(𝑒)q(𝑒) (𝑡) = Q(𝑒)
nc (𝑡) + Q(𝑒)

𝑏 (𝑡) + Q(𝑒)
𝑠 (𝑡), (37)

which correspond to the input-output relationship one has sought during this subsection. This set
of coupled, second-order, linear ordinary differential equations relate the nodal DOFs to loads that
are ultimately applied at the element nodes. For instance, conservative distributed loads have been
replaced by equivalent nodal contributions when one has put forward Eqs. (31) and (32).

2.1.3 Formulation at global level

The previous developments have addressed the mathematical formulation related to a single finite
element of the considered type. In a practical application, various elements are combined in a
mesh, to better represent the geometry of the continuum body or structure; and also to enable a good
approximation of the exact response for the underlying model equations (being them differential
or algebraic, cf. our discussion along section 1). In this sense, we have to remind ourselves
that interpolation functions have been proposed to represent the field variables inside the element
domain. Typically, the adopted interpolation schemes are not adequate to represent the response
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of the structure or continuum body over its entire domain, i.e. the interpolation functions which
are used are able to approximate responses only locally.
To assemble a finite element mesh, two basic conditions need to be fulfilled at every node of

the mesh: (i) compatibility of field variables; and (ii) in the case of structural analyses, dynamic
equilibrium of loads. It is important to realize that these conditions are fulfilled only at the nodes
of the mesh. Hence, there is not guarantee that dynamic equilibrium is assured across boundaries
of finite elements (unless at shared nodes).
For the purpose of abiding by these requirements, we initially attribute the required DOFs to

each node of the complete finite element mesh, to make a global list of DOFs, which are collected
in a vector q(𝑔) . From this list, for a particular finite element 𝑒 of the mesh, we can identify the
relevant DOFs, which are those related to its nodes. Mathematically, this can be accomplished by
constructing a Boolean “localization” matrix L(𝑒) , such that:

q(𝑒) = L(𝑒)q(𝑔) . (38)

If our finite element mesh has 𝑛(𝑔) DOFs, and each element of the mesh has four nodes with two
DOFs per node, then L(𝑒) has size 8 × 𝑛(𝑔) .
For each finite element of the mesh, we can write Eq. (35). To obtain the Lagrangian of the

complete structure, we can simply sum the contributions of all finite elements of the mesh:

L (𝑔) =
∑︁𝑛ele

𝑒=1
L (𝑒) =

∑︁𝑛ele

𝑒=1

1
2
¤q(𝑒)T(𝑡)M(𝑒) ¤q(𝑒) (𝑡) −

∑︁𝑛ele

𝑒=1

1
2

q(𝑒)T(𝑡)K(𝑒)q(𝑒) (𝑡)

+
∑︁𝑛ele

𝑒=1
q(𝑒)T(𝑡)

[
Q(𝑒)

𝑏 (𝑡) + Q(𝑒)
𝑠 (𝑡)

]
=
∑︁𝑛ele

𝑒=1

1
2
¤q(𝑔)T(𝑡)L(𝑒)TM(𝑒)L(𝑒) ¤q(𝑔) (𝑡) −

∑︁𝑛ele

𝑒=1

1
2

q(𝑔)T(𝑡)L(𝑒)TK(𝑒)L(𝑒)q(𝑔) (𝑡)

+
∑︁𝑛ele

𝑒=1
q(𝑔)T(𝑡)

[
L(𝑒)TQ(𝑒)

𝑏 (𝑡) + L(𝑒)TQ(𝑒)
𝑠 (𝑡)

]
=

1
2
¤q(𝑔)T(𝑡)

[∑︁𝑛ele

𝑒=1
L(𝑒)TM(𝑒)L(𝑒)

]
¤q(𝑔) (𝑡) − 1

2
q(𝑔)T(𝑡)

[∑︁𝑛ele

𝑒=1
L(𝑒)TK(𝑒)L(𝑒)

]
q(𝑔) (𝑡)

+ q(𝑔)T(𝑡)
∑︁𝑛ele

𝑒=1

[
L(𝑒)TQ(𝑒)

𝑏 (𝑡) + L(𝑒)TQ(𝑒)
𝑠 (𝑡)

]
=

1
2
¤q(𝑔)T(𝑡)M(𝑔) ¤q(𝑔) (𝑡) − 1

2
q(𝑔)T(𝑡)K(𝑔)q(𝑔) (𝑡) + q(𝑔)T(𝑡)

[
Q(𝑔)

𝑏 (𝑡) + Q(𝑔)
𝑠 (𝑡)

]
, (39)

in which:

M(𝑔) =
∑︁𝑛ele

𝑒=1
L(𝑒)TM(𝑒)L(𝑒) and K(𝑔) =

∑︁𝑛ele

𝑒=1
L(𝑒)TK(𝑒)L(𝑒) (40)

are the global mass and stiffness matrices, respectively. For the considered case, these are symmet-
ric. Also, due to how the global matrices are assembled, they are frequently sparse and banded,
specially when the complete finite element model possess a large number of nodes/DOFs. These
facts can be exploited by solution algorithms to speed up computations and/or alleviate computer
memory availability requirements. Regarding conservative body and surface loads, we see from
the previous developments that their global form can be obtained from:

Q(𝑔)
𝑏 (𝑡) =

∑︁𝑛ele

𝑒=1
L(𝑒)TQ(𝑒)

𝑏 (𝑡) and Q(𝑔)
𝑠 (𝑡) =

∑︁𝑛ele

𝑒=1
L(𝑒)TQ(𝑒)

𝑠 (𝑡). (41)

Having established Eq. (39), the Euler-Lagrange equations, applied to the global Lagrangian,
then lead to the global equations of motion:

M(𝑔) ¥q(𝑔) (𝑡) + K(𝑔)q(𝑔) (𝑡) = Q(𝑔)
nc (𝑡) + Q(𝑔)

𝑏 (𝑡) + Q(𝑔)
𝑠 (𝑡). (42)
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Since we are considering linear structural behavior, we have obtained a set of linear, second-
order, ordinary differential equations to model the motion of a continuum solid body under plane-
stress or plane-strain conditions. In essence, the finite element method was used to spatially
discretize the partial differential equations (of infinite dimension in space and time) which apply
under the same underlying assumptions. The resulting system of ordinary differential equations
can be analyzed in various forms, as discussed in section 3 with examples.

2.2 Rectangular Kirchhoff-Love plate, equivalent single layer laminate finite ele-
ment

2.2.1 Kinematics

To provide another example of the formulation of a finite element, we now address the case of a
plate which is subjected to bending motion, whose kinematic behavior can be described by the
Kirchhoff-Love plate theory. In this setting, some assumptions should hold: (i) straight lines
normal to the mid-surface remain straight and normal to the mid-surface after deformation; and (ii)
the thickness of the plate does not change during its motion. This theory is more adequate for plates
of small thickness. Referring to Fig. 6, due to the previous hypotheses, and also taking into account
that displacements are small (infinitesimal), we can see that the rotation and the displacement fields
can be expressed according to:

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡); \𝑥 (𝑥, 𝑦, 𝑡) = 𝜕𝑤0(𝑥, 𝑦, 𝑡)
𝜕𝑦

; \𝑦 (𝑥, 𝑦, 𝑡) = −𝜕𝑤0(𝑥, 𝑦, 𝑡)
𝜕𝑥

;

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧\𝑦 (𝑥, 𝑦, 𝑡); 𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧\𝑥 (𝑥, 𝑦, 𝑡), (43)
where the transversal displacement 𝑤 is assumed to be independent of 𝑧.
The strains can then be evaluated with the help of Eq. (8) as:

𝜖𝑥 =
𝜕𝑢0(𝑥, 𝑦, 𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤0(𝑥, 𝑦, 𝑡)
𝜕𝑥2 , 𝜖𝑦 =

𝜕𝑣0(𝑥, 𝑦, 𝑡)
𝜕𝑦

− 𝑧
𝜕2𝑤0(𝑥, 𝑦, 𝑡)

𝜕𝑦2 ,

𝛾𝑥𝑦 =
𝜕𝑢0(𝑥, 𝑦, 𝑡)

𝜕𝑦
+ 𝜕𝑣0(𝑥, 𝑦, 𝑡)

𝜕𝑥
− 2𝑧

𝜕2𝑤0(𝑥, 𝑦, 𝑡)
𝜕𝑥𝜕𝑦

, 𝜖𝑧 = 𝛾𝑥𝑧 = 𝛾𝑥𝑧 ≡ 0. (44)

𝑦

𝑥

𝑧

𝑧

𝑥1
2 ℎ

1
2 ℎ

𝑧1
𝑧2

𝑧𝑘
𝑧𝑘+1

𝑢0 (𝑥, 𝑦, 𝑡)

𝑤0 (𝑥, 𝑦, 𝑡)

−\𝑦 =
𝜕𝑤0
𝜕𝑥

−\𝑦

Figure 6: Plate (laminate) kinematic behavior along 𝒙-𝒛 plane according to Kirchhoff-
Love theory.
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2.2.2 Element geometry and interpolation of field variables

The finite element we consider here to model plate bending is but one of several which are available
for this problem. If more detailed literature is consulted, the reader should see that conforming
and non-conforming plate elements exist [Bathe, 2014, Reddy, 2019]. The one presented by us
here is of the latter type, which means it does not guarantee continuity of the normal slope across
the boundaries of finite elements which are neighbors. This issue results due to the formulation of
the finite element itself (i.e. it is related to the interpolation functions which are adopted and the
number of nodes of the element). Being it a non-conforming finite element, convergence of results
can become problematic, especially if coarse meshes are employed.
Fig. 7 shows the geometry of the plate element. It is rectangular (not an arbitrary quadrilateral),

with only four nodes. The nodal DOFs directly related to bending are 𝑤 (𝑒)
0,𝑖 (𝑡) = 𝑤 (𝑒)

0 (𝑥𝑖 , 𝑦𝑖 , 𝑡),
\ (𝑒)𝑥,𝑖 (𝑡) = \ (𝑒)𝑥 (𝑥𝑖 , 𝑦𝑖 , 𝑡) and \ (𝑒)𝑦,𝑖 (𝑡) = \ (𝑒)𝑦 (𝑥𝑖 , 𝑦𝑖 , 𝑡), for 𝑖 ∈ {1, 2, 3, 4}. The other DOFs, related
to in-plane motions, are 𝑢 (𝑒)

0,𝑖 (𝑡) = 𝑢 (𝑒)
0 (𝑥𝑖 , 𝑦𝑖 , 𝑡) and 𝑣 (𝑒)0,𝑖 (𝑡) = 𝑣 (𝑒)0 (𝑥𝑖 , 𝑦𝑖 , 𝑡). Interpolation of the

latter two can be performed according to Eqs. (13)–(15). For the remaining fields, we adopt [Junior
et al., 2009]:

𝑤 (𝑒)
0 =

[
1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2 𝑥3 𝑥2𝑦 𝑥𝑦2 𝑦3 𝑥3𝑦 𝑥𝑦3] ×
× {

𝑎00 𝑎10 𝑎01 𝑎20 𝑎11 𝑎02 𝑎30 𝑎21 𝑎12 𝑎03 𝑎31 𝑎13
}T

= P(𝑥, 𝑦) a(𝑡);
(45a)

\ (𝑒)𝑥 =
𝜕𝑤 (𝑒)

0 (𝑥, 𝑦, 𝑡)
𝜕𝑥

=
[
0 1 0 2𝑥 𝑦 0 3𝑥2 2𝑥𝑦 𝑦2 0 3𝑥2𝑦 𝑦3] ×

× {
𝑎00 𝑎10 𝑎01 𝑎20 𝑎11 𝑎02 𝑎30 𝑎21 𝑎12 𝑎03 𝑎31 𝑎13

}T
=

𝜕P
𝜕𝑦

(𝑥, 𝑦) a(𝑡);
(45b)

\ (𝑒)𝑦 =
𝜕𝑤 (𝑒)

0 (𝑥, 𝑦, 𝑡)
𝜕𝑦

=
[
0 0 1 0 𝑥 2𝑦 0 𝑥2 2𝑥𝑦 3𝑦2 𝑥3 3𝑥𝑦2] ×

× {
𝑎00 𝑎10 𝑎01 𝑎20 𝑎11 𝑎02 𝑎30 𝑎21 𝑎12 𝑎03 𝑎31 𝑎13

}T
= −𝜕P

𝜕𝑥
(𝑥, 𝑦) a(𝑡),

(45c)

whereP is a row-matrix containing polynomials, and the columnvector a comprises time-dependent

1

2

3

4
𝑤 (𝑒)

0,1
\ (𝑒)𝑦,1

\ (𝑒)𝑥,1

2𝑎

2𝑏

𝑣 (𝑒)0,1

𝑢 (𝑒)
0,1𝑤 (𝑒)

0,2
\ (𝑒)𝑦,3

\ (𝑒)𝑥,2

𝑢 (𝑒)
0,2

𝑣 (𝑒)0,2

𝑤 (𝑒)
0,3

𝑢 (𝑒)
0,3

𝑣 (𝑒)0,3\ (𝑒)𝑥,3

\ (𝑒)𝑦,3

𝑤 (𝑒)
0,4

\ (𝑒)𝑦,4
𝑣 (𝑒)0,4

𝑢 (𝑒)
0,4

\ (𝑒)𝑥,4

𝑧

𝑥

𝑦

Figure 7: Non-conforming, rectangular plate (laminate) finite element with four
nodes.
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weights. The latter can be expressed in terms of the element nodal DOFs by enforcing:

q̄(𝑒) (𝑡) =




𝑤 (𝑒)
0,1 (𝑡)

\ (𝑒)𝑥,1(𝑡)
\ (𝑒)𝑦,1(𝑡)
𝑤 (𝑒)

0,2 (𝑡)
\ (𝑒)𝑥,2(𝑡)
\ (𝑒)𝑦,2(𝑡)
𝑤 (𝑒)

0,3 (𝑡)
\ (𝑒)𝑥,3(𝑡)
\ (𝑒)𝑦,3(𝑡)
𝑤 (𝑒)

0,4 (𝑡)
\ (𝑒)𝑥,4(𝑡)
\ (𝑒)𝑦,4(𝑡)




=



P(𝑥1, 𝑦1)
𝜕P
𝜕𝑦 (𝑥1, 𝑦1)
−𝜕P

𝜕𝑥 (𝑥1, 𝑦1)
P(𝑥2, 𝑦2)
𝜕P
𝜕𝑦 (𝑥2, 𝑦2)
−𝜕P

𝜕𝑥 (𝑥2, 𝑦2)
P(𝑥3, 𝑦3)
𝜕P
𝜕𝑦 (𝑥3, 𝑦3)
−𝜕P

𝜕𝑥 (𝑥3, 𝑦3)
P(𝑥4, 𝑦4)
𝜕P
𝜕𝑦 (𝑥4, 𝑦4)
−𝜕P

𝜕𝑥 (𝑥4, 𝑦4)



a(𝑡) = Aa(𝑡) ⇒ a(𝑡) = A−1q̄(𝑒) (𝑡). (46)

Combining this last result with Eqs. (45), we are able to obtain the FE interpolation function
matrices for the relevant displacement fields:

𝑤 (𝑒)
0 (𝑥, 𝑦, 𝑡) = N̄(𝑒)

𝑤 (𝑥, 𝑦)q̄(𝑒) (𝑡) =
(
P(𝑥, 𝑦)A−1

)
q̄(𝑒) (𝑡); (47a)

\ (𝑒)𝑥 (𝑥, 𝑦, 𝑡) = N̄(𝑒)
\𝑥

(𝑥, 𝑦)q̄(𝑒) (𝑡) =
(
𝜕P
𝜕𝑦 (𝑥, 𝑦)A−1

)
q̄(𝑒) (𝑡); (47b)

\ (𝑒)𝑦 (𝑥, 𝑦, 𝑡) = N̄(𝑒)
\𝑦

(𝑥, 𝑦)q̄(𝑒) (𝑡) =
(
−𝜕P

𝜕𝑥 (𝑥, 𝑦)A−1
)

q̄(𝑒) (𝑡). (47c)

The previous interpolations can be combinedwith those presented earlier in Eq. (13), permitting
us to write:



𝑢 (𝑒)
0 (𝑥, 𝑦, 𝑡)

𝑣 (𝑒)0 (𝑥, 𝑦, 𝑡)
𝑤 (𝑒)

0 (𝑥, 𝑦, 𝑡)
\ (𝑒)𝑥 (𝑥, 𝑦, 𝑡)
\ (𝑒)𝑦 (𝑥, 𝑦, 𝑡)




=



𝑁1I2 02×3 𝑁2I2 02×3 𝑁3I2 02×3 𝑁4I2 02×3

01×2 N̄(𝑒)
𝑤,1 01×2 N̄(𝑒)

𝑤,2 01×2 N̄(𝑒)
𝑤,3 01×2 N̄(𝑒)

𝑤,4
01×2 N̄(𝑒)

\𝑥 ,1 01×2 N̄(𝑒)
\𝑥 ,2 01×2 N̄(𝑒)

\𝑥 ,3 01×2 N̄(𝑒)
\𝑥 ,4

03×2 N̄(𝑒)
\𝑥 ,1 01×2 N̄(𝑒)

\𝑥 ,2 01×2 N̄(𝑒)
\𝑥 ,3 01×2 N̄(𝑒)

\𝑥 ,4






q(𝑒)
1 (𝑡)

q(𝑒)
2 (𝑡)

q(𝑒)
3 (𝑡)

q(𝑒)
4 (𝑡)



, (48)

where q(𝑒)
𝑖 (𝑡) =

{
𝑢 (𝑒)

0,𝑖 (𝑡) 𝑣 (𝑒)0,𝑖 (𝑡) 𝑤 (𝑒)
0,𝑖 (𝑡) \ (𝑒)𝑥,𝑖 (𝑡) \ (𝑒)𝑦,𝑖 (𝑡)

}T
collects the DOFs related to node

𝑖, for 𝑖 ∈ {1, 2, 3, 4}; 𝑁𝑖 = 𝑁𝑖 (𝑥, 𝑦) correspond to the interpolation functions introduced in Eq. (13);
and N(𝑒)

𝑤,𝑖 , N(𝑒)
\𝑥 ,𝑖
, N(𝑒)

\𝑦 ,𝑖
stand for 1 × 3 sub-matrices of N(𝑒)

𝑤 , N(𝑒)
\𝑥
, N(𝑒)

\𝑦
, respectively, related to

degrees of freedom of node 𝑖. For example, N(𝑒)
𝑤 =

[
N(𝑒)

𝑤,1 N(𝑒)
𝑤,2 N(𝑒)

𝑤,3 N(𝑒)
𝑤,4

]
. Equation (48)

can be rewritten as:



𝑢 (𝑒)
0 (𝑥, 𝑦, 𝑡)

𝑣 (𝑒)0 (𝑥, 𝑦, 𝑡)
𝑤 (𝑒)

0 (𝑥, 𝑦, 𝑡)
\ (𝑒)𝑥 (𝑥, 𝑦, 𝑡)
\ (𝑒)𝑦 (𝑥, 𝑦, 𝑡)




=



N(𝑒)
𝑢 (𝑥, 𝑦)

N(𝑒)
𝑣 (𝑥, 𝑦)

N(𝑒)
𝑤 (𝑥, 𝑦)

N(𝑒)
\𝑥

(𝑥, 𝑦)
N(𝑒)

\𝑦
(𝑥, 𝑦)



q(𝑒) (𝑡), with q(𝑒) (𝑡) =




q(𝑒)
1 (𝑡)

q(𝑒)
2 (𝑡)

q(𝑒)
3 (𝑡)

q(𝑒)
4 (𝑡)




(49)
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and N(𝑒)
𝑢 , N(𝑒)

𝑣 , N(𝑒)
𝑤 , N(𝑒)

\𝑥
, N(𝑒)

\𝑦
corresponding to the rows of the interpolation matrix seen in

Eq. (48).

2.2.3 Formulation at element level

The strains which are not identically equal to zero can be interpolated inside the domain of the FE
now considered according to the relations:

𝜖 (𝑒)𝑥 (𝑥, 𝑦, 𝑧, 𝑡) =
[
B(𝑒)
𝑥,0(𝑥, 𝑦) + 𝑧B(𝑒)

𝑥,1(𝑥, 𝑦)
]

q(𝑒) (𝑡) =
[
𝜕N(𝑒)

𝑢

𝜕𝑥 − 𝑧 𝜕
2N(𝑒)

𝑤

𝜕𝑥2

]
q(𝑒) (𝑡); (50a)

𝜖 (𝑒)𝑦 (𝑥, 𝑦, 𝑧, 𝑡) =
[
B(𝑒)
𝑦,0(𝑥, 𝑦) + 𝑧B(𝑒)

𝑦,1(𝑥, 𝑦)
]

q(𝑒) (𝑡) =
[
𝜕N(𝑒)

𝑣

𝜕𝑦 − 𝑧 𝜕
2N(𝑒)

𝑤

𝜕𝑦2

]
q(𝑒) (𝑡); (50b)

𝛾 (𝑒)
𝑥𝑦 (𝑥, 𝑦, 𝑧, 𝑡) =

[
B(𝑒)
𝑥𝑦,0(𝑥, 𝑦) + 𝑧B(𝑒)

𝑥𝑦,1(𝑥, 𝑦)
]

q(𝑒) (𝑡) =
[
𝜕N(𝑒)

𝑢

𝜕𝑦 + 𝜕N(𝑒)
𝑣

𝜕𝑥 − 2𝑧 𝜕
2N(𝑒)

𝑤

𝜕𝑥𝜕𝑦

]
q(𝑒) (𝑡), (50c)

which can be derived by combining Eqs. (49) and (44).
To showcase a situation in which the material of the plate does not exhibit linear isotropic

behavior, here we consider the plate corresponds to a laminate, i.e. a collection of plies made of
fibers, which are laid-up on top of one another, bonded with the aid of some resin, to produce a
composite material. At this point, an important warning must be made by us, the authors: the
adopted formulation, known as classical laminated plate theory, which copes with the Kirchhoff-
Love plate theory, is the simplest available for performing analyzes of such structures. Hence,
various results which might be derived (such as stresses and strains on individual plies) do not
necessarily model reality with high fidelity. Other more advanced models do exist, such as
equivalent single-layer theories that take into account shear deformations, and three-dimensional
elasticity theories that model the laminate layers independently of one-another, while taking into
account displacement compatibility between them (known as layerwise theories) [Reddy, 2003].
Having said this, the classical laminate theory can be used for simpler assessments. For the

𝑘-th lamina, stresses can be obtained using [Reddy, 2003]:



𝜎 (𝑒)
𝑥

𝜎 (𝑒)
𝑦

𝜏 (𝑒)𝑥𝑦




(𝑘)

=


�̄�11 �̄�12 �̄�16
�̄�12 �̄�22 �̄�26
�̄�16 �̄�26 �̄�66


(𝑘) 


𝜖 (𝑒)𝑥

𝜖 (𝑒)𝑦

𝛾 (𝑒)
𝑥𝑦




(𝑘)

⇔ σ(𝑒) = Q̄(𝑘)ϵ(𝑒) , for 𝑧𝑘 ≤ 𝑧 ≤ 𝑧𝑘+1, (51)

where the superscript (𝑘) appended to the vectors and matrix is used to indicate their entries are
related to the 𝑘-th lamina of the laminate. The �̄� (𝑘)

𝑖 𝑗 components (𝑖, 𝑗 ∈ {1, 2, 6}) correspond
to plane-stress reduced stiffnesses related to the material of the lamina, expressed in the global
coordinate frame. They can be retrieved after performing a coordinate transformation of the
material properties of the lamina, that is:

�̄� (𝑘)
11 = 𝑄 (𝑘)

11 𝑐4
𝛼 + 2

(
𝑄 (𝑘)

12 + 2𝑄 (𝑘)
66

)
𝑠2
𝛼𝑐

2
𝛼 +𝑄 (𝑘)

22 𝑠4
𝛼; (52a)

�̄� (𝑘)
12 =

(
𝑄 (𝑘)

11 +𝑄 (𝑘)
22 − 4𝑄 (𝑘)

66

)
𝑠2
𝛼𝑐

2
𝛼 +𝑄 (𝑘)

12

(
𝑠4
𝛼 + 𝑐4

𝛼

)
; (52b)

�̄� (𝑘)
22 = 𝑄 (𝑘)

11 𝑠4
𝛼 + 2

(
𝑄 (𝑘)

12 + 2𝑄 (𝑘)
66

)
𝑠2
𝛼𝑐

2
𝛼 +𝑄 (𝑘)

22 𝑐4
𝛼; (52c)

�̄� (𝑘)
16 =

(
𝑄 (𝑘)

11 −𝑄 (𝑘)
12 − 2𝑄 (𝑘)

66

)
𝑠𝛼𝑐

3
𝛼 +

(
𝑄 (𝑘)

12 −𝑄 (𝑘)
22 + 2𝑄 (𝑘)

66

)
𝑠3
𝛼𝑐𝛼; (52d)

�̄� (𝑘)
26 =

(
𝑄 (𝑘)

11 −𝑄 (𝑘)
12 − 2𝑄 (𝑘)

66

)
𝑠3
𝛼𝑐𝛼 +

(
𝑄 (𝑘)

12 −𝑄 (𝑘)
22 + 2𝑄 (𝑘)

66

)
𝑠𝛼𝑐

3
𝛼; (52e)

�̄� (𝑘)
66 =

(
𝑄 (𝑘)

11 +𝑄 (𝑘)
22 − 2𝑄 (𝑘)

12 − 2𝑄 (𝑘)
66

)
𝑠2
𝛼𝑐

2
𝛼 +𝑄 (𝑘)

66

(
𝑠4
𝛼 + 𝑐4

𝛼

)
. (52f)
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In these, 𝑠𝛼 B sin𝛼 (𝑘) and 𝑐𝛼 B cos𝛼 (𝑘) , with 𝛼 (𝑘) denoting the angle between the 𝑥 principal
direction of the 𝑘-th lamina with respect to the global 𝑥 axis, cf. Fig. 8. The stiffnesses 𝑄 (𝑘)

𝑖 𝑗 can
be obtained from the engineering constants of the lamina, whose elastic behavior is assumed to be
orthotropic:

𝑄 (𝑘)
11 =

𝐸
(𝑘)
1

1−a (𝑘)
12 a

(𝑘)
21

, 𝑄 (𝑘)
12 =

a
(𝑘)
12 𝐸

(𝑘)
2

1−a (𝑘)
12 a

(𝑘)
21

=
a
(𝑘)
21 𝐸

(𝑘)
1

1−a (𝑘)
12 a

(𝑘)
21

, 𝑄 (𝑘)
22 =

𝐸
(𝑘)
2

1−a (𝑘)
12 a

(𝑘)
21

, 𝑄 (𝑘)
66 = 𝐺 (𝑘)

12 . (53)

𝑦

𝑥

𝑧 ≡ 𝑧 (𝑘 )

𝑥 (𝑘 )

𝑦 (𝑘 )

𝛼 (𝑘 )

𝛼 (𝑘 )

Figure 8: Principal coordinate system 𝒙(𝒌) 𝒚(𝒌) 𝒛(𝒌) related to an uni-directional ply
of a laminate, whose orientation with respect to the global reference frame 𝒙𝒚𝒛 is
given by 𝜶(𝒌) .

With the previous expressions at hand, we can obtain the kinetic and potential energies nec-
essary for establishing the finite element matrices, when the variational formulation approach is
used. For the kinetic energy, we have:

K (𝑒) =
∭

Ω(𝑒)
𝑡

1
2
𝜌 (𝑒)

{[
¤𝑢 (𝑒) (𝑥, 𝑦, 𝑧, 𝑡)

]2
+
[
¤𝑣 (𝑒) (𝑥, 𝑦, 𝑧, 𝑡)

]2
+
[
¤𝑤 (𝑒) (𝑥, 𝑦, 𝑧, 𝑡)

]2
}

d𝑥 d𝑦 d𝑧

=
∑︁𝑁layers

𝑘=1

∫ 𝑧𝑧+1

𝑧𝑘

∫ 𝑏

−𝑏

∫ 𝑎

−𝑎

1
2
𝜌 (𝑒)

{[
¤𝑢 (𝑒) (𝑥, 𝑦, 𝑧, 𝑡)

]2

+
[
¤𝑣 (𝑒) (𝑥, 𝑦, 𝑧, 𝑡)

]2
+
[
¤𝑤 (𝑒) (𝑥, 𝑦, 𝑧, 𝑡)

]2
}

d𝑥 d𝑦 d𝑧

=
∑︁𝑁layers

𝑘=1

∫ 𝑧𝑧+1

𝑧𝑘

∫ 𝑏

−𝑏

∫ 𝑎

−𝑎

1
2
𝜌 (𝑒)

{
¤q(𝑒)T (

N(𝑒)
𝑢 + 𝑧N(𝑒)

\𝑦

)T (
N(𝑒)
𝑢 + 𝑧N(𝑒)

\𝑦

)
¤q(𝑒)

+ ¤q(𝑒)T (
N(𝑒)

𝑣 − 𝑧N(𝑒)
\𝑥

)T (
N(𝑒)

𝑣 − 𝑧N(𝑒)
\𝑥

)
¤q(𝑒) + ¤q(𝑒)TN(𝑒)

𝑤

T
N(𝑒)

𝑤 ¤q(𝑒)
}

d𝑥 d𝑦 d𝑧

=
1
2
¤q(𝑒)T

[∑︁𝑁layers

𝑘=1

∫ 𝑧𝑧+1

𝑧𝑘

∫ 𝑏

−𝑏

∫ 𝑎

−𝑎
𝜌 (𝑒)

{(
N(𝑒)
𝑢 + 𝑧N(𝑒)

\𝑦

)T (
N(𝑒)
𝑢 + 𝑧N(𝑒)

\𝑦

)

+
(
N(𝑒)

𝑣 − 𝑧N(𝑒)
\𝑥

)T (
N(𝑒)

𝑣 − 𝑧N(𝑒)
\𝑥

)
+ N(𝑒)

𝑤

T
N(𝑒)

𝑤

}
d𝑥 d𝑦 d𝑧

]
¤q(𝑒)

=
1
2
¤q(𝑒)T

[∑︁𝑁layers

𝑘=1

∫ 𝑧𝑧+1

𝑧𝑘

∫ 𝑏

−𝑏

∫ 𝑎

−𝑎
𝜌 (𝑒)

{
N(𝑒)
𝑢

T
N(𝑒)
𝑢 + 𝑧

(
N(𝑒)

\𝑦

T
N(𝑒)
𝑢 + N(𝑒)

𝑢

T
N(𝑒)

\𝑦

)

+ 𝑧2N(𝑒)
\𝑦

T
N(𝑒)

\𝑦
+ N(𝑒)

𝑣

T
N(𝑒)

𝑣 − 𝑧
(
N(𝑒)

\𝑥

T
N(𝑒)

𝑣 + N(𝑒)
𝑣

T
N(𝑒)

\𝑥

)
+ 𝑧2N(𝑒)

\𝑥

T
N(𝑒)

\𝑥
+ N(𝑒)

𝑤

T
N(𝑒)

𝑤

}
d𝑥 d𝑦 d𝑧

]
¤q(𝑒)

=
1
2
¤q(𝑒)T(𝑡)

[∑︁𝑁layers

𝑘=1
M(𝑒) (𝑘)

]
¤q(𝑒) (𝑡) = 1

2
¤q(𝑒)T(𝑡)M(𝑒) ¤q(𝑒) (𝑡), (54)
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where:

M(𝑒) (𝑘) = (𝑧𝑘+1 − 𝑧𝑘)
∫ 𝑏

−𝑏

∫ 𝑎

−𝑎
𝜌 (𝑒) (𝑘)

(
N(𝑒)
𝑢

T
N(𝑒)
𝑢 + N(𝑒)

𝑣

T
N(𝑒)

𝑣 + N(𝑒)
𝑤

T
N(𝑒)

𝑤

)
d𝑥 d𝑦

+ 1
2

(
𝑧2
𝑘+1 − 𝑧2

𝑘

) ∫ 𝑏

−𝑏

∫ 𝑎

−𝑎
𝜌 (𝑒) (𝑘)

(
N(𝑒)

\𝑦

T
N(𝑒)
𝑢 + N(𝑒)

𝑢

T
N(𝑒)

\𝑦
− N(𝑒)

\𝑥

T
N(𝑒)

𝑣 − N(𝑒)
𝑣

T
N(𝑒)

\𝑥

)
d𝑥 d𝑦

+ 1
3

(
𝑧3
𝑘+1 − 𝑧3

𝑘

) ∫ 𝑏

−𝑏

∫ 𝑎

−𝑎
𝜌 (𝑒) (𝑘)

(
N(𝑒)

\𝑦

T
N(𝑒)

\𝑦
+ N(𝑒)

\𝑥

T
N(𝑒)

\𝑥

)
d𝑥 d𝑦 (55)

corresponds to the mass matrix contribution owed to the 𝑘-th layer of the laminate. The total
mass matrix of the plate/laminate finite element is obtained by summing the contributions of all
its laminas:

M(𝑒) =
∑︁𝑁layers

𝑘=1
M(𝑒) (𝑘) . (56)

With regards to the contribution due to elastic deformation of the structure towards the finite
element potential energy, it can be obtained from:

U (𝑒)
elast =

1
2

∭
Ω(𝑒)
𝑡

[
𝜎 (𝑒)
𝑥 𝜖 (𝑒)𝑥 + 𝜎 (𝑒)

𝑦 𝜖 (𝑒)𝑦 + 𝜏 (𝑒)𝑥𝑦 𝛾
(𝑒)
𝑥𝑦

]
d𝑥 d𝑦 d𝑧

=
1
2

∑︁𝑁layers

𝑘=1

∫ 𝑧𝑧+1

𝑧𝑘

∫ 𝑏

−𝑏

∫ 𝑎

−𝑎
σ(𝑒)T(𝑥, 𝑦, 𝑧, 𝑡)ϵ(𝑒) (𝑥, 𝑦, 𝑧, 𝑡) d𝑥 d𝑦 d𝑧

=
1
2

q(𝑒)T(𝑡)
[∑︁𝑁layers

𝑘=1

∫ 𝑧𝑧+1

𝑧𝑘

∫ 𝑏

−𝑏

∫ 𝑎

−𝑎

(
B(𝑒)

0 + 𝑧B(𝑒)
1

)T
Q̄(𝑘)

(
B(𝑒)

0 + 𝑧B(𝑒)
1

)
d𝑥 d𝑦 d𝑧

]
q(𝑒) (𝑡)

=
1
2

q(𝑒)T(𝑡)
[∑︁𝑁layers

𝑘=1
K(𝑒) (𝑘)

]
q(𝑒) (𝑡) = 1

2
q(𝑒)T(𝑡)K(𝑒)q(𝑒) (𝑡), (57)

where K(𝑒) (𝑘) is the stiffness matrix contribution due to the 𝑘-th layer of the laminate, whose
expression is given by:

K(𝑒) (𝑘) = (𝑧𝑘+1 − 𝑧𝑘)
∫ 𝑏

−𝑏

∫ 𝑎

−𝑎
B(𝑒)

0
T
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(
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1
T
Q̄(𝑘)B(𝑒)
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0

T
Q̄(𝑘)B(𝑒)

1

)
d𝑥 d𝑦

+ 1
3

(
𝑧3
𝑘+1 − 𝑧3

𝑘

) ∫ 𝑏

−𝑏

∫ 𝑎

−𝑎
B(𝑒)

1
T
Q̄(𝑘)B(𝑒)

1 d𝑥 d𝑦. (58)

In the previous developments, we have made use of matrices B(𝑒)
0 and B(𝑒)

1 , which are employed
for interpolating the strain vector ϵ(𝑒) inside the finite element domain. They can be evaluated
using:

B(𝑒)
0 =



B(𝑒)
𝑥,0

B(𝑒)
𝑦,0

B(𝑒)
𝑥𝑦,0


and B(𝑒)

1 =



B(𝑒)
𝑥,1

B(𝑒)
𝑦,1

B(𝑒)
𝑥𝑦,1


, (59)

with entries being implicitly defined in Eq. (50). The complete finite element stiffness matrix can
then be obtained via:

K(𝑒) =
∑︁𝑁layers

𝑘=1
K(𝑒) (𝑘) . (60)

As for conservative external loads which can be applied to the finite element, their contribution
can be obtained following similar steps to those which have led to Eq. (28) in the previous section.
Here, we simply consider that:

W (𝑒)
ext = q(𝑒)T(𝑡)Q(𝑒)

𝑏 (𝑡) + q(𝑒)T(𝑡)Q(𝑒)
𝑠 (𝑡), (61)
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without going into details, or providing expressions that result for the element body and surface
forces, Q(𝑒)

𝑏 (𝑡) and Q(𝑒)
𝑠 (𝑡), respectively.

At this point, we are able to evaluate the finite element Lagrangian, which takes the same
form seen in Eq. (35), albeit expressions for the element mass and stiffness matrices, as well as
conservative load vectors resulted different. The equations of motion for the plate/laminate finite
element can also be established, and look exactly like what has been presented in Eq. (37) — but
withM(𝑒) and K(𝑒) given by Eqs. (56) and (60), for example.
Finally, the procedure outlined in the previous section for obtaining global matrices for a finite

element mesh can be easily generalized to account for finite elements with any number of DOFs.
Henceforth, it can be readily used to establish global matrices related to a mesh assembled using
plate/laminate elements, such as the one just presented.

3 Examples

In order to showcase the use of the finite elements whose mathematical formulation has been
discussed previously in section 2, in this section we consider two relatively simple examples.
The first one makes use of the quadrilateral two-dimensional elasticity finite element presented in
section 2.1, whilst the second example concerns itself with the rectangular laminate finite element
introduced in section 2.2. Numerical codes used to perform computations have been implemented
in MATLAB ® by the authors, and are made publicly available through this link.

3.1 Static analysis of an H-shaped material sheet

Problem: Consider a H-shaped sheet, clamped at its left edge and subjected to a distributed load
𝑞(𝑥) at its top-right portion, as illustrated in Fig. 9. The structure is made up of an isotropic
metallic material and its physical and geometric properties are listed in Tab. 1. By employing
quadrilateral two-dimensional elasticity finite elements, let us estimate the stress and strain fields
distribution in the sheet domain.

ℎ

𝑙𝑙 𝑙𝑖

ℎ𝑖

𝑞(𝑥)

𝑥

𝑦

Figure 9: H-shaped sheet clamped at its left edge and subjected to a vertical dis-
tributed load on part of its boundary.
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Table 1: H-shaped sheet dimensions and material properties.

Variable Description Value Units

𝑙𝑡 Total length 1 m
𝑙 Length of first and third sections 0.4 m
𝑙𝑖 Length of intermediate section 0.2 m
ℎ Total height 0.4 m
ℎ𝑖 Height of the intermediate cutout 60 mm
𝐿𝑧 Thickness along 𝑧 5 mm
𝐸 Young’s modulus 69 GPa
a Poisson’s ratio 0.3
𝜌 Mass density 2.7 g m−3

Solution: Considering that the thickness of the solid medium is negligible in comparison to its
other dimensions, and that stresses are confined to the sheet plane, only, the Solid Mechanics
problem at hand consists of a plane stress one.
As previously mentioned in section 2.1.2, for plane stress problems, the nonzero stresses are

𝜎𝑥 , 𝜎𝑦 and 𝜏𝑥𝑦 , if the solid sheet is located on the 𝑥-𝑦 plane. For this scenario, considering linear,
isotropic elasticity, Hooke’s law, stated in Eqs. (7), can be duly modified, to provide a reduced set
of constitutive relations, cf. Eqs. (24).
The first step which must be made to obtain the desired stress distributions using the FEM

is to define the mesh for the domain of the considered sheet. For this purpose, we make use
of the quadrilateral two-dimensional continuum elasticity finite element presented in section 2.1.
One recalls that, for this element, the nodal DOFs comprise displacements, only, and that its
interpolation functions are linear for displacements.
In order to better organize the mesh, the domain of the H-shaped sheet is divided in seven

rectangular sub-regions, as illustrated in Fig. 10. This makes it more straightforward to establish
the number of finite elements and the location of nodes, in such a way that rectangular elements
are used to make a mapped mesh for the whole domain.

𝑞(𝑥)

𝑥

𝑦

1

2

3

5

6

7

4

Figure 10: Division of the H-shaped sheet into seven rectangular sub-domains.

One then has to ensure that edges shared by neighbour rectangular sub-domains have the same
amount of nodes. Besides simplifying the generation of a mapped mesh, this reasoning facilitates
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adequately coupling the motion of sub-domains which are neighbors, for which meshes are initially
generated independently of one another. This coupling can be made by enforcing the same nodal
DOFs for distinct nodes, which is essentially the same as merging the coincident nodes, at this
setting. More complicated coupling of sub-domains is also possible, taking into account constraint
equations, which can be enforced via Lagrange multipliers or penalty methods [Bathe, 2014]. For
the example at hand, for the correct link between nodes of the rectangular sub-domains, one must
abide by the following pattern for the number of elements for the edges of the rectangular partitions:

• Edges parallel to the 𝑥 direction of rectangles 1, 2 and 3 must have the same number of
elements;

• Edges parallel to the 𝑦 direction of rectangles 2, 4 and 6 must have the same number of
elements;

• Edges parallel to the 𝑥 direction of rectangles 5, 6 and 7 must have the same number of
elements.

Given the above, one must now choose the number of finite elements (and consequently, nodes)
that will compose the mesh. In general terms, the accuracy of the result tends to improve as the
mesh gets refined, because the interpolation of field variables inside the domain of a finite element
becomes more and more representative of the actual solution. On the other hand, as consequence
of reducing the size of elements, the cost of computational simulations, in terms of resources and
time, increases as well. In these terms, sometimes it becomes necessary to adopt a compromise
solution, since the computational cost to perform various simulations with a mesh comprising
a large number of elements can be prohibitive. Several authors, e.g. [Zienkiewicz et al., 2013],
propose performing convergence analysis of the mesh, based on the results which are sought, in
order to find a reasonable cost-benefit ratio for the mesh employed for numerical simulations; or to
assure that results are independent of the mesh, i.e. that they have converged to the actual solution
of the problem at hand.
In order to highlight the importance of a suitable specification for a finite element mesh, the

example one is considering has been resolved for two different meshes, made of elements with
distinct sizes:

• Case 1: the element size (length and height) is 5% of the largest dimension (50 mm, for this
problem).

• Case 2: the element size (length and height) is 1% of the largest dimension (10 mm, for this
problem).

Accordingly, the number of divisions used for the edges of each rectangular sub-domain,
along the 𝑥 and 𝑦 directions, 𝑛𝑒𝑙𝑒𝑥 and 𝑛𝑒𝑙𝑒𝑦 , respectively, is presented in Tab. 2. Additionally,
Tab. 3 shows some statistics of the resulting meshes, such as the total number of elements, nodes
and DOFs. The meshes associated with Cases 1 and 2 are presented in Figs. 11(a) and 11(b),
respectively, by means of the location occupied by nodes. By comparing both figures, it is clear
that reducing the finite element size by 5 times (Case 1 to Case 2) implies in a much denser mesh.
As explained in section 2.1.1, the quadrilateral finite element used for this problem has four

nodes, and two DOFs per node (displacements 𝑢 and 𝑣 along the 𝑥 and 𝑦 directions, respectively).
Accordingly, the total number of DOFs related to the mesh associated with Case 2 increases
significantly in comparison to the one observed for Case 1. Furthermore, the time spent to
perform computations increases substantially, as well, as can be seen from the last row presented
in Tab. 3. One should clarify that the reported times have been measured for a laptop computer,
running Microsoft Windows 10 operating system, equipped with an Intel® CoreTM i7-6500U
central processing unit, and 8 GB of RAM memory.
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Table 2: Number of elements along 𝒙 and 𝒚 directions adopted for each of the
rectangular sub-domains identified in Fig. 10.

Rectangle number Case 1 Case 2

𝑛𝑒𝑙𝑒𝑥 𝑛𝑒𝑙𝑒𝑦 𝑛𝑒𝑙𝑒𝑥 𝑛𝑒𝑙𝑒𝑦

1 8 2 40 7
2 8 6 40 28
3 8 2 40 7
4 4 6 20 28
5 8 5 40 7
6 8 6 40 28
7 8 7 40 7

Table 3: Statistics related to the meshes obtained for the H-shaped sheet considered
in this example.

Statistic Case 1 Case 2

Total number of elements 184 3920
Total number of nodes 269 (219)† 4299 (4077)†

Total number of DOFs 538 (438)† 8598 (8154)†

Elapsed time [s] 9.1 433.1
† Values reported between parentheses are related to the number of
nodes and DOFs after coincident entities were merged.

It is important to note that, after the initial mesh has been generated individually for each
rectangular sub-domain, some overlapping nodes could be found. “Duplicated” and “triplicated”
nodes were then eliminated, to ensure the continuity of the finite element mesh. Underlying data
of the finite element mesh model also need to be taken care of during this process. For example,
various information are encoded in matrices used in finite element codes, related to properties of
elements and nodes, and are therefore affected when nodes and DOFs get merged together. In this
regard, in our code, some prominent matrices are:

• the “node matrix”, which stores information about which nodes are related to each element;

• the “node position matrix”, which caches the location initially occupied by nodes;

• the “connectivity matrix”, which stores which DOFs are related to each element.

Hence, after coincident nodes are dealt with, these matrices are properly adjusted. One should
remark that, to facilitate further operations, such as assembling global matrices, nodes and DOFs
can be renumbered, if desired.
After nodes and DOFs have been updated, one has to input what are the boundary conditions.

For this purpose, the nodes which are located on the boundary of the H-shaped sheet are identified.
The DOFs related to those nodes at the left must be enforced to be zero. (A mathematical
procedure which can be used for this purpose is presented in our next example, in section 3.2.)
With regards to those elements at the top of rectangle 7, one has to impose a distributed pressure
load, 𝑞(𝑥) = 500 kPa, to their appropriate boundary/edge, cf. Eq. (32). All other segments that
compose the boundary of the structure are free. In Figs. 12(a) and 12(b), it is possible to visualize
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(a) Case 1

(b) Case 2

Figure 11: Location of nodes that compose the meshes of the H-shaped sheet of this
example.

which nodes are related to each type of boundary condition just described, i.e. those which are
totally blocked/restrained, related to the distributed pressure load, and/or free to move, without
externally applied loads.
With boundary conditions defined, element level matrices can be computed (cf. Eqs. (27) and

(34)) and global level matrices assembled (cf. Eq. (40)). The external distributed, surface load
contribution can be evaluated by resorting to Eqs. (32) and (41). Having calculated global matrices
and vectors, one can resolve a linear system of equations to determine the nodal DOFs of the mesh.
This corresponds to a static analysis of the considered structure. The equations which needs to be
solved come directly from Eq. (42) — one only needs to disregard the inertia/mass contribution
term on its left-hand side to arrive at the appropriate global level input-output relationship for the
analyzed system.
Figures 13(a) and 13(b) show how nodes get displaced when the H-shaped sheet is solicited by

the external pressure load, for the two different meshes which we are considering. For Case 1, the
largest displacement value occurs for the node at the top-right vertex of the sheet (with coordinates
𝑥 = 1 m, 𝑦 = 0.4 m), being its value equal to 0.199 27 mm. For Case 2, the maximum displacement
is 0.205 449 mm, occurring at the same location observed for the previous case. To make for a
better visualization of the displacement results, in Figs. 13(a) and 13(b) one has used amplification
factors, whose values have been automatically computed, based on a characteristic dimension of
the sheet and the maximum node displacement.
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(a) Case 1

(b) Case 2

Figure 12: Boundary conditions implemented for analyzing the H-shaped sheet
considered in this example.
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Figure 13: Node displacements resulting for the H-shaped sheet considered in this
example.

With the complete nodal DOFs’ vector being calculated, stress and strain results can be
established via post-processing, for each element of the mesh. The displacements related to the
nodes of an element can be initially obtained by considering the element DOFs’ localizationmatrix,
cf. (38). The strains can then be evaluated with the help of the element strain-displacement matrix
B(𝑒) , cf. Eq. (23). Stresses can then be retrieved by recalling the material constitutive relations,
cf. Eq. (24) in the present case. Taking into account that strains and stresses vary linearly inside
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the domain of each finite element of the mesh, due to the element formulation, one can establish
the plots shown in Figs. 14 and 15 for Cases 1 and 2, respectively.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14: Distributions of strains and stresses in the H-shaped sheet considered in
this example, using the coarser mesh of Case 1.

Regarding the maximum and minimum values observed for stresses and strains, 𝜎𝑥 reaches
its maximum at the left internal corner of the top cutout, precisely at coordinates 𝑥 = 0.4 m,
𝑦 = 0.34 m. The minimum value of 𝜎𝑥 occurs at the equivalent place of the bottom cutout, at
𝑥 = 0.4 m, 𝑦 = 0.06 m, as expected for this configuration. The behavior of the normal strain 𝜖𝑥 is
very similar, which is in accordance with the constitutive relation (24). For the normal stress and
strain along the 𝑦 direction (𝜎𝑦 , 𝜖𝑦), maximum and minimum values are seen at the same locations.
With regards to the out-of-plane strain 𝜖𝑧 , it takes extrema values in the same cutouts, but in this
case the maximum is seen to happen in the bottom location, whilst the minimum 𝜖𝑧 strain happens
at the left internal corner of the top cutout. The stress 𝜎𝑧 is always zero, in accordance with the
hypothesis if plane stress behavior.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15: Distributions of strains and stresses in the H-shaped sheet considered in
this example, using the finer mesh of Case 2.

Table 4: Comparison of the results obtained for the H-shaped sheet using the two
generated meshes, in terms of the calculated maximum stresses.

Case 1 Case 2

𝜎max [MPa] (𝑥, 𝑦) [m] 𝜎max [MPa] (𝑥, 𝑦) [m]
𝜎𝑥 7.6902 (0.40,0.34) 13.7456 (0.40,0.34)
𝜎𝑦 2.6720 (0.40,0.34) 7.5453 (0.40,0.34)
𝜏𝑥𝑦 0.9190 (0.60,0.06) 1.7960 (0.60,0.06)
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Table 5: Comparison of the results obtained for the H-shaped sheet using the two
generated meshes, in terms of the calculated minimum stresses.

Case 1 Case 2

𝜎min [MPa] (𝑥, 𝑦) [m] 𝜎min [MPa] (𝑥, 𝑦) [m]
𝜎𝑥 −7.6465 (0.40,0.06) −13.7084 (0.40,0.06)
𝜎𝑦 −2.6692 (0.40,0.06) −7.5453 (0.40,0.06)
𝜏𝑥𝑦 −2.8987 (0.40,0.34) −5.4430 (0.40,0.34)

From the results obtained for themaximumandminimum stresses, which are reported in Tabs. 4
and 5, respectively, it becomes clear that the values for the stresses obtained with the coarser (Case
1) and finer (Case 2) meshes are quite different between themselves. This is specially true because
the analyzed structure has cutouts with right angle corners, which act as stress risers. For this,
if one wants to obtain a better convergence of stress results using the four-nodes, quadrilateral,
two-dimensional elasticity finite elements, it is necessary to develop a more complex mesh, using
finer discretization, specially at the locations where stress concentration is expected to occur.
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Figure 16: Three-dimensional visualization of the 𝝈𝒙 stress field for Cases 1 and 2
related to the H-shaped sheet considered in this example.
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To help enlighten this remark, three-dimensional views are presented in Fig. 16 for the 𝜎𝑥

normal stress field, for both considered meshes. In Fig. 16(a), it is possible to see that the shown
stress result has various discontinuities between adjacent finite elements, even at shared nodes.
This is a clear indication that the considered stress result has not converged to the true solution
of the problem, indicating that further mesh refinement should be considered; or that another
type of finite element should be used, to provide better interpolation capability. When the three-
dimensional visualization shown in Fig. 16(b) is considered, then fewer discontinuities are seen,
and those which are related to significant jumps in value are confined exclusively to right angle
corners at the cutouts and at the clamped region. If Saint-Venant’s principle is invoked [Fung
et al., 2017], then the computed results are reasonably representative of the actual solution of the
Solid Mechanics problem at hand, except at the stress concentration regions just identified. Similar
observations can be made if one analyzes the three-dimensional plots depicted in Fig. 17 for 𝜖𝑦 .
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Figure 17: Three-dimensional visualization of the 𝝐𝒚 strain field for Cases 1 and 2
related to the H-shaped sheet considered in this example.
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3.2 Dynamic analysis of a rectangular laminate

As a second example, now we consider a rectangular laminate, as illustrated in Fig. 18. It has
dimensions 𝑎 = 287mm and 𝑏 = 287mm, being composed of four layers with individual thickness
ℎ (𝑘) = 0.184 mm, for 𝑘 ∈ {1, 2, 3, 4}. The orientation of the layers is such that 𝛼 (𝑘) = (−1)𝑘45◦.
Additionally, each layer is made of HexPly® M21/IM7, for which 𝐸1 = 160 GPa, 𝐸2 = 8.6 GPa,
a12 = 0.31, 𝐺12 = 4.7 GPa, 𝜌 = 1580 kg m−3 [Pereira et al., 2020]. The laminate is clamped on
one of its sides, located at 𝑥 = 0, as shown.
Based on the global level equations of motion for the considered system, which read:

M(𝑔) ¥q(𝑔) (𝑡) + K(𝑔)q(𝑔) (𝑡) = Q(𝑔) (𝑡), (62)

different types of dynamic analyzes can be made. Here, Q(𝑔) corresponds to a vector of arbitrary
external forces. Furthermore, depending on the dynamic analysis which is of interest, initial
conditions must be provided, in the form of initial displacements q(𝑔)

0 and initial velocities ¤q(𝑔)
0 .

To take into account the clamp boundary condition, or other ones, which can be explicitly
written in terms of the global nodal DOFs vector q(𝑔) (𝑡), we partition it in unconstrained (free)
and constrained subsets, such that:

q(𝑔) (𝑡) =
{

q(𝑔)
𝑢 (𝑡)

q(𝑔)
𝑐 (𝑡)

}
. (63)

For the considered case, all DOFs related to nodes located on the clamped edge are included in
q(𝑔)
𝑐 (𝑡), for which q(𝑔)

𝑐 (𝑡) ≡ 0. The remaining DOFs pertain to q(𝑔)
𝑢 (𝑡). Then, to ensure constraints

are enforced, we can write the global equations of motion in partitioned form:[
M(𝑔)

𝑢𝑢 M(𝑔)
𝑢𝑐

M(𝑔)
𝑐𝑢 M(𝑔)

𝑐𝑐

] {
¥q(𝑔)
𝑢 (𝑡)
¥q(𝑔)
𝑐 (𝑡)

}
+
[
K(𝑔)

𝑢𝑢 K(𝑔)
𝑢𝑐

K(𝑔)
𝑐𝑢 K(𝑔)

𝑐𝑐

] {
q(𝑔)
𝑢 (𝑡)

q(𝑔)
𝑐 (𝑡)

}
=

{
Q(𝑔)

𝑢 (𝑡)
Q(𝑔)

𝑐 (𝑡)

}
. (64)

From the first block of equations, we see that:

M(𝑔)
𝑢𝑢 ¥q(𝑔)

𝑢 (𝑡) + K(𝑔)
𝑢𝑢 q(𝑔)

𝑢 (𝑡) = Q(𝑔)
𝑢 (𝑡) − M(𝑔)

𝑢𝑐 ¥q(𝑔)
𝑐 (𝑡) − K(𝑔)

𝑢𝑐 q(𝑔)
𝑐 (𝑡), (65)

which is a set of linear, second-order, ordinary differential equations for q(𝑔)
𝑢 (𝑡). If q(𝑔)

𝑐 (𝑡) is
prescribed, then ¥q(𝑔)

𝑐 (𝑡) is also known. The loads applied on the unconstrained DOFs, collected in
Q(𝑔)

𝑢 (𝑡), are also provided as an input, if one is dealing with a direct dynamic problem (i.e. if one
wants to find the motion which results due to applied loads).

𝑦

𝑥

𝑧

𝑏

𝑎

Figure 18: Laminate with four layers, clamped on one of its edges, considered in this
section.

Sales, Thiago P., et al. (2022) Finite Element Method for Structural Integrity Problems pp. 618-665

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 654



Once q(𝑔)
𝑢 (𝑡) is known, then the second block of equations in (64) can be used to assess the

reaction loads, which are required to constrain the DOFs in q(𝑔)
𝑐 (𝑡) accordingly:

Q(𝑔)
𝑐 (𝑡) = M(𝑔)

𝑐𝑢 ¥q(𝑔)
𝑢 (𝑡) + M(𝑔)

𝑐𝑐 ¥q(𝑔)
𝑐 (𝑡) + K(𝑔)

𝑐𝑢 q(𝑔)
𝑢 (𝑡) + K(𝑔)

𝑐𝑐 q(𝑔)
𝑐 (𝑡). (66)

For the clamp boundary condition, the previous equations simplify considerably, to provide:

M(𝑔)
𝑢𝑢 ¥q(𝑔)

𝑢 (𝑡) + K(𝑔)
𝑢𝑢 q(𝑔)

𝑢 (𝑡) = Q(𝑔)
𝑢 (𝑡); (67)

Q(𝑔)
𝑐 (𝑡) = M(𝑔)

𝑐𝑢 ¥q(𝑔)
𝑢 (𝑡) + K(𝑔)

𝑐𝑢 q(𝑔)
𝑢 (𝑡). (68)

Modal analysis The first type of dynamic analysis one might be interested in relates to the
determination of natural frequencies and corresponding vibration mode shapes. These
dynamic properties of a structural system fully characterize its behavior in the absence of
externally applied loads. For obtaining them, one admits Q(𝑔)

𝑢 (𝑡) = 0, and that q(𝑔)
𝑢 (𝑡) =

q̂(𝑔)
𝑢 e𝑠𝑡 , with 𝑠 an undetermined scalar, and q̂(𝑔) a vector of amplitudes. Substituting this
ansatz on the equations of motion, we obtain:[

𝑠2M(𝑔)
𝑢𝑢 + K(𝑔)

𝑢𝑢

]
q̂(𝑔)
𝑢 = 0, (69)

which admits a non-trivial solution (i.e. for which q̂(𝑔)
𝑢 ≠ 0) only if det

[
𝑠2M(𝑔)

𝑢𝑢 + K(𝑔)
𝑢𝑢

]
= 0.

The previous equation, in fact, corresponds to an eigenvalue problem, with eigenvalues
𝑠 = 𝑗𝜔 and eigenvectors q̂(𝑔)

𝑢 , with 𝑗 =
√
−1 the imaginary unit. The natural frequencies are

given by 𝜔, whereas vibration mode shapes are proportional to q̂(𝑔)
𝑢 . Depending on future

analyzes which might be performed, and that rely on the so-called modal superposition
technique, eigenmodes can be normalized, if desired.

Harmonic analysis In this case, one is interested in the steady-state response of the structure
when it is subjected to harmonically-varying loads. We then consider Q(𝑔)

𝑢 (𝑡) = Q̃(𝑔)
𝑢 e 𝑗Ω𝑡 ,

with Q̃(𝑔)
𝑢 representing amplitudes and Ω the forcing frequency. If the system is linear,

as considered here, then steady-state responses must occur with the same frequency as the
one of the excitation, such that q(𝑔)

𝑢 (𝑡) = q̃(𝑔)
𝑢 e 𝑗Ω𝑡 , with q̃(𝑔)

𝑢 potentially being complex, to
account for phase differences between responses and excitation (if damping is considered,
for example). One then obtains:(

−Ω2M(𝑔)
𝑢𝑢 + K(𝑔)

𝑢𝑢

)
q̃(𝑔)
𝑢 = Q̃(𝑔)

𝑢 ⇒ q̃(𝑔)
𝑢 =

(
−Ω2M(𝑔)

𝑢𝑢 + K(𝑔)
𝑢𝑢

)−1
Q̃(𝑔)

𝑢 . (70)

Transient analysis When arbitrary external loads are applied to the structure, or initial conditions
are given and the resulting motion is sought, then the ordinary differential equations of
motion need to be integrated in time. This corresponds to a transient analysis, which
can usually be performed by resorting to numerical integration algorithms, such as the
Newmark method, the Runge-Kutta methods, the Hilber-Hughes-Taylor (HHT) method, etc.
If the integration method is of first order, then the equations of motion (65) can be recast in
the form:

A¤z(𝑡) + Bz(𝑡) = u(𝑡), (71)

with:

A =

[
C(𝑔)
𝑢𝑢 M(𝑔)

𝑢𝑢

M(𝑔)
𝑢𝑢 0

]
; B =

[
K(𝑔)

𝑢𝑢 0
0 −M(𝑔)

𝑢𝑢

]
; z(𝑡) =

{
q(𝑔)
𝑢 (𝑡)
¤q(𝑔)
𝑢 (𝑡)

}
;

u(𝑡) =
{
Q(𝑔)

𝑢 (𝑡) − M(𝑔)
𝑢𝑐 ¥q(𝑔)

𝑐 (𝑡) − C(𝑔)
𝑢𝑐 ¤q(𝑔)

𝑐 (𝑡) − K(𝑔)
𝑢𝑐 q(𝑔)

𝑐 (𝑡)
0

}
, (72)
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which take into account contributions related to viscous damping, through partitions of the
global damping matrix C(𝑔) , seen in the expressions put forward for A and u.
Besides, as discussed in the introduction of this chapter, various strategies can be considered
to reduce computation time and/or alleviate memory allocation demanded by a transient
analysis. One of such strategies, which is known as modal superposition, consists in repre-
senting the unknown solution as a weighted sum of the structure mode shapes. Typically, the
number of wave modes adopted in this setting is much smaller than the original, complete
number of global DOFs of the finite element mesh. Because the number of unknowns gets
reduced, the equations of motion are also projected onto the vector space spanned by the
wave modes used to represent the response, aiming to reduce the error of the approximation.
If the wave modes used to represent the responses are grouped in a matrix T, then one can
write 𝜼(𝑡) = Tq(𝑔)

𝑢 (𝑡), with the size of 𝜼(𝑡) much smaller than the size of q(𝑔)
𝑢 (𝑡). Variables

grouped in 𝜼 are commonly named modal coordinates. In the modal superposition setting,
Eq. (71) remains valid, as long as quantities given in Eq. (72) are redefined according to:

A =

[
TTC(𝑔)

𝑢𝑢 T TTM(𝑔)
𝑢𝑢 T

TTM(𝑔)
𝑢𝑢 T 0

]
; B =

[
TTK(𝑔)

𝑢𝑢 T 0
0 −TTM(𝑔)

𝑢𝑢 T

]
; z(𝑡) =

{
𝜼(𝑡)
¤𝜼(𝑡)

}
;

u(𝑡) =
{

TT
[
Q(𝑔)

𝑢 (𝑡) − M(𝑔)
𝑢𝑐 ¥q(𝑔)

𝑐 (𝑡) − C(𝑔)
𝑢𝑐 ¤q(𝑔)

𝑐 (𝑡) − K(𝑔)
𝑢𝑐 q(𝑔)

𝑐 (𝑡)
]

0

}
. (73)

At this point, one note that the laminate considered in this example has been discretized using
a mesh with 15 × 15 elements. This mesh therefore comprises 256 nodes and 1280 DOFs (with
five DOFs per node, cf. the finite element formulation discussed in section 2.2), prior to enforcing
the clamp constraint. The number of unconstrained DOFs equals 1200.
By performing a modal analysis, one obtained the first 10 natural frequencies of the considered

laminate, which are reported in Tab. 6. The corresponding vibration mode shapes can be visualized
in Fig. 19. Notice that, for all modes, the edge of the laminate at 𝑥 = 0 does not move, in accordance
with the specified boundary condition.

Table 6: Natural frequencies of the laminate considered in this section.

𝑛 1 2 3 4 5 6 7 8 9 10
1

2π𝜔𝑛 [Hz] 6.85 24.9 39.7 65.6 81.6 123.8 137.3 154.3 170.1 241.0

A harmonic analysis is also carried out. The external load is a force acting along 𝑧, with unit
magnitude, ®𝐹 = 1®𝑘 [N], on the node located at 𝑥 = 𝑎, 𝑦 = 𝑏. It is duly incorporated into the
adequate row of Q̃(𝑔)

𝑢 . The response is obtained at the same node, corresponding to its transverse
displacement DOF. The forcing frequency is varied from 0 to 200 Hz, in 800 increments. The
harmonic response is shown in Fig. 20, in the form of a Bode plot.
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Figure 19: Vibration mode shapes (eigenvectors) of the laminate considered in this
section.
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Finally, a result related to a transient analysis is also reported. For this investigation, it has
been assumed that a force ®𝐹 = �̄� (𝑡) ®𝑘 was applied at the node located at 𝑥 = 𝑎, 𝑦 = 0, with the
magnitude �̄� (𝑡) corresponding to a triangular pulse with amplitude 1 N and duration of 20 ms, as
shown in Fig. 21. The initial conditions were assumed to be null. Also, the mode superposition
approach was considered for integrating the equations of motion. The first 30 mode shapes were
used to approximate the unknowns. The largest natural frequency of the former is roughly equal
to 746.4 Hz. It is usually recommended for one to include all modes bellow at least twice the
maximum frequency of interest in the transformation matrix T used in the modal superposition
approach [Craig andKurdila, 2006]. Based on this premise, obtained responses should be relatively
accurate for as long as the frequency content of the excitation load remains below, say, 373 Hz.
The spectrum of �̄� (𝑡) illustrated in Fig. 21 indicates that this is not entirely true – so obtained
results may not be completely correct.
For computing the transient response, a discrete viscous damper was also included in the

model. It was placed between the node at 𝑥 = 8𝑎/15 � 153.07 mm, 𝑦 = 8𝑏/15 � 153.07 mm
(close to the center of the laminate) and the ground. Also, the damper was assumed to dissipate
energy based on the transverse motion of the corresponding node of the mesh, based on a viscous
damping coefficient equal to 0.5 N s m−1. The damping matrix C(𝑔) therefore is almost entirely
zero, except for the diagonal entry related to the transverse displacement 𝑤 DOF of the node to
which the damper is attached.
A single response of the laminate due to the transient excitation load is depicted here, in Fig. 22.

It corresponds to the transverse displacement of the node located at 𝑥 = 𝑎, 𝑦 = 𝑏. As one can see,
some vibration induced by the external load gets mitigated by the damper. The laminate continues
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Figure 20: Harmonic response (transverse displacement DOF) at the driving point
𝒙 = 𝒂, 𝒚 = 𝒃 of the laminate considered in this section.
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Figure 21: Time history (left) and spectrum (right) of the force amplitude �̄� adopted
for the transient analysis of the laminate considered in this section.
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to vibrate somewhat, however, due to the damper not being able to adequately attenuate motion
related to particular wave modes of the structure. A low decay rate can still be seen, even for such
condition. We remark that the time integration algorithm used to obtain the result shown in Fig. 22
should not be responsible for the observed damping.
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Figure 22: Transverse displacement of the point at 𝒙 = 𝒂, 𝒚 = 𝒃 of the laminate
considered in this section, when it is subjected to the transverse force given in Fig. 21
at 𝒙 = 𝒂, 𝒚 = 0.

4 Parameterization of FE models for model updating and damage identification

Most often, the finite element modeling of complex engineering systems involves uncertainties
affecting some physical or geometrical parameters (material parameters, geometrical dimensions,
etc.). Other sources of uncertainties are boundary conditions and internal joints, the properties of
which, due to the presence of contact, are difficult to characterize.
Hence, to reduce the errors involved in FE modeling, and obtain models sufficiently accurate

to ensure reliable predictions, one strategy consists in performing the so-called model updating of
an initial FE model. This can be achieved by performing experimental tests on the real structure
(when it is available) and then introducing corrections in the FE model in such a way to minimize,
as much as possible, the differences between a set of experimental responses and the corresponding
model predictions. For this goal, since it is not reasonable to adjust the properties of each element
of the mesh individually, it is convenient to assume the structure divided in a certain number of
regions (macro-elements), and assign correction factors to the stiffness and/or inertia of each of
these regions. Such an approach enables to consider modeling errors in terms of a reduced number
of parameters, associated to the regions assumed to concentrate the dominant modeling errors. The
model updating problem can thus be formulated as an optimization problem in which the objective
function represents the difference between experimental responses and model predictions, and the
design variables are the correction factors to be applied to the macro-elements of the model.
Considering problems in the field of structural dynamics, we recall the global equations of

motion in the form:

M(𝑔) ¥q(𝑔) (𝑡) + K(𝑔)q(𝑔) (𝑡) = Q(𝑔)
nc (𝑡) + Q(𝑔)

𝑏 (𝑡) + Q(𝑔)
𝑠 (𝑡). (74)

Assuming the structure divided in 𝑝 regions, the mass and stiffness correction matrices to be
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introduced in the updated FE model can be represented as follows:

ΔM(𝑔) =
𝑅𝑚⋃
𝑟=1

𝑚𝑟M(𝑟) , (75a)

ΔK(𝑔) =
𝑅𝑘⋃
𝑟=1

𝑘𝑟K(𝑟) , (75b)

where M(𝑟) and K(𝑟) are, respectively, the mass and stiffness contributions of region 𝑟 to the
corresponding global matrices, 𝑚𝑟 and 𝑘𝑟 are the associated correction parameters, and symbol

⋃
indicates the operation of matrix assembling. Also, 𝑅𝑚 and 𝑅𝑘 stand for the number of different
regions which are considered for correcting the mass and stiffness matrices, respectively.
A similar approach can be used for model-based damage identification, in which damage is

assumed to be represented by error indicators, assigned to the probable damaged regions of the
structure. The damage identification problem then consists in determining the set of damage
indicators which makes the FE model to reproduce the experimentally measured responses of the
damaged structure.
Different strategies for FE model updating and damage identification based on structural

dynamic responses have been developed [Friswell and Mottershead, 1995]. In the next section, a
classical approach, based on the sensitivity of eigenvalues and eigenvectors, is described.

5 Model updating based on the sensitivity of eigenvalues and eigenvectors

Neglecting damping, and assuming that 𝑆 pairs of experimental eigensolutions – natural frequen-
cies and natural vibration modes, (𝜔 (exp)

𝑠 ∈ R, X(exp)
𝑠 ∈ R𝑐, 𝑠 = 1, . . . , 𝑆) – are available, the

approach starts by expressing the eigensolutions as linearized Taylor series expansions about the
corresponding ones obtained from the FE model (_ (𝑚)

𝑠 = 𝜔 (𝑚)
𝑠

2
, X(𝑚)

𝑠 , 𝑠 = 1, . . . , 𝑆):

_
(exp)
𝑠 = _ (𝑚)

𝑠 +
∑︁𝑅𝑚

𝑟=1

𝜕_ (𝑚)
𝑟

𝜕𝑚𝑟
Δ𝑚𝑟 +

∑︁𝑅𝑘

𝑟=1

𝜕_ (𝑚)
𝑟

𝜕𝑘𝑟
Δ𝑘𝑟 , 𝑠 = 1, 2, . . . , 𝑆, (76a)

X(exp)
𝑠 = X(𝑚)

𝑠 +
∑︁𝑅𝑚

𝑟=1

𝜕X(𝑚)
𝑟

𝜕𝑚𝑟
Δ𝑚𝑟 +

∑︁𝑅𝑘

𝑟=1

𝜕X(𝑚)
𝑟

𝜕𝑘𝑟
Δ𝑘𝑟 , 𝑠 = 1, 2, . . . , 𝑆. (76b)

It should be explained that, in the equations above, X(exp)
𝑠 ∈ R𝑐, for 𝑠 = 1, 2, . . . , 𝑆, are sub-

eigenvectors formed only by the 𝑐 components identified during experimental tests (e.g. from
experimental modal analysis), while X(𝑚)

𝑠 ∈ R𝑐, for 𝑠 = 1, 2, . . . , 𝑆 are the counterparts provided
by the FE model.
Since the parameters𝑚𝑟 and 𝑘𝑟 intervene nonlinearly in the eigensolutions, their determination

has to be done iteratively by solving Eqs. (76) for the increments Δ𝑚𝑟 and Δ𝑘𝑟 , starting from initial
guessed values. In each iteration, the following linear system of equations has to be solved:




Δ_1

...

Δ_𝑆

ΔX1

...

ΔX𝑆




=



𝜕_
(𝑚)
1

𝜕𝑚1
· · · 𝜕_

(𝑚)
1

𝜕𝑚𝑅𝑚

𝜕_
(𝑚)
1

𝜕𝑘1
· · · 𝜕_

(𝑚)
1

𝜕𝑘𝑅𝑘

...
. . .

...
...

. . .
...

𝜕_
(𝑚)
𝑆

𝜕𝑚1
· · · 𝜕_

(𝑚)
𝑆

𝜕𝑚𝑅𝑚

𝜕_
(𝑚)
𝑆

𝜕𝑘1
· · · 𝜕_

(𝑚)
𝑆

𝜕𝑘𝑅𝑘

𝜕X(𝑚)
1

𝜕𝑚1
· · · 𝜕X(𝑚)

1
𝜕𝑚𝑅𝑚

𝜕X(𝑚)
1

𝜕𝑘1
· · · 𝜕X(𝑚)

1
𝜕𝑘𝑅𝑘

...
. . .

...
. . .

...
...

𝜕X(𝑚)
𝑆

𝜕𝑚1
· · · 𝜕X(𝑚)

𝑆

𝜕𝑚𝑅

𝜕X(𝑚)
𝑆

𝜕𝑘1
· · · 𝜕X(𝑚)

𝑆

𝜕𝑘𝑅𝑘






Δ𝑚1

...

Δ𝑚𝑅𝑚

Δ𝑘1

...

Δ𝑘𝑅𝑘




(77)
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or
ΔL = S ΔP. (78)

As long as the number of equations (𝑆(1+ 𝑐)) is larger than the number of unknowns (𝑅𝑚+𝑅𝑘)
and matrix S is full-rank, the system of equations has a unique least-square solution:

ΔP =
(
STS

)−1
STΔL. (79)

Matrix S is formed by the sensitivities of the eigensolutions with respect to the correction
parameters. As stated in [Friswell and Mottershead, 1995], different methods have been devised
to compute those sensitivities.
Given the undamped eigenvalue problem associated to Eq. (74),[

K(𝑔) − _𝑠M(𝑔)
]

X𝑠 = 0, (80)

the derivation with respect to a given mass 𝑚𝑟 or stiffness correction parameter 𝑘𝑟 leads, respec-
tively, to

[
K(𝑔) − _𝑠M(𝑔)

] 𝜕X𝑠

𝜕𝑚𝑟
= −

[
_𝑠

𝜕M(𝑔)

𝜕𝑚𝑟
+ 𝜕_𝑠
𝜕𝑚𝑟

M(𝑔)
]

X𝑠, 𝑠 = 1, 2, . . . , 𝑆, (81a)

[
K(𝑔) − _𝑠M(𝑔)

] 𝜕X𝑠

𝜕𝑘𝑟
=

[
𝜕K(𝑔)

𝜕𝑘𝑟
− 𝜕_𝑠
𝜕𝑘𝑟

M(𝑔)
]

X𝑠, 𝑠 = 1, 2, . . . , 𝑆. (81b)

Assuming that the derivative of the 𝑠-th eigenvector can be projected on the basis formed by a
set of 𝑄 eigenvectors, one writes:

𝜕X𝑠

𝜕𝑚𝑟
=
∑︁𝑄

𝑞=1
X𝑞𝑐

𝑟
𝑠𝑞 , (82a)

𝜕X𝑠

𝜕𝑘𝑟
=
∑︁𝑄

𝑞=1
X𝑞𝑑

𝑟
𝑠𝑞 . (82b)

Associating Eqs. (81) and (82), pre-multiplying both sides of the resulting equations by the
eigenvector X𝑠, which is assumed to be normalized to unit modal mass, one obtains the following
expressions for the sensitivity of the 𝑟-th eigenvalue with respect to themass and stiffness correction
parameters, respectively:

𝜕_𝑠
𝜕𝑚𝑟

= −_𝑠XT
𝑠

𝜕M(𝑔)

𝜕𝑚𝑟
X𝑠 = −_𝑠XT

𝑠M(𝑟)X𝑠, (83a)

𝜕_𝑠
𝜕𝑘𝑟

= XT
𝑠

𝜕K(𝑔)

𝜕𝑘𝑟
X𝑠 = XT

𝑠K(𝑟)X𝑠 . (83b)

Regarding Eqs. (83), it is worth pointing-out that the computation of the sensitivity of the 𝑠-th
eigenvalue is straightforward and depends on the 𝑠-th eigenvector, only.
The computation of the sensitivities of the eigenvectors is somewhat more involved. The

fundamental idea is to determine the expressions for the coefficients 𝑐𝑟𝑠𝑞 and 𝑑𝑟𝑠𝑞 in Eqs. (82).
This is done by first deriving the normalization equations for the eigenvectors with respect to the
correction parameters, as indicated next:

XT
𝑠M(𝑔)X𝑠 = 1 ⇒ XT

𝑠

𝜕M(𝑔)

𝜕𝑚𝑟
X𝑠 + 2XT

𝑠M(𝑔) 𝜕X𝑠

𝜕𝑚𝑟
= 0, (84a)

XT
𝑠K(𝑔)X𝑠 = _𝑠 ⇒ XT

𝑠

𝜕K(𝑔)

𝜕𝑘𝑟
X𝑠 + 2XT

𝑠K(𝑔) 𝜕X𝑠

𝜕𝑘𝑟
=

𝜕_𝑠
𝜕𝑘𝑟

. (84b)
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Making use of Eqs. (82) and (83) and the orthogonality relations of the eigenvectors, one gets:

𝑐𝑟𝑠𝑠 = −1
2

X𝑇
𝑠 M(𝑟)X𝑠, (85a)

𝑑𝑟𝑠𝑠 = 0. (85b)

The determination of the remaining coefficients 𝑐𝑟𝑞𝑠 and 𝑑𝑟𝑞𝑠 with 𝑟 ≠ 𝑠 requires the use of
Eqs. (81) in combination with Eqs. (82) and, again, the orthogonality relations of the eigenvectors.
This procedure leads to the following expressions:

𝑐𝑟𝑠𝑞 = _𝑠
XT
𝑞M(𝑟)X𝑠

_𝑞 − _𝑠
, 𝑟 ≠ 𝑠, (86a)

𝑑𝑟𝑠𝑞 = −
XT
𝑞K(𝑟)X𝑠

_𝑞 − _𝑠
, 𝑟 ≠ 𝑠. (86b)

Regarding the method presented above, it is worth highlighting its following features:

a) it requires one-to-one pairing between the natural frequencies and natural vibration modes
obtained experimentally with those computed from the FE model. This can be a difficult
task, especially when the modeling errors are large enough so as to render direct comparison
ineffective for pairing. Hence, a number of numerical techniques have been devised to assist
the comparison between the two sets of eigensolutions, such as the Modal Assurance
Criterion (MAC) and the Coordinate Modal Assurance Criterion (COMAC) [e Silva and
Maia, 2012];

b) as the components of the experimental and FE eigenvectors are directly paired, the method
does not require the condensation of the FE model to ensure dimensional compatibility of
both sets of eigenvectors.

c) it follows a fully deterministic approach, which means that random noise affecting the
measured quantities or modeling errors are not considered. However, it is possible to
formulate the model updating in a stochastic framework, where various estimators, can be
used to deal with random uncertainties [Fonseca et al., 2005, Mares et al., 2006, Simoen
et al., 2013].

6 Final remarks

The finite element method is, undoubtedly, a very powerful method, which has been playing
a significant role in scientific and technological developments lately. However, in the authors’
opinion, users must be fully aware, not only of its capabilities, but also of its limitations. In fact,
it is widely recognized that modeling of complex systems is a combination of science and art,
meaning that it is never a fully automated procedure, requiring, from the user: a) knowledge of the
physics underlying the problem at hand, necessary to make adequate modeling choices and correct
interpretation of the results; b) knowledge of the various resources available in commercial packages
(in case these are used), necessary for the construction of representative, accurate and cost-effective
models for the problem at hand; c) expert judgement, obtained from previous experience gathered
in the modeling of similar problems.
It should be mentioned that, in many cases of scientific or industrial interest, FE models are

constructed for use in combination with other numerical analyses, in broader frameworks. As
relevant examples, one can cite:
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• Structural optimization: a finite elementmodel of a given structure is coupled to numerical
optimization routines aiming at improving one or a set of desired responses or structural
characteristics. In this case, the degree to which the improvement is obtained is quantified
by one or various cost functions or objective functions, and the structural features to be
modified form a set of design variables. Most often, the optimization problem is subject
to the so-called constraints, which limit the range of possible solutions (design space).
Generally, optimization problems must be solved iteratively, the FE model being used to
compute the value of the objective and other necessary quantities at each iteration;

• Uncertainty quantification: a single FE model of a given structure is inherently, a deter-
ministic model. As the modeling of complex systems most frequently involve uncertainties
affecting external loads and physical and geometrical characteristics of the structure, it is
of utmost importance, in many situations, to assess how those uncertainties can influence
the responses predicted by the FE model. In a probabilistic scope, the immediate assess-
ment can be made by the Monte Carlo method, which consists in generating a typically
large number of samples of the assumed random variables and, for each sample, compute
a corresponding response sample. These later can then be used to compute statistics of the
structural responses, which, to have ensured statistical confidence, require a large number
of samples and, as a result, of FE response evaluations. Other relevant problems related to
uncertainty quantification are the assessment of structural reliability [Ditlevsen andMadsen,
1996] and robust optimization [Ben-Tal et al., 2009].

• Damage identification: this problem can be included in the more general scope of model-
based parameter identification problems. More specifically, it can be regarded as a dual
problem of model updating, described in section 5, as long as the correction coefficients are
interpreted as damage indicators [Friswell, 2007, Fan and Qiao, 2011].

• Sensitivity analysis: this type of numerical analysis aims at assessing the degrees to which
the structural responses of interest are influenced by variations of certain physical and/or
geometrical structural characteristics [Saltelli et al., 2008]. This analysis is highly useful
in structural design and also in other applications, such as structural optimization and
uncertainty propagation.
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Abstract 

 In this chapter a short description of finite element method applied to linear 

structural dynamics is initially described. Modal analysis, modal superposition 

method, and numerical methods for the eigenvalue and eigenvector problem are 

described. Finally, a sensitivity analysis of free vibration problem applied to plane 

frames is performed to study the sensitivity of loss of stiffness on the natural frequencies 

and corresponding vibration modes. 

Keywords: Structural dynamics, finite element method, sensitivity analysis, eigenvalue 

problem 

1 Introduction 

Structural dynamics is a research area focused on the analysis of the behavior of structural 

members subjected to dynamic loads, responsible for generating a response that includes the 

emergence of accelerations and velocities, in addition to displacements, all varying in time. 

Dynamic loads originating from several factors (people, wind, sea waves, vehicle traffic, 

earthquakes and explosions, among others) are characterized by having their magnitude, 

direction and application point varying in time. Applications of structural dynamics can be 

widely found in several engineering areas, such as: aerospace, automotive, mechanical and 

civil engineering. It is worth mentioning that the principles and solution techniques are the 

same, despite the variety of applications (Figure 1).  
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Figure 1 – Finite Element Model of the Car Structure (Hemez & Pagnacco [2000]) 

The importance of this kind of analysis is supported by the occurrence of structural failures 

caused by excessive dynamic response, which can result not only in impairing the 

functioning of machines and equipment, in economic damage due to the structural collapse, 

but also in the inestimable loss of human lives. 

Structural dynamics has a vast literature available and several good textbooks. (Paz & Kim  

[2019], Cook et al [1989]; Clough & Penzien [1993], Chopra [1995], Craig & Kurdila 

[2006], Tedesco et al [1998], Rao [2011]). The problems studied in this area include, among 

others, two broad categories: obtaining frequencies and associated vibration modes and 

analyzing the response in the time domain. 

The Finite Element Method (FEM) was originally conceived by Clough in the 60s (Clough 

[1960]), currently it is a computational tool consecrated not only in structural analysis, but 

also in solving problems in the areas of fluid dynamics and thermodynamics, among others. 

It is a numerical procedure to solve engineering boundary value problems that are very 

complex to solve via classical analytical methods. This complexity is present for example 

on non trivial geometrical configurations, material properties or loading conditions. The 

philosophy of the method is based on discretizing the continuum into a finite number of 

elements interconnected at certain points called nodes or joints, building a system mesh. 

Formulating the boundary value problem results in a system of algebraic equations. The idea 

is that the solution of the various appropriately selected elements falls into a solution that 

converges to the exact solution of the global system as the size of the elements is reduced. 

The application of FEM to the structural dynamic analysis is made by establishing the 

equations of motion for a finite element given, then setting up the global equations of motion 

of the system from the chosen discretized mesh. The problem lies in the solution of the 

resulting system of ordinary differential equations for the case of undamped free vibrations 

that provide natural frequencies and associated modes of vibration. Additionally, the 

solution of the forced vibration problem will result in the response of the structure in the 

time domain. 

In this chapter, a short description of finite element modelling will be described, then modal 

analysis and orthogonality of modes will be considered. Description of different methods to 

solve the eigenvalue and eigenvector problem is considered, as well as modal superposition 
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method. Finally, sensitivity analysis is performed to study the effect of loss of stiffness in 

the system natural frequencies and associated mode vibrations.  

2 Modelling in Finite Element 

To perform a dynamic analysis using the finite element method, the system of dynamic 

equilibrium equations should be assembled. For this, the element time dependent field 

displacements vector �̂�(𝑡, 𝑥1, 𝑥2, 𝑥3)(𝑒), in x1, x2, and x3 directions, is composed by 

displacements u1(t,x1,x2,x3), u2(t,x1,x2,x3) and u3(t,x1,x2,x3), respectively. This 

displacements vector can be described as a linear combination of time dependent nodal 

displacements u(t) and shape functions N(x1,x2,x3) given by (Busby and Staab [2018], 

Bathe [1996] and Rao [2004]): 

�̂�(𝑡, 𝑥1, 𝑥2, 𝑥3)(𝑒) = {

𝑢1(𝑡, 𝑥1, 𝑥2, 𝑥3)
𝑢2(𝑡, 𝑥1, 𝑥2, 𝑥3)
𝑢3(𝑡, 𝑥1, 𝑥2, 𝑥3)

}

(𝑒)

= 𝐍(𝑥1, 𝑥2, 𝑥3)𝐮(𝑡)  (1) 

Considering both small displacements and small rotations and linear elastic material, the 

strain-displacements, and stress-strain relations, in index notation, are given by: 

𝜀𝑖𝑗 =
1

2
(
∂𝑢𝑖

∂𝑥𝑗
+

∂𝑢𝑗

∂𝑥𝑖
)  =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)   𝑖, 𝑗 =  1,2,3 (2) 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙     i,j,k,l = 1,2,3 (3) 

where ij are the linear strain components, ij are the stress components and Cijkl is the 

fourth order constitutive tensor.  

Substituting Eq (1) into Eq. (2), the finite element strain-stress relations can be given as: 

𝜺 = 𝐃𝐍(𝑥1, 𝑥2, 𝑥3)𝐮(𝑡)𝑒 = 𝐁𝐮(𝑡)𝑒 (4) 

where D is the derivatives matrix and B is the deformation matrix. 

Substituting Eq. (4) in Eq. (3) the stress-strain relations result as: 

𝝈 = 𝐂𝜺 = 𝐂𝐁𝐮(𝑡)𝑒 (5) 

where C is the constitutive matrix. 

The elastic strain energy of a finite element can be written as: 

U(𝑒) =
1

2
∭  

𝑉(𝑒)

𝜺𝑇𝝈𝑑𝑉 (6) 

The total work of external forces is given by: 

W(𝑒) = ∭ �̂�(𝑒)
𝑇 𝐛

𝑉(𝑒)

 𝑑𝑉 + ∬  
𝑆𝑡

(𝑒)
  �̂�(𝑒)

𝑇 𝐭 𝑑𝑆 + ∑�̂�(𝑒)
𝑇 𝐅𝒊

𝑁

𝑖=1

  (7) 
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Where vector b represents the body forces of the finite element, vector t represents the 

surface forces acting on finite element and Fi represents the concentrated nodal forces 

acting on the finite element. 

Then, the potential energy of a finite element can be written as: 

Π(𝑒) = 𝑈 − 𝑊 

Π(𝑒) =
1

2
∭  

𝑉(𝑒)

𝜺𝑇𝝈𝑑𝑉 − ∭  �̂�(𝑒)
𝑇 𝐛

𝑉(𝑒)
 𝑑𝑉 − ∬  

𝑆𝑡
(𝑒)

  �̂�(𝑒)
𝑇 𝐭 𝑑𝑆 − ∑�̂�(𝑒)

𝑇 𝐅𝒊

𝑁

𝑖=1

 
(8) 

Substituting Eq. (4) and Eq. (5) in Eq. (8), the potential energy can be written as: 

Π(𝑒) =
1

2
𝐮T ∭  𝐁T𝐂𝐁 𝑑𝑉

𝑉(𝑒)

𝐮

− 𝐮T (∭  𝐍T𝐛 𝑑𝑉
𝑉(𝑒)

− ∬  𝐍T𝐭𝑑𝑆
𝑆𝑡

(𝑒)
− ∑𝐍T𝐅𝒊

𝑁

𝑖=1

) 

(9) 

and simplifying: 

Π(𝑒) =
1

2
𝐮T𝐤𝐮 − 𝐮T𝐟 (10) 

Where the finite element stiffness matrix is given by: 

𝐤 = ∭  𝐁T𝐂𝐁 𝑑𝑉
𝑉(𝑒)

 (11) 

And the finite element load vector is given by: 

𝐟 = ∭  𝐍T𝐛 𝑑𝑉
𝑉(𝑒)

+ ∬  𝐍T𝐭𝑑𝑆
𝑆𝑡

(𝑒)
+ ∑𝐍T𝐅𝒊

𝑁

𝑖=1

 (12) 

For a finite element, the kinetic energy can be written as: 

𝑇(𝑒) =
1

2
∭  𝜌�̇̂�(𝑒)

𝑇 �̇̂�(𝑒) 𝑑𝑉
𝑉(𝑒)

 (13) 

Substituting Eq. (1) in Eq. (13), the kinetic energy of a finite element results in: 

𝑇(𝑒) =
1

2
∭  𝜌�̇�𝑇𝐍𝑇𝐍�̇� 𝑑𝑉

𝑉(𝑒)
= 

1

2
�̇�𝑇 [∭  𝜌𝐍𝑇𝐍 𝑑𝑉

𝑉(𝑒)
] �̇� =

1

2
�̇�𝑇𝐦�̇� (14) 

Where m is the mass matrix of the finite element given by 

𝐦 = ∭  𝜌𝐍𝑇𝐍 𝑑𝑉
𝑉(𝑒)

 (15) 

Matrix m is known as consistent matrix because it is a full matrix containing the coupling 

of inertial contribution of all nodal displacements. However, it is possible to consider a 
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lumped mass matrix where there is not coupling between inertial contribution of nodal 

displacements, and it is a diagonal mass matrix and every term in diagonal is associated 

to a concentrated mass in the direction of each nodal displacement. 

Energy dissipation is a non-conservative force and can be considered in several ways, one 

of the most common is to consider that damping is proportional to velocity of 

displacements, known as viscous damping. 

The energy dissipation of a finite element can be written as: 

𝑅(𝑒) =
1

2
∭  𝜉�̇̂�(𝑒)

𝑇 �̇̂�(𝑒) 𝑑𝑉
𝑉(𝑒)

 (16) 

Where 𝜉is the distributed damping coefficient. 

Substituting Eq. (1) in Eq. (17), the damping of a finite element is given by: 

𝑅(𝑒) =
1

2
∭  𝜉�̇�𝑇𝐍𝑇𝐍�̇� 𝑑𝑉

𝑉(𝑒)
=

1

2
�̇�𝑇 ∭  𝜉𝐍𝑇𝐍 𝑑𝑉

𝑉(𝑒)
�̇� =

1

2
�̇�𝑇𝐜�̇� (17) 

Where the damping matrix of a finite element is: 

𝐜 = ∭  
𝑉(𝑒)

𝜉𝐍𝑇𝐍 𝑑𝑉 (18) 

The global mass (M), stiffness (K) and damping (C) matrix, as well as the global vector 

loads are assembled by adding or combining the contribution of all elements that are 

connected to a specific node. This matrix can be written as: 

𝐌 = ∑  

𝑁𝑒

𝑒=1

𝐦 (19) 

𝐊 = ∑  

𝑁𝑒

𝑒=1

𝐤 (20) 

𝐂 = ∑  

𝑁𝑒

𝑒=1

𝐜 (21) 

𝐅 = ∑  

𝑁𝑒

𝑒=1

𝐟 (22) 

Finally, the system of coupled ordinary differential dynamic equilibrium equations is 

given by: 

𝐌�̈� + 𝐂�̇� + 𝐊𝐮 = 𝐅 (23) 

Before solving it, the boundary conditions and initial conditions should be applied. 

Equations (23) can be solved directly or by using the modal superposition method to 

uncouple the system of equations and some direct numerical integration method can be 

considered (Newmark, Central difference, Runge Kutta methods) (Bathe and Wilson 

[1976]). 
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3 Modal Analysis 

A modal analysis of a system of multiple degrees of freedom (MDOF) provides the 

system characteristic features which are its natural vibration frequencies and associated 

modes of vibration. These properties are intrinsic to the system and are related to its 

material and geometry. 

The modal analysis can be performed experimentally through tests where the system is 

monitored through sensors, such as accelerometers, and undergoes an external 

disturbance as a source of excitation. 

Natural frequencies and associated vibration modes can still be determined numerically. 

The solution of the free vibration problem provides these characteristics of the system. 

There is no action by outside forces and the movement is governed only by the initial 

conditions. 

An undamped MDOF system subjected to free vibration is governed by the following 

equations of motion: 

𝐌�̈� + 𝐊𝐮 = 𝟎 (24) 

The system is subjected to the following set of initial conditions: 

𝐮 = 𝐮(0);   �̇� = �̇�(0) (25) 

This system has a solution in the form: 

𝐮 = 𝛟sin (𝜔𝑡 + 𝜙) (26) 

Substituting Eq. (26) into Eq. (24), we obtain: 

(𝐊 − 𝜔2𝐌)𝛟 = 𝟎 (27) 

This problem has a trivial solution �̃� = 𝟎 and only has non-trivial solutions if: 

(𝐊 − 𝜔2𝐌) = 𝟎 (28) 

Eq. (28) is known as the characteristic equation and the roots of the characteristic equation 

determine the n natural frequencies 𝜔𝑛 (eigenvalues). For each 𝜔𝑛 there is a 

corresponding 𝛟 vector (eigenvector). The eigenvectors determine the natural modes of 

vibration 𝜙𝑛. 

The modal matrix Φ is constructed with n columns, where each column corresponds to a 

mode of vibration of the system. The fundamental mode is associated with the lowest 

frequency, meanwhile the other modes are called harmonics and the movement of the 

system is given by the superposition of the harmonics.  

 

3.1 Modal orthogonality 

The vibration modes of a MDOF system have a very important property called 

orthogonality. The orthogonality of the eigenvector system is with respect to the mass 

matrix M and the stiffness matrix K. This property constitutes the basis for one of the 

most important methods of solving dynamical systems: the Modal Superposition Method. 
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Rewriting Eq. (27) in the form 

𝑲𝝓 = 𝜔2𝑴𝝓 (29) 

Considering two pairs of different solutions (𝜔𝑟
2, 𝝓𝑟 e 𝜔𝑠

2, 𝝓𝑠), eq. (29) can be rewritten 

as: 

𝑲𝝓𝑟 = 𝜔𝑟
2𝑴𝝓𝑟 (30) 

𝑲𝝓𝑠 = 𝜔𝑠
2𝑴𝝓𝑠 (31) 

Pre-multiplying both sides of eq. (30) by 𝝓𝑠
𝑻 then: 

𝝓𝑠
𝑻𝑲𝝓𝑟 = 𝜔𝑟

2𝝓𝑠
𝑻𝑴𝝓𝑟 (32) 

Similarly for equation (31) multiplying both sides by 𝝓𝑟
𝑻 comes to 

𝝓𝑟
𝑻𝑲𝝓𝑠 = 𝜔𝑠

2𝝓𝑟
𝑻𝑴𝝓𝑠 (33) 

As the matrices M and K are symmetric, then K = KT and M = MT. Therefore 

equation (33) can be transposed and rewritten as 

𝝓𝑠
𝑻𝑲𝝓𝑟 = 𝜔𝑠

2𝝓𝑠
𝑻𝑴𝝓𝑟 (34) 

Equation (32) can be subtracted from eq. (33) provides 

(𝜔𝑟
2 − 𝜔𝑠

2)𝝓𝑠
𝑇𝑴𝝓𝑟 = 0 (35) 

For modes with different frequencies 𝜔𝑟 ≠ 𝜔𝑠it is necessary that 

𝝓𝑠
𝑇𝑴𝝓𝒓 = 0 (36) 

The r-th and s-th modes are said to be orthogonal to the mass matrix. Equation (36) can 

be substituted into Equation (32) to show that the r-th mode and the s-th mode are also 

orthogonal with respect to the stiffness matrix: 

𝝓𝑠
𝑇𝑲𝝓𝒓 = 0 (37) 

These mode orthogonality conditions are the essence of the Modal Superposition Method. 

 

3.2 Mode normalization 

The vibration amplitudes in a mode are just relative values that can be scaled or 

normalized to some extent, as a matter of choice. A convenient form of normalization for 

a general system is: 

𝝓𝑖𝑗
′ =

𝝓𝒊𝒋

√𝝓𝑖
𝑇𝑴𝝓𝑗

 
(38) 

i= i-th element of the eigenvector 

j= jth vibration mode 

For a system with a diagonal mass matrix 

𝝓𝑖𝑗
′ =

𝝓𝑖𝑗

√∑  𝑛
𝑘=1 𝑚𝑘𝜙𝑘𝑗

2

 
(39) 
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𝝓𝑖𝑗
′ =

𝝓𝑖𝑗

√𝝓𝑗
⊤𝑴𝝓𝑗

 
(40) 

For normalized eigenvectors the orthogonality condition is given by: 

𝝓′𝑖
𝑇𝑴𝝓𝑗 = 0 with  𝑖 ≠ 𝑗

= 1 with  𝑖 = 𝑗
 (41) 

Another orthogonality condition is obtained by writing Equation (29) for the normalized 

mode j as: 

𝑲𝝓′𝑗 = 𝜔𝑗
2𝑴𝝓′𝑗 (42) 

Pre-multiplying eq. (42) by 𝝓𝑖
𝑇we obtain the following orthogonality condition between 

the eigenvectors 

𝝓′𝑖
𝑇𝑲𝝓𝑗 = 0  with  𝑖 ≠ 𝑗

= 𝜔𝑗
2 with  𝑖 = 𝑗

 (43) 

 

4 Numerical Solution for Natural Frequencies and Vibration Modes 

A critical step in the dynamic analysis of a MDOF system is the solution or determination 

of the corresponding natural frequencies and associated vibration modes. Especially in 

the case of an analysis by Modal Superposition. 

For minor problems the solution to this problem lies in the determination of a 

characteristic polynomial. For high-order MDOF systems, extracting these roots 

manually becomes prohibitive. 

Over the years, several numerical techniques have been developed to solve this type of 

problem. They are essentially iterative techniques and can mean a considerable 

computational effort. The present mathematical problem is given by: 

𝑲𝜱=𝝀𝑴𝝓 (44) 

where the eigenvalues are 𝜆𝑟 = 𝜔2 and the eigenvectors are 𝝓𝑟. 

The response of a MDOF system with a large number of degrees of freedom is generally 

restricted to a relatively small subset of the system's lowest vibration modes. Thus, it is 

only necessary to solve for a number p of eigenvalue / eigenvector sets. 

 

Most solution techniques for this type of problem can be classified into 3 basic categories: 

• Vector iteration methods 

• Transformation methods 

• Polynomial iteration methods. 

 

The most common eigenproblems that are encountered in general scientific analysis are 

standard eigenproblems, and most other eigenproblems can be reduced to a standard form. 
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For this reason, the solution of standard eigenproblems has attracted much attention in 

numerical analysis, and many solution algorithms are available. 

When the mode superposition method is performed, the computational effort relays on 

obtaining natural frequencies and associated  vibration modes. Effective numerical 

algorithms for this calculation have been widely studied since the exact solution of this 

type of problem is prohibitive when the system order is large. 

In the literature  it can be found several eigenvalue/eigenvector solution algorithms. They 

are generally formulated for ordinary matrices. When working on a finite element method 

perspective the matrices involved have peculiarities, such as being banded, positive 

definite among others. It is recommendable that the solution techniques benefit from these 

properties searching a more economic solution. 

The approximate solution techniques have primarily been developed to calculate the 

lowest eigenvalues and corresponding eigenvectors in the Eq. (44), when the order of the 

system is large. Most programs use exact solution techniques in the analysis of small-

order systems. However, the problem of calculating the few lowest eigenpairs of 

relatively large-order systems is very important and is encountered in all branches of 

structural engineering. In the following sections we present three major techniques, all of 

which, in fact, can be considered to be a Ritz analysis. 

Consider that we have mass and stiffness matrices, K and M, definite positives. The 

consistent or lumped mass matrix has all the elements outside of the diagonal different 

from zero.  The eigenvalue calculated by Ritz analysis is an upper limit of the system 

exact eigenvalue. The associated error is not taken into account. This error will depend 

on the Ritz vector base considered, since the eigenvector 𝝓 is a linear combination of this 

vector base.  

The Ritz procedure is a very general one, various analysis methods known by different 

names can be classified as Ritz analysis. One of the most important aspects in the analysis 

is the base vector choice. 

All the methods are iterative by nature since they try to solve the eigenvalue problem that 

is equivalent to calculate the roots of the characteristic polynomial 𝑃(𝜆) that has the same 

order of the mass and stiffness matrices. There is no exact solution to polynomials with 

order higher than four, so it is necessary to perform iterative techniques. 

What can be done before the iterative method is to transform K and M in a way to allow 

a more economic computational effort, one example is the static condensation technique. 

There is no such as an unique algorithm that gives an efficient solution. The method 

accuracy depends considerably on two factors: reliability and computational effort. 

 

4.1 Vector iteration methods 

The philosophy of this family method is to satisfy the equation (44) by operating directly 

on it. It is assumed a vector x1 for 𝝓, and assume the associated eigenvalue 𝝀 equal to 1. 

Equation (44) can be rewritten as 

𝐑1 = 𝟏𝑴𝐱1 (45) 
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R1 is not yet determined since not necessarily an eigenvector. There is an equilibrium 

equation given by 

𝐊𝐱2 = 𝐑1, 𝐱2 ≠ 𝐱1 (46) 

x2 is the displacement solution to the applied forces R1. It means to be a better 

approximation to the eigenvector than x2, repeating the procedure several times it can be 

obtained a superior approximation to 𝝓.  

This methodology is the way of work basically of inverse iteration. This procedure has a 

good performance on obtaining an eigenvector and also the eigenvalue associated. 

Assume that K is positive definite and M is a diagonal matrix without zero diagonal 

elements. Assume an initial iteration vector x1 and then evaluate in each iteration step        

k = 1,2,... 

𝐊𝐱
¯

𝑘+1 = 𝐌𝐱𝑘 (47) 

and 

𝐱𝑘+1 =
𝐱
¯

𝑘+1

(𝐱
¯

𝑘+1
𝑇 𝐌𝐱

¯

𝑘+1)
1/2

 (48) 

It has to be assured that  𝐱1
𝑇𝐌𝜙1 ≠ 0, in other words x1 is not orthonormal to 𝝓1, so we 

can assume that 

𝐱𝑘+1 ⟶ 𝜙1 as 𝑘 ⟶ ∞ (49) 

 

Equation (47) has to be solved evaluating a vector 𝐱
¯

𝑘+1 getting closer to an eigenvector 

compared to the preceding iteration 𝐱𝑘. According to (48) it is needed that the 

orthonormality relation above is complied 

𝐱𝑘+1
𝑇 𝐌𝐱𝑘+1 = 1 (50) 

The equations (47) and (48) depict the basic inverse iteration algorithm. for computational 

implementation we can consolidate in the form 

𝐊𝐱
¯

𝑘+1 = 𝐲𝑘 (51) 

𝐲
¯

𝑘+1 = 𝐌𝐱
¯

𝑘+1 (52) 

𝜌 (𝐱
¯

𝑘+1) =
𝐱
¯

𝑘+1
𝑇 𝐲𝑘

𝐱
¯

𝑘+1
𝑇 𝐲

¯

𝑘+1

 (53) 

𝐲𝑘+1 =
𝐲
¯

𝑘+1

(𝐱
¯

𝑘+1
𝑇 𝐲

¯

𝑘+1)
1/2

 (54) 

Consider that 𝐲1
𝑇𝝓1 ≠ 0, is guaranteed, 

𝐲𝑘+1 ⟶ 𝐌𝝓1 (55) 
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𝜌 (𝐱
¯

𝑘+1) ⟶ 𝜆1 as 𝑘 ⟶ ∞  (56) 

The Raylegh quotient 𝜌 (𝐱
¯

𝑘+1) gives an approximation to the eigenvalue 𝜆1 that is 

considered to set up the convergence criterion 

|𝜆1
(𝑘+1)

− 𝜆1
(𝑘)

|

𝜆1
(𝑘+1)

≤ tol (57) 

For the last iteration we have 

𝜆1 ≐ 𝜌 (𝐱
¯

𝑙+1) (58) 

and 

𝜙1 ≐
𝐱
¯

𝑙+1

(𝐱
¯

𝑙+1
𝑇 𝐲

¯

𝑙+1)
1/2

 (59) 

 

Transformation methods 

This set of techniques called Transformation Methods include procedures that take into 

account basic properties of the eigenvectors in matrix 𝚽, 

𝚽𝑇𝐊 𝚽 = 𝚲 (60) 

  

𝚽𝑇𝐌𝚽 = 𝐈 (61) 

The matrix 𝚽 that diagonalize K and M is unique, it can be found iteratively. 

 

We have to reduce K and M to their diagonal way pre and post multiplying them by the 

matrices 𝐏𝒌
𝑇 and 𝐏𝑘, respectively where k = 1,2,… It starts with 𝐊1 = 𝐊 and 𝐌1 = 𝐌, 

and it follows: 

𝐊2 = 𝐏1
𝑇𝐊1𝐏1

𝐊3 = 𝐏2
𝑇𝐊2𝐏2

⋅
⋅

𝐊𝑘+1 = 𝐏𝑘
𝑇𝐊𝑘𝐏𝑘

 (62) 

In the same way 

𝐌2 = 𝐏1
𝑇𝐌1𝐏1

𝐌3 = 𝐏2
𝑇𝐌2𝐏2

⋅
⋅

𝐌𝑘+1 = 𝐏𝑘
𝑇𝐌𝑘𝐏𝑘

 (63) 

To converge the process, it is necessary that 
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𝐊𝑘+1 ⟶ 𝚲 

𝐌𝑘+1 ⟶ 𝐈 

𝑘 ⟶ ∞ 

(64) 

The last iteration is given by: 

𝚽 = 𝐏1𝐏2 …𝐏𝑙 (65) 

It is not really necessary that 𝐌𝑘+1 ⟶ 𝐈 and 𝐊𝑘+1 ⟶ 𝚲 but yes that they converge to a 

diagonal form. Based on the methodology described above several iteractive methods 

have been proposed such as Jacobi and the Householder-QR methods, very effective in 

finite element analysis. 

 

Polynomial iteration techniques 

The eigenvalue and eigenvector problem lies in the solution of calculating the zeros of a 

polynomial of degree n, known as a characteristic polynomial, given by 

𝑃(𝜆) = det (𝐊 − 𝜆𝐌) (66) 

The characteristic polynomial roots represent the eigenvalues of the eigenproblem  

𝐊𝝓 = 𝜆𝐌𝝓 (67) 

Solving this problem relay in two different strategies: explicit and implicit evaluation 

procedures, which can use the same basic iteration schemes. It directly uses the K and M 

matrices from finite element modeling without transforming the problem to a different 

form. Only the eigenvalues are obtained and the eigenvectors can be obtained by inverse 

iteration with substitution. 

 

Explicit polynomial iteration 

The characteristic polynomial is written as 

𝑃(𝜆) = 𝑎0 + 𝑎1𝜆 + 𝑎2𝜆
2 + ⋯+ 𝑎𝑛𝜆𝑛 (68) 

and the polynomial coefficients a0, a1,…, an are evaluated. Then the polynomial roots are 

calculated. Small errors in the coefficients cause considerable errors in the roots of the 

polynomial. For this reason this method fell into disuse for the eigenproblem solution. 

 

Implicit polynomial iteration 

In this method the value of the characteristic polynomial is evaluated directly without the 

need to calculate the coefficients. The value of 𝑃(𝜆) can be obtained effectively by 

decomposing 𝐊 − 𝜆𝐌 into a lower triangular matrix L and an upper triangular matrix S: 

𝐊 − 𝜆𝐌 = 𝐋𝐒 (69) 

det (𝐊 − 𝜆𝐌) = ∏  

𝑛

𝑖=1

𝑠𝑖𝑖 (70) 

 

Avila, Suzana M., del Prado, Zenón J. G. (2022)                                     FEM & Sensitivity Analysis in Structural Dynamics pp. 666-687

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 678



5 Modal Superposition Method 

If the main vibration modes of a MDOF system are used as a generalized coordinate 

system to define the motion response, the n motion equations become decoupled. In these 

independent coordinates, each uncoupled equation can be solved independently, as if each 

equation belonged to an independent single degree of freedom system. 

Therefore, the individual responses of the n MDOF system decoupled equations (one for 

each vibration mode) for any form of excitation can be determined by applying analysis 

techniques to onde degree of freedom (1DOF) system. The modal superposition MDOF 

system response is then defined by the sum of the individual mode responses. 

The Modal Superposition Method is a very popular vibration analysis technique, but it 

has some important limitations. The method is valid only for linear and proportional 

damping systems. This is most useful when the response can be accurately evaluated 

considering only a relatively small subset of system modes. 

It should be noted, however, that for most dynamic loadings on structural and mechanical 

systems, the contributions of the various modes to the dynamic response are generally 

more considerable at lower frequencies and tend to decay at higher frequencies. 

Consequently, it is not necessary to include the higher modes in the superposition process. 

The motion equation for a structural system subjected to dynamic excitations is given by 

𝐌�̈� + 𝐂�̇� + 𝐊𝐱 = 𝐏(t) (71) 

Where M, C and K are the mass, damping and stiffness matrices of the structure and P(t) 

is the dynamic loading vector. �̈�, �̇� e 𝒙 are the vectors of acceleration, velocities and 

displacements, respectively. 

The natural frequencies 𝜔𝑖  and the vibration modes 𝝓𝑖 corresponding to each i-th degree 

of freedom of the structure (i = 1,2,...,N) can be obtained by solving the eigenvalue 

problem 

𝐊𝛟𝑖 = 𝜔𝑖
2𝐌𝛟𝑖 (72) 

The matrix whose columns are the modal forms 𝝓𝑖 is called 𝚽, which presents 

orthogonality properties in relation to the structure's mass and stiffness matrices. 

The modes can then be normalized such that the generalized mass and stiffness matrices 

are: 

𝐌
___

= ΦT𝐌Φ = 𝐈 (73) 

𝐊
___

= ΦT𝐊Φ (74) 

𝑲
___

 is a diagonal matrix whose diagonal elements are the squared natural frequencies. 

Through the modal matrix the physical coordinates x can be transformed into generalized 

coordinates y through the equation 

𝐱 = 𝚽𝐲 (75) 

The equation of motion in modal coordinates is expressed by 

�̅��̈� + 𝐂�̇� + �̅�𝐲 = 𝐏 (76) 
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In Equation (76) the generalized damping matrix and the generalized loading vector are 

given, respectively by 

𝐂 = 𝚽T𝐂𝚽 (77) 

�̅� = 𝚽T𝐏 (78) 

The generalized mass and stiffness matrices are diagonal matrices due to the 

orthogonality of the vibration modes. For the generalized damping matrix this is not 

necessarily true, only for the case of the proportional damping matrix 

𝐂 = 𝑎0𝐌 + 𝑎1𝐊 (79) 

In the case of proportional damping, the modal matrix �̅� is also diagonal and the modal 

equations of motion become decoupled 

𝛟𝑖
𝑇𝐂𝛟𝑖 = {

2𝜔𝑖𝜉𝑖�̅�𝑖    𝑖 = 𝑗̇
0 𝑖 ≠ 𝑗

 
(80) 

The equation of motion of the n vibration mode is given by 

�̅�𝑛𝑦�̈� + 2𝜉𝑛𝜔𝑛�̅�𝑛�̇�𝑛 + �̅�𝑛𝑦𝑛 = �̅�𝑛(𝑡) (81) 

or 

�̈�𝑛 + 2𝜉𝑛𝜔𝑛�̇�𝑛 + 𝜔𝑛
2𝑦𝑛 =

�̅�𝑛

�̅�𝑛
(𝑡) 

(82) 

with 

�̅�𝑛 = 𝛟𝑛
⊤𝐌𝛟𝑛

�̅�𝑛 = 𝛟𝑛
⊤𝐊𝛟𝑛

�̅�𝑛(𝑡) = 𝛟n
⊤𝐩(𝑡)

𝑐�̅� = 𝛟𝑛
𝑇𝐂𝛟𝑛 = 2𝜉𝑛𝜔𝑛�̅�𝑛

 (83) 

The superposition of the effects corresponding to each modal equation provides the 

structure response 

𝒙(𝑡) = 𝛟1𝑦1(𝑡) + 𝛟2𝑦2(𝑡) + ⋯+ 𝛟𝑛𝑦𝑛(𝑡) (84) 

It is not necessary to include all higher modes as for most loads the displacement 

contributions are greater for lower modes and reduced for higher modes. 

 

6 Sensitivity Analysis in Plane Frames 

Consider a beam element of length L, cross section A, inertia I, Young’s modulus E, 

distributed mass m and rotated an angle  in relation to global coordinates x-y, as seen in 

Fig. 2. Figure 2(a) shows the six degrees of freedom (𝑢1
𝐿 , 𝑢2

𝐿 , 𝑢3
𝐿 , 𝑢4

𝐿 , 𝑢5
𝐿 and 𝑢6

𝐿 ) in local 

coordinates and Figure 2(b) shows the six degrees of freedom (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5 and 𝑢6 ) 
in global coordinates. 

Avila, Suzana M., del Prado, Zenón J. G. (2022)                                     FEM & Sensitivity Analysis in Structural Dynamics pp. 666-687

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 680



 

(a) 

 

(b) 

Figure 2 – Beam element. (a) Local coordinates and b) Global coordinates 

In order to simulate loss of stiffness at beam joints, it is possible to consider rotational 

springs of stiffness K1 and K2 located at both ends of the beam, which represent semi-

rigid joints, as seen in Figure 3 (McGuire, Gallagher and Ziemian, 2000 and Paz and Kim, 

2019). 

 

Figure 3 – Beam element with rotational springs at both ends. 

Each rotational spring has the following stiffness: 

𝐾1 = 𝛼1

𝐸𝐼

𝐿
 

(85) 

𝐾2 = 𝛼2

𝐸𝐼

𝐿
 

(86) 

By applying shape functions and compatibility equations, the local beam stiffness matrix 

can be written as (Paz and Kim, 2019 and McGuire, Gallagher and Ziemian, 2000): 

𝐤 =

[
 
 
 
 
 
𝑎 0 0 𝑎 0 0
0 𝑏 𝑐 0 −𝑏 𝑑
0 𝑐 𝑒 0 −𝑐 𝑓
𝑎 0 0 𝑎 0 0
0 −𝑏 −𝑐 0 𝑏 −𝑑
0 𝑑 𝑓 0 −𝑑 𝑔 ]

 
 
 
 
 

 (87) 

Where: 

𝑎 =
𝐸𝐴

𝐿
 𝑒 = 4

𝐸𝐼

𝐿
𝛼 (1 +

3

𝛼2
) (88) 

1

2



x

y

1

2



K1 K2E, I, A, L
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𝑏 = 12
𝐸𝐼

𝐿3
𝛼 (1 +

𝛼1 + 𝛼2

𝛼1𝛼2
) 𝑓 = 2

𝐸𝐼

𝐿
𝛼 

𝑐 = 6
𝐸𝐼

𝐿2
𝛼 (1 +

2

𝛼2
) 𝑔 = 4

𝐸𝐼

𝐿
𝛼 (1 +

3

𝛼1
) 

𝑑 = 6
𝐸𝐼

𝐿2
𝛼 (1 +

2

𝛼1
) 𝛼 =

𝛼1𝛼2

𝛼1𝛼2 + 4𝛼1 + 4𝛼2 + 12
 

The local beam consistent mass matrix, can be written as: 

𝐦 = 𝜌
𝐴𝐿

420

[
 
 
 
 
 
140 0 0 70 0 0
0 156 22𝐿 0 54 −13𝐿
0 22𝐿 4𝐿2 0 13𝐿 −3𝐿2

70 0 0 140 0 0
0 54 13𝐿 0 156 −22𝐿
0 −13𝐿 −3𝐿2 0 −22𝐿 4𝐿2 ]

 
 
 
 
 

 
(89) 

The global stiffness and mass matrix can be obtained by applying the rotation matrix as: 

𝐊 = 𝚽T𝐤𝚽 (90) 

𝐌 = 𝚽T𝐦𝚽 (91) 

Where the rotation matrix can be written as: 

𝚽 =

[
 
 
 
 
 
cos (𝜃) sin (𝜃) 0 0 0 0
sin (𝜃) cos (𝜃) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos (𝜃) sin (𝜃) 0
0 0 0 sin (𝜃) cos (𝜃) 0
0 0 0 0 0 1]

 
 
 
 
 

 
(92) 

To study the effect of loss of stiffness in some joint on the natural frequencies of a system, 

consider a plane frame as seen in Figure 4.  
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Figure 4 – Plane frame. 

The frame has the following geometric and physical properties: 

Young´s modulus (E) = 250e5 N/m2, mass density () = 3000 kg/m3.  

Beam: Cross section (A) = 0.08 m2, Moment of inertia (I) = 1.0667e-3 m4. 

Columns: Cross section (A) = 0.048 m2, Moment of inertia (I) = 6.4e-4 m4. 

The frame was modeled with six beam elements and six nodes as seen in Fig. 5(a) and, at 

the left joint of element three, a rotational spring was considered to model the loss of 

stiffness due to reduction of stiffness on the cross section as displayed in Fig. 5(b). 

 

(a) 
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(b) 

Figure 5 – Discretized plane frame 

To study the influence of loss of stiffness on the natural frequencies and vibration modes 

of the plane frame, the stiffness of rotational spring was varied. Figure 6 displays the first 

three natural frequencies and associated vibration modes s the value of 1 is reduced. As 

can be seen, there reduction of 1 generates a reduction the natural frequencies as well as 

changes on the shape of vibration modes. 

Figure 7 displays the variation of the normalized first three natural frequencies for 

variation of 1, and as can be observed, the variation of 1 parameter, does not affect 

linearly the natural frequencies but, it affects in a non-linear relation. For high values of 

1, the frame is considered with rigid joints and as this parameter is reduced, there is also 

a reduction of the natural frequencies. All natural frequencies are affected by reduction 

of 1 parameter and, it is possible to see, that the first natural frequency is more than 

second and third natural frequencies. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6: First natural frequencies and associated vibration modes for variation of 1. 

a) 1 = 1000.0, b) 1 = 10.0, c) 1 = 1.0 and d) 1 = 0.01. 
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Figure 7: Variation of first natural frequencies for variation of 1. 

 

7 Concluding Remarks 

In this chapter the application of the Finite Element Method to structural dynamics 

problems was addressed and topics such as modal analysis, modal superposition method 

were presented. Also, numerical methods for solving eigenvalue and eigenvector 

problems were briefly discussed. At the end, results of the computational simulation of a 

structure are presented, considering the effects generated on the natural frequencies of 

vibration and vibration modes when there is a loss of stiffness in the connections: a 

sensitivity analysis. 

This subject is a wide field for future studies and research, among them we can mention 

the application of inverse problems and uncertainty modeling techniques in the variables 

of the problem. 
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Abstract

This chapter presents the boundary element method applied to potential prob-
lems. The integral equation is obtained for the Laplace equation and discretized into
boundary elements. Constant, linear, and quadratic boundary elements are consid-
ered. The method is applied to some numerical examples and results are compared
to analytical solutions. A convergence study is carried out in order to access the
behaviour of the method with mesh refinement.

1 Introduction

Several physical problems in nature can be modeled as a boundary value problem (BVP),
in which a partial differential equation is valid in the domain being considered, some
boundary conditions are prescribed in the domain boundary, and also some initial condi-
tions may be given, for transient, non-stationary, problems.

The Finite Element Method (FEM) is a numerical method to solve a BVP by replacing
the original problem by an approximate domain integral representation, obtained from a
weighted residuals approach.

In the FEM equations, an auxiliary problem is introduced, from which weight func-
tions were used in the integral representation of the problem. Also, the geometric dis-
cretization of the problem domain is followed by the representation of the unknown func-
tions over the defined sub-domains (or, finite elements) satisfying certain continuity re-
quirements at the boundaries of each sub-domain. An appropriate choice of the weight
functions leads to the formation of a system equations comprising of symmetric matrices,
assembled from the contribution of each finite element. The element equations are said
to have local support, as all information required to solve these equations is limited to
the geometry and quantities of interest inside the element and in its boundaries, and no
information is needed from the other elements elsewhere in the domain.

The boundary element method (BEM) is another numerical method to solve a BVP,
in which the original problem is replaced by an exact boundary integral representation,
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obtained from the application of the proper integral identities for the particular problem
being studied. The resulting boundary integral representation of the original BVP re-
lates domain integrals to boundary integrals. Unlike the finite element method, where the
whole problem domain is discretized, the numerical solution scheme in this method re-
quires discretization of the boundary of the problem, reducing the number of unknowns.
For instance, in the case of a 3D domain, it is necessary to discretize the surface.

2 Boundary integral equations

In this section, the boundary integral equation for the Laplace problem will be devel-
oped. This equation will then be discretized into boundary elements, thus obtaining the
boundary element formulation.

Given Laplace’s equation
∇2T = 0, (1)

multiplying the equation (1) by a weight function ω(x, y) and integrating over the domain
A, it is assumed that the result of the integral is zero (weighted residual method). Thus,
one has: ˆˆ

A

(∇2T )ωdA = 0,

ˆˆ
A

(
∂2T

∂x2
+

∂2T

∂y2

)
ωdA = 0,

ˆˆ
A

∂2T

∂x2
ωdA+

ˆˆ
A

∂2T

∂y2
ωdA = 0 (2)

By the Gauss-Green theorem, we have:
ˆ
s

f(x, y)nxds =

ˆ
A

∂f

∂x
dA

where f is a function, nx is the component in the x direction of the vector n⃗ normal to the
boundary s of the area A. Applying the theorem given in the first part of Eq.(2), we have:

ˆ
s

∂T

∂x
ωnxds =

ˆ
A

∂

∂x

(
∂T

∂x
ω

)
dA.

Applying the product of functions derivative rule, we have:
ˆ
s

∂T

∂x
ωnxds =

ˆ
A

∂2T

∂x2
ωdA+

ˆ
A

∂T

∂x

∂ω

∂x
dA.

Rewriting the terms of the previous equation, follows:
ˆ
A

∂2T

∂x2
ωdA =

ˆ
s

∂T

∂x
ωnxds−

ˆ
A

∂T

∂x

∂ω

∂x
dA. (3)

Similarly, we obtain:
ˆ
A

∂2T

∂y2
ωdA =

ˆ
s

∂T

∂y
ωnyds−

ˆ
A

∂T

∂y

∂ω

∂y
dA. (4)
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Replacing Eqs.(3) and (4) in Eq.(2), we have:
ˆ
s

(
∂T

∂x
ωnx +

∂T

∂y
ωny

)
ds−

ˆ
A

(
∂T

∂x

∂ω

∂x
+

∂T

∂y

∂ω

∂y

)
dA = 0.

Simply put ˆ
s

∂T

∂n
ωds−

ˆ
A

(
∂T

∂x

∂ω

∂x
+

∂T

∂y

∂ω

∂y

)
dA = 0. (5)

Considering the equalities:
ˆ
A

∂T

∂x

∂ω

∂x
dA =

ˆ
s

T
∂ω

∂x
nxds−

ˆ
A

T
∂2ω

∂x2
dA (6)

and ˆ
A

∂T

∂y

∂ω

∂y
dA =

ˆ
s

T
∂ω

∂y
nyds−

ˆ
A

T
∂2ω

∂y2
nydA. (7)

Replacing equations (6) and (7) in the equation (5), we have:
ˆ
s

∂T

∂n
ωds−

ˆ
s

(
T
∂ω

∂x
nx + T

∂ω

∂y
ny

)
ds+

ˆ
A

T

(
∂2ω

∂x2
+

∂2ω

∂y2

)
dA = 0.

ˆ
s

∂T

∂n
ωds−

ˆ
s

T
∂ω

∂n
ds+

ˆ
A

T∆ωdA = 0. (8)

In order to obtain an integral equation that does not have domain integrals (area inte-
grals) the function ω must be chosen so that the domain integral of Eq.(2.19) disappears.
Any harmonic function, that is, a function that Laplacian is equal to zero, satisfies this
requirement. However, for numerical reasons, the most suitable choice is the function
whose Laplacian is the Dirac delta.

∆ω = −δ(x− xd)

k
,

which implies that ω = T ∗. So you have:
ˆ
s

∂T

∂n
T ∗ds−

ˆ
s

T
∂T ∗

∂n
ds+

ˆ
A

T
[−δ(x− xd)]

k
dA, (9)

where xd is the coordinate of the source point.
Taking the source point within the A domain, by the property of the Dirac delta, we

have: ˆ
s

∂T

∂n
T ∗ds−

ˆ
s

T
∂T ∗

∂n
ds− T (xd, yd)

k
= 0.

Multiplying the terms by −k, you get:
ˆ

−k
∂T

∂n
T ∗ds+

ˆ
s

T

(
k∂T ∗

∂n

)
ds+ T (xd, yd) = 0.

T (xd, yd) =

ˆ
s

Tq∗ds−
ˆ
s

qT ∗ds. (10)
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Figure 1: Original and modified outlines.

Eq.(10) is the integral boundary equation when the source point is inside the domain.
In order to consider the point (xd, yd) on the boundary, a small modification is made

to it, as shown in Fig. 1:
Thus, one has:

T (xd, yd) =

ˆ
s−s′

Tq∗ds−
ˆ
s−s′

T ∗qds+

ˆ
s∗
Tq∗ds−

ˆ
s∗
T ∗qds. (11)

The flux fundamental solution is given by:

q∗ =
1

2πr2
[(x− xd)nx + (y − yd)ny],

with r =
√
(x− xd)2 + (y − yd)2,. Thus,

ˆ
s∗
Tq∗ds =

ˆ θ2

θ1

T
1

2πr2
[(x− xd)nx + (y − yd)ny]εdθ.

In s∗, you have:
r⃗ = (x− xd)⃗i+ (y − yd)⃗j,

|r⃗| = r =
√

(x− xd)2 + (y − yd)2,

n⃗ =
(x− xd)⃗i+ (y − yd)⃗j

r
,

where n⃗ is a unit vector. As rx = (x− xd) and ry = (y − yd), we have:

n⃗ =
rx⃗i+ ry j⃗

r

with
nx =

rx
r

e ny =
ry
r
.

So ˆ s

s∗
Tq∗ds =

ˆ θ2

θ1

T

2πr2

(
rx
rx
r
+ ry

ry
r

)
εdθ.
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Noting that r = ε for any θ, we have;
ˆ
s∗
Tq∗ds =

ˆ θ2

θ1

T

2πε2

(
r2x + r2y

ε

)
εdθ =

ˆ θ2

θ1

T

2π
dθ.

By making ε −→ 0, T takes the value of T (d). Finally, there is
ˆ
s∗
Tq∗ds =

T (d)(θ2 − θ1)

2π
.

The same analysis must be done for:
ˆ
s∗
T ∗qds =

ˆ θ2

θ1

−1

2πk
ln rqrdθ.

As r = ε = constant, we have:
ˆ
s∗
T ∗qds =

−1

2πk
ε ln ε

ˆ θ2

θ1

qdθ.

Making ε −→ 0, you get:
ˆ
s∗
T ∗qds =

−1

2πk
lim
ε→0

ε ln ε(θ2 − theta1),

ˆ
s∗
T ∗qds = 0.

Returning to the original equation, follows:

T (xd, yd) =

ˆ
s

Tq∗ds−
ˆ
s

T ∗qds+
T (xd, yd)(θ2 − θ1)

2π
− 0,

T (xd, yd)

[
1− (θ2 − θ1)

2π

]
=

ˆ
s

Tq∗ds−
ˆ
s

T ∗qds,

T (xd, yd)

[
2π − (θ2 − θ1)

2π

]
=

ˆ
s

Tq∗ds−
ˆ
s

T ∗qds.

As shown in Fig. 2, θint is the inner angle of the boundary.

θint
2π

T (xd, yd) =

ˆ
s

Tq∗ds−
ˆ
s

T ∗qds,

which is the boundary integral when the source point belongs to the boundary.
When the source point does not belong to the boundary or the domain, due to the

property of the Dirac delta, we have:
ˆ
s

Tq∗ds−
ˆ
s

T ∗qds = 0. (12)

Generally speaking, the integral boundary equation can be written as
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Figure 2: Internal boundary angle.

cT (xd, yd) =

ˆ
s

Tq∗ds−
ˆ
s

T ∗qds, (13)

Where

c =


1, if (xd, yd) ∈ domain
θint

2π
, if (xd, yd) ∈ boundary

0, if (xd, yd) /∈ domain or boundary

When the source point is at a smooth point of the boundary, that is, it is not a corner,
you have:

c =
θint
2π

=
π

2π
=

1

2
. (14)

3 Integral equation for heat flux

To obtain an integral equation for the heat flux, it is necessary to derive the equation (10)
in relation to the coordinates of the source point, that is:

∂T (xd, yd)

∂xd

=
∂

∂xd

[ˆ
s

Tq∗ds−
ˆ
s

qT ∗ds

]
. (15)

∂T (xd, yd)

∂xd

=

ˆ
s

T
∂q∗

∂xd

ds−
ˆ
s

q
∂T ∗

∂xd

ds. (16)

where:

∂T ∗

∂xd

=
rx

2πkr2
, (17)
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∂T ∗

∂yd
=

ry
2πkr2

, (18)

∂q∗

∂xd

=

[
nx

(
r2x − r2y

)
+ 2nyrxry

]
2πr4

(19)

and

∂q∗

∂yd
=

[
ny

(
−r2x + r2y

)
+ 2nxrxry

]
2πr4

. (20)

4 Discretization of integral boundary equations

Basically, the MEC formulation transforms differential equations into integral boundary
equations, thus eliminating domain discretization. These integrals can be solved numeri-
cally and analytically with the integration made along the boundary, which is discretized
by dividing it into elements called boundary elements in which boundary conditions are
prescribed.

Once the boundary integral is obtained, the next step is to discretize this equation so
that the integrals along the boundary are written as the sum of integrals along parts of the
boundary.

S

s1
s2 · · ·

sn

· · ·

Figure 3: Discretization of boundary in n parts.

In this way, the integral boundary equation (13) is written as:

cT (xd, yd) =
n∑

j=1

ˆ
sj

Tq∗ds−
n∑

j=1

ˆ
sj

T ∗qds. (21)

where
S = s1 + s2 + . . .+ sn.
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5 Constant boundary elements

In discretization using constant elements, the geometry is approximated by straight line
segments with a node in the middle of each element. Thus, consider that the parts of
the boundary s1, s2, ..., sn are approximated by straight segments and that along these
segments, both temperature and flux are assumed as constants.

s Ω

Γ1

Γ2

Γn

Γ

Figure 4: boundary approximation by line segments.

The j node will always be at the center position of the j element (it will always be in
a smooth region of the boundary, so c = 1

2
). The integral equation is approximated by:

1

2
T (i)(xd, yd) =

n∑
j=1

[
Tj

ˆ
Γj

q∗dΓ

]
−

n∑
j=1

[
qj

ˆ
Γj

T ∗dΓ

]
, (22)

where i corresponds to the node of the i-th element. Hence, we have:

−1

2
T (i)(xd, yd) +

n∑
j=1

[
Tj

ˆ
Γj

q∗dΓ

]
=

n∑
j=1

[
qj

ˆ
Γj

T ∗dΓ

]
. (23)

Calling

Hij =

{´
Γj
q∗dΓ, se i ̸= j

−1
2
+
´
Γj
q∗dΓ, se i = j

and
Gij =

ˆ
Γj

T ∗dΓ (24)

you can write the matrix equation as follows:

n∑
j=1

[HijTj] =
n∑

j=1

[Gijqj]. (25)

Example 5.1 In order to illustrate how to apply the boundary conditions and calculate
the unknown variables, a unidirectional heat conduction problem with a discretization of
one element per side will be analyzed (see Figure 5).
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Figure 5: Temperature and flux on plate.

Table 1: Qualification of variables in each node.

node known variables unknown variables
1 T1 q1
2 q2 T2

3 T3 q3
4 q4 T4

In this case, the known and unknown variables in the problem outline are given by
Table (2.1).

Considering that the source point is at node 1 and subscribing the known variables
with a slash, we have:

H11T̄1 +H12T2 +H13T̄3 +H14T4 = G11q1 +G12q̄2 +G13q3 +G14q̄4,

where T̄ and q̄ are known terms. Since there is only 1 equation and 4 unknown variables,
three more equations must be generated. To do this, just place the source point on each
of the nodes. For this reason the choice of the weight function ω must be that Lapaltian is
equal to Dirac’s delta and not Laplacian equal to zero. Thus, one has:

For the source point at node 2, we have:

H21T̄1 +H22T2 +H23T̄3 +H24T̄4 = G21q1 +G22q̄2 +G23q3 +G24q̄4.

Likewise, the source point is made at nodes 3 and 4. The equations obtained can be
written in matrix form, as:

H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44




T̄1

T2

T̄3

T4

 =


G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44




q1
q̄2
q3
q̄4


which can be briefly written as:

[H]{T} = [G]{q}. (26)
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Separating the known terms from the unknown, it follows:
−G11 H12 −G13 H14

−G21 H22 −G23 H24

−G31 H32 −G33 H34

−G41 H42 −G43 H44




q1
T2

q3
T4

 =


−H11 G12 −H13 G14

−H21 G22 −H23 G24

−H31 G32 −H33 G34

−H41 G42 −H43 G44




T̄1

q̄2
T̄3

q̄4


So you can write

[A]{x} = {b}, (27)

or yet
{x} = [A]−1{b}. (28)

Then, solve the linear system above and calculate the values of the unknown variables.

5.1 Integration of matrices [H] and [G] when source point belongs to element

In this case, in the case of constant elements, the integration is done analytically, that is:

• Matrix H

Hij = −1

2
+

1

2π

ˆ
Γj

rxnx + ryny

r
dΓ

Like
rxnx + ryny = r⃗.n⃗ = 0

∴ Hij = −1

2
(29)

• Matrix G

For constant boundary element, matrix G is given by:

G = − 1

2πk

ˆ
Γj

ln rdΓ (30)

Thus, one has:

Gij = − 1

2πk
× 2

ˆ L
2

0

ln rdr

= − 1

πk
(−r + r ln r)

∣∣∣∣L2
0

= − 1

πk

(
−L

2
+

L

2
ln

L

2
+ 0− lim

r→0
r ln r

)
.

=
L

2πk

(
1− ln

L

2

)
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Figure 6: Continuous linear elements.

6 Continuous linear boundary elements

In linear element discretization, the geometry is approximated by a 1st degree polynomial,
requiring two nodes in each element, one at each end of the element. Temperature and flux
are also approximated by a 1st degree polynomial. The formulation is isoparametric, that
is, the same shape functions used to interpolate the geometry are also used to interpolate
the physical variables (temperature and flux).

In this case, the integral equation is given by:

cT (xd, yd) =

ˆ
s

Tq∗dS −
ˆ
s

T ∗qdS.

Discretizing in continuous linear boundary elements, it follows:

cT (xd, yd) =

nelem∑
j=1

[ˆ
Γj

Tq∗dΓ

]
−

nelem∑
j=1

[ˆ
Γj

T ∗qdΓ

]

Observing that T and q are assumed with linear variation along the element, that is,

T = N1T1 +N2T2

and
q = N1q1 +N2q2.

where T1 is the temperature at local node 1, T2 the temperature at local node 2, q1 is the
flux at local node 1 and q2 is the flux at local node 2, N1 is the form function 1 and N2 is
the form function 2.
Likewise, it follows: {

x = N1x1 +N2x2

y = N1y1 +N2y2

Writing in matrix form, follows:

T =
[
N1 N2

] [ T1

T2

]
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and

q =
[
N1 N2

] [ q1
q2

]
.

The discretized integral equation is then written as:

cT (xd, yd) =

nelem∑
j=1

{ˆ
Γj

[
N1 N2

] [ T1

T2

]
j

q∗dΓ

}
−

nelem∑
j=1

{ˆ
Γj

T ∗ [ N1 N2

] [ q1
q2

]
j

dΓ

}
.

Since T1, T2, q1 and q2 are nodal values, it follows:

cT (xd, yd) =

nelem∑
j=1

{ˆ
Γj

[
N1 N2

]
q∗dΓ

[
T1

T2

]
j

}
−

nelem∑
j=1

{ˆ
Γj

[
N1 N2

]
T ∗dΓ

[
q1
q2

]
j

}
.

which can be written as follows:

cT (xd, yd) =

nelem∑
j=1

{[
h1 h2

]
j

[
T1

T2

]
j

−
[
g1 g2

]
j

[
q1
q2

]
j

}
,

Where
h1 =

ˆ
Γj

N1q
∗dΓ,

h2 =

ˆ
Γj

N2q
∗dΓ,

g1 =

ˆ
Γj

N1T
∗dΓ

and
g2 =

ˆ
Γj

N2T
∗dΓ.

Example 6.1 Applying the formulation developed in the heat conduction problem dis-
cussed above (Figure 7), the boundary conditions and unknown variables are given as
shown in table 2. Note in Table 2 that the temperature is continuous at node j. In turn,
the flux qj can be discontinuous, that is, the flux qaj , before the node j can be different from
the flux qdj , after the node j. However, given the order of the Laplace differential equation
(second order), only one variable can be unknown per node.

Table 2: Qualification of the variables in each node for the given problem.

node known variables unknown variables
1 T1 and qa1 qd1
2 T2 and qd2 qa2
3 T3 and qa3 qd3
4 T4 and qd4 qa4
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Figure 7: Temperature and flux on plate.

Considering the source point at node 1, the integral equation is described as:

cT1 =
[
h1 h2

]
1

[
T1

T2

]
1

+
[
h1 h2

]
2

[
T1

T2

]
2

+ · · · −
[
g1 g2

]
1

[
q1
q2

]
1

−

−
[
g1 g2

]
2

[
q1
q2

]
2

· · · .

Using the global node number, it follows:

cT1 =
[
h1 h2

]
1

[
T̄1

T̄2

]
+
[
h1 h2

]
2

[
T̄2

T̄3

]
+
[
h1 h2

]
3

[
T̄3

T̄4

]
+

+
[
h1 h2

]
4

[
T̄4

T̄1

]
−
[
g1 g2

]
1

[
qd1
qa2

]
−
[
g1 g2

]
2

[
q̄d2
q̄a3

]
−

−
[
g1 g2

]
3

[
qd3
qa4

]
−
[
g1 g4

]
1

[
q̄d4
q̄a1

]
,

Writing the global G and H matrices, follows:

H11T1 +H12T2 +H13T3 +H14T4 = Gd
11q

d
1 +Ga

12q
a
2

+Gd
12q̄

d
2 +Ga

13q̄
a
3 +Gd

13q
d
3 +Ga

14q
a
4 +Gd

14q̄
d
4 +Ga

11q̄
a
1 . (31)

Note that there is 1 equation and 4 unknown variables. In order to generate 3 more
equations, just place the source point at the other 3 nodes. Hence, the following matrix
equation is obtained:
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H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44




T̄1

T̄2

T̄3

T̄4

 =


Gd

11 Ga
12 Gd

12 Ga
13 Gd

13 Ga
14 Gd

14 Ga
11

Gd
21 Ga

22 Gd
22 Ga

23 Gd
23 Ga

24 Gd
24 Ga

21

Gd
31 Ga

32 Gd
32 Ga

33 Gd
33 Ga

34 Gd
34 Ga

31

Gd
41 Ga

42 Gd
42 Ga

43 Gd
43 Ga

44 Gd
44 Ga

41





qd1
qa2
q̄d2
q̄a3
qd3
q̄a4
qd4
q̄a1


.

(32)

Manipulating the matrix equation so that the unknown terms are all on the left side
and the other terms on the right side, follows:


−Gd

11 −Ga
12 −Gd

13 −Ga
14

−Gd
21 −Ga

22 −Gd
23 −Ga

24

−Gd
31 −Ga

32 −Gd
33 −Ga

34

−Gd
41 −Ga

42 −Gd
43 −Ga

44




qd1
qa2
qd3
q̄a4



=


−H11 −H12 Gd

12 Ga
13 −H13 −H14 Gd

14 Ga
11

−H21 −H22 Gd
22 Ga

23 −H23 −H24 Gd
24 Ga

21

−H11 −H32 Gd
32 Ga

33 −H33 −H34 Gd
34 Ga

31

−H11 −H42 Gd
42 Ga

43 −H43 −H44 Gd
44 Ga

41





T̄1

T̄2

qd2
qa3
T̄3

T̄4

q̄d4
q̄a1


,

(33)

that can be written in linear form as:

[A]{x} = {b} (34)

Example 6.2 Applying the formulation developed in the heat conduction problem repre-
sented in Figure 8, the boundary conditions and unknown variables are given as shown
in table 3. Note in Table 2 that the temperature is continuous at node j. In turn, the flux
qj can be discontinuous, that is, the flux qaj , before the node j can be different from the
flux qdj , after the node j. However, given the order of the Laplace differential equation
(second order), only one variable can be unknown per node.
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Table 3: Qualification of the variables in each node for the given problem.

node known variables unknown variables
1 qa1 and qd1 T1

2 T2 and qa2 qd2
3 T3 qa3 = qd3 = q3
4 T4 and qd4 qa4

q = 1
T = 1

2

41

3

Figure 8: Temperature and flux on plate.


H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44




T1

T̄2

T̄3

T̄4



=


Gd

11 Ga
12 Gd

12 Ga
13 Gd

13 Ga
14 Gd

14 Ga
11

Gd
21 Ga

22 Gd
22 Ga

23 Gd
23 Ga

24 Gd
24 Ga

21

Gd
31 Ga

32 Gd
32 Ga

33 Gd
33 Ga

34 Gd
34 Ga

31

Gd
41 Ga

42 Gd
42 Ga

43 Gd
43 Ga

44 Gd
44 Ga

41





q̄d1
q̄a2
qd2

qa3 = q3
qd3 = q3

qa4
q̄d4
q̄a1


.

(35)

Manipulating the matrix equation so that the unknown terms are all on the left side
and the other terms on the right side, follows:
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H11 −Gd

12 (−Ga
13 −Gd

13) −G14

H21 −Gd
22 (−Ga

23 −Gd
23) −G24

H31 −Gd
32 (−Ga

33 −Gd
33) −G34

H41 −Gd
42 (−Ga

43 −Gd
43) −G44




T1

qd2
q3
qa4



=


Gd

11 Ga
12 −H12 −H13 0 −H14 Gd

14 Ga
11

Gd
21 Ga

22 −H22 −H23 0 −H24 Gd
24 Ga

21

Gd
31 Ga

32 −H32 −H33 0 −H34 Gd
34 Ga

31

Gd
41 Ga

42 −H42 −H43 0 −H44 Gd
44 Ga

41





q̄d1
q̄a2
T̄2

T̄3

0
T̄4

q̄d4
q̄a1


, (36)

that can be written in linear form as:

[A]{x} = {b} (37)

6.1 Algorithm to apply boundary conditions

As seen in the examples 6.1 and 6.2, the procedures to apply the boundary conditions
when you have continuous elements (where a node is shared by 2 elements) are more
complex than for discontinuous elements. This section presents a simple algorithm that
does this task well. Although the case shown is restricted to continuous linear elements,
this algorithm can be easily extended to other types of continuous elements, both in the
formulations of 2D boundary elements and 3D boundary elements.

Initially, assume that an array [Tpr] will be created that contains information about the
nodes at which the temperature is prescribed (known). This matrix has 5 columns and the
number of rows is equal to the number of nodes for which the temperature is known. For
ease of understanding, consider that the matrix columns are represented by five vectors
{a1}, {a2}, {a3}, {a4} and {a5}. Thus, the line i of the matrix [Tpr] is given by:

Tpri =
[
a1i a2i a3i a4i a5i

]
(38)

where each element i of the vectors {a1}, {a2}, {a3}, {a4} and {a5} contains:

a1i: number of the i−th node with known temperature.
a2i: number of the first element with prescribed temperature to which this
node belongs.
a3i: local node number in this element.
a4i: if the temperature is also prescribed in the second element to which this
node belongs, then a4i will contain the number of this element, otherwise it
will contain zero.
a5i: if a4i is non-zero, a5i will contain the local number of the node in the
second element, otherwise it will contain zero.

In the definition of a2i, the term ”with prescribed temperature” is in bold to draw
attention to the fact that, if the temperature is prescribed in only one of the elements to
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which the node i belongs , the element that does not have a prescribed temperature should
not be considered in the matrix [Tpr].

The matrices [Tpr] for the examples 6.1 and 6.2 are given, respectively, by:

[Tpr] =


1 1 1 0 0
2 1 2 0 0
3 3 1 0 0
4 3 2 0 0

 (39)

and

[Tpr] =

 2 2 1 0 0
3 2 2 3 1
4 3 2 0 0

 (40)

Once the matrix [Tpr] has been constructed, the exchange of the columns of the matri-
ces [H] and [G] follows the following algorithm:

For i = 1 up to the number of nodes with known temperature:

• ino = Tpri1; (number of the i−th node with known temperature);

• iel = Tpri2; (first element with prescribed temperature that contains this
node);

• inoloc = Tpri3; (local node number in this element);

• indH = ino; (index of the [H] matrix column that will be swapped);

• indG = 2× iel + inoloc− 2; (index of the [G] matrix column that will be
swapped);

• the vector {exchange} receives the column indG of the matrix [G];

• column indG of matrix [G] receives column indH of matrix [H] with
inverted sign;

• column indH of matrix [H] receives vector {exchange} with inverted
sign;

• If Tpri4 is non-zero ⇒ the temperature is also known in the second ele-
ment to which the node ino belongs:

– iel = Tpri4; (number of the second element to which the node be-
longs);

– inoloc = Tpri5; (local number of this node in the second element);
– indG = 2× iel + inoloc − 2; (index of the column of the matrix [G]

which will be assigned zero);
– Subtracts from the elements of the column indH of the matrix [H]

the value of the elements of the column indG of the matrix [G];
– Assign zeros in column indG of matrix [G];

• End of If;

End of For.
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6.2 Integration of matrices [H] and [G] when source point does not belong to ele-
ment

The integration of the terms of the arrays [H] and [G] when the source point does not
belong to the element is regular and does not present great differences in relation to the
integration of the constant element. To avoid unnecessary repetition, the integration for
the linear element will not be detailed.

6.3 Matrix integration [G] when source point belongs to element

The integration of the matrix [G] when the source point belongs to the element is done
analytically, in the same way as the constant element.

As already seen, the element’s geometry is approximated by:

x = N1x1 +N2x2 =
1

2
(1− ξ)x1 +

1

2
(1 + ξ)x2

=
x1 − ξx1 + x2 + ξx2

2
=

1

2
[(x2 − x1) ξ + x2 + x1] (41)

and

y =
1

2
[(y2 − y1) ξ + y2 + y1] . (42)

The coordinate x of the source point is given by xd = x(ξ = ξd) and yd = y(ξ = ξd),
where ξd = −1 for the source point at node 1 and ξd = +1 for the source point at node 2.
Hence:

xd =
1

2
[(x2 − x1) ξd + x2 + x1] , (43)

yd =
1

2
[(y2 − y1) ξd + y2 + y1] (44)

and

r =
√
(x− xd)2 + (y − yd)2 =

√
r2x + r2y, (45)

where

rx = x− xd =
1

2
[(x2 − x1)ξ + x2 + x1]−

{
1

2
[(x2 − x1)ξd + x2 + x1]

}
(46)

rx =
1

2
(x2 − x1)(ξ − ξd) (47)

Likewise, you have:

ry =
1

2
(y2 − y1)(ξ − ξd) (48)

and
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r =

√[
1

2
(x2 − x1)(ξ − ξd)

]2
+

[
1

2
(y2 − y1)(ξ − ξd)

]2
=

1

2
(ξ − ξd)

√
(x2 − x1)2 + (y2 − y1)2 =

1

2
(ξ − ξd)L (49)

The terms of the matrix [G] are given by:

g1 =

ˆ
Γj

T ∗N1dΓ (50)

and

g2 =

ˆ
Γj

T ∗N2dΓ. (51)

In this way, you have:

g1 =

ˆ
Γj

T ∗N1dΓ =

ˆ 1

−1

T ∗N1
dΓ

dξ
dξ

=

ˆ 1

−1

−1

2πk
log(r)

L

2

1

2
(1− ξ)dξ

=
−L

8πk

ˆ 1

−1

log

[
L

(
ξ − ξd

2

)]
(1− ξ)dξ (52)

• Source point at node 1: ξd = −1.

g1 =
−L

8πk

[ˆ 1

−1

log

(
ξ + 1

2

)
(1− ξ)dξ +

ˆ 1

−1

log (L) (1− ξ)dξ

]
(53)

Making

η =
ξ + 1

2
⇒ dη

dξ
=

1

2
(54)

one has:

η(ξ = −1) =
−1 + 1

2
= 0 (55)

η(ξ = 1) =
1 + 1

2
= 1 (56)

ξ = 2η − 1 ⇒ 1− ξ = 1− 2η + 1 = 2(1− η) (57)

Hence, we have:
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g1 = − L

8πk

[ˆ 1

0

log(η)2(1− η)
dξ

dη
dη + log(L)

(
ξ − ξ2

2

)∣∣∣∣1
−1

]

= − L

8πk

{ˆ 1

0

2(1− η)2 log(η)dη

+ log(L)

[
1−

(
1

2

)2

− (−1) +

(−1

2

)2
]}

= − L

8πk

[
4

(ˆ 1

0

log(η)dη −
ˆ 1

0

η log(η)dη

)
+ 2 log(L)

]
(58)

g1 =
L

4πk

[
3

2
− log(L)

]
; (59)

The integral g2 is not singular when the source point is node 1 because N2 = 0 at node
1, where T ∗ → ∞.

• Source point at node 2: ξd = 1.

The integral g1 is not singular when the source point is node 2 because N1 = 0 at node
2, where T ∗ → ∞.

ˆ 1

−1

N1T
∗dΓ

dξ
dξ

∣∣∣∣
ξd=−1

=

ˆ 1

−1

N2T
∗dΓ

dξ
dξ

∣∣∣∣
ξd=1

(60)

This way you have:

g2 =
L

4πk

[
3

2
− log(L)

]
. (61)

6.4 Indirect method for calculating the diagonal of the matrix [H]

The singular terms of the matrix [H] can also be calculated analytically, just as it was
done for constant elements. However, since the nodes are now at the ends of the element
rather than at the center, the source point may not belong to a smooth boundary if it is
a corner node. Then, you must calculate the internal angle θint because the term c of
the equation (13) is no longer equal to 1/2. Although this calculation does not present
great difficulties, there is an alternative implementation that is usually preferred when
dealing with continuous elements. This implementation does not make the integration
explicitly but uses a property of the matrix [H] resulting from the modeling of a body
under constant temperature. Without losing the generality, consider that all nodes of a
body meet the temperature T = 1. In this case, the flux will be null on all nodes, that is,
q = 0 on all nodes. In this way, the matrix equation is rewritten as:

[H]{1} = [G]{0} (62)

where {1} is a vector with all elements equal to 1 and {0} is a vector with all elements
equal to zero. In this case, it is easy to see that:

Albuquerque, Éder L., et al. (2022) The Boundary Element Method for Potential Problems pp. 688-732

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 708



N∑
j=1

Hij = 0, for i = 1, 2, ..., N. (63)

where N is the number of nodes.
Hence, the diagonal terms of the matrix [H] can be calculated as follows:

Hii =
N∑
j=1

Hij, with i ̸= j, for i = 1, 2 , ..., N, (64)

since all terms outside the diagonal are regular integrals and have been previously com-
puted.

7 Continuous quadratic boundary elements

In discretization using quadratic elements, the geometry is approximated by a quadratic
function along each element, requiring three nodal points per element as shown in Fig. 9.

S

Γ

Figure 9: Continuous quadratic elements.

Thus temperature and flux are approximated as follows:

T = N1T1 +N2T2 +N3T3

q = N1q1 +N2q2 +N3q3

where T1 is the temperature at local node 1, T2 the temperature at local node 2, T3 the
temperature at local node 3, q1 is the flux at local node 1, q2 is the flux at local node 2,
q3 is flux at local node 3, N1 is form function 1, N2 is form function 2, and N3 is form
function 3.

The continuous quadratic form functions N1, N2 and N3 are given by:

N1 =
ξ

2
(ξ − 1) (65)
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N2 = (1− ξ)(1 + ξ) = 1− ξ2 (66)

N3 =
ξ

2
(ξ + 1) (67)

In this case, the integral equation is given by:

cT (d) =

ˆ
s

Tq∗dS −
ˆ
s

T ∗qdS.

Discretizing in continuous quadratic boundary elements, it follows:

cT (d) =

nelem∑
j=1

[ˆ
Γj

Tq∗dΓ

]
−

nelem∑
j=1

[ˆ
Γj

T ∗qdΓ

]

Likewise, it follows: {
x = N1x1 +N2x2 +N3x3

y = N1y1 +N2y2 +N3y3

Writing in matrix form, follows:

T =
[
N1 N2 N3

]  T1

T2

T3


and

q =
[
N1 N2 N3

]  q1
q2
q3

 .

The discretized integral equation is then written as:

cT (d) =

nelem∑
j=1


ˆ
Γj

[
N1 N2 N3

]  T1

T2

T3


j

q∗dΓ


−

nelem∑
j=1


ˆ
Γj

T ∗ [ N1 N2 T3

]  q1
q2
q3


j

dΓ

. (68)

Since T1, T2, T3, q1, q2 and q3 are nodal values, it follows:

cT (d) =

nelem∑
j=1


ˆ
Γj

[
N1 N2 N3

]
q∗dΓ

 T1

T2

T3


j


− sumnelem

j=1


ˆ
Γj

[
N1 N2 N3

]
T ∗dΓ

 q1
q2
q3


j

, (69)
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which can be written as follows:

cT (d) =

nelem∑
j=1

[
h1 h2 h3

]
j

 T1

T2

T3


j

−
[
g1 g2 g3

]
j

 q1
q2
q3


j

,

where
h1 =

ˆ
Γj

N1q
∗dΓ,

h2 =

ˆ
Γj

N2q
∗dΓ,

h3 =

ˆ
Γj

N3q
∗dΓ,

g1 =

ˆ
Γj

N1T
∗dΓ,

g2 =

ˆ
Γj

N2T
∗dΓ

and
g3 =

ˆ
Γj

N3T
∗dΓ.

7.1 Integration of matrices [H] and [G] when source point does not belong to ele-
ment

The integration of the terms of the arrays [H] and [G] when the source point does not
belong to the element is regular and does not present great differences in relation to the
integration of the constant element. To avoid unnecessary repetition, the integration for
the quadratic element will not be detailed.

7.2 Matrix integration [H] and [G] when source point belongs to element

As already shown, the MEC presents some integrals of singular functions (functions that
tend to infinity). In the case of the developed formulation, singular integrals are of two
types:

1. In the matrix [G] it is of the form log r which is called a weak singularity (improper
integral);

2. In the matrix [H] it is of the form 1
r

which is called strong singularity (integral in
the sense of Cauchy’s principal value);

Therefore, the treatment of strong singularity can be done indirectly due to the prop-
erties of the matrix [H], as shown in section 6.4. In the case of the matrix [G], there are
two possibilities, either numerically or analytically, the latter being only recommended
for constant or linear elements. In the case of higher order form functions (quadratic, for
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example), the Jacobian of the transformation from Γ to ξ is no longer constant along the
element, making the analytical treatment unfeasible. Therefore, numerical treatment is
recommended.

Singular integrals of the order (log r) can be efficiently evaluated by the Gauss quadra-
ture with a cubic variable transformation, as proposed by Telles Telles [1987], which ex-
actly cancels the logarithmic singularity. Another possibility is the use of the logarithmic
Gauss quadrature Brebbia and Dominguez [1992] which is among the most used nu-
merical methods for the treatment of integrals with weak singularity in two-dimensional
problems (log r).

The integration of the terms of the matrix [H] for continuous quadratic elements is
done indirectly, as already described in the section 6.4 for continuous linear elements.

The integration of the terms of the matrix [G] for continuous quadratic elements is
done using the logarithmic quadrature of Gauss, as will be detailed in the following para-
graphs.

The coordinate x of a point belonging to a quadratic element is approximated by:

x = N1x1 +N2x2 +N3x3 =
ξ

2
(ξ − 1)x1 + (1− ξ2)x2 +

ξ

2
(ξ + 1)x3

=
1

2
ξ2 (x1 − 2x2 + x3) +

1

2
ξ (x3 − x1)) + x2 (70)

Likewise, you have:

y =
1

2
ξ2 (y1 − 2y2 + y3) +

1

2
ξ (y3 − y1) + y2 (71)

The source point has coordinate (xd, yd), where xd = x(ξ = ξd) and yd = y(ξ = ξd).
Thus, we have ξd = −1 for the source point at node 1, ξd = 0 for the source point at node
2 and ξd = +1 for the source point at node 3. Hence, we have:

xd =
1

2
ξ2d (x1 − 2x2 + x3) +

1

2
ξd (x3 − x1) + x2 (72)

yd =
1

2
ξ2d (y1 − 2y2 + y3) +

1

2
ξd (y3 − y1) + y2 (73)

r =
√
(x− xd)2 + (y − yd)2 =

√
r2x + r2y (74)

where

rx = x− xd =
1

2

(
ξ2 − ξ2d

)
(x1 − 2x2 + x3) +

1

2
(ξ − ξd) (x3 − x1) (75)

rx =
1

2
(ξ − ξd) [(x1 − 2x2 + x3) (ξ + ξd) + x3 − x1] (76)

Likewise, you have:

ry =
1

2
(ξ − ξd) [(y1 − 2y2 + y3) (ξ + ξd) + y3 − y1] (77)

and
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r =
1

2
(ξ − ξd)

{
[(x1 − 2x2 + x3) (ξ + ξd) + x3 − x1]

2

+ [(y1 − 2y2 + y3) (ξ + ξd) + y3 − y1]
2} 1

2 (78)

Calling

rA =
1

2
(ξ − ξd) (79)

and

rB =
{
[(x1 − 2x2 + x3) (ξ + ξd) + x3 − x1]

2

+ [(y1 − 2y2 + y3) (ξ + ξd) + y3 − y1]
2} 1

2 (80)

one has to

r = rArB (81)

where rB > 0.

[g] =

ˆ
T ∗ [N1 N2 N3] dΓ = [g1 g2 g3] (82)

where

g1 =

ˆ
Γj

T ∗N1dΓ, (83)

g2 =

ˆ
Γj

T ∗N2dΓ (84)

and

g3 =

ˆ
Γj

T ∗N3dΓ. (85)

The integral g1 is given by:

g1 =

ˆ
Γj

T ∗N1dΓ =

ˆ 1

−1

T ∗N1
dΓ

dξ
dξ

=

ˆ 1

−1

−1

2πk
log(rArB)N1

dΓ

d xi
dξ

=
−1

2πk

ˆ 1

−1

[log(rA) + log(rB)]N1
dΓ

d xi
dξ = g1s + g1ns (86)

where
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g1s =
−1

2πk

ˆ 1

−1

log(rA)N1
dΓ

dξ
dξ (87)

is a weak singularity integral that will be integrated using logarithmic Gauss quadrature
and

g1ns =
−1

2πk

ˆ 1

−1

log(rB)N1
dΓ

dξ
dξ (88)

is a regular (non-singular) integral that will be integrated using standard Gaussian quadra-
ture.

• Source point at node 1: ξd = −1.

g1s =
−1

2πk

ˆ 1

−1

log(rA)
ξ

2
(ξ − 1)

dΓ

dξ
dξ (89)

Making

η =
ξ + 1

2
⇒ dη

dξ
=

1

2
(90)

one has:

η(ξ = −1) =
−1 + 1

2
= 0 (91)

η(ξ = 1) =
1 + 1

2
= 1 (92)

ξ = 2η − 1 ⇒ 1− ξ = 1− 2η + 1 = 2(1− η) (93)

rA =
ξ − ξd

2
= η (94)

Hence, we have:

g1s =
−1

2πk

ˆ 1

0

log (η)N1(ξ(η))
d Gamma

dξ

dξ

dη
dη =

−1

πk

ˆ 1

0

log (η)N1(ξ(η))
dΓ

dξ
dη (95)

The integrals g2 and g3 are not singular when the source point is node 1 because
N2 = N3 = 0 at node 1, where T ∗ → ∞.

• Source point at node 2: ξd = 0.

rA =
ξ − ξd

2
=

ξ − 0

2
=

ξ

2
(96)
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g2s =
−1

2πk

ˆ 1

−1

log(
ξ

2
)N2

dΓ

dξ
dξ =

−1

2πk

ˆ 1

−1

log(ξ)N2
dΓ

dξ
d xi

− −1

2πk

ˆ 1

−1

log(2)N2
dΓ

d xi
dξ = g2s1 + g2s2 (97)

where

g2s2 =
−1

2πk

ˆ 1

−1

log(2)N2
dΓ

dξ
dξ (98)

is a regular integral and can be integrated using standard Gaussian quadrature.

g2s1 =
−1

2πk

ˆ 1

−1

log(ξ)N2
dΓ

dξ
dξ (99)

is an integral with weak singularity and must be calculated using logarithmic Gauss
quadrature through the following transformation:

η = ξ ⇒ dη

dξ
= 1 (100)

one has:

η(ξ = 0) = 0 (101)

η(ξ = 1) = 1 (102)

rA =
ξ − ξd

2
=

ξ

2
=

η

2
(103)

Hence, we have:

g2s1 = 2× −1

2πk

ˆ 1

0

log
(η
2

)
N2(ξ(η))

dΓ

dξ

dξ

dη
dη =

−1

πk

ˆ 1

0

log (η)N2(ξ(η))
dΓ

dξ
dη (104)

The integrals g1 and g3 are not singular when the source point is node 2 because
N1 = N3 = 0 at node 2, where T ∗ → ∞.

• Source point at node 3: ξd = 1.

The integrals g1 and g2 are not singular when the source point is node 3 because
N1 = N2 = 0 at node 3, where T ∗ → ∞.

ˆ 1

−1

N1T
∗dΓ

dξ
dξ

∣∣∣∣
ξd=−1

=

ˆ 1

−1

N3T
∗dΓ

dξ
dξ

∣∣∣∣
ξd=1

(105)

In this way, the integral g3 does not need to be calculated when the source point is
node 3 because it uses the calculated value of the integral g1 when the source point is
node 1.
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8 Heat sources

Given Laplace’s equation for a heat conduction problem, as seen:

∂2T

∂x2
+

∂2T

∂y2
= 0

with its respective integral boundary equation

cT (xd, yd) =

ˆ
Γ

q∗TdΓ−
ˆ
Γ

T ∗qdΓ.

If there is heat generation, the Poisson formulation given by:

∂2T

∂x2
+

∂2T

∂y2
= f(x, y), (106)

where f(x, y) is the heat generation function (heat source).
Multiplying Eq.(106) by a weight function and integrating along the boundary we

obtain a residual function. Assuming that this residue is equal to zero, we have:
ˆ
A

[
∂2T

∂x2
+

∂2T

∂y2
− f(x, y)

]
ωdA = 0.

In order to obtain the integral boundary equation, it follows:
ˆ
A

[
∂2T

∂x2
+

∂2T

∂y2

]
ωdA−

ˆ
A

f(x, y)ωdA = 0 (107)

that works
cT (xd, yd) =

ˆ
s

q∗Tds−
ˆ
s

T ∗qds+

ˆ
A

T ∗f(x, y)dA. (108)

Observing that there is a domain integral in the formulation of Eq.(108) that has to be
transformed into a boundary integral, otherwise, the problem domain will have to be
discretized.

8.1 Concentrated heat sources

If the heat source is concentrated, it will be represented by a Dirac delta function, ie:

f(x, y) = Cδ(x− xc, y − yc) (109)

where (xc, yc) are the coordinates of the point where the applied heat source and C is the
value of the heat source. If C is negative, f(x, y) is a concentrated heat sink. Substituting
the equation (109) into the equation (108) we have:

cT (xd, yd) =

ˆ
s

q∗Tds−
ˆ
s

T ∗qds+

ˆ
A

T ∗Cδ(x− xc, y − yc)dA. (110)

By the properties of the Dirac delta, the domain integral becomes the value of the
function at the point, that is:

cT (xd, yd) =

ˆ
s

q∗Tds−
ˆ
s

T ∗qds+ CT ∗(xc − xd, yc − yd). (111)
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8.2 Domain distributed heat sources

If the heat source f(x, y) is distributed in the domain, the radial integration method can
be used to transform the domain integral into a boundary integral, as follows:

ˆ
A

T ∗f(x, y)dA =

ˆ θ2

θ1

ˆ r

0

T ∗f [x(rho, θ), y(ρ, θ)]ρdρ︸ ︷︷ ︸
F

dθ.

Making

F =

ˆ r

0

T ∗f [x(ρ, θ), y(ρ, θ)]ρdρ, (112)

results ˆ
A

T ∗f(x, y)dA =

ˆ θ2

θ1

Fdθ. (113)

Q

Γ

Ω

n

r
α

dθ

rdθ

r

dΓ

I

K

J

K
I

J

rdθ2

dΓ
2

α

Figure 10: Transformation from domain to boundary.

From the triangle in the figure 10, it follows:

cosα =
r dθ

2
dΓ
2

dθ =
cosα

r
ds. (114)

Since n⃗ and r⃗ are unit vectors, we have:

cosα = n⃗.r⃗. (115)

Replacing Eq.(115) in Eq.(114) and then in Eq.(113), we haveˆ
A

T ∗f(x, y)dA =

ˆ
s

F
n⃗.r⃗

r
ds. (116)

Replacing Eq.(116) in Eq.(107), follows

cT (xd, yd) =

ˆ
s

q∗Tds−
ˆ
s

T ∗qds+

ˆ
s

F
n⃗.r⃗

r
ds,

which is the integral boundary equation when heat is generated.
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9 Numerical examples

To evaluate the boundary element formulations using constant, linear and quadratic ele-
ments, the temperature distribution in a cylinder and a rectangular plate was analyzed. In
the cylinder, the boundary conditions are constant in the outer and inner diameters, while
in the plate, the boundary conditions vary at each point of the boundary.

Example 9.1 Conduction of heat in a cylinder Consider a cylinder with dimensions
shown in figure 11. The problem was discretized with different meshes, from the coarsest
to the most refined. It was considered ri = 1, ro=2, T (ri)= 100 and q(ro)= -200, k = 1.

The analytical solution for temperature is given by:

T (r) = T (ri)− q(ro) ro log(r/ri) (117)

and to the stream by:

q(r) = −q(ro)
ro
r
. (118)

O

ri ro

Sa

V

Sb

AB rC D

Figure 11: Cylinder dimensions

The figures 12, 13 and 14 show, respectively, a 16-node mesh with constant boundary
elements, a 112-node mesh with constant boundary elements, and a 16-node mesh with
quadratic boundary elements. Note that, for a coarse discretization, with 16 nodes, the
approximation of a circle with quadratic elements, which can be curved, is better satisfied
than with straight elements (constant or linear elements).

Results were rated at 4 points. The first two points are the internal points A and B,
where rA = (ri + ro)/2 = 1.50 and rB = (ri + 3ro)/4 = 1.75. The two others are
the boundary points C and D. The value of temperature T and flux q at these points
were calculated with different meshes and different types of elements and the results were
compared with analytical solutions of the problem for temperature and flux, given by the
equations (117 ) and (118), respectively. The figures 16, 17, 18, 19, 20 and 21 show these
comparisons.

Care was taken that the number of nodes was the same in each comparison. For this,
the number of quadratic elements was half the number of linear and constant elements.
Furthermore, so that the accuracy of the integration did not influence the analysis, a
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Figure 12: 16-node boundary element mesh with constant elements (8 on the outer
boundary and 8 on the inner boundary)

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 x

 y

Figure 13: Boundary element mesh with 112 nodes with constant elements (56 on
the outer boundary and 56 on the inner boundary)
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Figure 14: Boundary element mesh with 16 nodes with quadratic elements (8 on the
outer boundary and 8 on the inner boundary)

large number of integration points were used in all the integrals of the boundary elements
method. All integrals were calculated with 16 Gauss points, which represents a number
more than enough for an integration with good precision.

Analyzing the figures 16, 17, 18, 19, 20 and 21, it is noted that all formulations con-
verge to the solution analytical as the mesh is refined. However, it was not possible to
observe any element that showed faster convergence in all cases. For the temperature
at the inner points A and B, the quadratic elements showed the fastest convergence and
the constant elements the slower convergence. For the flux at the inner points A and
B, the linear elements showed the slowest convergence while the constant elements con-
verged faster at the point A and the quadratic ones converge faster at the point B. At the
points C and D, belonging to the inner and outer boundaries, respectively, the results for
quadratic elements were analyzed both at the element’s endpoints and at the element’s
middle nodes. In the case of point C, where temperature was the unknown variable, the
fastest convergence was presented by the constant elements while the slower one was pre-
sented by the linear elements. In the case of point D, where the flux was calculated, the
fastest convergence was that of the constant elements, while the slowest was presented
by the linear elements. In the last two cases the convergence to the grid of quadratic
elements was faster at the middle nodes than at the endpoints of the elements.
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Figure 15: 16-node boundary element mesh with quadratic elements (8 on the outer
boundary and 8 on the inner boundary)
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Figure 16: Temperature at point A.
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Figure 17: Temperature at point B.
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Figure 18: flux at point A.
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Figure 19: flux at point B.
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Figure 20: Temperature at point C.
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Figure 21: flux at point D.
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Figure 22: Distribution of temperature and heat flux across the cylinder.
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Example 9.2 Conduction of heat on a plate
Consider a rectangular plate ABCD as shown in figure 23. It was considered k = 1.

The boundary conditions on the plate are as follows:

y

xA O B

CD

θ
r

E F

G

Figure 23: Rectangular plate.

q = − 1

2
√
r

(
cos

θ

2
cos θ + sin

θ

2
sin θ

)
in BC, (119)

q = − 1

2
√
r

(
cos

θ

2
sin θ − sin

θ

2
cos θ

)
in CD, (120)

q =
1

2
√
r

(
cos

θ

2
cos θ + sin

θ

2
sin θ

)
in DA, (121)

T = 0 in AO (122)

and

q = 0 in OB. (123)

The analytical solution to this problem is given by:

u =
√
r cos

θ

2
, (124)

qx =
cos θ

2

2
√
r

(125)

and

qy =
sin θ

2

2
√
r
. (126)
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The coordinates of the points A and C are, respectively (-1.0; 0.0) and (1.0; 1.0). The
E point is the midpoint of the AO segment and the F point is the midpoint of the OB
segment. The point G has coordinate (-0.5; 0.5).

As in the previous example, the rectangular plate was also discretized with different
meshes, from the coarsest (24 knots) to the most refined (120 knots). In all cases, the
elements used were close in size but not equal in size. The temperature value T was
calculated at points F and G, the flux normal to the boundary q was calculated at point
E and fluxs qx and qy, in the directions x and y, respectively, were calculated at point G.
The figures 24, 25, 26, 27, 28 show the values of temperatures and fluxs at these points.
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Figure 24: Temperature at point F .

Figure 29 shows the temperature distribution and heat flux in the rectangular plate.
The behavior of the results obtained in this example are, in most cases, very similar

to the behavior obtained in the previous example. All formulations converge into the
analytical solution at all points for both temperature and flux. The linear elements showed
a slightly slower convergence than the quadratic and constant elements, the latter two
having very similar convergence, although they approach the analytical solution from
opposite sides (one above and one below the analytical solution ). In the case of Figure
25, the quadratic and linear elements presented expressive oscillations for the coarser
meshes, which stabilized with the refinement of the mesh. These oscillations also occurred
in a less expressive way in Figure 28.
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Figure 25: Heat flux normal to the boundary at point E.
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Figure 26: Temperature at point G.
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Figure 27: Heat flux in the direction x at point G.
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Figure 28: Heat flux in the y direction at the point G.
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Figure 29: Distribution of temperature and heat flux on the plate.
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10 Concluding remarks

For certain problems, if an appropriate auxiliary field, known as the fundamental solution
for the problem, is used in the integral formulation, the domain integrals may be resolved
and rewritten as non-integral terms, thus leading to an integral representation wherein only
boundary integrals remain. The equation obtained from the use of integral identities and
fundamental solutions is called the boundary integral equation (BIE). The fundamental
solution is an auxiliary field that satisfies the partial differential equation for the problem
being modeled, and is valid for an extended, infinite domain that surrounds and encom-
passes the domain of the BVP being studied. For a particular problem, the fundamental
solution is a function of the distance between two different points in the extended domain,
among other possible variables. The usual way to understand the fundamental solution is
to let an observer sit in one of these points, called the collocation point, while the other
point, called the field point, is allowed to vary throughout the extended domain. When the
distance between these two points becomes zero, the fundamental solution is singular. As
the fundamental solution is part of the integrand of the BIE, the solution of this boundary
integral representation requires the understanding of singular integrals, which arise when
the collocation and field points coincide. One must note that although a mathematical
singularity will appear due to the use of fundamental solutions, the original variable of
interest represents a field that usually is not physically singular, and thus, although the
integrand may be singular, the integral exists and has a non singular value, in this case. A
numerical solution for a particular BIE, containing boundary integrals only, can be per-
formed through the discretization of the domain boundary into boundary elements. To
perform this discretization, interpolation functions need to be used for each boundary el-
ement, both for the geometry and for the unknown variables of the problem. A usual
approach is to use polynomial interpolation functions similar to the ones adopted for the
finite element method (FEM). Again, the interpolation functions can be expressed in terms
of shape functions (isoparametric elements). After the discretization of the boundary, the
integrals can be numerically solved by some quadrature scheme, to obtain an algebraic
equation in terms of the boundary variables at the nodes. The numerical integration for
non-singular integrals may follow standard Gauss quadrature procedures, for example,
but the integration of the singular integrals may require some special techniques.

When collocation is performed for one particular point at the boundary, only one in-
tegral equation is obtained. The discretization of this integral equation leads to only one
algebraic equation written in terms of the quantities of interest at the boundary nodes.
Collocating at a different boundary point leads to another boundary integral equation,
which is independent from the equation obtained from the collocation at the first bound-
ary point. But, for the discretized problem, for a given number of boundary unknowns
at the nodes (for example, n nodes with one unknown per node, leading to a total of n
boundary unknowns) only the first set of discretized algebraic equations (in this exam-
ple, the first n algebraic equations), obtained by changing the collocation point from one
boundary location to another, will consist of independent equations. Thus, to 99 be able
to obtain a system of linearly independent equations to be solved, one must collocate at
a number of different boundary points, so that the matrix of the system of equations is a
square, invertible matrix. Although collocation could have been performed at any bound-
ary point, an usual procedure is to collocate at the boundary nodes, so that all the boundary
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information necessary to solve the problem is represented in terms of the boundary nodal
variables. Usually, there are more boundary unknowns than available independent alge-
braic equations obtained from this approach. Only by imposing the boundary conditions,
for the prescribed boundary quantities, the system of equations could be determined, for
the remaining boundary unknowns.

After obtaining the unknown boundary quantities of interest as the solution of the sys-
tem of equations, a post-processing approach can be used, performing further collocation
at any other points, either in the domain (interior points) our outside the domain (exterior
points), to obtain the quantities of interest at these points. The above-outlined method
was originally known as the Boundary Integral Equation (BIE) method, and later has be-
come to known as the Boundary Element Method (BEM). Some important points must be
made:

• When the boundary integral equation is written for collocation points outside the
boundary (interior or exterior points), as the field point remains a boundary point,
no singular integrals are obtained for collocation at these interior or exterior points.

• One must note that, differently from the FEM, although element interpolating func-
tions are being used for each boundary element, this numerical approach does not
lead to local support, as the auxiliary function being used is a fundamental solution,
which is eminently non-local. The fundamental solution requires information from
a field point, which belongs to the element being integrated, and from a colloca-
tion point, which may be in the element being integrated, or may be at some other
location elsewhere in the boundary, thus outside this element. Thus, the matrix of
the system of equations, obtained after the discretization of the boundary and after
imposing the boundary conditions, is non-symmetric and fully-populated.

• Every boundary integral equation obtained from collocation at a particular point is
an exact equation, as both the proper integral identity and the fundamental solu-
tion used are, in fact, exact representations for the problem being modeled. In the
BEM, the only approximation occurs when the boundary is discretized into bound-
ary elements. Therefore, in the BEM, exact integral equations are written for the
approximate boundary, while in the FEM, an approximate integral representation
in the domain was used, and another approximation was also used in every finite
element, as the geometry and the quantities of interest were described in terms of
the interpolating functions.

For further reading on the Boundary Element Method for potential, fluids, acous-
tics, elasticity, plates, and shells, some books ate indicated on references Paris et al.
[1997], Beer et al. [2008], Gaul et al. [2003], Wrobel [2002], Aliabadi [2002], Kat-
sikadelis [2002], Bonnet [1999], Beer and Watson [1992], Jaswon [1977].
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F. Paris, J. Canas, and J. Cañas. Boundary element method: fundamentals and applica-
tions. Oxford University Press, USA, 1997.

J. C. F. Telles. A self adptive co-ordinate transformation for efficient numerical evaluation
of general boundary element integrals. International Journal for Numerical Methods
in Engineering, 24:959–973, 1987.

L. C. Wrobel. Boundary Element Method V 1. John Wiley & Sons, Apr. 2002. ISBN
0471720399.

Albuquerque, Éder L., et al. (2022) The Boundary Element Method for Potential Problems pp. 688-732

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 732



 

733 
 

 

Chapter 20 
The Boundary Element Method for 

Structural Problems 

 
 
 

Chapter details 

Chapter DOI: 
https://doi.org/10.4322/978-65-86503-83-8.c20 
 
Chapter suggested citation / reference style: 

Albuquerque, Éder L., et al. (2022). “The Boundary Element Method for Structural 
Problems”. In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models 
for the Direct Problem,  Vol. II, UnB, Brasilia, DF, Brazil, pp. 733–808. Book 
series in Discrete Models, Inverse Methods, & Uncertainty Modeling in Structural 
Integrity. 

P.S.: DOI may be included at the end of citation, for completeness. 

 

 

 

 

Book details 

Book: Fundamental Concepts and Models for the Direct Problem 
Edited by: Jorge, Ariosto B., Anflor, Carla T. M., Gomes, Guilherme F., & Carneiro, 
Sergio H. S. 

Volume II of Book Series in: 
Discrete Models, Inverse Methods, & Uncertainty Modeling in Structural Integrity 
Published by: UnB City: Brasilia, DF, Brazil Year: 2022 
DOI: https://doi.org/10.4322/978-65-86503-83-8 

https://doi.org/10.4322/978-65-86503-83-8.c20
https://doi.org/10.4322/978-65-86503-83-8


The Boundary Element Method for Structural
Problems

E. L. Albuquerque1
∗
, P. Sollero2, M. H. Aliabadi3

1∗Department of Mechanical Engineering, University of Brasilia, Brazil. E-mail: eder@unb.br
2Faculty of Mechanical Engineering, University of Campinas, Brazil. E-mail:
sollero@fem.unicamp.br
3Department of Aeronautics, Imperial College London, London, UK. E-mail:
m.h.aliabadi@imperial.ac.uk

∗Corresponding author

Abstract

In this chapter, some boundary element formulations applied to anisotropic ma-
terials are reviewed. Firstly, the plane elasticity is presented, with special attention
to dynamic problems. Then, the thin plate formulation is shown, with application
to transient dynamic problems, modal analysis, and buckling. Finally, thin shallow
shell formulation is presented. Body forces are treated by the dual reciprocity bound-
ary element method or by the radial integration method. Some numerical examples
are presented in order to access the accuracy of the formulations.

1 Introduction

The extensive use of composite material structures in engineering design has de-
manded reliable and accurate numerical procedures for the treatment of anisotropic mate-
rial structural problems. As anisotropy increases the number of material elastic constants,
difficulties in the modelling arise in the analysis of laminate composite structures. Par-
ticularly, in boundary element formulation, larger number of variables means far more
difficulties in deriving fundamental solutions. This aspect is evident in literature. It can
be noted that the number of references in which boundary element method is applied for
anisotropic structures is significantly smaller than those treating isotropic ones. How-
ever, in the last ten years, important advances on boundary element techniques applied
to anisotropic materials were published in the literature. For example, plane elasticity
problems were analysed by Sollero and Aliabadi [1993, 1995], Deb [1996], and Albu-
querque et al. [2002, 2003a,b, 2004], out of plane elasticity problems by Zhang [2000],
tri-dimensional problems by Kogl and Gaul [2000a,b, 2003], Kirchhoff plates by Shi and
Bezine [1988], Rajamohan and Raamachandran [1999], Albuquerque et al. [2006], and
shear deformable plates by Wang and Schweizerhof [1995, 1996, 1997].

Many alternative procedures have been presented to treat domain integrals in the BEM
as shown in books like Nowak Nowak and Neves [1994] and Partridge et al. Partridge

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 734



et al. [1992]. Among them, the most established is the dual reciprocity boundary element
method (DRM), proposed by Nardini and Brebbia Nardini and Brebbia [1982] for the
analysis of dynamic problems in plane elasticity and extended by many other authors for
different applications (see the book of Partridge et al. Partridge et al. [1992]).

Boundary element formulations have been applied to plate bending anisotropic prob-
lems considering Kirchhoff as well as shear deformable plate theories. Shi and Bezine
[1988] presented a boundary element analysis of plate bending problems using funda-
mental solutions proposed by Wu and Altiero [1981] based on Kirchhoff plate bending
assumptions. Rajamohan and Raamachandran [1999] proposed a formulation that the sin-
gularities were avoided by placing source points outside the domain. Paiva et al. [2003]
presented an analytical treatment for singular and hypersingular integrals of the formu-
lation proposed by Shi and Bezine [1988]. Shear deformable plates have been analysed
using boundary element method by Wang and Schweizerhof [1996, 1997] with the fun-
damental solution proposed by Wang and Schweizerhof [1995].

In general plate bending boundary element method, domain integrals arise in the for-
mulation due to the distributed load in the domain. In order to evaluate these integrals,
cell integration scheme can give accurate results, as carried out by Shi and Bezine [1988]
for anisotropic plate bending problems. However, the discretization of the domain into
cells reduces one of the main advantages of boundary element method that is the boundary
only discretization. An alternative for this procedure was presented by Rajamohan and
Raamachandran [1999] which proposes the use of particular solutions to avoid domain
discretization. Nevertheless, the use of particular solutions demands to find a suitable
function which satisfy the governing equation. Depending on how complicated the gov-
erning equation is, this function is quite difficult to be found.

Although the large majority of papers about the numerical analysis of composite shells
are related to the finite element method, there are few works in literature that present
boundary element formulations applied to orthotropic or even anisotropic shells Wang
[1992], Lu and Mahrenholtz [1994], Wang and Schweizerhof [1995]. However, all these
works involve complicated fundamental solutions that need to be computed numerically.
An alternative approach to the these previous formulations is the coupling of plate bend-
ing and plane elasticity formulations, as proposed by Zhang and Atluri Zhang and Atluri
[1986] who derived a formulation for static and dynamic analysis of isotropic classical
shallow shells. Domain integrals were computed by the domain discretization into cells.
Dirgantara and Aliabadi Dirgantara and Aliabadi [1999] extended this approach to the
analysis of shear deformable isotropic shallow shells. Later, Wen, Aliabadi, and Young
Wen et al. [2000] used the formulation proposed by Dirgantara and Aliabadi Dirgan-
tara and Aliabadi [1999] and transformed the domain integrals into boundary integrals
using the dual reciprocity method (DRM). Baiz and Aliabadi Baiz and Aliabadi [2006]
presented a boundary element formulation for the analysis of linear buckling of shear
deformable shallow shells.

In this report, boundary element formulations are presented for anisotropic problems.
In all problems, the static fundamental solution is used and domain integrals which come
from domain distributed loads are transformed into boundary integrals by exact transfor-
mation using the radial integration method or by the dual reciprocity boundary element
method. The radial integration method was initially presented by Venturini [1988] in
1988 for isotropic plate bending problems. Recently, Gao [2002] extended it for three
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dimensional isotropic elastic problems. Two cases of loading are considered: uniformly
distributed and linearly distributed loads. As stated by Gao [2002], this method can be
applied to transform any of domain integral to the boundary. The most attractive feature
of the method is its simplicity since only the radial variable is integrated. For domain in-
tegrals which include unknown variables, the proposed procedure can be performed using
radial basis function as in the dual reciprocity method as suggested by Gao [2002]. The
formulations are presented for plane elasticity, plate bending, and shallow shell problems.

2 Boundary element method applied to the dynamic analysis of anisotropic plane
elasticity

2.1 Introduction

Nowadays, the structural dynamic analysis of anistropic plates by the boundary element
method (BEM) has been treated by two different approaches. In the first, the fundamental
solution is obtained considering all terms of the equation of motion. As a consequence,
this approach has no domain integrals but uses complicated fundamental solutions (Wang
and Schweizerhof Wang and Schweizerhof [1997]). In the second, the static fundamental
solution is used and the inertia term of the equation of motion is considered as a body
force. This body force generates domain integrals that can be computed by the discretiza-
tion of the domain into cells. However, this procedure eliminates, to a certain extent,
one of the most interesting advantage of the BEM that is the absence of domain dis-
cretization. The DRM has been successfully used in the dynamic analysis of anisotropic
structures as presented by Albuquerque et al. Albuquerque et al. [2002, 2003a,b, 2004]
for bidimensional problems, and by Kögl and Gaul Kogl and Gaul [2000a,b, 2003] for
three-dimensional problems. Due to the complexity of governing equations of anisotropic
materials, the analytical computation of particular solutions used in the DRM is restricted
to some approximation functions, all of them are functions of material properties.

In this chapter, a boundary element formulation applied to transient dynamic anisotropic
problems is presented. The fundamental solutions for elastostatics presented by Cruse
and Swedlow Cruse and Swedlow [1971] are used and the inertia terms are treated as
body forces. The dual reciprocity boundary element is used to transform the domain in-
tegral into a boundary integral. The particular solutions and the approximation function
used here are both simple. The results are stable and strongly dependent on the material
anisotropy. When they are compared with results obtained by other formulations, there is
a good agreement in all the cases.

2.2 Anisotropic Elasticity

The equilibrium and compatibility equation are independent of the type material. How-
ever, the stress-strain relationship depends on the specific type of material behaviour. The
constitutive equations for linear elastic anisotropic materials, leading to the governing
differential equations of the stress function, will be reviewed in this section.

Albuquerque, Éder L., et al. (2022) The Boundary Element Method for Structural Problems pp. 733-808

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 736



2.3 Constitutive equations

A linear relationship between stress and strain is assured only when the strain energy W
is a quadratic function of strain. If W is the quadratic function

W =
1

2
Cijklϵijϵkl (1)

the equation (1) yields the generalized Hooke’s law, or constitutive equation for fully
anisotropic three-dimensional body, given by

σij = Cijklϵkl . (2)

The components of the fourth-order tensor Cijkl are known as elastic constants of
the material. Symmetry of the stress and strain tensors requires the Cijkl = Cjikl and
Cijkl = Cijlk, respectively. The condition for the existence of a strain energy function
also requires that Cijkl = Cklij . These latter conditions reduce the number of elastic
constants from 81 to 21.

For two-dimensional elasticity a fully anisotropic material can be described using only
six independent elastic constants, rewriting equation (2) as

ϵi =
∑
j

aijσj i, j = 1, 2, 6 (3)

where aij are compliance coefficients with aij = aji. The simplified notation for the
strains in equation (3) is defined as

ϵi =


ϵ1
ϵ2
ϵ6

 =


ϵ11
ϵ22
ϵ12

 , (4)

and for stresses

σj =


σ1

σ2

σ6

 =


σ11

σ22

σ12

 . (5)

The compliance coefficients can be expressed in terms of engineering constants as:

a11 = 1/E1 a12 = −ν12/E1 = −ν21/E2

a16 = η12,1/E1 = η1,12/G12 a22 = 1/E2

a26 = η12,2/E2 = η2,12/G12 a66 = 1/G12

(6)

where Ek are the Young’s moduli referring to the axes xk , G12 is the shear modulus for
the plane, νij are the Poisson’s ratios and ηjk,l and ηl,jk are the mutual coefficients of first
and second kind respectively. For orthotropic materials a16 = a26 = 0.

2.3.1 Governing Differential Equation

The Airy stress function can be used to compute the stresses and displacements in a loaded
anisotropic body by the method described in References Lekhnitskii [1968].

a11
∂4F

∂x4
2

− 2a16
∂4F

∂x1∂x3
2

+ (2a12 + a66)
∂4F

∂x2
1∂x

2
2

− 2a26
∂4F

∂x3
1∂x2

+ a22
∂4F

∂x4
1

= 0 (7)
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Equation (7) can be integrated in the characteristic complex planes

z = x1 + µx2 , µ = r + is , (8)

where r and s are the real and imaginary parts of µ, respectively.
Using equation (8), equation (7) can be rewritten as

d4F

dz4
[
a11µ

4 − 2a16µ
3 + (2a12 + a66)µ

2 − 2a26µ+ a22
]
= 0 . (9)

The existence of non trivial solutions of equation (9) requires the fulfillment of its char-
acteristic equation

a11µ
4 − 2a16µ

3 + (2a12 + a66)µ
2 − 2a26µ+ a22 = 0 . (10)

The roots of equation (10) are always complex or pure imaginary, occur in conjugate pairs
(µk and µk ) and s is always positive, as shown by Lekhnitskii Lekhnitskii [1968]. Thus,
the characteristic directions become

zk = x1 + µkx2 , k = 1, 2 (11)

and their conjugates.
The general form of the stress function is then given by

F (x1, x2) = 2Re[F1(z1) + F2(z2)] . (12)

Introducing the notation
dFk(zk)

dzk
= Φk(zk) , (13)

where no summation is implied on k. From equation (12), we obtain the stress compo-
nents

σ11 = 2Re[µ2
1Φ

(1)
1 (z1) + µ2

2Φ
(1)
2 (z2)] ,

σ22 = 2Re[Φ
(1)
1 (z1) + Φ

(1)
2 (z2)] , (14)

σ12 = −2Re[µ1Φ
(1)
1 (z1) + µ2Φ

(1)
2 (z2)] ,

where Φ
(1)
k denotes the first derivative of Φk.

Substituting equation (14) into equation (3), neglecting rigid body motion and inte-
grating, we obtain the displacements

u1 = 2Re[p11Φ1(z1) + p12Φ2(z2)] ,

u2 = 2Re[p21Φ1(z1) + p22Φ2(z2)] , (15)

where

[pik] =

[
a11µ

2
k + a12 − a16µk

a12µk + a22/µk − a26

]
(16)

is a matrix of complex parameters.
Equations (14) and (15) together with traction boundary conditions

tj = σijni = gj (17)

or displacements boundary conditions

uj = hj (18)

constitute the mathematical problem to be solved.
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2.4 Anisotropic Elastostatics Fundamental Solutions

The solution of a point force in the infinite anisotropic plane is called fundamental solu-
tion and is the basic relation for the development of integral equations for the solution of
the anisotropic elasticity problem. The fundamental solutions Uij and Tij are the displace-
ments and tractions in the j-direction at z due to a unit point force acting in the i-direction
at z′ . The points z and z

′ are the source (or load) and field points and are defined by

z
′
=

{
z
′
1

z
′
2

}
=

{
x

′
1 + µ1x

′
2

x
′
1 + µ2x

′
2

}
(19)

and

z =

{
z1
z2

}
=

{
x1 + µ1x2

x1 + µ2x2

}
(20)

where µk are the complex roots of equation (10).
If we consider a closed contour Γ surrounding the source point and use the tractions

computed by equation (17) and the stresses defined by equation (14), it can be shown that
ˆ
Γ

t1dΓ = 2Re [[µ1Φ1 + µ2Φ2]] ,

ˆ
Γ

t2dΓ = 2Re [[Φ1 + Φ2]] , (21)

where the double brackets denote the jump in the function for a closed contour surround-
ing the source point. If the contour Γ encloses z′ , the point of load application, then the
results of equations (21) will be non-zero.

The fundamental solutions in an infinite anisotropic plane can be obtained by finding
the Airy stress function resulting from the fundamental tractions. The Airy stress function
for a point load in the xi direction can be represented by Φik. As the contour integrals of
equation (21) are of opposite signs to the applied loads it can be expressed for the point
load solution as

2Re [[µ1Φi1 + µ2Φi2]] = −δi1 ,

2Re [[Φi1 + Φi2]] = δi2 . (22)

Equation (22) may be satisfied for any closed contour enclosing z
′ by taking

Φik = Aik ln
(
z− z

′
)

(23)

where Aik are complex constants. It can be shown that for any contour enclosing the point
z
′

ln
(
z− z

′
)
= 2πi . (24)

Using equations (22), (23), and (24) it can be obtained two equations for the unknown
constants Aik, or

Ai1 − Ai1 + Ai2 − Ai2 = δi2/(2πi)

µ1Ai1 − µ1Ai1 + µ2Ai2 − µ2Ai2 = −δi1/(2πi) . (25)
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The remaining two equations result from the requirement that the displacements be
single valued, or

[[ui]] = 0 . (26)

Using the displacements equation (15) and equation (23) and (24), equation (26) can be
rewritten as

p11Ai1 − p11Ai1 + p12Ai2 − p12Ai2 = 0 ,

p21Ai1 − p21Ai1 + p22Ai2 − p22Ai2 = 0 , (27)

where pik is given by equation (16) and the overbar denotes the conjugate of the complex
constant. Equations (25) and (27) can be rearranged in the usual matricial form as

1 −1 1 −1

µ1 −µ1 µ2 −µ2

p11 −p11 p12 −p12

p21 −p21 p22 −p22




Ai1

Ai1

Ai2

Ai2

 =



δi2/(2πi)

−δi1/(2πi)

0

0


, (28)

which is sufficient to find the complex constants Aik.
The fundamental solution for displacements can be obtained by inserting the stress

function given by equation (23) into the displacements equation (15) to give

Uij(z
′
, z) = 2Re

[
pj1Ai1 ln(z1 − z

′

1) + pj2Ai2 ln(z2 − z
′

2)
]

. (29)

Similarly, the fundamental solution for tractions is obtained by substituting equa-
tion (23) into the stress equations (14) and using equation (17) to give

Tij(z
′
, z) = 2Re

[
1

(z1 − z
′
1)

qj1(µ1n1 − n2)Ai1 +
1

(z2 − z
′
2)

qj2(µ2n1 − n2)Ai2

]
.

(30)
where

[qjk] =

[
µ1 µ2

−1 −1

]
(31)

and nk are the components of the normal outward vector.

2.5 Boundary Integral Equation

Since the governing partial differential equation (7) of the anisotropic elasticity problem
admits no real characteristic surface, the problem is elliptic and the continuity of the
stresses and displacement fields is assured. Consequently, it can be verified that Betti’s
reciprocal work theorem for two self-equilibrated states (u, t,b) and (u∗, t∗,b∗) must be
valid and expressed as

ˆ
Ω

b∗iuidΩ +

ˆ
Γ

t∗iuidΓ =

ˆ
Ω

biu
∗
idΩ +

ˆ
Γ

tiu
∗
idΓ . (32)

The self-equilibrated states are described by the displacements u and u∗, the tractions t
and t∗ and the body forces b and b∗. It is assumed that the domain Ω with boundary
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Γ and the domain Ω∗ with boundary Γ∗ encompass the states (u, t,b) and (u∗, t∗,b∗),
respectively. The problem under consideration in domain Ω is contained within a general
region Ω∗, having the same anisotropic properties.

For the present purposes it is convenient to let the state (u, t,b) be the required solu-
tion, and the state (u∗, t∗,b∗) be the fundamental solution. The displacement and traction
field corresponding to the solution of the governing equation can be written as

u∗
i = u∗

jδij = Uij(z
′
, z)δijei ,

t∗i = t∗jδij = Tij(z
′
, z)δijei , (33)

where δij is the Kronecker’s delta, Uij and Tij are the anisotropic fundamental solution
for elastostatics given by equations (29) and (30), respectively, and ei are the components
of the unit vector corresponding to a unit force in the i direction applied at z′ . The body
force component b∗i corresponds to a point force and is given by

b∗i = δ(z− z
′
)ei , (34)

where δ(z− z
′
) is the Dirac delta function, that has the property

ˆ
Ω

g(x)δ(z− z
′
)dΩ(z) = g(z

′
) . (35)

From this property of the Dirac delta function, the first integral in equation (32) can be
written as ˆ

Ω

b∗iuidΩ = ui(z
′
)ei . (36)

Using equations (33) and (36), equation (32) can be rewritten as

ui(z
′
) +

ˆ
Γ

Tij(z
′
, z)uj(z)dΓ(z) =

ˆ
Γ

Uij(z
′
, z)tj(z)dΓ(z) +

ˆ
Ω

Uij(z
′
, z)bj(z)dΩ(z)

(37)
which is known as Somigliana’s identity that in absence of body forces is expressed as

ui(z
′
) +

ˆ
Γ

Tij(z
′
, z) uj(z) dΓ(z) =

ˆ
Γ

Uij(z
′
, z) tj(z) dΓ(z) . (38)

Equation (38) does not constitute a solution to a well-posed boundary value prob-
lem because the boundary tractions and boundary displacements are not simultaneously
known for all boundary points. A relation between boundary tractions and displacements
is obtained when the source point is taken to the boundary, which represents the solution
for the elastic problem.

When there is body forces in the formulation, the integral equation is given by:

cij(z
′
)uj(z

′
)+

ˆ
Γ

− Tij(z
′
, z) uj(z) dΓ(z) =

ˆ
Γ

Uij(z
′
, z) tj(z) dΓ(z)+

ˆ
Ω

Uij(z
′
, z) bj(z) dΓ(z).

(39)
where bj(z) is a load distributed along the domain Ω.
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2.6 The dual reciprocity boundary element method for dynamic problems

The reciprocal relation between the fundamental solution and another elastostatic state
defined over a domain Ω is given by the following integral equation

cikui +

ˆ
Γ

TikuidΓ =

ˆ
Γ

UiktidΓ−
ˆ
Ω

UikρüidΩ (40)

where cik is equal to δik/2 to smooth boundary.
In order to transform the domain integral of equation (40) into a boundary one, the

dual reciprocity boundary element method will be used. In this method, the acceleration
is approximated as a sum of M function fm(x) multiplied by unknown time dependent
coefficients α̈k(τ)

üi(x, τ) =
M∑

m=1

α̈k(τ)f
m(x) (41)

The domain integral in equation (40) can be written as

ˆ
Ω

Uliρüi = ρ
M∑

m=1

α̈m
i

ˆ
Ω

Ulif
mdΩ (42)

The solutions of the equilibrium equation

Cmnrsû
j
rk,ns = f j

mk (43)

are required in order to transform the domain integral into an equivalent boundary integral.
The solutions ûrk are known as particular solutions.

The reciprocal relation between the fundamental solution and the particular solution
is given by

cliû
m
in +

ˆ
Γ

Tliû
m
indΓ = −

ˆ
Ω

fmUlndΩ +

ˆ
Γ

Ulit̂
m
indΓ (44)

Substituting equation (44) into equation (42), and then into equation (40), the follow-
ing equation is obtained

cliui +

ˆ
Ω

TliuidΓ =

ˆ
Γ

UlitidΓ+

ρ
M∑

m=1

α̈m
n

{
cliû

m
in −
ˆ
Γ

t̂minUlidΓ +

ˆ
Γ

Tliû
m
indΓ

}
(45)

The equation (45) is the basis of dual reciprocity boundary element method. In it can
be noted the absence of domain integral.

The traditional procedure to solve the differential equation (43) when the problem is
isotropic is to assume the approximation function and compute the corresponding par-
ticular solutions. This procedure is quite difficult for anisotropic materials because the
anisotropy increases the number of constants in the equilibrium equation. An alterna-
tive is to assume a particular solution and find the correspondent approximation function.
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This procedure was used by Schclar Schclar [1994] to steady state anisotropic problems
and by Albuquerque and Sollero Albuquerque and Sollero [1998] to transient anisotropic
problems.

In this work it is used for the displacement particular solution

ûmk = r3δkm (46)

where r is the radial vector from the source to the field point and δkm is the Dirac delta.
The corresponding approximation function, obtained by the substitution of equation

(46) into equation (43) is given by

fim = Cijkl {3r (r,lr,jδkm + δjlδkm)} . (47)

The traction particular solution is given by

t̂mr = σ̂mrsns (48)

where the particular stress σ̂mrs, which is obtained by differentiating the equation (46)
and using Hooke’s law, is given by

σ̂mrs = Crsjk
3r2

2
(r,jδkm + r,kδjm) (49)

In order to solve the elastodynamics problem, the boundary is divided into boundary
elements and the displacements and tractions are interpolated in these elements using
quadratic shape functions. Then the integral equation (45) can be written in a matrix form
as

Hu−Gt = ρ(Hû−Gt̂)α̈ (50)

The coefficient α̈ are computed using the relationship

ü = Fα̈ (51)

where F is a matrix whose elements are formed computing the approximation function to
every node.

Equation (50) can be written as

Hu−Gt = ρ(Hû−Gt̂)Eü (52)

where E = F−1.
Equation (52) can be written as

Mü+Hu = Gt (53)

where

M = ρ[Gt̂−Hû]E (54)

Several time integration schemes have been proposed to compute the acceleration ü
as it was reported by Bathe and Wilson Bath and Wilson [1976]. However, it has been
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found by Loffler and Mansur Loeffler and Mansur [1987] that Houbolt method (Houbolt
Houbolt [1950]) is the most appropriated to be used with dual reciprocity boundary el-
ement method. Because this, the Houbolt method was chosen to proceed the time inte-
gration of equation (52). Following Houbolt expression, the acceleration in the instant
τ +∆τ is approximated by

üτ+∆τ =
1

∆τ 2
(2uτ+∆τ − 5uτ + 4uτ−∆τ − ut−2∆t) (55)

which can be used to write equation (52) as

Bu = Gt+
1

∆τ 2
Mub (56)

where u = uτ+∆τ , t = tτ+∆τ ,

B =

[
2

∆τ 2
M+H

]
, (57)

and ub = 5uτ − 4uτ−∆τ + uτ−2∆τ .
The time step ∆τ should be chosen taking into account the material properties and the

mesh used. In this work, considering the non-dimensional number

β =

√
Emax

ρ

∆τ

lmin

, (58)

where Emax is the value of the biggest Young modulus, and lmin is the length of the
smallest boundary element, the time step is chosen so that

β ≥ 0.4716 (59)

.

2.7 Numerical Results

2.7.1 Infinity long strip

The first problem to be treated is an infinite long strip (Figure 1) subjected to a step
load function applied at time τo = 0 (Figure 2). A state of plane stress is assumed with
load σo = 1 N. The material is considered quasi-isotropic with the following properties:
Young’s Moduli E1 = 10.6667 104 Pa and E2 = 10.68 104 Pa, Poisson’s ratio ν12 =
0.3333, shear stress modulus G12 = 4 104 Pa, and density ρ = 1 Kg/m3.

The mesh used has 12 equal quadratic boundary elements (Figure 3). The results are
computed without any internal point and with 3 internal points (Figure 3). The time step
used was ∆τ = 7.22 10−4s (β = 0.4716 for the quasi-isotropic case).

The vertical displacement at the mid point of the free edge are plotted in Figure 4 and
the normal tractions at the base mid point are plotted in Figure 5, when using 0 and 3
internal points. The results show good agreement with the exact solution. Although in
this problem the use of internal points causes slightly differences in the solution, in many
cases the use of internal points are necessary to improve the results and it will be adopted
in all other problems treated in this work.
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Figure 1: Infinity long strip under an uniform step load.

The same problem is treated now varying the ratio between the Young’s Moduli E1

and E2 (R = E2/E1, where E1 and all other material constants are maintained with a
constant value).

Figures 6 and 7 show the results to three different values of R to the vertical displace-
ment to a node in the top and the normal traction to a node in the bottom of the strip,
respectively. In these orthotropic cases, analytical solutions were not found in the litera-
ture. However the results are the expected ones: the bigger the value of R, the more rigid
is the strip, the smaller are the displacements and the higher are the frequencies. In all the
cases the results are stable even after many cycles.
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Figure 2: Step load function.

Figure 3: Boundary element mesh and internal points to a part of the infinity strip.
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Figure 4: Vertical displacements for a node at mid point of the quasi-isotropic infin-
ity long strip free edge.
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Figure 5: Normal tractions for a node at mid point of the quasi-isotropic infinity
long strip base edge.
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Figure 6: Vertical displacements for a node at mid point of the infinity long strip free
edge considering three different Young’s Modulus ratios.
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Figure 7: Normal tractions for a node at mid point of the infinity long strip base
edge considering three different Young’s Modulus ratios.
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3 Theory of bending of anisotropic thin plate

A plate is a structural element defined by two flat parallel surfaces (Figure 8) where loads
are transversely applied. The distance between these two surfaces defines the thickness
of the plate, which is small when compared to other plate dimensions.

Considering its material properties, a plate can be either anisotropic, with different
properties in different directions, or isotropic, with equal properties in all directions. De-
pending on its thickness, a plate can be considered either a thin or a thick plate. In this
work, formulations will be developed for anisotropic thin plates.

Figure 8: Thin plate.

The theory of anisotropic thin plates bending is based on the following assumptions
Lekhnitskii [1968]:

1. Straight sections, which in the undeformed state are normal to its middle surface,
remain straight and normal to the deformed middle surface after loading;

2. Normal stress σz in cross sections parallel to the middle plane is small if compared
with stresses in the transverse cross section, i.e., σx, σy, τxy.

3.1 Basic relations for anisotropic plates

Consider a plate element following the assumptions previously defined. Figure 9 shows
this element with a stress state acting on it and a distributed load applied on its area.
Integrating stress components along the plate thickness, we can define moments and loads
(Figure 10):

mx =

ˆ t/2

−t/2

σxzdz, (60)

my =

ˆ t/2

−t/2

σyzdz, (61)

mxy =

ˆ t/2

−t/2

τxyzdz, (62)

myx =

ˆ t/2

−t/2

τyxzdz, (63)
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Figure 9: Stresses in a plate element

qx =

ˆ t/2

−t/2

τxzdz, (64)

and

qy =

ˆ t/2

−t/2

τyzdz. (65)

Figure 10: Loads and moments in a plate element

From equilibrium of forces and moments, we can write:

∂qx
∂x

+
∂qy
∂y

+ g = 0, (66)

∂mx

∂x
+

∂myx

∂y
− qx = 0, (67)

∂my

∂y
+

∂mxy

∂x
− qy = 0. (68)
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Solving equations (67) and (68) for qx and qy, respectively, substituting in equation
(66), and considering symmetry of moments (mxy = myx), we have:

∂2mx

∂x2
+ 2

∂2mxy

∂x∂y
+

∂2my

∂y2
= −g. (69)

Consider the initial and final position of a plate element given by abcd parallel to the
middle plane with sides ab and ad parallel to x and y axes, respectively, at a distance z
from the middle plane (Figure 11).

Figure 11: Deformation in a plate element.

Assuming that, during plate bending, points a, b, c, and d, move to a′, b′, c′, and d′,
calling uo and vo displacement components of point a in x and y direction (Figure 11),
respectively, the displacement of a point b in the x direction is given by:

b′x − bx = uo +
∂u

∂x
dx. (70)

So, the increment in the length dx in x direction is given by:

∆dx =
∂u

∂x
dx, (71)

and strain in x direction is given by:

εx =
∆dx

dx
=

∂u

∂x
. (72)

In a similar way, we can write:

εy =
∂v

∂y
, (73)

γxy =
∂u

∂y
+

∂v

∂x
. (74)

Figure 12 shows initial and final positions of a plate section, parallel to xz plane,
which contains points a, b, n1, and n2. The rotation of element an1, initially placed in
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vertical position, is equal to ∂w
∂x

(Figure 12). So, the displacement of a point in x direction,
at a distance z from middle surface can be written as:

u = −z
∂w

∂x
. (75)

Figure 12: Initial and final position of an element plate abn1n2.

Following similar procedure, the displacement of a point in y direction is given by:

v = −z
∂w

∂y
. (76)

Substituting equations (75) and (76) into equations (72), (73), and (74), we can write:

εx = −z
∂2w

∂x2
,

εy = −z
∂2w

∂x2
,

γxy = −2z
∂2w

∂x∂y
. (77)

The constitutive equations for anisotropic material is given by (Lekhnitskii Lekhnitskii
[1968]):

εx = a11σx + a12σy + a16τxy,

εy = a12σx + a22σy + a26τxy,

γxy = a16σx + a26σy + a66τxy. (78)

Substituting equations (77) into equations (78), we obtain:
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σx = −z

(
B11

∂2w

∂x2
+B12

∂2w

∂y2
+ 2B16

∂2w

∂x∂y

)
,

σy = −z

(
B12

∂2w

∂x2
+B22

∂2w

∂y2
+ 2B26

∂2w

∂x∂y

)
,

τxy = −z

(
B16

∂2w

∂x2
+B26

∂2w

∂y2
+ 2B66

∂2w

∂x∂y

)
, (79)

where Bij are constants given by:

B11 =
1

∆

(
a22a66 − a226

)
, B22 =

1

∆

(
a11a66 − a216

)
,

B12 =
1

∆
(a16a26 − a12a66) , B66 =

1

∆

(
a11a22 − a212

)
, (80)

B16 =
1

∆
(a12a26 − a22a16) , B26 =

1

∆
(a12a16 − a11a26) ,

and

∆ =

∣∣∣∣∣∣
a11 a12 a16
a12 a22 a26
a16 a26 a66

∣∣∣∣∣∣ . (81)

Substituting equation (79) into equation (77) and integrating, we have:

mx = −
(
D11

∂2w

∂x2
+D12

∂2w

∂y2
+ 2D16

∂2w

∂x∂y

)
,

my = −
(
D12

∂2w

∂x2
+D22

∂2w

∂y2
+ 2D26

∂2w

∂x∂y

)
, (82)

mxy = −
(
D16

∂2w

∂x2
+D26

∂2w

∂y2
+ 2D66

∂2w

∂x∂y

)
,

where

Dij = Bij
t3

12
. (83)

Substituting equation (82) into equations (67) and (68), we can write:

qx =

[
D11

∂3w

∂x3
+ 3D16

∂3w

∂x2∂y
+ (D12 + 2D66)

∂3w

∂x∂y2
+D26

∂3w

∂y3

]
,

qy =

[
D16

∂3w

∂x3
+ (D12 + 2D66)

∂3w

∂x2∂y
+ 3D26

∂3w

∂x∂y2
+D22

∂3w

∂y3

]
.

(84)
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Equation (69) can be rewritten using equations (82) as:

D11
∂4w

∂x4
+ 4D16

∂4w

∂x3∂y
+ 2(D12 +D66)

∂4w

∂x2∂y2
+ 4D26

∂4w

∂x∂y3
+D22

∂4w

∂y4
= g. (85)

General solution to w in equation (85) depends on µ1, µ2, µ̄1, and µ̄2 roots of charac-
teristic equation given by:

D22µ
4 + 4D26µ

3 + 2(D12 + 2D66)µ
2 + 4D16µ+D11 = 0. (86)

Roots of this equation, as shown by Lekhnitskii Lekhnitskii [1968], are always com-
plex for homogeneous material. The complex roots µ1 = d1 + e1i and µ2 = d2 + e2i
are known as deflexion complex parameters. In general, these roots are different complex
numbers.

A general expression for the deflexion has the form:

1. in case of different complex parameters (µ1 ̸= µ2):

w = wo + 2Re[w1(z1) + w2(z2)]. (87)

2. in case of equal complex parameters (µ1 = µ2):

w = wo + 2Re[w1(z1) + z̄1w2(z1)]. (88)

where wo is a particular solution of equation (85) that depends on the distributed load q in
the plate surface, w1(z1) and w2(z2) are arbitrary analytic functions of complex variable
z1 = x+ µ1y and z2 = x+ µ2y.

Based on equations (82) and (84), general expressions for forces and moments can be
obtained as (for the case µ1 ̸= µ2):

mx = mo
x − 2Re[p1w

′′(z1) + p2w
′′(z2)],

my = mo
y − 2Re[q1w

′′(z1) + q2w
′′(z2)],

mxy = mo
xy − 2Re[r1w

′′(z1) + r2w
′′(z2)],

qx = qox − 2Re[µ1s1w
′′′(z1) + µ2s2w

′′′(z2)],

qy = qoy − 2Re[s1w
′′′(z1) + s2w

′′′(z2)]. (89)

where mo
x, mo

y, mo
xy, qox, and qoy are moments and shear forces corresponding to function

wo computed from equations (82) and (84). The other constants are given by:
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p1 = D11 +D12µ
2
1 + 2D16µ1, p2 = D11 +D12µ

2
2 + 2D16µ2,

q1 = D12 +D22µ
2
1 + 2D26µ1, q2 = D12 +D22µ

2
2 + 2D26µ2,

r1 = D16 +D26µ
2
1 + 2D66µ1, p2 = D16 +D26µ

2
2 + 2D66µ2,

s1 =
D11

µ1

+ 3D16 +D12 +D66µ1 +D26µ
2
1, (90)

s2 =
D11

µ2

+ 3D16 +D12 +D66µ2 +D26µ
2
2,

s1 − r1 =
p1
µ1

, s2 − r2 =
p2
µ2

,

s1 + r1 = −q1µ1, s2 + r2 = −q2µ2.

Similar expressions can be obtained for the case where µ1 = µ2. However, this case
will not be shown in this work as in general anisotropic problems µ1 is different from µ2.

3.2 Computation of bending stiffness in an arbitrary direction

Considering that stiffness bending constants of a plate in a x, y, z coordinate system are
given by Dij (i, j = 1, 2, 6) and in a x′, y′, z′ coordinate system, rotated α with respect
to the first coordinate system, are given by D′

ij (i, j = 1, 2, 6), the equation relating these
constants, as shown by Lekhnitskii Lekhnitskii [1968], are given by:

D′
11 = D11 cos

4 ϕ+ 2(D12 + 2D66) sin
2 ϕ cos2 ϕ+D22 sin

4 ϕ+

2(D16 cos
2 ϕ+D26 sin

2 ϕ) sin 2ϕ, (91)

D′
22 = D11 sin

4 ϕ+ 2(D12 + 2D66) sin
2 ϕ cos2 ϕ+D22 cos

4 ϕ+

2(D16 sin
2 ϕ+D26 cos

2 ϕ) sin 2ϕ, (92)

D′
12 = D12 + [D11 +D22 − 2(D12 + 2D66)] sin

2 ϕ cos2 ϕ+

(D26 −D16) cos 2ϕ sin 2ϕ, (93)
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D′
66 = D66 + [D11 +D22 − 2(D12 + 2D66)] sin

2 ϕ cos2 ϕ+

(D26 −D16) cos 2ϕ sin 2ϕ, (94)

D′
16 =

1

2
[D22 sin

2 ϕ−D11 cos
2 ϕ+ (D12 + 2D66) cos 2ϕ] sin 2ϕ+

D16 cos
2 ϕ(cos2 ϕ− 3 sin2 ϕ) +D26 sin

2 ϕ(3 cos2 ϕ− sin2 ϕ), (95)

D′
26 =

1

2
[D22 cos

2 ϕ−D11 sin
2 ϕ+ (D12 + 2D66) cos 2ϕ] sin 2ϕ+

D16 sin
2 ϕ(cos2 ϕ− 3 sin2 ϕ) +D26 cos

2 ϕ(3 cos2 ϕ− sin2 ϕ). (96)

The stress components σn and τns, normal and shear stress, respectively, are related
with stress σx, σy, and τxy by:

σn = σx cos
2 α + σy sin

2 α + 2τxy sinα cosα, (97)

τns = (σy − σx) sinα cosα + τxy(cos
2 α− sin2 α). (98)

The components of moment, initially written considering axis x and y, can now be
rewritten in a generic coordinate system n, s (Paiva Paiva [1987]). The bending moments
referring to directions n and s are given by:

mn = mx cos
2 α +my sin

2 α + 2mxy sinα cosα, (99)

mns = (my −mx) sinα cosα +mxy(cos
2 α− sin2 α). (100)

Similarly, qn, the shear force in the n axis, can be written as:

qnds = qxds cosα + qyds sinα, (101)

or

qn = qx cosα + qy sinα. (102)

In order to solve the plate differential equation (85), it is necessary to impose boundary
conditions to displacement w and its derivative ∂w/∂n. Kirchhoff Kirchhoff [1950] has
shown that the boundary conditions of shear force qn and twisting moment mns can be
written as one single boundary condition given by:

Vn = qn +
∂mns

∂s
. (103)

The other loading boundary condition is the moment mn.
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3.3 Boundary element method for bending problems of anisotropic plates

3.3.1 Boundary integral equations

Using Betti theorem, we can relate two states of stress-deformation of a linear material
as:

ˆ
Ω

σ∗
ijεijdΩ =

ˆ
Ω

σijε
∗
ijdΩ. (104)

Writing the right hand side of equation (104) in von Karman’s notation, we have:

ˆ
Ω

σijε
∗
ijdΩ =

ˆ
Ω

(
σxε

∗
x + σyε

∗
y + σzε

∗
z + τxyγ

∗
xy + τxzγ

∗
xz + τyzγ

∗
yz

)
dΩ. (105)

Neglecting stresses normal to the plate, equation (105) is given by:
ˆ
Ω

σijε
∗
ijdΩ =

ˆ
Ω

(
σxε

∗
x + σyε

∗
y + τxyγ

∗
xy

)
dΩ. (106)

Substituting equations (77) and (78) into equation (106), we can write the first term of
the integral in the right hand side of equation (106) as:

ˆ
Ω

σxε
∗
xdΩ =

ˆ
Ω

[ˆ
z

(
B11

∂2w

∂x2
+B12

∂2w

∂y2
+ 2B16

∂2w

∂x∂y

)(
z
∂2w

∂x2

)
dz

]
dΩ. (107)

Integrating (107) throughout the thickness of the plate, we have:

ˆ
Ω

σxε
∗
xdΩ =

ˆ
Ω

(
D11

∂2w

∂x2
+D12

∂2w

∂y2
+ 2D16

∂2w

∂x∂y

)
∂2w

∂x2
dΩ = −

ˆ
Ω

mx
∂2w

∂x2
dΩ.

(108)
In order to obtain equations of the boundary element method, it is necessary to trans-

form domain integrals into boundary integrals.
Consider two functions f(x) and g(x). The derivative of their product can be written

as:

∂

∂x
[f(x)g(x)] =

∂f(x)

∂x
g(x) +

∂g(x)

∂x
f(x). (109)

Using the derivative property (109) in equation (108), we can write:
ˆ
Ω

σxε
∗
xdΩ = −

ˆ
Ω

[
∂

∂x

(
mx

∂w∗

∂x

)
− ∂w∗

∂x

∂mx

∂x

]
dΩ. (110)

Using Green theorem, equation (110) can be written as:
ˆ
Ω

σxε
∗
xdΩ = −

ˆ
Γ

mx
∂w∗

∂x
cosαdΓ +

ˆ
Ω

∂w∗

∂x

∂mx

∂x
dΩ. (111)

Applying the derivative property (109) in the second right hand side term of equation
(111), we have:
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ˆ
Ω

σxε
∗
xdΩ = −

ˆ
Γ

mx
∂w∗

∂x
cosαdΓ +

ˆ
Ω

[
∂

∂x

(
w∗∂mx

∂x

)
− w∗∂

2mx

∂x2

]
dΩ. (112)

After using Green theorem, we can write:

ˆ
Ω

σxε
∗
xdΩ =

ˆ
Γ

(
−mx

∂w∗

∂x
cosα + w∗∂mx

∂x
cosα

)
dΓ−

ˆ
Ω

w∗∂
2mx

∂x2
dΩ. (113)

Following similar procedure, we can show that:

ˆ
Ω

σyε
∗
ydΩ =

ˆ
Γ

(
−my

∂w∗

∂y
sinα + w∗∂my

∂y
sinα

)
dΓ−

ˆ
Ω

w∗∂
2my

∂y2
dΩ, (114)

and

ˆ
Ω

τxyγ
∗
xydΩ =

ˆ
Γ

(
−mxy

∂w∗

∂y
cosα−mxy

∂w∗

∂x
sinα + w∗∂mxy

∂x
sinα+

w∗∂mxy

∂y
cosα

)
dΓ−

ˆ
Ω

2w∗∂
2mxy

∂x∂y
dΩ. (115)

Thus, equation (106) is written as:

ˆ
Ω

σijε
∗
ijdΩ = −

ˆ
Γ

(
mx

∂w∗

∂x
cosα +my

∂w∗

∂y
sinα +mxy

∂w∗

∂y
cosα+

mxy
∂w∗

∂x
sinα

)
dΓ +

ˆ
Γ

w∗
[
cosα

(
∂mx

∂x
+

∂mxy

∂y

)
sinα

(
∂my

∂y
+

∂mxy

∂x

)]
dΓ−

ˆ
Ω

w∗
(
∂2mx

∂x2
+ 2

∂2mxy

∂x∂y
+

∂2my

∂y2

)
dΩ. (116)

Substituting equations (67) and (68) and using equation (102), equation (116) can be
written as:

ˆ
Ω

σijε
∗
ijdΩ = −

ˆ
Γ

(
mx

∂w∗

∂x
cosα +my

∂w∗

∂y
sinα +mxy

∂w∗

∂y
cosα+

mxy
∂w∗

∂x
sinα

)
dΓ +

ˆ
Γ

w∗qndΓ +

ˆ
Ω

gw∗dΩ. (117)

From the relation between two coordinate systems (x, y) and (n, s), we have:

∂w∗

∂x
=

∂w∗

∂n
cosα− ∂w∗

∂s
sinα,

∂w∗

∂y
=

∂w∗

∂n
sinα +

∂w∗

∂s
cosα. (118)
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Substituting equations (118) into equation (117), we have:

ˆ
Ω

σijε
∗
ijdΩ = −

ˆ
Γ

[
mx cosα

(
∂w∗

∂n
cosα− ∂w∗

∂s
sinα

)
+

my sinα

(
∂w∗

∂n
sinα +

∂w∗

∂s
cosα

)
+mxy cosα

(
∂w∗

∂n
sinα +

∂w∗

∂s
cosα

)
+

mxy sinα

(
∂w∗

∂n
cosα− ∂w∗

∂s
sinα

)]
dΓ +

ˆ
Γ

w∗qndΓ +

ˆ
Ω

gw∗dΩ. (119)

After some algebraic manipulations, equation (119) can be rewritten as:

ˆ
Ω

σijε
∗
ijdΩ = −

ˆ
Γ

{
∂w∗

∂n

(
mx cos

2 α +my sin
2 α + 2mxy sinα cosα

)
+

∂w∗

∂s

[
mxy

(
cos2 α− sin2 α

)
+ (my −mx) sinα cosα

]}
dΓ +

ˆ
Γ

w∗qndΓ +

ˆ
Ω

gw∗dΩ. (120)

Substituting equations (99) and (100) into equation (120), we have:

ˆ
Ω

σijε
∗
ijdΩ = −

ˆ
Γ

(
mn

∂w∗

∂n
+mns

∂w∗

∂s
− qnw

∗
)
dΓ +

ˆ
Ω

gw∗dΩ. (121)

Computing the second term of the first integral in the right hand side of equation (121),
we have:

ˆ
Γ

mns
∂w∗

∂s
dΓ = mnsw

∗
∣∣∣∣Γ2

Γ1

−
ˆ
Γ

∂mns

∂s
w∗dΓ, (122)

where Γ1 and Γ2 are coordinates of ends of the boundary where the integration is being
carried out.

In the case of a closed boundary without corner, i.e., the function that describes the
boundary curve and its derivative are continuous, the first term in the right hand side of
equation (122) vanishes. In the case where there are corners, equation (122) can be written
as:

ˆ
Γ

mns
∂w∗

∂s
dΓ = −

Nc∑
i=1

Rciw
∗
ci
−
ˆ
Γ

∂mns

∂s
w∗dΓ, (123)

where

Rci = m+
nsi

−m−
nsi

, (124)

and the terms wci , m
+
nsi

, m−
nsi

are values of displacements and twisting moments after and
before the i corner of the plate, Nc are the total number of boundary corners (Paiva Paiva
[1987]).
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From equation (121) and (123), we can write:

ˆ
Ω

σijε
∗
ijdΩ =

ˆ
Γ

(
qnw

∗ −mn
∂w∗

∂n
+

∂mns

∂s
w∗
)
dΓ +

Nc∑
i=1

Rciw
∗
ci
+

ˆ
Ω

gw∗dΩ. (125)

From equations (125) and (103), we have:

ˆ
Ω

σijε
∗
ijdΩ =

ˆ
Γ

(
Vnw

∗ −mn
∂w∗

∂n

)
dΓ +

Nc∑
i=1

Rciw
∗
ci
+

ˆ
Ω

gw∗dΩ. (126)

Following a similar procedure to that used to obtain equation (126), the left hand side
of equation (104) can be written as:

ˆ
Ω

σ∗
ijεijdΩ =

ˆ
Γ

(
V ∗
nw −mn

∂w∗

∂n

)
dΓ +

Nc∑
i=1

R∗
ci
wci +

ˆ
Ω

g∗wdΩ. (127)

Substituting equations (126) and (127) into equation (104), we can write:

ˆ
Γ

(
Vnw

∗ −mn
∂w∗

∂n

)
dΓ +

Nc∑
i=1

Rciw
∗
ci
+

ˆ
Ω

gw∗dΩ =

ˆ
Γ

(
V ∗
nw −m∗

n

∂w

∂n

)
dΓ +

Nc∑
i=1

R∗
ci
wci +

ˆ
Ω

g∗wdΩ. (128)

Equation (128) relates two states of an elastic material. In order to apply this equation
to solve bending problems, we need to consider one of states as known and other as the
state which stands for the problem which we want to analyse. To obtain a boundary
integral equation, the known state is chosen so that the domain integral given by

ˆ
Ω

g∗wdΩ (129)

vanishes. Using the properties of Dirac delta function δ(P,Q), so that integral g∗ = δ(P, q),
integral (129) is written as:

ˆ
Ω

δ(P,Q)w(P )dΩ(P ) = w(Q), (130)

where Q is the point where the load is applied, known as source point, and P is the point
where the deflexion is observed, known as field point.

The state corresponding to a linear material under loading of a Dirac delta function is
known as fundamental state and the variables of equation (128) related to this state (w∗,
V ∗
n and m∗

n) are known as fundamental solutions which are computed analytically from
the differential equation (85).

Considering the state ”*” as the fundamental state, equation (128) can be written as:
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Kw(Q) +

ˆ
Γ

[
V ∗
n (Q,P )w(P )−m∗

n(Q,P )
∂w(P )

∂n

]
dΓ(P ) +

Nc∑
i=1

R∗
ci
(Q,P )wci(P )−

ˆ
Γ

[
Vn(P )w∗(Q,P )−mn(P )

∂w∗

∂n
(Q,P )

]
dΓ(P ) +

Nc∑
i=1

Rci(P )w∗
ci
(Q,P ) +

ˆ
Ω

g(P )w∗(Q,P )dΩ. (131)

The constant K is introduced in order to consider that the Dirac delta function can be
applied in the domain, in the boundary, or outside the domain. If the Dirac delta function
is applied in a point where the boundary is smooth, than K = 1/2.

Variables of equation (131) are displacements w(P ), rotations ∂w(P )/∂n, moments
mn(P ), and loads Vn(P ). For a given boundary condition, some of these variables are
known. In order to have an equal number of equations and unknown variables, it is nec-
essary to write an integral equation corresponding to the derivative of displacement w(q)
in relation to a cartesian coordinate system fixed in the source point, i.e., the point where
the Dirac delta of the fundamental state is applied. The axis directions of this coordinate
system are coincident with normal and tangent to the boundary directions in the source
point.

For a particular case where the source point is placed in a point where the boundary is
smooth, the boundary equation is given by (Paiva Paiva [1987]):

1

2

∂w(Q)

∂n1

+

ˆ
Γ

[
∂V ∗

∂n1

(Q,P )w(P )− ∂m∗
n

∂n1

(Q,P )
∂w

∂n
(P )

]
dΓ(P ) +

Nc∑
i=1

∂R∗
ci

∂n1

(Q,P )wci(P ) =

ˆ
Γ

{
Vn(P )

∂w∗

∂n1

(Q,P )−mn(P )
∂

∂n1

[
∂w∗

∂n
(Q,P )

]}
dΓ(P ) +

Nc∑
i=1

Rci(P )
∂w∗

ci

∂n1

(Q,P ) +

ˆ
Ω

g(P )
∂w∗

∂n1

(Q,P )dΩ. (132)

It is important to say that it is possible to use only equation (131) in a boundary
element formulation by using as source points the boundary nodes and an equal number
of points external to the domain of the problem.

3.4 Fundamental solutions for bending problems in anisotropic materials

The fundamental solution is an essential part of the boundary element method. Funda-
mental solutions for anisotropic plates utilize complex variable theory following ground-
work laid by Lekhnitskii Lekhnitskii [1968]. Mossakowski Mossakowski [1955] pre-
sented a solution for a point force on an infinite plate using complex parameters of the
firs kind, and Suchar Suchar [1964] presented the solutions for a point force and point
moment in terms of complex parameters of second kind. Lamattina Lamattina [1997]
derived a more general solution for the point force using the same mapping functions as
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Mossakowski Mossakowski [1955]. Lamatina et al. Lamattina et al. [1998] presented a
comparison between three fundamental solutions and discussed the differences between
these solutions.

The transversal displacement plate bending fundamental solution is computed by plac-
ing the non-homogeneous term of the differential equation (85) equal to a concentrated
force given by a Dirac delta function δ(Q,P ), i.e.,

∆∆w∗(Q,P ) = δ(Q,P ), (133)

where ∆∆(.) is the differential operator:

∆∆(.) =
D11

D22

∂4(.)

∂x4
+ 4

D16

D22

∂4(.)

∂3∂y
+

2(D12 + 2D66)

D22

∂4(.)

∂x2∂y2
+

4
D26

D22

∂4(.)

∂x∂y3
+

∂4(.)

∂y4
. (134)

As shown by Shi and Bezine [1988], the transversal displacement fundamental solu-
tion is given by:

w∗(ρ, θ) =
1

8π
{C1R1(ρ, θ) + C2R2(ρ, θ) + C3 [S1(ρ, θ)− S2(ρ, θ)]} , (135)

where

ρ = [(x− xo)
2 + (y − yo)

2]1/2, (136)

x and y are the coordinates of the field point P , xo and yo are coordinates of the source
point Q,

θ = arctan
y − yo
x− xo

, (137)

C1 =
(d1 − d2)

2 − (e21 − e22)

GHe1
, (138)

C2 =
(d1 − d2)

2 + (e21 − e22)

GHe2
, (139)

C3 =
4(d1 − d2)

GH
, (140)

G = (d1 − d2)
2 + (e1 + e2)

2, (141)

H = (d1 − d2)
2 + (e1 − e2)

2, (142)
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Ri = ρ2
[
(cos θ + di sin θ)

2 − e2i sin
2 θ
]
×{

log

[
ρ2

a2
(
(cos θ + di sin θ)

2 + e2i sin
2 θ
)]

− 3

}
−

4ρ2ei sin θ (cos θ + di sin θ) arctan
ei sin θ

cos θ + di sin θ
, (143)

and

Si = ρ2ei sin θ (cos θ + di sin θ)×{
log

[
ρ2

a2
(
(cos θ + di sin θ)

2 + e2i sin
2 θ
)]

− 3

}
+

ρ2
[
(cos θ + di sin θ)

2 − e2i sin
2 θ
]
arctan

ei sin θ

cos θ + di sin θ
. (144)

The repeated index i in the terms of Ri and Si does not imply summation. The coeffi-
cient a is an arbitrary constant taken as a = 1.

Other fundamental solutions are given by:

m∗
n = −

(
f1
∂2w∗

∂x2
+ f2

∂2w∗

∂x∂y
+ f3

∂2w∗

∂y2

)
, (145)

R∗
ci

= −
(
g1
∂2w∗

∂x2
+ g2

∂2w∗

∂x∂y
+ g3

∂2w∗

∂y2

)
, (146)

V ∗
n = −

(
h1

∂3w∗

∂x3
+ h2

∂3w∗

∂x2∂y
+ h3

∂3w∗

∂x∂y2
+ h4

∂3w∗

∂y3

)
−

1

R̄

(
h5

∂2w∗

∂x2
+ h6

∂2w∗

∂x∂y
+ h7

∂2w∗

∂y2

)
. (147)

where R̄ is the curvature radius at a smooth point of the boundary Γ. Other constants are
defined as:
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f1 = D11n
2
x + 2D16nxny +D12n

2
y, (148)

f2 = 2(D16n
2
x + 2D66nxny +D26n

2
y), (149)

f3 = D12n
2
x + 2D26nxny +D22n

2
y, (150)

g1 = (D12 −D11) cos β sin β +D16(cos
2 β − sin2 β), (151)

g2 = 2(D26 −D16) cos β sin β + 2D66(cos
2 β − sin2 β), (152)

g3 = (D22 −D12) cos β sin β +D26(cos
2 β − sin2 β), (153)

h1 = D11nx(1 + n2
y) + 2D16n

3
y −D12nxn

2
y, (154)

h2 = 4D16nx +D12ny(1 + n2
x) + 4D66n

3
y −D11n

2
xny − 2D26nxn

2
y, (155)

h3 = 4D26ny +D12nx(1 + n2
y) + 4D66n

3
x −D22nxn

2
y − 2D16n

2
xny, (156)

h4 = D22ny(1 + n2
x) + 2D26n

3
x −D12n

2
xny, (157)

h5 = (D12 −D11) cos 2β − 4D16 sin 2β, (158)

h6 = 2(D26 −D16) cos 2β − 4D66 sin 2β, (159)

h7 = (D22 −D12) cos 2β − 4D26 sin 2β, (160)

and β is the angle between the global coordinate system xy and a coordinate system ns
in which their axis directions are parallels to vectors n and s, normal and tangent, respec-
tively, to the boundary in the field point Q. The derivatives of the transversal displacement
fundamental solution can be expressed by linear combination of derivatives of functions
Ri and Si. For example:

∂2w∗

∂y2
=

1

8π

[
C1

∂2R1

∂y2
+ C2

∂2R2

∂y2
+ C3

(
∂2S1

∂y2
− ∂2S2

∂y2

)]
. (161)

The derivatives of Ri and Si are given by:
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∂Ri

∂x
= 2r (cos θ + di sin θ)

{
log

[
r2

a2
(
(cos θ + di sin θ)

2 + e2i sin
2 θ
)]

− 2

}
−

4rei sin θ arctan
ei sin θ

cos θ + di sin θ
, (162)

∂Ri

∂y
= 2r

[
di (cos θ + di sin θ)− e2i sin θ

]
×{

log

[
r2

a2
(
(cos θ + di sin θ)

2 + e2i sin
2 θ
)]

− 2

}
−

4rei (cos θ + 2di sin θ) arctan
ei sin θ

cos θ + di sin θ
, (163)

∂2Ri

∂x2
= 2 log

{
r2

a2
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
]}

(164)

∂2Ri

∂x∂y
= 2di log

{
r2

a2
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
]}

−

4ei arctan
ei sin θ

cos θ + di sin θ
, (165)

(166)

∂2Ri

∂y2
= 2

(
d2i − e2i

)
log

{
r2

a2
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
]}

−

8diei arctan
ei sin θ

cos θ + di sin θ
, (167)

∂3Ri

∂x3
=

4 (cos θ + di sin θ)

r
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
] , (168)

∂3Ri

∂x2∂y
=

4 [di (cos θ + di sin θ) + e2i sin θ]

r
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
] , (169)

∂3Ri

∂x∂y2
=

4 [(d2i − e2i ) cos θ + (d2i + e2i ) di sin θ]

r
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
] , (170)

(171)
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∂3Ri

∂y3
=

4 [di (d
2
i − 3e2i ) cos θ + (d4i − e4i ) sin θ]

r
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
] , (172)

∂4Ri

∂x4
= −

4
[
(cos θ + di sin θ)

2 − e2i sin
2 θ
]

r2
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
]2 , (173)

∂4Ri

∂x3∂y
= − 4

r2

{
di

(cos θ + di sin θ)
2 + e2i sin

2 θ
+

2e2i sin θ cos θ[
(cos θ + di sin θ)

2 + e2i sin
2 θ
]2
}
, (174)

∂4Ri

∂x2∂y2
= − 4

r2

{
(d2i + e2i )(

(cos θ + di sin θ)
2 + e2i sin

2 θ
)−

2e2i cos
2 θ[

(cos θ + di sin θ)
2 + e2i sin

2 θ
]2
}
, (175)

(176)

∂4Ri

∂x∂y3
= − 4

r2

{
di (d

2
i + e2i )(

(cos θ + di sin θ)
2 + e2i sin

2 θ
)−

2e2i cos θ (2di cos θ + (d2i + e2i ) sin θ)[
(cos θ + di sin θ)

2 + e2i sin
2 θ
]2

}
, (177)

∂4Ri

∂y4
= − 4

r2

{
(d4i − e4i )

(cos θ + di sin θ)
2 + e2i sin

2 θ
−

2e2i cos θ [(3d
2
i − e2i ) cos θ + 2di (d

2
i + e2i ) sin θ][

(cos θ + di sin θ)
2 + e2i sin

2 θ
]2

}
, (178)

(179)
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∂Si

∂x
= rei sin θ

{
log

[
r2

a2
(
(cos θ + di sin θ)

2 + e2i sin
2 θ
)]

− 2

}
+

2r (cos θ + di sin θ) arctan
ei sin θ

cos θ + di sin θ
, (180)

∂Si

∂y
= rei (cos θ + 2di sin θ)

{
log

[
r2

a2
(
(cos θ + di sin θ)

2 + e2i sin
2 θ
)]

− 2

}
+

2r
[
di (cos θ + di sin θ)− e2i sin θ

]
arctan

ei sin θ

cos θ + di sin θ
, (181)

∂2Si

∂x2
= 2arctan

ei sin θ

cos θ + di sin θ
, (182)

∂2Si

∂x∂y
= ei log

{
r2

a2
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
]}

+

2di arctan
ei sin θ

cos θ + di sin θ
, (183)

(184)

∂2Si

∂y2
= 2diei log

{
r2

a2
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
]}

+

2
(
d2i − e2i

)
arctan

ei sin θ

cos θ + di sin θ
, (185)

∂3Si

∂x3
= − 2ei sin θ

r
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
] , (186)

∂3Si

∂x2∂y
=

2ei cos θ

r
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
] , (187)

∂3Si

∂x∂y2
=

2ei [2di (cos θ + di sin θ)− (d2i − e2i ) sin θ)

r
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
] , (188)

∂3Si

∂y3
=

2ei [(3d
2
i − e2i ) cos θ + 2di (d

2
i + e2i ) sin θ]

r
(
(cos θ + di sin θ)

2 + e2i sin
2 θ
] , (189)

(190)

Albuquerque, Éder L., et al. (2022) The Boundary Element Method for Structural Problems pp. 733-808

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 767



∂4Si

∂x4
=

4ei sin θ (cos θ + di sin θ)

r2
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
]2 , (191)

∂4Si

∂x3∂y
=

2ei
r2

{
1

(cos θ + di sin θ)
2 + e2i sin

2 θ
−

2 cos θ (cos θ + di sin θ)[
(cos θ + di sin θ)

2 + e2i sin
2 θ
]2
}
, (192)

∂4Si

∂x2∂y2
= −4ei cos θ [di (cos θ + di sin θ) + e2i sin θ]

r2
[
(cos θ + di sin θ)

2 + e2i sin
2 θ
]2 , (193)

∂4Si

∂x∂y3
= −2ei

r2

{
(d2i + e2i )

(cos θ + di sin θ)
2 + e2i sin

2 θ
+

2 (d2i + e2i ) cos θ (cos θ + di sin θ)− 4e2i cos
2 θ[

(cos θ + di sin θ)
2 + e2i sin

2 θ
]2

}
, (194)

(195)

∂4Si

∂y4
= −4ei

r2

{
di (d

2
i + e2i )

(cos θ + di sin θ)
2 + e2i sin

2 θ
+

cos θ [di (d
2
i − 3e2i ) cos θ + (d4i − e4i ) sin θ][

(cos θ + di sin θ)
2 + e2i sin

2 θ
]2

}
. (196)

As it can be seen, derivatives of Ri and Si present weak (log r), strong (1/r), and hyper
(1/r2) singularities that will need special attention during their integration in boundary
element kernels.

3.5 Transformation of domain integrals into boundary integrals in anisotropic plate
bending problems

As it can be seen in equations (131) and (132), there are domain integrals in the formu-
lation due to the distributed load in the domain. These integrals can be computed in the
domain by direct integration in the area Ωg (see Figure 8). However, the boundary ele-
ment formulation loses its main feature that is the boundary only discretization. In this
work, domain integrals which come from distributed loads are transformed into boundary
integrals by an exact transformation.

Consider the plate of Figure 8, under loading g, applied in an area Ωg. Assuming that
loading g has a linear distribution (Ax+By+C) in the area Ωg, the domain integral can
be written as:

ˆ
Ωg

gw∗dΩ =

ˆ
Ωg

(Ax+By + C)w∗ρdρdθ (197)
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or
ˆ
Ωg

gw∗dΩ =

ˆ
θ

ˆ r

0

(Ax+By + C)w∗ρdρdθ, (198)

where r is the value of ρ in a point of boundary Γg.
Defining F ∗ as the following integral:

F ∗ =

ˆ r

0

(Ax+By + C)w∗ρdρ, (199)

we can write:
ˆ
Ωg

gw∗dΩ =

ˆ
θ

F ∗dθ. (200)

Considering an infinitesimal angle dθ (Figure 13), the relation between the arch length
rdθ and the infinitesimal boundary length dΓ, can be written as:

Figure 13: Transformation of domain integral into boundary integral.

cosα =
r dθ

2
dΓ
2

, (201)

or

dθ =
cosα

r
dΓ. (202)

Using the properties of internal product of unity vectors n and r, indicated in Figure
13, we can write:

dθ =
n.r

r
dΓ. (203)
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Finally, substituting equation (203) into equation (200), the domain integral of equa-
tion (131) can be written as a boundary integral given by:

ˆ
Ωg

gw∗dΩ =

ˆ
Γg

F ∗

r
n.rdΓ. (204)

Provided that

x = ρ cos θ (205)

and

y = ρ sin θ, (206)

the integral F ∗ can be written as:

F ∗ =

ˆ r

0

1

8π
(Aρ cos θ +Bρ sin θ + C) [C1R1 + C2R2 + C3 (S1 − S2)] ρdρ,

(207)

where C1, C2, and C3 are given by equations (138), (139), (140), respectively. Equation
(207) can be rewritten as:

F ∗ =
1

8π

{
(A cos θ +B sin θ)

ˆ r

0

ρ2 [C1R1 + C2R2 + C3 (S1 − S2)] dρ+

C

ˆ r

0

ρ [C1R1 + C2R2 + C3 (S1 − S2)] dρ

}
. (208)

Following similar procedure to obtain equation (204), the domain term of equation
(132) can be written as:

ˆ
Ωg

g
∂w∗

∂n1

dΩ =

ˆ
θ

G∗

r
n.rdΓ, (209)

where

G∗ =

ˆ r

0

(Ax+By + C)
∂w∗

∂n1

ρdρ (210)

or

G∗ =
1

8π

{
(A cos θ +B sin θ)

ˆ r

0

ρ2
[
C1

∂R1

∂n1

+ C2
∂R2

∂n1

+

C3

(
∂S1

∂n1

− ∂S2

∂n1

)]
dρ+ C

ˆ r

0

ρ

[
C1

∂R1

∂n1

+ C2
∂R2

∂n1

+ C3

(
∂S1

∂n1

− ∂S2

∂n1

)]
dρ

}
.

(211)

As it can be seen, equations (208) and (211) are not θ dependent. By analytical inte-
gration, we can obtain:
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ˆ r

0

Riρdρ =
r4

16

{
−16ei arctan

ei sin θ

cos θ + di sin θ
sin θ (cos θ + di sin θ)−[

−7 + 2 log
r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

]
×

[
−1− d2i + e2i +

(
−1 + d2i − e2i

)
cos 2θ − 2di sin 2θ

]}
, (212)

ˆ r

0

Siρdρ =
r4

16

{
2ei

[
−7 + 2 log

r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

]
×

sin θ (cos θ + di sin θ) + 2 arctan
ei sin θ

cos θ + di sin θ
×

[
1 + d2i − e2i +

(
1− d2i + e2i

)
cos 2θ + 2di sin 2θ

]}
, (213)

(214)
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ˆ r

0

Riρ
2dρ =

r5

50

{
−40ei arctan

ei sin θ

cos θ + di sin θ
sin θ (cos θ + di sin θ)−[

−17 + 5 log
r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

]
×

[
−1− d2i + e2i +

(
−1 + d2i − e2i

)
cos 2θ − 2di sin 2θ

]}
, (215)

ˆ r

0

Siρ
2dρ =

r5

50

{
2ei

[
−17 + 5 log

r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

]
×

sin θ (cos θ + di sin θ) + 5 arctan
ei sin θ

cos θ + di sin θ
×

[
1 + d2i − e2i +

(
1− d2i + e2i

)
cos 2θ + 2di sin 2θ

]}
, (216)

ˆ r

0

∂Ri

∂x
ρdρ =

2r3

9

{
−6ei arctan

ei sin θ

cos θ + di sin θ
sin θ+[

−8 + 3 log
r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

]
(cos θ + di sin θ)

}
, (217)

(218)

ˆ r

0

∂Ri

∂y
ρdρ =

2r3

9

{
−6ei arctan

ei sin θ

cos θ + di sin θ
(cos θ + 2di sin θ)+[

−8 + 3 log
r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

] [
di cos θ +

(
d2i − e2i

)
sin θ

]}
,

(219)

ˆ r

0

∂Si

∂x
ρdρ =

r3

9

{
ei

[
−8 + 3 log

r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

]
sin θ+

6arctan
ei sin θ

cos θ + di sin θ
(cos θ + di sin θ)

}
, (220)

(221)
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ˆ r

0

∂Si

∂y
ρdρ =

r3

9

{
ei

[
−8 + 3 log

r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

]
×

(cos θ + 2di sin θ)− 6 arctan
ei sin θ

cos θ + di sin θ

[
di cos θ +

(
d2i − e2i

)
sin θ

]}
,

(222)

ˆ r

0

∂Ri

∂x
ρ2dρ =

r4

4

{
−4ei arctan

ei sin θ

cos θ + di sin θ
sin θ+[

−5 + 2 log
r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

]
(cos θ + di sin θ)

}
, (223)

ˆ r

0

∂Ri

∂y
ρ2dρ =

r4

4

{
−4ei arctan

ei sin θ

cos θ + di sin θ
(cos θ + 2di sin θ)+

[
−5 + 2 log

r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

] [
di cos θ +

(
d2i − e2i

)
sin θ

]}
,

(224)

ˆ r

0

∂Si

∂x
ρ2dρ =

r4

8

{
ei

[
−5 + 2 log

r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

]
sin θ +

4arctan
ei sin θ

cos θ + di sin θ
(cos θ + di sin θ)

}
, (225)

(226)

ˆ r

0

∂Si

∂y
ρ2dρ =

r4

8

{
ei

[
−5 + 2 log

r2
(
e2i sin

2 θ + (cos θ + di sin θ)
2)

a2

]

(cos θ + 2di sin θ) + 4 arctan
ei sin θ

cos θ + di sin θ

[
di cos θ +

(
d2i − e2i

)
sin θ

]}
.

(227)

Although in this work the domain loads are considered as uniformly distributed or
linearly distributed, the procedure presented in this section can be extended to other higher
order loads.

Albuquerque, Éder L., et al. (2022) The Boundary Element Method for Structural Problems pp. 733-808

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 773



3.6 Matrix equation

In order to compute unknown boundary variables, the boundary Γ is discretized in Ne

straight elements and the boundary variables w, ∂w/∂n, mn, and Vn are assumed constant
along each element. Taking a node d as the source point, equations (131) and (132) can
be written in a matrix form as:

1

2


w(d)

∂w(d)

∂n1

+
Ne∑
i=1

([
h
(i,d)
11 h

(i,d)
12

h
(i,d)
21 h

(i,d)
22

]{
w(i)

∂w(i)

∂n

})
=

Ne∑
i=1

([
g
(i,d)
11 g

(i,d)
12

g
(i,d)
21 g

(i,d)
22

]{
V

(i)
n

m
(i)
n

})
+

Nc∑
i=1

({
R

(i,d)
1

R
(i,d)
2

}
w(i)

c

)
+

Nc∑
i=1

({
c
(i,d)
1

c
(i,d)
2

}
R(i)

c

)
+

{
P

(d)
1

P
(d)
2

}
(228)

Terms of equation (228) are integrals given by:

h
(i,d)
11 =

ˆ
Γi

V ∗
n dΓ, h

(i,d)
12 = −

ˆ
Γi

m∗
ndΓ, (229)

h
(i,d)
21 =

ˆ
Γi

∂V ∗
n

∂n1

dΓ, h
(i,d)
22 = −

ˆ
Γi

∂m∗
n

∂n1

dΓ, (230)

g
(i,d)
11 =

ˆ
Γi

w∗dΓ, g
(i,d)
12 = −

ˆ
Γi

∂w∗

∂n
dΓ, (231)

g
(i,d)
21 =

ˆ
Γi

∂w∗

∂n1

dΓ, g
(i,d)
22 = −

ˆ
Γi

∂

∂n1

∂m∗
n

∂n
dΓ, (232)

c
(i,d)
1 = w∗

ci, c
(i,d)
2 =

∂w∗
ci

∂n1

, (233)

R
(i,d)
1 = R∗

ci, R
(i,d)
2 =

∂R∗
ci

∂n1

, (234)

P
(d)
1 =

ˆ
Ω

gw∗dΩ, P
(d)
2 =

ˆ
Ω

g
∂w

∂n1

dΩ. (235)

Matrix equation (228) has two equations and 2Ne+Nc unknown variables. In order to
obtain a solvable linear system, the source point is placed successively in each boundary
node (d = 1, ..., Ne) as well as in each corner node (d = Ne + 1, ..., Ne + Nc). It
is worth noting that while both equations, (131) and (132), are used for each boundary
node (providing the first 2Ne equations), only the equation (131) is used for each corner
(providing other Nc equations). So, the following matrix equation is obtained:

[
H′ R′

H′′ R′′

]{
wbn

wc

}
=

[
G′ C′

G′′ C′′

]{
Vbn

Vc

}
+

{
Pbn

Pc

}
(236)
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where wbn contains the transversal displacement and the rotation of each boundary node,
Vbn contains the shear force and the twisting moment of each boundary node, Pbn con-
tains the domain integral for each boundary node, wc contains the transversal displace-
ment of each corner, and Vc contains the corner reaction of each corner, Pc contains the
domain integral for each corner. Terms H′, C′, R′, and G′ are matrices which contain
the respective terms of equation (228) written to the Ne boundary nodes; γ is the vector
that contains coefficients γm. Terms H′′, C′′, R′′, and G′′ are matrices which contain the
respective first line terms of equation (228) written to Nc corners.

Equation (236) can be rewritten as:

Hw = GV +P (237)

where

H =

[
H′ R′

H′′ R′′

]
(238)

w =

{
wbn

wc

}
(239)

G =

[
G′ C′

G′′ C′′

]
(240)

V =

{
Vbn

Vc

}
(241)

P =

{
Pbn

Pc

}
(242)

Applying boundary conditions, equation (236) can be rearranged as

Ax = b (243)

which can be solved by standard procedure for linear systems.

3.7 Quadratic Elements

In order to increase the convergency of results to the formulation presented here, quadratic
elements were implemented. As the formulation has integrals with singular integrands,
these integrals need to be computed in the Cauchy sense, in the case of strong singulari-
ties, or Hadamard sense, in the case of hyper singularities. Integration in the Hadamard
sense demands Holder’s continuity in the nodes. Because this, discontinuous elements
are strongly recommended. In this work, discontinuous quadratic elements with nodes
placed at ξ = −2/3, ξ = 0, and ξ = +2/3 (Figure 14) were implemented. The shape
functions for these elements are given by:
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N1 = ξ

(
9

8
ξ − 3

4

)
; (244)

N2 =

(
1− 3

2
ξ

)(
1 +

3

2
ξ

)
; (245)

N3 = ξ

(
9

8
ξ +

3

4

)
. (246)

Figure 14: Discontinuous quadratic boundary element.

3.8 Transformation of domain integrals into boundary integrals for unknown body
forces

3.8.1 Dual reciprocity method

The procedure presented in section 3.5 to transform domain integrals into boundary in-
tegral is suitable when body forces are constants or functions of coordinates x and y
coordinates along the domain. When these body forces are functions of deflexion w, as
in dynamic problems for example, the exact transformation is no longer useful. In this
case, approaches as the dual reciprocity method is very suitable. The dual reciprocity
formulation for anisotropic plate bending problems is presented in this section.

Consider that the term b of equation (131) is approximated over the domain as a sum
of the M products between radial basis functions fm and unknown coefficients γm, that
is:

b(P ) =
M∑

m=1

γmfm. (247)

for approximation functions based on pure radial basis function, or

b(P ) =
M∑

m=1

γmfm + ax+ by + c (248)

with

M∑
m=1

γmxm =
M∑

m=1

γmym =
M∑

m=1

γm = 0 (249)
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for approximation functions based on radial basis function combined with augmentation
functions.

Thus, the domain integral of equation (131) can be written as:

P1(Q) =

ˆ
Ωg

b(P )w∗(Q,P )dΩ =
M∑

m=1

γm

ˆ
Ωg

fmw∗(Q)dΩ. (250)

Particular solutions ŵ can be obtained by solving the following differential equation:

D11
∂4ŵ

∂x4
+ 4D16

∂4ŵ

∂x3∂y
+ 2(D12 +D66)

∂4ŵ

∂x2∂y2
+ 4D26

∂4ŵ

∂x∂y3
+D22

∂4ŵ

∂y4
= f. (251)

The reciprocal relation between the fundamental solution and the particular solution
can be written as:

Kŵ(Q) +

ˆ
Γ

[
V ∗
n (Q,P )ŵ(P )−m∗

n(Q,P )
∂ŵ(P )

∂n

]
dΓ(P ) +

Nc∑
i=1

R∗
ci
(Q,P )ŵci(P ) =

ˆ
Γ

[
V̂n(P )w∗(Q,P )− m̂n(P )

∂w∗

∂n
(Q,P )

]
dΓ(P ) +

Nc∑
i=1

R̂ci(P )w∗
ci
(Q,P ) +

ˆ
Ω

f(P )w∗(Q,P )dΩ. (252)

Substituting equation (252) into equation (250), we have:

P1(Q) =

ˆ
Ω

gw∗dΩ =
M∑

m=1

γm
n

{
Kŵ(Q) +

ˆ
Γ

[
V ∗
n (Q,P )ŵ(P )−m∗

n(Q,P )
∂ŵ(P )

∂n

]
dΓ(P )+

Nc∑
i=1

R∗
ci
(Q,P )ŵci(P )−

ˆ
Γ

[
Vn(P )w∗(Q,P )− m̂n(P )

∂w∗

∂n
(Q,P )

]
dΓ(P ) +

Nc∑
i=1

R̂ci(P )w∗
ci
(Q,P )

}
. (253)

Following the same procedure, the domain integral of equation (132) can be approxi-
mated as:

P2(Q) =

ˆ
Ωg

b
∂w∗(Q,P )

∂n1

dΩ =
M∑

m=1

γm

ˆ
Ωg

fm∂w∗(Q)

∂n1

dΩ, (254)

Using the dual reciprocity boundary element method, the integral P2, given by the
sum of domain integrals (254), is transformed into a sum of boundary integrals.

Following the same procedure to obtain equation (253), equation (254) can be written
as:
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P2(Q) =

ˆ
Ωg

b(P )
∂w∗(Q,P )

∂n1

dΩ =
M∑

m=1

γm
n

{
1

2

∂ŵ(Q)

∂n1

+

ˆ
Γ

[
∂V ∗

∂n1

(Q,P )ŵ(P )−

∂m∗
n

∂n1

(Q,P )
∂ŵ

∂n
(P )

]
dΓ(P ) +

Nc∑
i=1

∂R∗ci
∂n1

(Q,P )ŵci(P )−
ˆ
Γ

{
V̂n(P )

∂w∗

∂n1

(Q,P )− m̂n(P )
∂

∂n1

[
∂w∗

∂n1

(Q,P )

]}
dΓ(P )−

Nc∑
i=1

Rci(P )
∂w∗

ci

∂n1

(Q,P )

}
.

(255)

Equations (253) and (255) are the basis of the dual reciprocity boundary element
method for bending problems. As it can be seen, the domain integral where transformed
in a sum of boundary integrals.

Particular solutions need to satisfy the equilibrium equation (251). The traditional so-
lution procedure to solve the differential equation (251), when the problem is isotropic,
is to assume an approximation function, f = 1 + r for example, and compute the cor-
respondent particular solutions. This procedure is quite difficult to apply to anisotropic
materials, as the anisotropy increases the number of constants in the equilibrium equation.
An alternative approach is to assume a particular solution ŵ and evaluate the correspond-
ing approximation function f . This approach was proposed by Schclar Schclar [1994] for
anisotropic three dimensional problems and later it was used by different researchers in
different anisotropic problems Albuquerque et al. [2002, 2003a,b, 2004], Kogl and Gaul
[2000a,b, 2003].

Here it is used for the particular solution:

ŵ = c r5, (256)

where c is an arbitrary constant. The approximation function f is computed by equation
(251) using the derivatives of particular solution (256). Other particular solutions are
given by:

m̂n = −
(
f1
∂2ŵ

∂x2
+ f2

∂2ŵ

∂x∂y
+ f3

∂2ŵ

∂y2

)
, (257)

R̂ci = −
(
g1
∂2ŵ

∂x2
+ g2

∂2ŵ

∂x∂y
+ g3

∂2ŵ

∂y2

)
, (258)

V̂n = −
(
h1

∂3ŵ

∂x3
+ h2

∂3ŵ

∂x2∂y
+ h3

∂3ŵ

∂x∂y2
+ h4

∂3ŵ

∂y3

)
−

1

R

(
h5

∂2ŵ

∂x2
+ h6

∂2ŵ

∂x∂y
+ h7

∂2ŵ

∂y2

)
. (259)

Although the particular solutions are given by known expressions, they are approx-
imated in the boundary by the same shape functions used in the approximation of the
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unknown variables. So, discretizing the boundary in boundary elements, equations (253)
and (255) can be written in a matrix form as:

P =
[
Hŵ −GV̂

]
γ (260)

where

ŵ =

{
ŵbn

ŵc

}
, (261)

V̂ =

{
V̂bn

V̂c

}
, (262)

ŵbn contains the displacement and rotation particular solutions to each boundary node,
V̂bn contains the shear force and the twisting moment particular solutions for each bound-
ary node, V̂bn contains the displacement particular solution for each corner, and V̂c con-
tains the corner reaction particular solution for each corner.

Defining

S =
[
Hŵ −GV̂

]
(263)

Equation (260) can be rewritten as:

P = Sγ (264)

Equation (247) can be written in a matrix form, considering all source points, as:

b = Fγ (265)

Thus, γ can be computed as:

γ = F−1b (266)

Terms P1 of equation (250) and P2 of equation (254) can be written in a matrix form,
considering all source points, as:

P = SF−1b (267)

For free vibration dynamic problems, the body force vector is given by:

b = ϱhω2w (268)

where ϱ is the material density, h is the plate thickness, and ω is the circular frequency of
vibration.

So, equation (267) can be written as:

P = ω2ϱhSF−1w (269)

or
P = ω2Mw (270)
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where M is the mass matrix given by:

M = ϱhSF−1 (271)

Finally, equation (237) for dynamic problems can be written as:

Hw = GV + ω2Mw (272)

3.9 The radial integration method

The domain integral of equation (250) can be written as:

P1(Q) =
M∑

m=1

γm

ˆ
Ωg

fmw∗(Q,P )ρdρdθ (273)

or

P1(Q) =
M∑

m=1

γm

ˆ
θ

ˆ r

0

fmw∗(Q,P )ρdρdθ, (274)

where r is the value of ρ in a point of the boundary Γg (see Figure 13).
Defining Fm(Q) as the following integral:

Fm(Q) =

ˆ r

0

fmw∗(Q,P )ρdρ, (275)

we can write:

P1(Q) =
M∑

m=1

γm

ˆ
θ

Fm(Q)dθ. (276)

Considering an infinitesimal angle dθ (Figure 13), the relation between the arch length
rdθ and the infinitesimal boundary length dΓ, can be written as:

cosα =
r dθ

2
dΓ
2

, (277)

or

dθ =
cosα

r
dΓ. (278)

where α is the angle between unity vectors r and n.
Using the inner product properties of the unity vectors n and r, showed in Figure 13,

we can write:

dθ =
n.r

r
dΓ. (279)

Finally, substituting equation (279) into equation (276), the domain integral of equa-
tion (131) can be written as a boundary integral given by:
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P1(Q) =
M∑

m=1

γm

ˆ
Γg

Fm(Q)

r
n.rdΓ. (280)

Following similar procedure to obtain equation (280), the domain term of equation
(254) can be written as:

P2(Q) =

ˆ
Ωg

b
∂w∗(Q,P )

∂n1

dΩ =
M∑

m=1

γm

ˆ
Γg

Gm(Q)

r
n.rdΓ, (281)

where

Gm(Q) =

ˆ r

0

fm∂w∗(Q,P )

∂n1

ρdρ. (282)

So, the domain integrals of matrix equation (228) can be written as{
P

(d)
1

P
(d)
2

}
=

M∑
m=1

γm

Ne∑
i=1

{
p
(d,m)
1

p
(d,m)
2

}
(283)

where

p
(d,m)
1 =

ˆ
Γi

F (d,m)

r
n.rdΓ, p

(d,m)
2 =

ˆ
Γi

G(d,m)

r
n.rdΓ. (284)

In this work, the approximation functions fm are radial basis function written in terms
of R, where R is the distance between the centre S of the radial basis function and the
integration point P (Figure 15). From Figure 15, we can write:

R =
√
ρ2 + l2 − 2ρl cos β, (285)

where l is the vector from S to Q, and β is the angle between ρ and l.
As already mentioned, the RIM is more time-consuming than the DRM since integrals

given by equations (275) and (282) cannot be computed analytically for the majority of
the approximation fuctions. For example, if fm = R, equation (275) is written as:

Fm(Q) =

ˆ r

0

c1
√

ρ2 + l2 − 2ρl cos β ln(c2ρ)ρ
3dρ, (286)

where c1 and c2 are coefficients that don’t depend on ρ. The integral of equation (286)
cannot be computed analytically. The numerical integration of these integrals needs to be
performed accurately, what demands an expressive number of integration points. In this
work the numerical integration is carried out using Gauss quadrature with 10 integration
points.

The most interesting advantage of the RIM over the DRM is that the approximation
function can be freely chosen. As shown by Paiva et al. [2004], the choice of the approx-
imation function in the DRM is restricted to the analytical computation of the particular
solution ŵ of the equation (251).

In this work, in order to compare the RIM and the DRM, the same approximation
function is used in both methods. This approximation function is given by equation (251)
when the particular solution is given by equation (256).
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Figure 15: Positions of points in the domain.

3.9.1 Numerical results

A plate under a uniformely distributed load
In order to compare the accuracy of the RIM and the DRM, these methods were first

applied to a problem with a known domain load. In this case, domain integrals given
by equations (250) and (254) can be exactly computed, as shown by equations (204) and
(209)

We considered a square plate of side length a = 1 m and thickness h = 0.01 m. The
material is orthotropic and its material properties are: Ex = 2.068×1011 Pa, Ey = Ex/15,
νxy = 0.3, Gxy = 6.055 × 108 Pa. The plate is under a uniformly distributed load
q = 1× 104 Pa applied along its domain (Figure 16) and simply supported along its four
edges. The plate was discretized with a mesh of 40 constant boundary elements and 64
internal points as shown in Figure 17.

Tables 1 and 2 show the values of domain integrals P1 and P2, respectively, computed
by the exact transformation, the DRM, and the RIM.

As can be seen, the DRM and the RIM have good agreement with the exact integra-
tion for the term P1 in all nodes. For the term P2, at some nodes near corners errors for
the DRM are greater than 10%. Errors in these nodes remain around 10% even for more
refined mesh. The reason for large errors to compute P2 at some nodes by the DRM might
be owing to the use of constant elements to approximate particular solutions at the bound-
ary. Although the particular solutions are given by analytical expressions, in the DRM
they are approximated at the boundary by the same shape functions used to approximate
physical variables w, ∂w/∂n, Vn, and mn. Instead of this, in the RIM, domain integrals
that contain approximation functions are exact transformed into boundary integrals. How-
ever, in the most part of time, these boundary integrals need to be computed numerically,
making the RIM more time-consuming than the DRM.
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Table 1: Domain integral P1 computed by the exact transformation, the DRM, and
the RIM.

Node Exact transformation DRM RIM
P1 (10−5× m) P1 (10−5× m) Error (%) P1 (10−5× m) Error (%)

1 0.4212 0.4190 0.53 0.4205 0.18
2 0.3824 0.3814 0.25 0.3817 0.18
3 0.3524 0.3516 0.21 0.3518 0.16
4 0.3320 0.3313 0.19 0.3314 0.18
5 0.3216 0.3210 0.18 0.3210 0.18
11 0.4570 0.4559 0.24 0.4561 0.18
12 0.4700 0.4691 0.19 0.4692 0.18
13 0.4722 0.4714 0.18 0.4714 0.18
14 0.4701 0.4693 0.18 0.4693 0.18
15 0.4680 0.4672 0.18 0.4672 0.18

Table 2: Domain integral P2 computed by the exact transformation, the DRM, and
the RIM.

Node Exact transformation DRM RIM
P2 (10−5× rad) P2 (10−5× rad) Error (%) P2 (10−5× rad) Error (%)

1 -0.2832 -0.2549 10.0151 -0.2827 0.18
2 -0.2120 -0.2130 0.48 -0.2116 0.18
3 -0.1568 -0.1555 0.82 -0.1565 0.21
4 -0.1192 -0.1184 0.69 -0.1189 0.21
5 -0.1002 -0.0995 0.66 -0.0999 0.25
11 0.5086 0.5119 0.64 0.5078 0.16
12 0.5816 0.5815 0.03 0.5807 0.16
13 0.6381 0.6376 0.09 0.6372 0.16
14 0.6763 0.6756 0.118 0.6752 0.15
15 0.6954 0.6946 0.11 0.6944 0.15
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Figure 16: Orthotropic square plate with simply-supported edges under uniformly
distributed load.

3.10 Modal analysis

In order to transform equation (272) in an eigenproblem, the boundary is divided into Γ1

and Γ2 (Figure 18), where Γ1 stands for constrained degrees of freedom and Γ2 stands for
free degrees of freedom. Thus, equation (272) can be written as:

[
H11 H12

H21 H22

]{
w1

w2

}
−
[
G11 G12

G21 G22

]{
V1

V2

}
= ω2

[
M11 M12

M21 M22

]{
w1

w2

}
,

(287)
where indices 1 and 2 stand for boundaries Γ1 and Γ2, respectively.

As w1 = 0 and V2 = 0, equation (287) can be written as:

H12w2 −G11V1 = ω2M12w2,

H22w2 −G21V1 = ω2M22w2 (288)

or

Ĥw2 = ω2M̂w2, (289)

where Ĥ and M̂ are given by:

Ĥ = H22 −G21G
−1
11H12,

M̂ = M22 −G21G
−1
11M12. (290)
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Figure 17: Boundary elements and internal points for the square plate.

The matrix equation (289) can be rewritten as an eigenproblem

Aw2 = λw2, (291)

where
A = Ĥ−1M̂, (292)

λ is the eigenvalue that can be written as:

λ =
1

ω2
, (293)

and w2 is the eigenvector that is equivalent to the vibration mode shape of the plate.
Provided that A is nosymmetric, eigenvalues and eigenvectors of equation (291) can

be found using standard numerical procedures for nonsymmetric matrices.

3.10.1 Numerical results

Square plate with clampled edges
The problem to be analysed in this section is a square plate of side length a = 1 m

and thickness h = 0.01 m. The material is orthotropic and its material properties are:
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Figure 18: Domain with constrained and free degrees of freedom.

E1 = 118.3 × 109 Pa, E2 = 236.6 × 109 Pa, G12 = 236.6 × 109 Pa, ν12 = 0.415, and
ρ = 1900 kg/m3.

The plate has its four edges clamped. The problem was discretized by 44 constant
boundary elements of equal lengths and 121 internal points (Figure 19).
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0

0.2

0.4

0.6

0.8

1

Figure 19: Boundary element mesh and internal points (44 constant boundary ele-
ments and 121 internal points).

Table 3 shows the first five natural frequencies computed by the dual reciprocity
boundary element method compared to the first five frequencies computed by the finite
element method using a commercial code with a very fine mesh (6400 rectangular eight
node elements). As it can be seen, all results are in good agreement.

Rectangular plate with free and simply supported edges
Consider a rectangular plate with width b = 350 mm, length a = 450 mm, and

thickness h = 2.1 mm (Figure 20). The plate is orthotropic with the following material
properties: Ex = 120 GPa, Ey = 10 GPa, Gxy = 4.8 GPa, ν12 = 0.3 and ϱ = 1510 kg/m3.

Two meshes were used: a) 28 constant boundary elements and 77 internal points
(Figure 21); and b) 72 constant boundary elements and 391 internal points (Figure 22).
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Table 3: Natural frequencies for the orthotropic plate with clamped edges computed
by the dual reciprocity boundary element method (DRM) and by the finite element
method (FEM).

Mode Natural frequency (Hz) Difference
number DRM FEM (%)

1 165.82 165.72 0.061
2 303.74 302.95 0.260
3 367.14 367.15 0.003
4 510.94 507.33 0.712
5 524.88 515.75 1.771

Ex

Ey

b

a

Figure 20: Orthotropic rectangular plate.

Results for the simply supported edges were compared to the exact solution presented
by Gibson [1994] while for free edges where compared to the finite element method using
a commercial code with a very fine mesh (6400 rectangular eight node elements).

Table 4 and 5 show the first five natural frequencies of plate with free edges computed
by the dual reciprocity boundary element method with the mesh given by Figures 21 and
22, respectively, compared to the first five frequencies computed by the finite element
method. As can be seen, all results are in good agreement. It also can be seen that there
is a convergency to the finite element results as the discretization and number of internal
node increses.

Tables 6 and 7 show the first five natural frequencies of plate with simply supported
edges computed by the dual reciprocity boundary element method with meshes shown
in Figures 21 and 22, respectively, compared to the exact solution presented by Gibson
[1994]. As can be seen, all results are in good agreement, excepeted for the second mode.
Results converges to the exact solution as the discretization and number of internal points
increases.

Dual reciprocity boundary element method × radial integration method for modal
analysis
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Figure 21: Boundary element mesh and internal points (28 constant boundary ele-
ments and 77 internal points).

Table 4: Natural frequencies for the orthotropic plate with free edges computed
by the dual reciprocity boundary element method (DRM) and by the finite element
method (FEM). 28 boundary elements and 77 internal points.

Mode Natural frequency (Hz) Difference
number DRM FEM (%)

1 24.6222 25.4970 3.4310
2 45.9983 45.3480 1.4340
3 66.2378 68.7790 3.6947
4 90.3550 95.2470 5.1361
5 101.2286 107.6100 5.9301

Now the dual reciprocity boundary element method and the radial integration method
are applied in the analysis of a problem in that body forces are unknown. Consider a
rectangular plate with free edges and width b = 350 mm, length a = 450 mm, and
thickness h = 2.1 mm (Figure 20). The plate is orthotropic with the following material
properties: Ex = 120 GPa, Ey = 10 GPa, Gxy = 4.8 GPa, ν12 = 0.3 and ϱ = 1510 kg/m3.

This plate was analysed using a mesh of 66 constant boundary elements and 63 inter-
nal points as shown in Figure 23.

Table 8 shows the first five natural frequencies computed by the finite element method
(FEM), the dual reciprocity boundary element method (DRM), and the radial integration
method (RIM), and the respective relative differences between the last two methods and
the FEM. The finite element mesh has 150 (15 × 10) quadrilateral finite elements (8 nodes
per element). As it can be seen, the agreement of the RIM and the DRM with the FEM
is similar when the same approximation function is used. The numerical integration used
in the RIM is the Gauss quadrature with 10 points. There is the possibility of improve
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Figure 22: Boundary element mesh and internal points (72 constant boundary ele-
ments and 391 internal points).

Table 5: Natural frequencies for the orthotropic plate with free edges computed
by the dual reciprocity boundary element method (DRM) and by the finite element
method (FEM). 72 boundary elements and 391 internal points.

Mode Natural frequency (Hz) Difference
number DRM FEM (%)

1 24.7545 25.4970 2.9122
2 44.9061 45.3480 0.9744
3 69.2577 68.7790 0.6960
4 96.8308 95.2470 1.6628
5 101.4698 107.6100 5.7060

accuracy of the numerical integration by using more integration points. The price of the
gain in the accuracy is a larger computation time. However, this analysis is out of the
scope of this article and will be treated in future works.

3.11 Buckling analysis

Demand by an accurate stability analysis of anisotropic materials has increase with the
increasing use of composite materials in engineering projects. In general, composites
panels are very light structures that present high stiffness and strength. However, due to
their slenderness, buckling is one of the main concern during their design.

The boundary element method (BEM) has provided a powerful solution to the field
of plate buckling. Syngellakis and Elzein Syngellakis and Elzein [1994] presented a
boundary element solution of the plate buckling based on Kirchhoff theory under any
combination of loadings and support conditions. Nerantzaki and Katsidelakis Nerantzaki
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Table 6: Natural frequencies for the orthotropic plate with supported edges com-
puted by the dual reciprocity boundary element method (DRM) compared to the
exact solution. 28 boundary elements and 77 internal points.

Mode Natural frequency (Hz) Error
number DRM Exact solution (%)

1 50.8502 52.7700 3.6381
2 118.6346 103.2800 14.8669
3 169.5112 176.5700 3.9978
4 216.9047 199.8300 8.5446
5 228.1276 211.0900 8.0713

Table 7: Natural frequencies for the orthotropic plate with supported edges com-
puted by the dual reciprocity boundary element method (DRM) compared to exact
solution. 72 boundary elements and 391 internal points.

Mode Natural frequency (Hz) Error
number DRM Exact solution (%)

1 51.5836 52.7700 2.2482
2 110.6339 103.2800 7.1204
3 171.3100 176.5700 2.9790
4 205.2756 199.8300 2.7251
5 212.4413 211.0900 0.6402

and Katsikadelis [1996] developed a boundary element method for buckling analysis of
plates with variable thickness. Elastic buckling analysis of plates using boundary ele-
ments can also be found in Lin et al. [1999]. Buckling analysis of shear deformable
isotropic plates was presented in Purbolaksono and Aliabadi [2005]. To the best of au-
thor’s knowledge, the only work that presents a boundary element formulation applied to
non-isotropic plates is due to Shi [1990] who presented an orthotropic formulation with a
domain discretization.

In this paper, a boundary element formulation for the stability analysis of general
anisotropic plates with no domain discretization is presented. Classical plate bending
and plane elasticity formulations are used and the domain integrals due to body forces

Table 8: Natural frequencies computed by the FEM, the DRM and the RIM.

Mode FEM DRM RIM
shape ω/(2π) (Hz) ω/(2π) (Hz) Difference (%) ω/(2π) (Hz) Difference (%)

1 25.50 24.64 3.38 24.3932 4.34
2 45.35 45.03 0.71 45.5682 0.48
3 68.78 68.69 0.13 67.3678 2.05
4 95.25 98.06 2.95 94.6026 0.68
5 107.61 100.93 6.21 106.3381 1.18
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Figure 23: Boundary elements and internal points for the rectangular plate.

are transformed into boundary integrals using the radial integration method. Numerical
results are presented to assess the accuracy of the method. Buckling coefficients computed
using the proposed formulation are in good agreement with results available in literature.

3.11.1 Boundary integral equations

In the absence of body forces, the governing equation of the anisotropic thin plate buck-
ling is given by:

Nij,j = 0, (294)

D11u3,1111 + 4D16u3,1112 + 2(D12 +D66)u3,1122 + 4D26u3,1222 +D22u3,2222 = Niju3,ij,

(295)

where i, j, k = 1, 2; uk is the displacement in directions x1 and x2, u3 stands for the dis-
placement in the normal direction of the plate surface; Nij are the in-plane stress compo-
nents, D11, D22, D66, D12, D16, and D26 are the anisotropic thin plate stiffness constants.

The boundary integral equation for in-plane displacements, obtained by applying reci-
procity and Green theorems at equation (294), is given by Aliabadi [2002]:

cijuj(Q) +

ˆ
Γ

t∗ik(Q,P )uk(P )dΓ(P ) =

ˆ
Γ

u∗
ik(Q,P )tk(P )dΓ(P ) (296)

where ti = Nijnj is the traction in the boundary of the plate in the plane x1−x2, and nj is
the normal at the boundary point; P is the field point; Q is the source point; and asterisks
denote fundamental solutions. The anisotropic plane elasticity fundamental solutions can
be found, for example, in Sollero and Aliabadi [1993]. The constant cij is introduced in
order to take into account the possibility that the point Q can be placed in the domain, on
the boundary, or outside the domain.
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The in-plane stress resultants at a point Q ∈ Ω are written as:

cikNkj(Q) +

ˆ
Γ

S∗
ikj(Q,P )uk(P )dΓ(P ) =

ˆ
Γ

D∗
ijk(Q,P )tk(P )dΓ(P ) (297)

where Dikj and Sikj are linear combinations of the plane-elasticity fundamental solutions.
The integral equation for the plate buckling formulation, obtained by applying reci-

procity and Green theorems at equation (295), is given by:

Ku3(Q) +

ˆ
Γ

[
V ∗
n (Q,P )w(P )−m∗

n(Q,P )
∂w(P )

∂n

]
dΓ(P ) +

Nc∑
i=1

R∗
ci
(Q,P )u3ci(P )

=
Nc∑
i=1

Rci(P )u∗
3ci
(Q,P ) +

ˆ
Γ

[
Vn(P )u∗

3(Q,P )−mn(P )
∂u∗

3

∂n
(Q,P )

]
dΓ(P )

+λ

[ˆ
Ω

u3Niju
∗
3,ij dΩ +

ˆ
Γ

(
tiu

∗
3u3,i − tiu3u

∗
3,i

)
dΓ

]
, (298)

where ∂()
∂n

is the derivative in the direction of the outward vector n that is normal to the
boundary Γ; mn and Vn are, respectively, the normal bending moment and the Kirchhoff
equivalent shear force on the boundary Γ; Rc is the thin-plate reaction of corners; u∗

3ci

is the transverse displacement of corners; λ is the critical load factor; the constant K is
introduced in order to take into account the possibility that the point Q can be placed
in the domain, on the boundary, or outside the domain. As in the previous equation, an
asterisk denotes a fundamental solution. Fundamental solutions for anisotropic thin plates
can be found, for example, in Albuquerque et al. [2006].

A second integral equation is necessary in order to obtain the thin plate buckling
boundary element formulation. This equation is given by:

K
∂u3

∂m
(Q) +

ˆ
Γ

[
∂V ∗

n

∂m
(Q,P )w(P )− ∂M∗

n

∂m
(Q,P )

∂w(P )

∂n

]
dΓ(P ) +

Nc∑
i=1

∂R∗
ci

∂m
(Q,P )u3ci(P )

=
Nc∑
i=1

Rci(P )
∂u∗

3ci

∂m
(Q,P ) +

ˆ
Γ

[
Vn(P )

∂u∗
3(Q,P )

∂m
−mn(P )

∂2u∗
3

∂n∂m
(Q,P )

]
dΓ(P )

+λ

[ˆ
Ω

u3Nij

∂u∗
3,ij

∂m
dΩ +

ˆ
Γ

(
tiu

∗
3

∂u3,i

∂m
− tiu3

∂u∗
3,i

∂m

)
dΓ

]
, (299)

where ∂()
∂m

is the derivative in the direction of the outward vector m that is normal to the
boundary Γ at the source point Q.

As can be seen in equations (298) and (299), domain integrals arise in the formulation
owing to the contribution of in-plane stresses to the out of plane direction. In order to
transform these integrals into boundary integrals, consider that a body force b is approx-
imated over the domain Ω as a sum of M products between approximation functions fm
and unknown coefficients γm, as given by equation (247).
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Body forces of integral equations (298) and (299) depend on displacements. So, fol-
lowing the procedure presented by Albuquerque et al. Albuquerque et al. [2007], domain
integrals that come from these body forces can be transformed into boundary integrals.

3.11.2 Matrix Equations

After the discretization of equations (298) and (299) into boundary elements and colloca-
tion of the source points in all boundary nodes, a linear system is generated. It is worth
notice that the only loads considered in the linear buckling equations are that related to
the in-plane stress Nij and tractions ti that are multiplied by the critical load factor λ. This
means that all the known values of u3, ∂u3/∂n, Mn, Vn, wci, Rci (boundary conditions)
are set to zero.

Dividing the boundary into Γ1 and Γ2 (Figure 18), this linear system can be written in
the same way of equaition (287).

3.11.3 Numerical results

The numerical results are presented in terms of the dimensionless parameter Kcr which is
given by:

Kcr =
Ncra

2

D22

(300)

where Ncr is the critical load (Ncr = λ× the applied load) and a is the edge length of the
square plate.

Consider a square graphite/epoxy plate under different boundary conditions. The
thickness of the plate is h = 0.01 m. The material properties are: elastic moduli E1 =
181 GPa and E2 = 10.3 GPa, Poisson ratio ν12 = 0.28, and shear modulus G12 = 7.17
GPa.

The mesh used has 28 quadratic discontinuous boundary elements of the same length
(7 per edge) and 49 (7 × 7) uniformly distributed internal points.

The plate is under uniformly uniaxial compression and the critical load parameter Kcr

is computed considering all edges simply-supported (SSSS), all edges clamped (CCCC),
and two edges clamped and two edges simply supported (CSCS). In the last case, the two
edges where the load is applied are simply supported and the two remaining edges are
clamped. The results are shown in Table 9 together with results obtained by Shi [1990]
using a boundary element formulation with domain discretization and the analytical solu-
tion presented by Lekhnitskii [1968].

As it can be seen, there is a good agreement between the results obtained in this work
and those presented in literature.

4 Shallow Shells

4.1 Introduction

The demand for construction of advanced aerospace, automotive, and marine structures
has increased the interest in composite laminated shells. Some requirements, as for ex-
ample high strength-to-weight ratio, good resistance to corrosion, as well as long fatigue
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Table 9: Critical load parameter Kcr for a graphite/epoxy plate with different
boundary conditions.

Case B. Conditions Loads This work Shi [1990] Lekhnitskii [1968]
1 SSSS N1 ̸= 0 130.82 – 129.78
2 SSSS N2 ̸= 0 71.53 71.36 69.46
3 CCCC N1 ̸= 0 493.70 481.21 –
4 CCCC N2 ̸= 0 168.27 168.16 –
5 CSCS N1 ̸= 0 161.47 163.24 162.03
6 CSCS N2 ̸= 0 146.47 143.89 141.33
7 SSSS N12 ̸= 0 417.44

life, cannot be obtained with the use of metallic or any other engineering materials except
composites. Other requirements, as aerodynamic profile and good stealth characteristics
demand curved structures or shell like structures.

The DRM has been shown as a powerful technique to transform domain integrals into
boundary integrals and it has been extensively applied in many different formulation for
this purpose. In this technique, the domain terms are approximated using a finite series
expansion involving proposed approximation functions and coefficients to be determined.
In order to accomplish the transformation, it is necessary to compute particular solutions
for the governing differential equation, considering the approximation function as the
non-homogeneous term. It is quite suitable for potential problems as well as for isotropic
structures. However, when it is applied to anisotropic structures, the complexity of the
differential equation become quite difficult, or even impossible, to compute the particular
solutions for many chosen approximation functions.

An alternative approach to overcome the main drawback of the DRM, that is the lack
of free choice of the approximation function, is the radial integration method (RIM). This
method was proposed by Gao Gao [2002] and its use has been extended for the anisotropic
thin plate formulation by Albuquerque et al. Albuquerque et al. [2006, 2007]. As in the
DRM, the RIM also approximate the domain terms by a sum of approximation functions
and coefficients to be determined. However, the RIM doesn’t demand the computation
of any particular solution, what become this technique specially suitable for anisotropic
formulations.

In this chapter, a boundary element formulation for anisotropic shallow shells with
no domain discretization is presented. Classical plate bending and plane elasticity for-
mulations are coupled and effects of curvature are treated as body forces. The domain
integrals due to body forces are transformed into boundary integrals using the radial in-
tegration method. Numerical results are presented to assess the accuracy of the method.
Displacements computed using the proposed formulation are in good agreement with re-
sults available in literature. For the best of authors knowledge, there is no paper in the
literature for anisotropic shells using the coupling of plate bending and plane elasticity
formulations.
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4.2 Boundary integral equations

Consider a shallow shell of an anisotropic elastic material with the mid-surface being
described by z = z(x1, x2) as shown in Figure 24. The base-plane of the shell is defined
by a domain Ω in the plane x1, x2 whose boundary is given by Γ.

Figure 24: Shallow shell.

As shown by Reissner, the equilibrium equation for this structure can be written as:

Nij,j + qi = 0, (301)

D11w,1111 + 4D16w,1112 + 2(D12 +D66)w,1122 + 4D26w,1222 +D22w,2222 +
Nij

Rij

= q3,(302)

where i, j, k = 1, 2; Nij are membrane forces applied in the shell; D11, D22, D66, D12,
D16, and D26 are the flexural rigidities of the anisotropic plate w stands for the displace-
ment in the normal direction of the shell surface; qi are domain loads applied in directions
of axis x1 and x2, q3 is the domain load applied in direction of axis x3; and

Rij =
−1

z,ij
(303)

are the radii of curvature of the undeformed shell.
Using equilibrium equations of isotropic shallow shells, the reciprocity relation, and

the Green theorem, Zhang and Atluri Zhang and Atluri [1986] derived integral equations
that can be divided in terms of plane elasticity and plate bending formulations. These
formulations are coupled by the domain integrals that arise in equations. Plane elasticity
integral equations (membrane equations) are given by:
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cijuj +

ˆ
Γ

t∗ik(Q,P )uk(P )dΓ(P )

=

ˆ
Γ

u∗
ik(Q,P )tk(P )dΓ(P )

+

ˆ
Ω

Cκkjwu
∗
ik,j(Q,P )dΩ

+

ˆ
Ω

u∗
ik(Q,P )qk(P )dΩ(P ), (304)

where uk is the displacement in directions x1 and x2, ti = Nijnj , P is the field point;
Q is the source point. The constant cij is introduced in order to take into account the
possibility that the point Q can be placed in the domain, on the boundary, or outside the
domain. The symbol * stands for fundamental solutions (see Aliabadi, Aliabadi [2002]).
Constant κkj depends on the curvature radii Rkj of the shallow shell.

The plate bending integral equation is given by:

Kw(Q)

+

ˆ
Γ

[
V ∗
n (Q,P )w(P )−m∗

n(Q,P )
∂w(P )

∂n

]
dΓ(P )

+
Nc∑
i=1

R∗
ci
(Q,P )wci(P ) =

Nc∑
i=1

R∗
ci
(P )wci(Q,P )

+

ˆ
Ω

q3(P )w∗(Q,P ) dΩ

+

ˆ
Γ

[
Vn(P )w∗(Q,P )−mn(P )

∂w∗

∂n
(Q,P )

]
dΓ(P )

+

ˆ
Γ

Cκijnjui(P )w∗(Q,P ) dΓ(P )

+

ˆ
Ω

C
κij

ρij
w∗(Q,P )w(P ) dΩ

+

ˆ
Ω

[Cκij(P )w∗(Q,P )],j ui(P ) dΩ, (305)

where ∂()
∂n

is the derivative in the direction of the outward vector n that is normal to the
boundary Γ; mn and Vn are, respectively, the normal bending moment and the Kirchhoff
equivalent shear force on the boundary Γ; Rc is the thin-plate reaction of corners; wci is
the transverse displacement of corners; q3 is the domain force in the transversal direction;
K is a constant equivalent to cij of equation (304).

In order to have an equal number of equations and unknowns, it is necessary to write
an integral equation corresponding to the derivative of the displacement w(Q) in relation
to the unity vector m that is normal to the boundary in the source point Q. This equation
is given by:
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K
∂w

∂m
(Q)

+

ˆ
Γ

[
∂V ∗

n (Q,P )

∂m
w(P )− ∂m∗

n(Q,P )

∂m

∂w(P )

∂n

]
dΓ(P )

+
Nc∑
i=1

∂R∗
ci
(Q,P )

∂m
wci(P ) =

Nc∑
i=1

∂Rci(P )∗

∂m
wci(Q,P )

+

ˆ
Ω

q3(P )
∂w∗(Q,P )

∂m
dΩ

+

ˆ
Γ

[
Vn(P )

∂w∗(Q,P )

∂m
−mn(P )

∂2w∗

∂n∂m
(Q,P )

]
dΓ(P )

+

ˆ
Γ

Cκijnjui(P )
∂w∗(Q,P )

∂m
dΓ(P )

+

ˆ
Ω

C
κij

ρij

∂w∗(Q,P )

∂m
w(P ) dΩ

+

ˆ
Ω

[
Cκij(P )

∂w∗(Q,P )

∂m

]
,j

ui(P ) dΩ. (306)

As can be seen in equations (304), (305), and (306), domain integrals arise in the
formulation owing to the curvature of the shell. These domain integrals are:

P1(Q) =

ˆ
Ω

Cκkjwu
∗
ik,j(Q,P )dΩ, (307)

P2(Q) =

ˆ
Ω

C
κij

ρij
w∗(Q,P )w(P ) dΩ, (308)

P3(Q) =

ˆ
Ω

[Cκij(P )w∗(Q,P )],j ui(P ) dΩ, (309)

P4(Q) =

ˆ
Ω

C
κij

ρij

∂w∗(Q,P )

∂m
w(P ) dΩ, (310)

and

P5(Q) =

ˆ
Ω

[
Cκij(P )

∂w∗(Q,P )

∂m

]
,j

ui(P ) dΩ. (311)

In order to transform these integrals into boundary integrals, the RIM is used. De-
tails of this method can be found in Albuquerque, Sollero, and Paiva (Albuquerque et al.
[2007]). However, for sake of completeness, some steps of the method are repeated here,
in the next section.
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4.3 The radial integration method

Consider, in a general case, the following domain integration:

P (Q) =

ˆ
Ω

b(P )v∗(Q,P )dΩ, (312)

where b and v∗ are generic body force and fundamental solution, respectively.
The body force is approximated over the domain Ω as a sum of M products between

approximation functions fm and unknown coefficients γm, as given by equation (247).
Now, considering that the body force is approximated, for simplicity, by equation

(247), the domain integral (312) can be written as:

P (Q) =

ˆ
Ω

b(P )v∗(Q,P )dΩ =
M∑

m=1

γm

ˆ
Ω

fmv
∗(Q,P )dΩ, (313)

that can be transformed into a sum o boundary integrals by using the RIM as already
presented in section 3.9.
In a matrix form, we can write:

P (Q) =
[ ´

Γ
F1(Q)

r
n.rdΓ

´
Γ

F2(Q)
r

n.rdΓ

...
´
Γ

FM (Q)
r

n.rdΓ
]

γ1
γ2
...

γM

 .

(314)

To compute γm, it is necessary to consider the body force in M points of the domain
and of the boundary. In the case of this work, these points are the boundary nodes and
some internal points. Thus, equation (247) can be written as:

b = Fγ, (315)

and γ can be computed as:

γ = F−1b. (316)

Substituting (316) into equation (314), we have:

P (Q) =
[ ´

Γ
F1(Q)

r
n.rdΓ

´
Γ

F2(Q)
r

n.rdΓ

...
´
Γ

FM (Q)
r

n.rdΓ
]
F−1b.

(317)

Writing equation (317) for all source points, i.e., all boundary nodes and internal
points, we have the following matrix equation:
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P = RF−1b = Sb, (318)

where S = RF−1, P is a vector that contains the value of P (Q) in all source points Q,
and R is a matrix that contains the value of integrals of equation (317) when this equation
is written for all source points Q.

4.4 Matrix equation

Considering all body forces that appears in equations (296), (298), and (306), the vector
P for these equations are given by:

P =



0 0 Smc
bb Smc

bi Smc
bc

0 0 Smc
ib Smc

ii Smc
ic

Sp1c
bb Sp1c

bi Sp1
bb Sp1

bi Sp1
bc

Sp2c
bb Sp2c

bi Sp2
bb Sp2

bi Sp2
bc

Sp1c
ib Sp1c

ii Sp1
ib Sp2

ii Sp1
ic

Sp1c
cb Sp1c

ci Sp1
cb Sp1

ci Sp1
cc




ub

ui

wb

wi

wc

 (319)

where the superscript index of matrix S stands for the type of equation that is being used,
i.e., m stands for the membrane equation given by equation (296), p1 stands for the first
plate equation, given by equation (298), and p2 stands for the second plate equation, given
by equation (306). The letter c in the superscript index means that these are coupling
terms. In matrix S, the first subscript index stands for the location of the source points
(b if source points are at a smooth part of the boundary, i if they are in the domain and
c if they are at corners). The second subscript index shows where are the body forces
that are multiplied by terms of the matrix S. For the second index, the same letters of
the first subscript index are used with the same meaning. The right hand side vector
has nodal values of the body forces that in this case are given by displacements (all the
remaining terms of domain integrals are considered as part of the fundamental solution
v∗). The letter u stands for displacements in the x1 and x2 directions and w stands for
displacement in the transversal direction. Subscript indices in the right hand side vector
indicate the location of nodes where displacements are computed.

Finally, if the boundary Γ is discretized in boundary elements and equations (296),
(298), and (306) is written for all source points, the following matrix equation can be
obtained:
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Hm
bb 0 0 0 0

Hm
ib I 0 0 0

Hp1c
bb 0 Hp1

bb 0 Hp1
bc

Hp2c
bb 0 Hp2

bb 0 Hp2
bc

Hp1c
ib 0 Hp1

ib I Hp1
ic

Hp1c
cb 0 Hp1

cb 0 Hp1
cc




ub

ui

vb

wi

wc



=



Gm
bb 0 0

Gm
ib 0 0

0 Gp1
bb Gp1

bc

0 Gp2
bb Gp2

bc

0 Gp1
ib Gp1

ic

0 Gp1
cb Gp1

cc




tb
pb

pc



+



0 0 Smc
bb Smc

bi Smc
bc

0 0 Smc
ib Smc

ii Smc
ic

Sp1c
bb Sp1c

bi Sp1
bb Sp1

bi Sp1
bc

Sp2c
bb Sp2c

bi Sp2
bb Sp2

bi Sp2
bc

Sp1c
ib Sp1c

ii Sp1
ib Sp2

ii Sp1
ic

Sp1c
cb Sp1c

ci Sp1
cb Sp1

ci Sp1
cc




ub

ui

wb

wi

wc

+ q

(320)

where H and G are influence matrices of the BEM; the vector v contains transversal
displacements and rotations of the nodes (not only transversal displacement as vector
w). Vectors t and p contain boundary node reactions for membrane and plate equations,
respectively. The vector q is due to the domain load qi. Domain integrals due to qi’s
are transformed exactly into boundary integrals using the procedure presented in Albu-
querque, Sollero, Venturini, and Aliabadi (Albuquerque et al. [2007]).

Equation (320) can be written in a more concise form as:

Hv = Gt+ Su+ q (321)

Finally, columns of matrices of equation (321) can be reordered in accordance with
boundary conditions and a linear equation system can be obtained where the unknown
displacements and reactions can be computed.

4.5 Approximation functions

Two approximation functions are used in this work. The first is a radial basis function that
has been used extensively in the DRM and is given by:

fm1 = 1 +R. (322)

The second is the well known thin plate spline:

fm3 = R2 log(R), (323)

used with the augmentation function given by equations (248) and (249).
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4.6 Numerical results

4.6.1 Square spherical shallow shell

In order to assess the accuracy of the proposed formulation, consider a square spherical
shallow shell, as shown in Figure 25. The geometry and material properties of the shell
are as follow: length of the base edge of the shell a =0.254 m, thickness h = 0.0127 m,
curvature radii R1 = R2 = R = 2.54 m (R12 = R21 = 0), elastic moduli E2 = 6.895 GPa
and E1 = 2E1, Poisson ratio ν12 = 0.3, and shear modulus G12 = E2/[2(1 − ν12)]. The
shell is under a uniformly distributed load in the transversal direction (internal pressure)
q3 = 2.07 MPa (q1 = q2 = 0).

h

R

R

x1

x2

a

a

Figure 25: Square spherical shallow shell.

This problem was analysed considering two types of boundary conditions, i.e., clamped
and simply-supported. Three meshes were used. Mesh 1 has 12 constant boundary ele-
ments and 9 internal points, mesh 2 has 20 boundary elements and 25 internal points, and
mesh 3 has 28 boundary elements and 49 internal points. Mesh 3 is shown in Figure 26.
All meshes have elements of equal length and uniformly distributed internal points.

Figures 27 and 28 show results for the clamped and simply-supported boundary con-
ditions, respectively, together with meshless results obtained by Sladek et al. Sladek et al.
[2007] for the same problems but considering the shell as shear deformable.

As it can be seen, the results for the clamped boundary conditions are in good agree-
ment with the meshless results while for the simply-supported boundary conditions they
are slightly lower.
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Figure 26: Boundary elements and internal points for the square spherical shallow
shell (mesh 3, 28 boundary elements and 49 internal points).
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Figure 27: Transversal displacement for the spherical shell with clamped edge.
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Figure 28: Transversal displacement for the spherical shell with simply-supported
edge.
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5 Conclusions

5.1 Conclusions

This chapter presented a boundary element formulation for the numerical analysis of static
and dynamic problems in laminated composite plates and shallow shells. Two boundary
integral equations, for transverse displacement and rotation, were used, and these integral
equations were discretized into constant and quadratic boundary elements. For elastostat-
ics, the domain integrals which arise from linearly and uniformly distributed loads were
transformed into boundary integrals by an exact radial transformation. Several numerical
examples were shown for quasi-isotropic, orthotropic, and general anisotropic materi-
als. The numerical results obtained with the present boundary element technique were
compared with results obtained analytically in the form of a series solution and results
obtained by the finite element method, and show good agreement.

The use of the dual reciprocity boundary element method (DRM) and the radial inte-
gration method (RIM) for problems in which the body forces are unknowns was explored.
In both methods body forces are approximated as a sum of the product between radial ba-
sis function and unknown coefficients. The main advantage of the RIM over the DRM
is that there is no need to compute analytical particular solutions in the former, which
allows a free choice of the approximation function for problems of anisotropic materials.
As some of the integrals that arises in the formulation cannot be computed analytically,
the use of numerical integration becomes the RIM more time-consuming than the DRM.
Results have shown that similar accuracy is obtained with the RIM and the DRM when
the same approximation function is used for problems of unknown body forces. This is
a first work and both methods still demands a lot of research. An important analysis that
should be carried out in order to improve the accuracy of the RIM is the use of other ap-
proximation functions, such as radial basis functions augmented by polynomials or thin
plate splines. However, this analysis was not in the scope of this work.

In the analysis of thin shallow shells, domain integrals are transformed into bound-
ary integrals by the radial integration method. As the radial integration method doesn’t
demand particular solutions, it is easier to implement than the dual reciprocity boundary
element method. Besides, strong singularities in domain integrals are cancelled by the
radial integration. Two different approximation functions are used in the radial integra-
tion method. Results obtained with both approximation functions are in good agreement
with results presented in literature. As in the dual reciprocity method, the accuracy of
the method is improved by increasing the number of boundary nodes and internal points.
However, different from dual reciprocity and even from other applications of the radial
integration method, the use of radial basis function augmented by polynomials hasn’t
produced significantly changes in results.

References

E. L. Albuquerque and P. Sollero. The boundary element method applied to transient
dynamic anisotropic problems. In A. J. Kassab, C. A. Brebbia, and M. Chopra, editors,
Proc. Boundary Element Method XX, pages 617–624, Orlando - USA, jul 1998.

E. L. Albuquerque, P. Sollero, and M. H. Aliabadi. The boundary element method applied

Albuquerque, Éder L., et al. (2022) The Boundary Element Method for Structural Problems pp. 733-808

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 804



to time dependent problems in anisotropic materials. International Journal of Solids
and Structures, 39:1405–1422, 2002.

E. L. Albuquerque, P. Sollero, and P. Fedelinski. Dual reciprocity boundary element
method in laplace domain applied to anisotropic dynamic crack problems. Computers
and Structures, 81:1703–1713, 2003a.

E. L. Albuquerque, P. Sollero, and P. Fedelinski. Free vibration analysis of anisotropic
material structures using the boundary element method. Engineering Analysis with
Boundary Elements, 27:977–985, 2003b.

E. L. Albuquerque, P. Sollero, and M. H. Aliabadi. Dual boundary element method for
anisotropic dynamic fracture mechanics. International Journal for Numerical Methods
in Engineering, 59:1187–1205, 2004.

E. L. Albuquerque, P. Sollero, W. Venturini, and M. H. Aliabadi. Boundary element
analysis of anisotropic kirchhoff plates. International Journal of Solids and Structures,
43:4029–4046, 2006.

E. L. Albuquerque, P. Sollero, and W. P. Paiva. The radial integration method applied
to dynamic problems of anisotropic plates. Communications in Numerical Methods in
Engineering, 23:805–818, 2007.

M. H. Aliabadi. Boundary element method, the application in solids and structures. John
Wiley and Sons Ltd, New York, 2002.

P. M. Baiz and M. H. Aliabadi. Linear buckling of shear deformable shallow shells by the
boundary domain element method. CMES - Computer Modeling in Engineering and
Sciences, 13:19–34, 2006.

K. Bath and E. L. Wilson. Numerical methods in finite element analysis. Prentice-Hall
Inc., Englewood Cliffs, New Jersey, 1976.

T. A. Cruse and J. L. Swedlow. Interactive program for analysis and design problems in
advanced composites. Technical report, Carnegie-Mellon University, Report AFLM-
TR-71-268, 1971.

A. Deb. Boundary elements analysis of anisotropic bodies under thermo mechanical body
force loadings. Computers and Structures, 58:715–726, 1996.

T. Dirgantara and M. H. Aliabadi. A new boundary element formulation for shear de-
formable shells analysis. Int. J. for Numerical Methods in Engn., 45:1257–1275, 1999.

X. Gao. The radial integration method for evaluation of domain integrals with boundary
only discretization. Engn. Analysis with Boundary Elements, 26:905–916, 2002.

R. F. Gibson. Principles of composite material mechanics. McGraw Hill, New York,
1994.

J. C. Houbolt. A reccurrence matrix solution for the dynamic response of elastic aircraft.
J. of Aeronautical and Science, 17:540–550, 1950.

Albuquerque, Éder L., et al. (2022) The Boundary Element Method for Structural Problems pp. 733-808

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 805



G. Kirchhoff. On the equilibrium and motion of an elastic plate. J. Math., 40:51–58,
1950. In German.

M. Kogl and L. Gaul. A boundary element method for transient piezoelectric analysis.
Engineering Analysis with Boundary Elements, 24:591–598, 2000a.

M. Kogl and L. Gaul. A 3-d boundary element method for dynamic analysis of anisotropic
elastic solids. CMES - Computational Modelling in Engineering and Science, 1:27–43,
2000b.

M. Kogl and L. Gaul. Free vibration analysis of anisotropic solids with the boundary
element method. Engineering Analysis with Boundary Elements, 27:107–114, 2003.

B. Lamattina. Anisotropic plate bendign analysis using complex variable methods. PhD
thesis, North Carolina State University, Raleigh - USA, 1997.

B. Lamattina, E. C. Klang, and J. W. Eischen. A study of solutions for the anisotropic
plate subjected to a concentrated force. Journal of Applied Mechanics, 65:273–276,
1998.

S. G. Lekhnitskii. Anisotropic plates. Gordon and Breach, New York, 1968.

J. Lin, R. C. Duffield, and H. Shih. Buckling analysis of elastic plates by boundary
element method. Engineering Analysis with Boundary Element, 23:131–137, 1999.

C. Loeffler and W. J. Mansur. Analysis of time integration schemes for boundary ele-
ment applications to transient wave propagation problems. In C. A. Brebbia and W. S.
Venturini, editors, Boundary Element techniques: Applications in stress analysis and
heat transfer, pages 105–122, Computational Mechanics Publications, Southhampton,
1987.

P. Lu and O. Mahrenholtz. The fundamental solution for the theory of orthotropic shallow
shells involving shear deformation. Int. J. of Solids and Structures, 31:913–923, 1994.

J. Mossakowski. Singular solutions of anisotropic plates. Arch. Mech. Stos., 7:97–110,
1955. In Polish.

D. Nardini and C. A. Brebbia. A new approach to free vibration analysis using boundary
elements. In Boundary Element Method in Engineering - IV International Seminar,
1982.

M. S. Nerantzaki and J. T. Katsikadelis. Buckling of plates with variable thickness, an
analog equation solution. Engineering Analysis with Boundary Element, 18:149–154,
1996.

A. J. Nowak and A. C. Neves. The multiple reciprocity boundary element method. Com-
putational Mechanics Publication, Southampton, 1994.

J. B. Paiva. Boundary element formulation for plate bending and its aplication in engi-
neering. PhD thesis, University of São Paulo, São Carlos School of Engineering, 1987.
In Portuguese.

Albuquerque, Éder L., et al. (2022) The Boundary Element Method for Structural Problems pp. 733-808

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 806



W. P. Paiva, P. Sollero, and E. L. Albuquerque. Treatment of hypersingularities in bound-
ary element anisotropic plate bending problems. Latin American Journal of Solids and
Structures, 1:49–73, 2003.

W. P. Paiva, P. Sollero, E. L. Albuquerque, R. Pavanello, and M. H. Aliabadi. Dynamics
of thin anisotropic plates. In Advances in Boundary Element Techniques V, 2004.

P. W. Partridge, C. A. Brebbia, and L. C. Wrobel. The dual reciprocity boundary element
method. Computational Mechanics Publications, Southampton, Boston, 1992.

J. Purbolaksono and M. H. Aliabadi. Buckling analysis of shear deformable plates by
boundary element method. International Journal for Numerical Methods in Engineer-
ing, 62:537–563, 2005.

C. Rajamohan and J. Raamachandran. Bending of anisotropic plates by charge simulation
method. Advances in Engn. Software, 30:369–373, 1999.

N. A. Schclar. Anisotropic analysis using boundary elements. Computational Mechanics
Publications, Southampton, Boston, 1994.

G. Shi. Flexural vibration and buckling analysis of orthotropic plates by the boundary
element method. J. of Solids and Structures, 26:1351–1370, 1990.

G. Shi and G. Bezine. A general boundary integral formulation for the anisotropic plate
bending problems. J. Composite Materials, 22:694–716, 1988.

J. Sladek, V. Sladek, J. Krivacek, and M. H. Aliabadi. Local boundary integral equations
for orthotropic shallow shells. International Journal of Solids and Structures, 44:2285–
2303, 2007.

P. Sollero and M. H. Aliabadi. Fracture mechanics analysis of anisotropic plates by the
boundary element method. Int. J. of Fracture, 64:269–284, 1993.

P. Sollero and M. H. Aliabadi. Anisotropic analysis of composite laminates using the dual
boundary element methods. Composite Structures, 31:229–234, 1995.

M. Suchar. On singular solutions in the theory of anisotropic plates. Bulletin de
l’Academie Polonaise des Sciences: Series Science Techniques, 12:29–38, 1964.

S. Syngellakis and E. Elzein. Plate buckling loads by the boundary element method.
International Journal for Numerical Methods in Engineering, 37:1763–1778, 1994.

W. S. Venturini. A study of boundary element method and its application on engineering
problems. PhD thesis, University of São Paulo, São Carlos School of Engineering,
1988. In Portuguese.

J. Wang. The fundamental solutions of orthotropic shallow shells. Acta Mechanica, 94:
113–121, 1992.

J. Wang and K. Schweizerhof. The fundamental solution of moderately thick laminated
anisotropic shallow shells. Int. J. Engng. Sci., 33:995–1004, 1995.

Albuquerque, Éder L., et al. (2022) The Boundary Element Method for Structural Problems pp. 733-808

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 807



J. Wang and K. Schweizerhof. Study on free vibration of moderately thick orthotropic
laminated shallow shells by boundary-domain elements. Applied Mathematical Mod-
elling, 20:579–584, 1996.

J. Wang and K. Schweizerhof. Free vibration of laminated anisotropic shallow shells in-
cluding transverse shear deformation by the boundary-domain element method. Com-
puters and Structures, 62:151–156, 1997.

P. H. Wen, M. H. Aliabadi, and A. Young. Application of dual reciprocity method to
plates and shells. Engn. Anal. with Boundary Elements, 24:583–590, 2000.

B. C. Wu and N. J. Altiero. A new numerical method for the analysis of anisotropic thin
plate bending problems. Computer Meth. in Appl. Mechanics and Engineering, 25:
343–353, 1981.

C. Zhang. Transient elastodynamic antiplane crack analysis of anisotropic solids. Int. J.
of Solids and Structures, 37:6107–6130, 2000.

J. D. Zhang and S. N. Atluri. A boundary/interior element method for quasi-static and
transient response analysis of shallow shells. Computers and Structures, 24:213–223,
1986.

Albuquerque, Éder L., et al. (2022) The Boundary Element Method for Structural Problems pp. 733-808

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 808



 

809 
 

 

Chapter 21 
The Boundary Element Method for 

Damage Modeling 

 
 
 

Chapter details 

Chapter DOI: 
https://doi.org/10.4322/978-65-86503-83-8.c21 
 
Chapter suggested citation / reference style: 

Peixoto, Rodrigo G., Chaves, Alisson P. (2022). “The Boundary Element Method for 
Damage Modeling”. In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and 
Models for the Direct Problem,  Vol. II, UnB, Brasilia, DF, Brazil, pp. 809–880. 
Book series in Discrete Models, Inverse Methods, & Uncertainty Modeling in 
Structural Integrity. 

P.S.: DOI may be included at the end of citation, for completeness. 

 

 

 

 

Book details 

Book: Fundamental Concepts and Models for the Direct Problem 
Edited by: Jorge, Ariosto B., Anflor, Carla T. M., Gomes, Guilherme F., & Carneiro, 
Sergio H. S. 

Volume II of Book Series in: 
Discrete Models, Inverse Methods, & Uncertainty Modeling in Structural Integrity 
Published by: UnB City: Brasilia, DF, Brazil Year: 2022 
DOI: https://doi.org/10.4322/978-65-86503-83-8 

https://doi.org/10.4322/978-65-86503-83-8.c21
https://doi.org/10.4322/978-65-86503-83-8


The Boundary Element Method for Damage
Modeling

Rodrigo G. Peixoto1∗ and Alisson P. Chaves2

1Department of Structural Engineering, Federal University of Minas Gerais, Brazil.
E-mail: rgpeixoto@ufmg.br
2Department of Computation and Civil Construction, Federal Center of Technological
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Abstract

Materials physically non linear behaviour that arises when energy dissipation
mechanisms occur, can be described by elastoplastic or elastic-degrading constitu-
tive models. Such approaches can be summarized in a unified theoretical framework.
The appearance of discontinuities in the strain field during inelastic loading with
softening, and its transition until the emergence of jumps in the displacement fields
can be analyzed with the Continuum Strong Discontinuity Approach (CSDA). These
techniques, associated to the Implicit form of the Boundary Element Method (BEM)
are discussed in this chapter, from the basic formulation concepts, to the numerical
features and algorithms. The efficiency and versatility of the methodology can be
observed through numerical simulation of typical plane state and three-dimensional
analyzes.

Keywords: Boundary Element Method; damage modeling; strong discontinuity approach

1 Introduction

Analyses with the Boundary Element Method (BEM) are general and efficient when it makes
use of algorithms capable to deal with independent constitutive modeling frameworks, which can
be easily modified or expanded to encompass different material representations and particular
behaviours, and also, to be evaluated with appropriated solution strategy.

The first developments of boundary integral equations for the treatment of elastoplastic mate-
rials may be attributed to Swedlow and Cruse [1971], Mendelson [1973] and Riccardella [1973].
Considering the incompressibility of the plastic strain tensor, Mukherjee [1977] verified some er-
rors in the kernels involving inelastic fields for plane strain case and, later, Bui [1978] presented a
corrected way to evaluate derivatives of the singular integrals involving such inelastic fields, intro-
ducing new free terms. Those results were then applied to the BEM by Telles and Brebbia [1979].
They used an explicit formulation, where the increment of the initial fields (plastic strains or its cor-
responding fictitious plastic stresses) explicitly appears in the non linear discretized equations and
the equilibrium is achieved by a recursive procedure. Considering the proportional relationship
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between stresses and elastic strains, Telles and Carrer [1991] proposed an implicit formulation,
where the initial field increments are written in terms of total strains (actually, in the original work
they used the fictitious elastic stresses related to total strains by the linear elastic Hooke’s con-
stitutive tensor), resulting in an accumulated equilibrium matrix equation, which is incrementally
solved.

Some material behaviours, e.g., the quasi-brittle ones, requires the introduction of strain soft-
ening laws for a correct representation. A direct way to do this is to consider a plasticity model
with yield limit degradation, as done by Lin et al. [2002] and Sládek et al. [2003]. The presence of
strain softening results in a loss of objectiveness with respect to mesh refinements, as the solution
tends to an infinitely small localization bandwidth with zero energy dissipation during failure. For
that reason, in both works, a non-local procedure, based on the spatial averaging of the plastic
multiplier, was also introduced. Another non-local plasticity model, based on a re-definition of
the yield surface, including a dependency on the Laplacian of the plastic multiplier, was applied
to the implicit formulation of the BEM by Benallal et al. [2002]. In that work, a complementary
integral representation of the plastic multiplier was discretized and solved together (in a coupled
way) to the incremental implicit equation.

Other constitutive models, such as continuum damage mechanics (CDM) based ones, have
also been used with the BEM. CDM has been established to close the gap between classical con-
tinuum and fracture mechanics. In the BEM context, some works can be cited, such as Rajgelj
et al. [1992], Herding and Kuhn [1996], Garcı́a et al. [1999] and Botta et al. [2005]. Specifically,
in the last work, the damage model presented by Comi and Perego [2001] was employed. As ex-
pected, they also reported mesh dependence when this model is locally applied and an averaging
procedure of some strain invariants was introduced, regularizing the model.

Summarizing a large number of works devoted to damage modeling of material media, Carol
et al. [1994] proposed a theoretical unification of elastic-degrading models based on a single load-
ing function. In that reference, the authors developed a unified framework including a large range
of damage models in analogy to the concepts and notations of classical plasticity. With this for-
malism, the two parameters required by the solution strategy mentioned above can be organized
and numerically implemented in a completely independent way.

In the work of Simo et al. [1993], a new idea was introduced, based on the application of
standard continuum constitutive models to unbounded strain fields, related to discontinuous dis-
placements over a given surface (strong discontinuity surface). This methodology was latter called
as continuum strong discontinuity approach (CSDA). Basically, a set of kinematic equations (in a
regularized formulation) is used to describe displacements and strains at a discontinuity surface.
Thus, applying this regularized kinematic on ordinary continuous constitutive models, the consis-
tent discrete model obtained can relate traction with displacement jumps where the discontinuity
is established.

The use of CSDA in the context of the BEM was firstly proposed in Manzoli and Venturini
[2004] and Manzoli and Venturini [2007], who used the implicit BEM formulation for non linear
analysis, and introduced discontinuity interfaces inside cells that dicretized the whole domain.
This idea was extended in Manzoli et al. [2009] using an isotropic damage model and a tracking
algorithm to generate cells automatically, in the direction of the crack path determined during
the analyses. A further improvement was presented by Peixoto et al. [2017] and Peixoto et al.
[2018], who sophisticated the non linear analysis, involving inelastic dissipation with softening in
continuous media, bifurcation analysis and transition between weak and strong discontinuities.

The material failure process can also be modeled by a geometrical point of view using the
fracture mechanics concepts, in which the singular character of the stress state at a crack tip is
substituted by stress intensity factors, obtained from energetic considerations. This idea was no-
tably well adapted for the BEM, in its dual formulation used by Portela et al. [1992], where distinct
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integral equations are applied in each side of a discontinuous surface.
The Einstein’s index notation is adopted for tensors algebra throughout the chapter. This chap-

ter is divided in eleven sections. In the next section some fundamental equations for physically
linear and non linear solid mechanics are reviewed. In Section 3, the integral equations consid-
ering initial strain fields, appropriate to deal with standard physically non linear problems, are
presented. Following, in Section 4 presents a numerical counterpart of such equations, and a so-
lution strategy with the required rearrangement for the implicit BEM formulation, and the control
methods for non linear analyses. Some numerical examples of continuum non linear analysis of
simple problems are presented in Section 5. Strain localization and material bifurcation analysis
are discussed in Section 6, while in Section 7 the CSDA is presented, including the weak and
strong discontinuity kinematics, the strong discontinuity analysis and variable bandwidth model.
In Section 8 the boundary integral equations are reformulated for the consideration of discontin-
uous surface effects. Numerical features of the BEM formulation, regarding cell with embedded
discontinuity and displacement jump evaluation are described in Section 9. Some the numerical
examples of non linear problems with discontinuities are treated in Section 10, and Section 11
have some final remarks. Additionally, in Appendix A, elastoplastic and isotropic damage models
are presented.

2 Basic Equations for Physically Non Linear Solid Mechanics

2.1 Linear Elasticity

Before presenting the physically non linear constitutive models, in which some energy dissipation
phenomena take place, basic equations associated to conservative (elastic) deformation are firstly
presented. Only small displacements are considered, such that a strain tensor can be defined from
the gradient of the displacement field, configuring which is called as linear elasticity.

2.1.1 Cauchy stress tensor

Figure 1 represents a solid body Ω, delimited by a surface Γ.

(a) (b)

x

x

tb

n

x2

x3

x1 o

*
��

Figure 1: A solid body Ω with boundary Γ – (a) Traction vector, (b) Arbitrary sub-
domain Ω∗

If the body is loaded, at any point of a given internal surface, say S1 or S2 (figure 1-a), a
traction vector, t (units of force per area), can be defined as a function of the the unit normal
vector, n, to the surface at this point. The second order tensor that relate these vectors is called as
Cauchy Stress Tensor, i.e.,

ti = σijnj (1)
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Considering an arbitrary closed sub-domain, Ω∗, inside the body, as illustrated in Figure 1-
b, and calling as b(x) the external forces (per volume unit) that act along the solid domain, the
equilibrium condition can be expressed by∮

Γ∗
tidΓ +

∫
Ω∗
bidΩ =

∮
Γ∗

(σijnj)dΓ +

∫
Ω∗
bidΩ =

∫
Ω∗

(σij,j + bi)dΩ = 0

in which the surface integral was transformed to a volumetric one by applying the Divergence
Theorem. Thus, from the arbitrariness of Ω∗, it is possible to conclude that, for any material point
x, the following equilibrium equation can be written

σij,j + bi = 0 (2)

The Cauchy Stress Tensor is symmetric, i.e., σij = σji, which means that only six components
are sufficient to describe the stress state at a given point. This property can be demonstrated
by taking the angular momentum resultant of an arbitrary sub-domain, Ω∗, as developed below,
making reference again to Figure 1-b.∮

Γ
(x× t)dΓ +

∫
Ω

(x× b)dΩ =

∮
Γ
(εijkxjσklnl)dΓ +

∫
Ω

(εijkxjbk)dΩ = 0

=

∫
Ω

(εijkxjσkl),l dΩ +

∫
Ω

(εijkxjbk)dΩ = 0

=

∫
Ω

(εijk xj,l︸︷︷︸
δjl

σkl)dΩ +

∫
Ω

[
εijkxj (σkl,l + bk)︸ ︷︷ ︸

=0

]
dΩ = 0

=

∫
Ω

(εijkσkj)dΩ = 0 ⇒ εijkσkj = 0 ⇒ σjk = σkj

where δij is the Kronecker delta and εijk is the permutation operator, respectively defined by

δij =

{
0 if i 6= j

1 if i = j
(3)

and

εijk =


0 if there is repetition of, at least, two indexes
−1 if (i, j, k) = (3, 2, 1) or (1, 3, 2) or (2, 1, 3)

+1 if (i, j, k) = (1, 2, 3) or (3, 1, 2) or (2, 3, 1)

(4)

Independently of the stress state in a given point, it is always possible to choose a coordinates
system in which the stress tensor becomes diagonal, i.e., σij = 0 if i 6= j. The directions of
each axis of this system are called as principal directions and the normal stresses, action on per-
pendicular planes to these axis, are called as principal stresses. Evaluating such principal stress
components is a typical eigenvalue problem, since the traction vector parallel a principal direction
can be written as

ti = σijnj = λδijnj ⇒ (σij − λδij)nj = 0

where λ represents a scalar constant. For non-trivial solutions of this last equation,

det(σij − λδij) = 0 ⇒ λ3 − I1λ
2 − I2λ− I3 = 0 (5)

in which Ik are the stress tensor invariants, given by

I1 = σii, I2 =
1

2
(σijσij − I2

1 ), I3 =
1

6
εijkεpqrσipσjqσkr (6)

Equation (5) is the characteristic polynomial and its roots are the principal stress components.
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2.1.2 Linear strain tensor

A displacement field, u(x), in a loaded solid body is represented in Figure 2.

x2

x3

x1

Figure 2: Displacements in a solid body

If the displacement field is such that its first order derivatives are sufficiently small, in order
that the product of partial derivatives of u(x) become negligible, the strain field in the solid body
can be described by linear strains, i.e., by the symmetric part of the displacement gradient tensor:

εij =
1

2
(ui,j + uj,i) (7)

Although the displacements uniquely define the components of the strain tensor, the inverse
problem, i.e., obtaining the displacements from a strain field, is not so straightforward. Since
equation (7) is equivalent to six differential equations, the three components of ui are not uniquely
defined, unless additional conditions are imposed on the deformation components. Such condi-
tions are defined by compatibility equations, which can be generically written in the form:

εij,kl + εkl,ij − εik,jl − εjl,ik = 0 (8)

2.1.3 Hooke’s Law

The strain field caused by a distributed stress state in a solid body depends on the material proper-
ties. In a conservative regime, the relation between strain and stress is known as Hooke’s Law or
linear elastic constitutive equation. Mathematically,

σij = Cijklεkl (9)

where the fourth order tensor Cijkl is the so-called constitutive tensor.
Considering an isotropic and homogeneous material, the expression of the constitutive tensor

is
Cijkl = λ̄δijδkl + µ(δikδjl + δilδjk) (10)

where

µ =
E

2(1 + ν)
, λ̄ =

2µν̄

1− 2ν̄
, ν̄ =

ν (3D or Plane Strain)
ν

1 + ν
(Plane Stress)

(11)

in which E represents the material Young’s modulus and ν is the Poisson ratio.
An inverse of equation (9) can be written as

εij = C−1
ijklσkl (12)
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where

C−1
ijkl =

1

2µ

[
1

2
(δikδjl + δilδjk)− ν̃δijδkl

]
(13)

and

ν̃ =

ν (Plane Strain)
ν

1 + ν
(3D or Plane Stress)

(14)

2.1.4 Navier Equation

Navier Equation represents the equilibrium condition rewritten in terms of the displacement field.
It is obtained from the application of equation (7) into (9), followed by introducing the this result
into equation (2), i.e.,

σij,j + bi =
1

2
Cijkl(uk,lj + ul,kj) + bi = 0

Then, applying equation (10) and considering the definition of the Kronecker delta (equation 3),
the next result is achieved:

1

2

[
λ̄(uk,ki + uk,ki) + µ(ui,jj + uj,ij) + µ(uj,ij + ui,jj)

]
+ bi = 0

Finally, reorganizing,
µui,jj + (λ̄+ µ)uj,ji + bi = 0 (15)

which is the Navier Equation.

2.2 Kelvin Fundamental Solution

Lets consider now an infinite homogeneous and isotropic solid domain, loaded by punctual unit
forces, namely Pi = 1, acting on a given point, ξ, and directed at each cartesian direction, as
illustrated in Figure 3. This problem is called as Kelvin fundamental problem of elasticity.

Figure 3: Infinite solid domain with punctual concentrated unit forces

To give a distributional character to concentrated loads, the Dirac delta function, δ(x0,x),
might be used. Such function presents the following property:∫

Ω
f(x)δ(x0,x)dΩ = f(x0) (16)

Thus, in the case of the Kelvin fundamental problem, the body forces, previously defined, can be
written as

bi(x) = δ(ξ,x)Pi (17)
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Substituting equation (17) into (15), and calling as u∗(x) the displacement field resulting from
the Kelvin fundamental problem, one obtains

µu∗j,kk(x) + (λ̄+ µ)u∗k,kj(x) + δ(ξ,x)Pj = 0 (18)

Among the different existing solution techniques for this problem, probably the most popular is
the Galerkin vector formulation. This vector, Gi, is defined by the next expression:

u∗j = Gj,ii −
(
λ̄+ µ

λ̄+ 2µ

)
Gi,ji (19)

Applying equation (19) to (18),

µGj,iikk −
[
µ

(
λ̄+ µ

λ̄+ 2µ

)
− (λ̄+ µ) + (λ̄+ µ)

(
λ̄+ µ

λ̄+ 2µ

)
︸ ︷︷ ︸

=0

]
Gi,jikk + δ(ξ,x)Pj = 0

Thus,
µGj,iikk + δ(ξ,x)Pj = 0 (20)

Equations (20) can be transformed into a set of typical equations for scalar potential problems,
by defining a vector Fi as the Laplacian of the Galerkin vector, i.e.,

Fj = Gj,ii (21)

Substituting equation (21) into (20) gives

Fj,kk +
1

µ
δ(ξ,x)Pj = 0 (22)

Consider now a sub-domain Ω′, delimited by Γ′, that encloses the source point of load appli-
cation, ξ, whereas ξ /∈ Γ′, as shown in Figure 4.

n

Figure 4: Sub-domain Ω′ enclosing the source point in the Kelvin fundamental prob-
lem

Integrating equation (22) in this sob-domain,∫
Ω′
Fj,kkdΩ = −Pj

µ

∫
Ω′
δ(ξ,x)dΩ = −Pj

µ
⇒

∮
Γ′
Fj,knkdΓ = −Pj

µ
(23)

where equation (16) was applied and the integral at the left-hand side was transformed from Ω′ to
Γ′ using the Divergence Theorem. In equation (23), nk refer to the components of the unit normal
vector on Γ′, pointing outside to Ω′.

Note that equations (18) to (23) are valid for three dimensional and plane state problems,
considering the appropriate definition of λ̄ from equation (11) and that indexes vary only from 1
to 2. For convenience, in the next two subsections, each case is separately treated.
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2.2.1 Three dimensional domains

For three dimensional domains, it is convenient to particularize Ω′ by a sphere centred on the
source point. Thus, defining an spherical coordinate system, {êr, êθ, êφ}, with its origin at ξ, the
gradient of Fi can be written as

Fj,k ≡ Fj,rêr +
1

r
Fj,θêθ +

1

r(sin θ)
Fj,φêφ (24)

Noting that êr ≡ n, in such a way that êθ · n = êφ · n = 0, it is straightforward to conclude that
the last two parcels of equation (24) result in null values when applied to equation (23). Thus,∮

Γ′
Fj,knkdΓ =

∫ 2π

0

∫ π

0
Fj,rr

2(sin θ)dφdθ = −Pj
µ

⇒ Fj,r = − Pj
4πµr2

Integrating this last result,

Fj =
Pj

4πµr
(25)

It should be noted now that the sphere Ω′ has been defined with an arbitrary size. Therefore,
the radius r in the equation (25) can be interpreted as the distance between the source point, ξ, and
any field point, x. Thus, one might write

r ≡ r(ξ,x) (26)

for which the following properties are valid:

ri = xi − ξi (27a)

r = (riri)
1/2 (27b)

r,i≡ r,i
∣∣
x

=
∂r

∂xi
=

∂r

∂rj

∂rj
∂xi

=
rj
r
δij =

ri
r

(27c)

r,ij ≡ r,ij
∣∣
x

=

(
ri
r

)
,j =

ri,j
r
− ri
r2
r,j =

δij
r
− r,i r,j

r
(27d)

Applying now equation (25) to (21),

Gj,ii =
Pj

4πµr
(28)

and considering the radial symmetry of the Kelvin fundamental problem around ξ, i.e., Gi ≡
Gi(r) for the spherical coordinate system, it is possible to write

Gj,ii =

(
∂Gj
∂r

r,i

)
,i = r,ii

∂Gj
∂r

+
∂2Gj
∂r2

(r,i r,i )︸ ︷︷ ︸
=1

= r,ii
∂Gj
∂r

+
∂2Gj
∂r2

(29)

Thus, from equations (27d), (28) and (29), the following set of non-homogeneous second order
ordinary differential equations for the Galerkin vector components are obtained:

∂2Gj
∂r2

+
2

r

∂Gj
∂r

=
Pj

4πµr
(30)

Particular solutions for these equations are

Gj =
Pj

8πµ
r (31)
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Finally, replacing equation (31) into (19) and taking into account the equations (11) and (27d),
a displacement field is obtained, which is the solution of the problem represented by equation (18),
i.e.,

u∗j (ξ,x) =
1

16πµ(1− ν)r
[(3− 4ν)δij + r,i r,j ]Pi (32)

Equation (32) is the Kelvin fundamental solution to three dimensional problems. It should be noted
that this equation gives the displacement component in direction j, at a field point, x, caused by
a concentrated force, given by unit components in each direction (once summation is implicit by
repetition of i index and Pi = 1; i = 1, 2, 3) and applied at the source point, ξ. Taking each
component of Pi separately, we can write:

u∗ij(ξ,x) =
1

16πµ(1− ν)r
[(3− 4ν)δij + r,i r,j ] (33)

Thus, tensor u∗ij(ξ,x) represents the displacement in the direction j, at a field point, x, caused by
a unit concentrated force at a source point, ξ, applied in the direction i.

2.2.2 Plane state problems

A similar idea might be adopted for two dimensional elastic domains, noting that now the indexes
vary between 1 and 2 and that Γ′ is particularized by a circumference centred on ξ. Considering
also a polar system of coordinates with origin at the source point, it is possible to write the gradient
of Fi as

Fj,k ≡ Fj,rêr +
1

r
Fj,θêθ (34)

Thus, applying equation (34) to (23),∮
Γ′
Fj,knkdΓ =

∫ 2π

0
Fj,rrdθ = −Pj

µ
⇒ Fj,r = − Pj

2πµr

which leads to
Fj = − Pj

2πµ
ln(r) (35)

As in the three dimensional case, r ≡ r(ξ,x) is the distance of any field point, x, from ξ, in
order that equations (26) and (27) remain valid for plane problems.

From equations (21) and (35),

Gj,ii = − Pj
2πµ

ln(r) (36)

Considering again the radial symmetry of the fundamental problem, equation (29) is also
valid for two dimensional domains and, together with equations (27d) and (36), the following set
of equations is obtained:

∂2Gj
∂r2

+
1

r

∂Gj
∂r

= − Pj
2πµ

ln(r) (37)

which have as particular solutions,

Gj =
Pj

8πµ
r2 − Pj

8πµ
r2 ln(r) (38)

Applying equation (38) to (19) – note that the first parcel of equation (38) leads to rigid body
motion, i.e., vanishes in this process – and taking into account equations (11) and (27d), the
fundamental displacements can be written as

u∗j (ξ,x) =
−1

8πµ(1− ν̄)
[(3− 4ν̄) ln(r)δij − r,i r,j ]Pi (39)
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Taking again each component separately,

u∗ij(ξ,x) =
−1

8πµ(1− ν̄)
[(3− 4ν̄) ln(r)δij − r,i r,j ] (40)

The same physical interpretation of this second order tensor, given for the three dimensional case,
remains valid here.

2.3 Non Linear Constitutive Modeling

Equations presented in section 2.1 are restricted to conservative behaviour of elastic bodies. If any
energy dissipation mechanism takes place, such relations needs to be reviewed. For example, the
constitutive relation depicted in equation (9) needs to be rewritten by its rate form (since, when
energy is dissipated, stress-strain relation becomes dependent from the load history) and the strain
field is commonly decomposed into two parts, one elastic and other associated to the dissipative
mechanism.

In this section, two classical approaches to represent the physically non linear behaviour of
materials under non conservative loading are described, namely elastoplastic (EP) and elastic-
degrading (ED) constitutive models, are described. Despite its differences, such approaches can
be presented in a unified theoretical framework as shown in Peixoto et al. [2016]. This idea is used
here.

Figure 5 shows the difference between ED and EP constitutive models. In the first case, if the
body is unloaded after some energy dissipation, the stress-strain relation follows a secant trajec-
tory returning to the initial unstrained configuration. Elastoplastic materials, however, presents a
loading-unloading curve which is a straight segment with the same initial elastic slope, keeping
a residual strain even after the total unload. It is clear that both are simplifications of the actual
behaviour observed in experiments as shown in Figure 5-c, where both stiffness degradation and
irreversible plastic strain take place.

Figure 5: Non linear constitutive models: (a) Elastic-degrading material, (b) Elasto-
plastic material, (c) Realistic behaviour

As will be seen in the next sections, the non linear solution algorithm only requires, during
each iteration, the local evaluation of two parameters: the stresses, σij , and the tangential stiff-
ness operator, Ctijkl, relating incremental stresses and strains. How they are obtained is briefly
described next. It is shown that the incremental governing equations have the same form in both
constitutive models classes, regarding as the only difference the meaning of the inelastic strains
and the presence of the secant stiffness tensor, Csijkl, in ED equations, in place of the initial elastic
stiffness tensor, Cijkl, in EP equations.
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2.3.1 Elastoplastic models

As a secant relationship is not defined a priori for EP models (see figure 5-b), a trial-return algo-
rithm is required for numerical evaluation of the stress tensor as described, for example, in Simo
and Hughes [1998].

Assuming a loading function that can be expressed as F (σij ,q), where q is a vector of internal
variables – which can be tensors of different orders – determining the current configuration of the
elastic domain, the following rate equations can be defined:

σ̇ij = Cijkl(ε̇kl − ε̇pkl) (41)

ε̇pkl = λ̇mkl (42)

q̇ = −λ̇h (43)

Ḟ =
∂F

∂σij

∣∣∣∣
q

σ̇ij +
∂F

∂q

∣∣∣∣
σ

: q̇ = 0 (44)

where equation (41) is the rate form of stress-strain relationship for elastoplastic materials, in
which εpkl is the plastic strain tensor, whose rate magnitude is defined by the plastic multiplier, λ̇,
and mkl specifies its rate direction. The symbol (:) in the second term of equation (44) means
tensors contraction and were used in function of the unspecified orders of internal variables in q.

Equation (42) is called as plastic flow rule, while equation (43) is called as hardening-softening
law and represents the evolution of the hardening-softening internal variables. Equation (44) is
the linearised form of the consistency condition, meaning that during plastic loading the current
stress state always remains on the current loading surface, commonly called as yield surface in
elastoplastic theory.

Considering the set of internal variables, q, as functions of the plastic strain, such as q̇ =
(∂q/∂εpkl)ε̇

p
kl, and using equation (42), one can rewrite equation (44) as

nij σ̇ij −Hλ̇ = 0 (45)

where, 
nij =

∂F

∂σij

∣∣∣∣
λ

H = −∂F
∂λ

∣∣∣∣
σ

= −∂F
∂q

∣∣∣∣
σ

:
∂q

∂εpkl
mkl

(46)

The second-order tensor nij , involving derivatives of F for constant plastic strain (λ̇ = ε̇pkl =
0), has the geometrical meaning of the direction normal to the current loading surface, F = 0,
in stress space, while the derivatives for constant stress, give the hardening-softening modulus
H . For positive values of H (hardening), the loading surface expands in the stress space and,
for negative values (softening), the loading surface contracts during plastic loading. If H = 0
(perfect plasticity), the loading surface is static. No kinematic effects, i.e., translation of loading
surface, are considered here. The model is called associative if nij and mij are fully proportional.
Loading/unloading conditions are determined by λ̇ ≥ 0; F ≤ 0; λ̇F = 0 and λ̇Ḟ = 0.

Now, applying equations (41) and (42) to equation (45), the following expression for the
plastic multiplier is obtained:

λ̇ =
nijCijklε̇kl

H + npqCpqrsmrs
(47)
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Finally, the tangential stiffness operator is obtained by introducing equations (47) and (42)
into equation (41), i.e.,

σ̇ij = Ctijklε̇kl, Ctijkl = Cijkl −
CijabmabncdCcdkl
H + npqCpqrsmrs

(48)

Equations (41) to 48 were defined in a stress-based formulation. Alternatively, a strain-based
formulation can be developed beginning with a loading function defined in strain space, such
as F̄ (εij ,α), as detailed in Carol et al. [1994], and where α represents the strain-like internal
variables, thermodynamically conjugated to q. Here, we are only interested in the result for the
tangential stiffness operator, equivalent to equation (48), i.e.,

Ctijkl = Cijkl +
1

H̄
m̄ijn̄kl (49)

where, 

m̄ij = −Cijklmkl

n̄ij = Cijklnkl

H̄ = H + nijCijklmkl

(50)

The equations presented in this subsection are particularized for the elastoplastic von Mises
associative isotropic model in Appendix A.

2.3.2 Elastic-degrading models

In ED models, full unloading always leads to the original unstrained configuration, i.e., zero
stresses with no permanent strains (see figure 5a), in opposition to classical EP models. For that
reason, the next total stress-strain relationship can be formulated for ED models:

σij = Csijklεkl (51)

where Csijkl is the current secant stiffness tensor.
Taking the time derivative of equation (51), an expression for incremental stress can be ob-

tained, i.e.,
σ̇ij = Csijklε̇kl + Ċsijklεkl (52)

Each parcel of equation (52) is represented in the simplified uni-axial diagram of Figure 6,
from which, one can conclude that

Ċsijklεkl = −Csijklε̇dkl (53)

where εdkl is called as degrading strain, representing the inelastic part of total strain. It is important
to note here that degrading strain of an ED model is intrinsically associated with the degradation
of the secant stiffness.

Applying equation (53) to (52), the following result is obtained

σ̇ij = Csijkl(ε̇kl − ε̇dkl) (54)

Now, it is convenient to define a degradation rule for the secant stiffness or, considering the
stress-based formulation, for the secant compliance, i.e.,

Ċs,−1
ijkl = λ̇Mijkl (55)
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Figure 6: Representation of incremental stress and strain for elastic degrading mod-
els

where, in this new context, the multiplier, λ̇, defines the magnitude and Mijkl, the direction, of the
rate of change of the secant compliance tensor.

For the unified framework proposed, it is necessary to write an evolution law for the degrading
strains, in a similar way to the plastic flow rule of equation (42). This can be done by first taking
the time derivative of the inverse of equation (51), substituting the incremental stresses by the right
side of equation (54), to obtain

ε̇dkl = Ċs,−1
klrs σrs (56)

and then introducing equation (55) to result in

ε̇dkl = λ̇mkl, mkl = Mklrsσrs (57)

Concepts of loading function and loading surface can be applied for ED models in a very sim-
ilar manner as EP models, in such a way that the following expression for linearised consistency
condition can be defined:

Ḟ (σij ,q) = nij σ̇ij −Hλ̇ = 0 with nij =
∂F

∂σij

∣∣∣∣
λ

and H = −∂F
∂λ

∣∣∣∣
σ

= −∂F
∂q

∣∣∣∣
σ

:
∂q

∂εdkl
mkl

(58)
where, in the ED context, the internal variables defines the current value of the compliance ten-
sor, i.e., Cs,−1

ijkl ≡ Cs,−1
ijkl (C−1

ijkl,q), and a hardening-softening law, similar to equation (43), is
postulated to describe the evolution of q. Thus,

Ċs,−1
ijkl =

∂Cs,−1
ijkl

∂q
: q̇ = −λ̇

[
∂Cs,−1

ijkl

∂q
: h

]
(59)

Comparing equations (55) and (59), one can conclude that

Mijkl = −
∂Cs,−1

ijkl

∂q
: h (60)

Now, noting the similarities between equations (41) to (46) and equations (54), (57) and (58),
the same algebraic manipulations described in the last subsection can be repeated here, generating
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expressions for the degrading multiplier and tangent stiffness, analogous to equations (47) and
(48), i.e.,

λ̇ =
nijC

s
ijklε̇kl

H + npqCspqrsmrs
(61)

σ̇ij = Ctijklε̇kl, Ctijkl = Csijkl −
CsijabmabncdC

s
cdkl

H + npqCspqrsmrs
(62)

In the same way as mentioned for EP models, equations (51) to (62) were developed in a
stress-based formulation. If this procedure is repeated beginning with a loading function defined
in the strain space, F̄ (εij ,α), the tangential stiffness operator takes the form:

Ctijkl = Csijkl +
1

H̄
m̄ijn̄kl (63)

where, 

m̄ij = M̄ijklεkl = −Csijklmkl

M̄ijkl =
∂Csijkl
∂α

:
∂α

∂λ
= −

∂Csijkl
∂α

: h̄

n̄ij =
∂F̄

∂εij

∣∣∣∣
λ

= Csijklnkl

H̄ = −∂F̄
∂λ

∣∣∣∣
ε

= H + nijC
s
ijklmkl

(64)

The equations presented in this subsection are particularized for isotropic damage constitutive
models in Appendix A.

Comparing equations (41), (48), (49) and (50) with equations (54), (62), (63) and (64), it is
clear that the only differences are related to the definition of the inelastic part of total strains, εpij
to EP models and εdij to ED models, and the presence of the secant stiffness tensor, Csijkl, in ED
equations, in place of the initial linear elastic constitutive tensor, Cijkl, present in EP equations.
For that reason, in a computational point of view, a large range of different constitutive models can
be implemented in a completely independent way from the solution strategy described next. It is
only necessary to appropriate define expressions for n̄ij , m̄ij and H̄ , beyond a correct evaluation
of stresses from a known strain state.

3 Boundary Integral Equations with Initial Fields

To develop the integral equations which constitute the basis of the BEM for inelastic solid me-
chanics, it is important to note that any point in a non linear equilibrium path can be defined,
independently of the constitutive model, as a combination of two linear parts.

Consider, for example, the uni-axial equilibrium paths presented in Figure 7. In both cases, for
an arbitrary strain state ε, the actual stress state which is given by a non linear constitutive model is
represented by σ(ε). Additionally, a stress state evaluated using a purely linear elastic relationship
for the same arbitrary strain state is given by Eoε, where Eo represents the initial elasticity mod-
ulus. Also, in both cases, the residual quantities εo and σo are defined as the difference between
the actual and the purely elastic states. As is possible to note in Figure 7, and generalizing to a
multi-axial solid domain, the total strain εij and the actual stress σij(εij) can be given by

εij = εeij + εoij (65)

Peixoto, Rodrigo G., Chaves, Alisson P. (2022)                                          The Boundary Element Method for Damage Modeling pp. 809-880

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 823



Figure 7: Relations between stress and strain for two distinct equilibrium paths

σij(εij) = Cijkl(εkl − εokl) = Cijklεkl − σoij (66)

Thus, the non linear integral equations in the BEM context are deduced considering the exis-
tence of an initial strain field εoij , or a corresponding initial stress field σoij = Cijklε

o
kl. For con-

stitutive models based on plasticity theory, the initial strain hold the same value as the irreversible
plastic strain εpij (see equation 41). However, these terms should not be the same when aiming for
a more comprehensive non linear application of the method. For example, in the class of isotropic
damage models described in Appendix A, where the secant tensor is given byCsijkl = (1−D)Cijkl
(see equation 244), the correspondence εoij = Dεij can be verified from equation (51).

Such mentioned integral equations, that are relevant for physically non linear formulations of
the BEM, can be obtained from a physical approach based on the Betti’s Reciprocity Theorem or
by an entirely numerical approach based on a generalization of the Method of Weighted Residuals.
In the first case, the Kelvin’s fundamental problem, described in Section 2.2, is used as auxiliary
field, while in the second case, its solution is adopted as weighting function. A detailed derivation
of these equations are easily found in many BEM textbooks, among which can be cited Telles
[1983], Brebbia et al. [1984], Aliabadi [2002], Gao and Davies [2002]. Thus, such derivations
are omitted here and only the final results (completely enough to implementation purposes) are
presented.

Consider a solid domain Ω, delimited by boundary Γ, as previously illustrated in Figure 1,
with an initial strain field distribution, εoij . The first relevant integral equation is the Somigliana’s
Identity, which gives the displacement vector at an internal point, ξ (ξ ∈ Ω but ξ /∈ Γ), i.e.,

ui(ξ) =

∫
Γ
u∗ij(ξ,x)tj(x) dΓ−

∫
Γ
t∗ij(ξ,x)uj(x) dΓ+

∫
Ω
u∗ij(ξ,x)bj(x) dΩ+

∫
Ω
σ∗ijk(ξ,x)εojk(x) dΩ

(67)
where u∗ij(ξ,x) refer to Kelvin’s fundamental displacements, given in equations (33) and (40),
respectively for three and two dimensional cases. In the same way, t∗ij(ξ,x) represents the traction
field on Γ and σ∗ijk(ξ,x) is the Cauchy stress at any point of Ω, both associated to the Kelvin’s
fundamental solution. Remember that the first index of these tensors (i) refer to the direction of
the concentrated force that act on the source point ξ, while the other indexes (j or jk) designate
the field components (displacement, traction or stress) that emerge at a field point x. Expressions
for t∗ij and σ∗ijk are presented further in section 3.1.

If the collocation point is taken as a boundary point, i.e., ξ ∈ Γ, the fundamental solution
second-order tensors introduce a weakly and a strongly singular character, respectively for the
first and second integrals in equation (67). Similarly, the kernel of the domain integral involving
the initial strain field becomes weakly singular. Thus, a correct deduction of the boundary dis-
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placement integral equation requires, in this case, a limit process considering a radius of exclusion
around the singular point, leading to the following expression:

cij(ξ)uj(ξ) =

∫
Γ
u∗ij(ξ,x)tj(x) dΓ−

∫
Γ
− t∗ij(ξ,x)uj(x) dΓ+

∫
Ω
u∗ij(ξ,x)bj(x) dΩ+

∫
Ω
σ∗ijk(ξ,x)εojk(x) dΩ

(68)
where cij(ξ) is a function of the boundary’s geometry around the collocation point and the elastic
properties of the material. Explicit forms for this free term is also presented further in this section.

The weakly singular integrals can be evaluated as improper integrals, since they are conver-
gent in the conventional Riemann interpretation. Numerical solutions of these integrals, however,
require special methods (other than standard Gauss-Legedre quadrature) to guarantee its accuracy.
On the other hand, strongly singular integrals are bounded only in Cauchy Principal Value sense,
as indicated by the crossed integral symbol, requiring more rigorous numerical methods in its
evaluation. Such methods are always based in some kind of singularity elimination strategy.

Furthermore, internal strains can be obtained by taking the symmetric part of the gradient of
equation (67), related to the source point (see equation 7, which is also valid for the total strain
from equation 65), resulting in

εij(ξ) =

∫
Γ
u∗ijk(ξ,x)tk(x) dΓ−

∫
Γ
t∗ijk(ξ,x)uk(x) dΓ +

∫
Ω
u∗ijk(ξ,x)bk(x) dΓ

+

∫
Ω
− σ∗ijkl(ξ,x)εokl(x) dΩ + F εεijklε

o
kl(ξ)

(69)

where the last domain integral have a strongly singular kernel when the collocation and field points
coincide and, again, its evaluation exists only in the CPV sense. Tensors u∗ijk, t∗ijk and σ∗ijkl are
respectively obtained by taking the gradients of fundamental solutions u∗ij , t

∗
ij and σ∗ijk, while

F εεijkl is a free term, which existence was firstly verified by Bui [1978]. Explicit expressions for
these parameters are also shown next.

3.1 Fields derived from Kelvin Fundamental Solution

From equations (33) and (40) – the Kelvin fundamental displacements, respectively, for three-
dimensional and plane cases –, it is possible to obtain the associated strain and stress fields, at a
given point x, using equations (7) and (9). Moreover, the traction field on a surface oriented by
a normal vector n at x can be obtained from equation (1). Explicitly, the following results are
achieved.

Three-dimensional problems:

ε∗ijk(ξ,x) ≡ 1

2

[
u∗ij,k

∣∣
x
+u∗ik,j

∣∣
x

]
=

−1

16πµ(1− ν)r2
[(1−2ν)(δikr,j +δijr,k )−δjkr,i +3r,i r,j r,k ]

(70)

σ∗ijk(ξ,x) ≡ Cjklmε∗ilm(ξ,x) =
−1

8π(1− ν)r2
[(1− 2ν)(−δjkr,i +δikr,j +δijr,k ) + 3r,i r,j r,k ]

(71)

t∗ij(ξ,x) ≡ σ∗ijk(ξ,x)nk(x) =
−1

8π(1− ν)r2

{
∂r

∂n
[(1−2ν)δij+3r,i r,j ]−(1−2ν)(njr,i−nir,j )

}
(72)

Plane state problems:

ε∗ijk(ξ,x) ≡ 1

2

[
u∗ij,k

∣∣
x

+u∗ik,j
∣∣
x

]
=

−1

8πµ(1− ν̄)r
[(1−2ν̄)(δikr,j +δijr,k )−δjkr,i +2r,i r,j r,k ]

(73)
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σ∗ijk(ξ,x) ≡ Cjklmε∗ilm(ξ,x) =
−1

4π(1− ν̄)r
[(1− 2ν̄)(−δjkr,i +δikr,j +δijr,k ) + 2r,i r,j r,k ]

(74)

t∗ij(ξ,x) ≡ σ∗ijk(ξ,x)nk(x) =
−1

4π(1− ν̄)r

{
∂r

∂n
[(1−2ν̄)δij+2r,i r,j ]−(1−2ν̄)(njr,i−nir,j )

}
(75)

In equations (72) and (75), the following result is valid:

∂r

∂n
=
ri
r
ni = r,i ni (76)

Note that results from equations (71) and (72) – or (74) and (75) – must be used in integral
equations (67) and (68). Particularly for this second equation, the free term, cij(ξ), still needs
to be presented. Its deduction is intrinsically associated to the mentioned process of taking an
augmented region around the source point (which is located at boundary Γ in this case), in order
that only the final results are presented here, using Figure 8.

��

��

�
�

��

��

��
�

�

Figure 8: Expression for cij(ξ) and the augmented region

Equation (69), on the other hand, is obtained by taking derivatives of equation (67), associated
to the source point, ξ. Thus, the parameters that appear in its integrals kernels are given by the
next expressions.

Three-dimensional problems:

u∗ijk(ξ,x) ≡ 1

2

[
u∗ik,j

∣∣
ξ
+u∗jk,i

∣∣
ξ

]
=

1

16πµ(1− ν)r2
[(1−2ν)(δikr,j +δjkr,i )−δijr,k +3r,i r,j r,k ]

(77)

t∗ijk(ξ,x) ≡ 1

2

[
t∗ik,j

∣∣
ξ

+ t∗jk,i
∣∣
ξ

]
=

1

8π(1− ν)r3

{
(1− 2ν)[niδjk + njδik − nkδij + 3r,i r,j nk]

+ 3
∂r

∂n
[ν(r,j δik + r,i δjk) + r,k δij − 5r,i r,j r,k ]

+ 3ν(njr,i r,k +nir,j r,k )

}
(78)

σ∗ijkl(ξ,x) ≡ 1

2

[
σ∗ikl,j

∣∣
ξ

+ σ∗jkl,i
∣∣
ξ

]
=

1

8π(1− ν)r3

{
(1− 2ν)(δikδjl + δjkδil − δijδkl)

+ 3ν(δilr,j r,k +δikr,j r,l +δjkr,i r,l +δjlr,i r,k )

+ 3[(1− 2ν)δklr,i r,j +δijr,k r,l ]− 15r,i r,j r,k r,l

}
(79)
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Plane state problems:

u∗ijk(ξ,x) ≡ 1

2

[
u∗ik,j

∣∣
ξ
+u∗jk,i

∣∣
ξ

]
=

1

8πµ(1− ν̄)r
[(1−2ν̄)(δikr,j +δjkr,i )−δijr,k +2r,i r,j r,k ]

(80)

t∗ijk(ξ,x) ≡ 1

2

[
t∗ik,j

∣∣
ξ

+ t∗jk,i
∣∣
ξ

]
=

1

4π(1− ν̄)r2

{
(1− 2ν̄)[niδjk + njδik − nkδij

+ 2r,i r,j nk] + 2
∂r

∂n
[ν̄(r,j δik + r,i δjk) + r,k δij

− 4r,i r,j r,k ] + 2ν̄(njr,i r,k +nir,j r,k )

} (81)

σ∗ijkl(ξ,x) ≡ 1

2

[
σ∗ikl,j

∣∣
ξ

+ σ∗jkl,i
∣∣
ξ

]
=

1

4π(1− ν̄)r2

{
(1− 2ν̄)(δikδjl + δjkδil − δijδkl)

+ 2ν̄(δilr,j r,k +δikr,j r,l +δjkr,i r,l +δjlr,i r,k )

+ 2[(1− 2ν̄)δklr,i r,j +δijr,k r,l ]− 8r,i r,j r,k r,l

} (82)

In equations (77) to (82), the following results were considered:

r,i
∣∣
ξ

=
∂r

∂ξi
=

∂r

∂rj

∂rj
∂ξi

=
rj
r

(−δij) = −ri
r

= −r,i (83a)

(
r,i
∣∣
x

)
,j
∣∣
ξ
≡ (r,i ),j

∣∣
ξ

=

(
ri
r

)
,j

∣∣∣∣
ξ

= −δij
r

+
r,i r,j
r

= −r,ij (83b)

Finally, the free terms F εεijkl are given by

F εεijkl =


1

15(1− ν)
[(4− 5ν)(δikδjl + δilδjk)− (1− 5ν)δijδkl] (for 3D problems)

1

8(1− ν̄)
[(3− 4ν̄)(δikδjl + δilδjk)− (1− 4ν̄)δijδkl] (for plane state problems)

(84)

4 The Implicit BEM Formulation for Physically Non Linear Problems

Discrete versions of equations (67), (68) and (69), that are related to the BEM are presented in this
section, followed by a re-organization of the matrices, according to the implicit formulation of the
method. Moreover, the non linear solution strategy is described in detail.

The body forces, bi(x), are disregarded here, since it is negligible, when compared to boundary
loads, or even, can be substituted by boundary tractions, for many types of problems.

4.1 Discrete equations

Obtaining the typical matrix equations of the BEM starts with the definition of a discrete set of
source points (or collocation points), with a total of N points located on the boundary and M
points internal to the domain, Ω. Next, the boundary, Γ, is divided into Ne boundary elements,
while the region of the domain where inelastic dissipative effects occur is divided into Nc cells, as
illustrated in Figure 9.

Peixoto, Rodrigo G., Chaves, Alisson P. (2022)                                          The Boundary Element Method for Damage Modeling pp. 809-880

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 827



1 2 3
4

5

6

7

8

9
10

11

N

N-1

3
1

2

4
5

M

1 2
3

4

5

6

7

8

910

Ne -1
Ne

1 2

3

4

5

Nc

boundary point internal point boundary element Cellregion where dissipative effects occurs

�

�

Figure 9: Plane solid with discrete division: points, elements and cells

In this way, equations (67), (68) and (69) can be rewritten in the following forms:

u̇i(ξ
J) =

Ne∑
e=1

∫
Γe

u∗ij(ξ
J ,x)ṫj(x)dΓ−

Ne∑
e=1

∫
Γe

t∗ij(ξ
J ,x)u̇j(x)dΓ+

Nc∑
c=1

∫
Ωc

σ∗ijk(ξ
J ,x)ε̇ojk(x)dΩ

(85)

cij(ξ
I)u̇j(ξ

I) =

Ne∑
e=1

∫
Γe

u∗ij(ξ
I ,x)ṫj(x)dΓ−

Ne∑
e=1

∫
Γe

t∗ij(ξ
I ,x)u̇j(x)dΓ+

Nc∑
c=1

∫
Ωc

σ∗ijk(ξ
I ,x)ε̇ojk(x)dΩ

(86)

ε̇ij(ξ
J) =

Ne∑
e=1

∫
Γe

u∗ijk(ξ
J ,x)ṫk(x)dΓ−

Ne∑
e=1

∫
Γe

t∗ijk(ξ
J ,x)u̇k(x)dΓ

+

Nc∑
c=1

∫
Ωc

σ∗ijkl(ξ
J ,x)ε̇okl(x)dΩ + F εεijklε̇

o
kl(ξ

J)

(87)

where I = 1, . . . , N e J = 1, . . . ,M . The domains of each boundary element and each cell are
referenced, respectively, by Γe and Ωc.

For the boundary elements, subparametric or isoparametric formulations are commonly used.
Here, only the case of isoparametric elements is considered. In this kind of boundary elements,
displacements, tractions and the geometry are approximated by the same interpolation functions
over the collocation points. Thus, inside an element, it is possible to write:

xj(ηk) ≈
ne∑
γ=1

Nγ(ηk)x
γ
j (88a)

u̇j(x(ηk)) ≈
ne∑
γ=1

Nγ(ηk)u̇
γ
j (88b)

ṫj(x(ηk)) ≈
ne∑
γ=1

Nγ(ηk)ṫ
γ
j (88c)

where ηk (∈ [−1,+1]) are parametric coordinates (k varies from 1 to 2 for 3D problems, while a
single coordinate is necessary for boundary elements in plane problems – see Figure 10). Index
γ is associated to the collocation points inside the element, Nγ(η) are the interpolation functions
and ne represents the total number of collocation points in the element. In this way, xγj , u̇γj and
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ṫγj represent, respectively, the xj coordinate, the uj displacement component and the tj traction
component at the collocation point referenced by γ.
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Figure 10: Linear and quadrilateral boundary elements, parametric coordinates,
and quadratic interpolation functions

Equations (88b) and (88c) can be conveniently rewritten in the following matrix forms:

{u̇} = [N(ηk)]{u̇e} and {ṫ} = [N(ηk)]{ṫe} (89)

where, for three-dimensional problems,

{u̇} =


u̇1(x(η1, η2))
u̇2(x(η1, η2))
u̇3(x(η1, η2))

 , {ṫ} =


ṫ1(x(η1, η2))
ṫ2(x(η1, η2))
ṫ3(x(η1, η2))


{u̇e} =

{
u̇1

1 u̇1
2 u̇1

3 · · · u̇ne1 u̇ne2 u̇ne3

}T
, {ṫe} =

{
ṫ11 ṫ12 ṫ13 · · · ṫne1 ṫne2 ṫne3

}T
[N(ηk)] =

N1(η1, η2) 0 0 · · · Nne(η1, η2) 0 0
0 N1(η1, η2) 0 · · · 0 Nne(η1, η2) 0
0 0 N1(η1, η2) · · · 0 0 Nne(η1, η2)


and, for plane problems,

{u̇} =

{
u̇1(x(η))
u̇2(x(η))

}
, {ṫ} =

{
ṫ1(x(η))
ṫ2(x(η))

}
{u̇e} =

{
u̇1

1 u̇1
2 · · · u̇ne1 u̇ne2

}T
, {ṫe} =

{
ṫ11 ṫ12 · · · ṫne1 ṫne2

}T
[N(ηk)] =

[
N1(η) 0 · · · Nne(η) 0

0 N1(η) · · · 0 Nne(η)

]
Moreover, a boundary infinitesimal surface, dΓ, relates itself with the parametric coordinates

by the next expression:
dΓ(x(ηk)) = J (ηk) dηk (90)

where, for three-dimensional problems, dηk ≡ dη1 dη2 and

J (ηk) ≡ J (η1, η2) =
√
J2

1 + J2
2 + J2

3
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with

J1 =
∂x2

∂η1

∂x3

∂η2
− ∂x2

∂η2

∂x3

∂η1
, J2 =

∂x3

∂η1

∂x1

∂η2
− ∂x3

∂η2

∂x1

∂η1
, J3 =

∂x1

∂η1

∂x2

∂η2
− ∂x2

∂η2

∂x1

∂η1
,

while, for plane state problems,

J (ηk) ≡ J (η) =
√
J2

1 + J2
2

with
J1 =

dx1

dη
, J1 =

dx2

dη
.

In an analogous way, the initial strain field is interpolated inside each cell, i.e.,

ε̇oij(x(ηk)) ≈
nc∑
γ=1

Mγ(ηk)ε̇
o,γ
ij (91)

where, again, ηk (∈ [−1,+1]), but now k varies between 1 and 3 for 3D problems and between 1
and 2 for 2D problems, as depicted in Figure 11. The interpolation functions, Mγ(η), follow the
same idea from the boundary elements, regarding the appropriate dimensions for each case. For
example, considering also isoparametric cells, Mγ(η) for a two-dimensional problem are exactly
the same asNγ(η) for a three-dimensional one. Index nc is associated to the number of collocation
points in the cell.
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Figure 11: Quadrilateral and hexahedral cells, and parametric coordinates

In a matrix form, equation (91) is written as

{ε̇o} = [M(ηk)]{ε̇o,c} (92)

where,

{ε̇o} =



ε̇o11(x(η1, η2, η3))
ε̇o22(x(η1, η2, η3))
ε̇o33(x(η1, η2, η3))
ε̇o12(x(η1, η2, η3))
ε̇o13(x(η1, η2, η3))
ε̇o23(x(η1, η2, η3))


(for 3D), {ε̇o} =


ε̇o11(x(η1, η2))
ε̇o22(x(η1, η2))
ε̇o12(x(η1, η2))

 (for 2D)

{ε̇o,c} =


{ε̇o,1}

...
{ε̇o,nc}

 , with {ε̇o,k} =



ε̇o,k11

ε̇o,k22

ε̇o,k33

ε̇o,k12

ε̇o,k13

ε̇o,k23


(for 3D),


ε̇o,k11

ε̇o,k22

ε̇o,k12

 (for 2D)
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[M(ηk)] =
[
M1(η1, η2, η3)[I] · · · Mnc(η1, η2, η3)[I]

]
, [I]→

{
6x6 indentity matrix (for 3D)
3x3 indentity matrix (for 2D)

As a matter of completeness, the geometry of a cell can be parametrized as

xj(x(ηk)) ≈
nc∑
γ=1

Mγ(ηk)x
γ
j (93)

from which is possible to obtain

dΩ(x(ηk)) = J̄ (ηk) dηk (94)

4.1.1 Discrete form of Somigliana Identity

Considering an internal source point, integrals in equation (85) assume the following forms, after
using equations (89), (90), (92) and (94):∫

Γe

u∗ij(ξ
J ,x)ṫj(x)dΓ ≈

(∫ +1

−1
[u∗(ξJ , ηk)][N(ηk)]J (ηk) dηk

)
{ṫe} = [GJe ]{ṫe} (95)

∫
Γe

t∗ij(ξ
J ,x)u̇j(x)dΓ ≈

(∫ +1

−1
[t∗(ξJ , ηk)][N(ηk)]J (ηk) dηk

)
{u̇e} = [HJ

e ]{u̇e} (96)∫
Ωc

σ∗ijk(ξ
J ,x)ε̇ojk(x)dΩ ≈

(∫ +1

−1
[σ∗(ξJ , ηk)][M(ηk)]J̄ (ηk) dηk

)
{ε̇o,c} = [QJc ]{ε̇o,c} (97)

where, for three-dimensional problems,

[u∗(ξ,x)] =

u∗11(ξ,x) u∗12(ξ,x) u∗13(ξ,x)
u∗21(ξ,x) u∗22(ξ,x) u∗23(ξ,x)
u∗31(ξ,x) u∗32(ξ,x) u∗33(ξ,x)

 , [t∗(ξ,x)] =

t∗11(ξ,x) t∗12(ξ,x) t∗13(ξ,x)
t∗21(ξ,x) t∗22(ξ,x) t∗23(ξ,x)
t∗31(ξ,x) t∗32(ξ,x) t∗33(ξ,x)


(98)

[σ∗(ξ,x)] =

σ∗111(ξ,x) σ∗122(ξ,x) σ∗133(ξ,x) 2σ∗112(ξ,x) 2σ∗113(ξ,x) 2σ∗123(ξ,x)
σ∗211(ξ,x) σ∗222(ξ,x) σ∗233(ξ,x) 2σ∗212(ξ,x) 2σ∗213(ξ,x) 2σ∗223(ξ,x)
σ∗311(ξ,x) σ∗322(ξ,x) σ∗333(ξ,x) 2σ∗312(ξ,x) 2σ∗313(ξ,x) 2σ∗323(ξ,x)


(99)

and, for two-dimensional problems,

[u∗(ξ,x)] =

[
u∗11(ξ,x) u∗12(ξ,x)
u∗21(ξ,x) u∗22(ξ,x)

]
, [t∗(ξ,x)] =

[
t∗11(ξ,x) t∗12(ξ,x)
t∗21(ξ,x) t∗22(ξ,x)

]
(100)

[σ∗(ξ,x)] =

[
σ∗111(ξ,x) σ∗122(ξ,x) 2σ∗112(ξ,x)
σ∗211(ξ,x) σ∗222(ξ,x) 2σ∗212(ξ,x)

]
(101)

In equations (99) and (101), the symmetry σ∗ijk = σ∗ikj was used. Moreover, in equation (101),
for the plane strain case, a fourth column might be added to contemplate terms σ∗i33.

Also, note that, despite of the single integration symbol, integrals in equations (95) and (96)
are in fact double integrals over the element domain, (η1, η2) → [−1,+1] × [−1,+1], while
integrals in equation (97) are triple integrals over the cell domain, for three-dimensional problems.
On the other hand, for two-dimensional case, equations (95) and (96) refer to single integrals,
while in equation (97) we have double integrals.
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The left-hand-side term in equation (85), in turn, can be written as

u̇i(ξ
J)→ {u̇J}, where {u̇J} =


u̇1(ξJ)

u̇2(ξJ)

u̇3(ξJ)

 (for 3D),
{
u̇1(ξJ)

u̇2(ξJ)

}
(for 2D) (102)

Thus, applying equation (85) to the complete set of internal points results in the following
matrix expression, after introducing equations (95), (96), (97) and (102),
M⋃
J=1

(
{u̇J}

)
=

M⋃
J=1

Ne⊎
e=1

(
[GJe ]

) Ne⊎
e=1

(
{ṫe}

)
−

M⋃
J=1

Ne⋃
e=1

(
[HJ

e ]
) Ne⋃
e=1

(
{u̇e}

)
+

M⋃
J=1

Nc⋃
c=1

(
[QJc ]

) Nc⋃
c=1

(
{ε̇o,c}

)
,

i.e.,
{u̇Ω} = [Gu]{ṫ} − [Hu]{u̇}+ [Qu]{ε̇o} (103)

where the superscript Ω in {u̇Ω} was adopted to indicate that the vector in question is formed
by components referring to internal points. Symbols

⋃
and

⊎
are associated with the arrays’

assembly forms. The first of them indicates that coefficients relative to the same geometric point
are allocated in the same row or column of the matrix. The second indicates that coefficients
referring to the interpolation points of two distinct elements, even if such points are geometrically
coincident, are allocated in different lines or columns. The presence of only one symbol indicates
the assembly of the lines of a vector. If two symbols are used, the first (or left) refers to the
assembly of the rows and the second to the columns.

4.1.2 Discrete form of displacement boundary equation

Integrals in equation (86) differ from those of the equation (85) only by the location of the source
point: in the former it is on the boundary, Γ. Therefore, equations (95) to (101) remain valid here,
as long as the index J is replaced by I (questions concerning the degrees of singularity of the
integral kernels are addressed further in this text). In this way, you can write, for a fixed source
point on the boundary:∫

Γe

u∗ij(ξ
I ,x)ṫj(x)dΓ ≈

(∫ +1

−1
[u∗(ξI , ηk)][N(ηk)]J (ηk) dηk

)
{ṫe} = [GIe]{ṫe} (104)∫

Γe

t∗ij(ξ
I ,x)u̇j(x)dΓ ≈

(∫ +1

−1
[t∗(ξI , ηk)][N(ηk)]J (ηk) dηk

)
{u̇e} = [HI

e ]{u̇e} (105)∫
Ωc

σ∗ijk(ξ
I ,x)ε̇ojk(x)dΩ ≈

(∫ +1

−1
[σ∗(ξI , ηk)][M(ηk)]J̄ (ηk) dηk

)
{ε̇o,c} = [QIc ]{ε̇o,c} (106)

The free term at the left-hand-side in equation (86), on the other hand, assumes the following
forms:

cij(ξ
I)→ [CI ], where

[CI ] =

c11(ξI) c12(ξI) c13(ξI)

c21(ξI) c22(ξI) c23(ξI)

c31(ξI) c32(ξI) c33(ξI)

 (3D), [CI ] =

[
c11(ξI) c12(ξI)

c21(ξI) c22(ξI)

]
(2D)

(107)

Taking into account equations (104) to (107), the application of equation (86) to the set of
collocation points localized on the boundary, ξI , leads to

N⋃
I=1

Ne⋃
e=1

(
[CI ] + [HI

e ]
) Ne⋃
e=1

(
{u̇e}

)
=

N⋃
I=1

Ne⊎
e=1

(
[GIe]

) Ne⊎
e=1

(
{ṫe}

)
+

N⋃
I=1

Nc⋃
c=1

(
[QIc ]

) Nc⋃
c=1

(
{ε̇o,c}

)
,

i.e.,
[H]{u̇} = [G]{ṫ}+ [Q]{ε̇o} (108)

Peixoto, Rodrigo G., Chaves, Alisson P. (2022)                                          The Boundary Element Method for Damage Modeling pp. 809-880

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 832



4.1.3 Discrete form of internal strain boundary equation

Considering again a fixed internal collocation point, integrals in equation (87) take the following
forms, after introduction of equations (89), (90), (92) and (94):∫

Γe

u∗ijk(ξ
J ,x)ṫk(x)dΓ ≈

(∫ 1

−1
[∇ξu

∗(ξJ , ηk)][N(ηk)]J (ηk)dηk

)
{ṫe} = [ḠJe ]{ṫe} (109)

∫
Γe

t∗ijk(ξ
J ,x)u̇k(x)dΓ ≈

(∫ 1

−1
[∇ξt

∗(ξJ , ηk)][N(ηk)]J (ηk)dηk

)
{ ˙̂ue} = [H̄J

e ]{u̇e} (110)∫
Ωc

σ∗ijkl(ξ
J ,x)ε̇okl(x)dΩ ≈

(∫ 1

−1

∫ 1

−1
[∇ξσ

∗(ξJ , ηk)][M(ηk)]J̄ (ηk)dηk

)
{ε̇o,c} = [Q̄Jc ]{ε̇o,c}

(111)
where, for plane problems,

[∇ξu
∗(ξ,x)] =

u∗111(ξ,x) u∗112(ξ,x)
u∗221(ξ,x) u∗222(ξ,x)
u∗121(ξ,x) u∗122(ξ,x)

 , [∇ξt
∗(ξ,x)] =

t∗111(ξ,x) t∗112(ξ,x)
t∗221(ξ,x) t∗222(ξ,x)
t∗121(ξ,x) t∗122(ξ,x)

 (112)

[∇ξσ
∗(ξ,x)] =

σ∗1111(ξ,x) σ∗1122(ξ,x) 2σ∗1112(ξ,x)
σ∗2211(ξ,x) σ∗2222(ξ,x) 2σ∗2212(ξ,x)
σ∗1211(ξ,x) σ∗1222(ξ,x) 2σ∗1212(ξ,x)

 (113)

Such matrices can be easily extended to three-dimensional problems.
In equation (113), the symmetry σ∗ij12 = σ∗ij21 was considered and, again, a fourth column

needs to be added for plane strain problems, to take into account terms σ∗ij33.
Matrix forms for the left-hand side vector and for the last term in equation (87) are given,

respectively, by

ε̇ij(ξ
J)→ {ε̇J} where {ε̇J} =



ε̇11(ξJ)

ε̇22(ξJ)

ε̇33(ξJ)

ε̇12(ξJ)

ε̇13(ξJ)

ε̇23(ξJ)


(for 3D), {ε̇J} =


ε̇11(ξJ)

ε̇22(ξJ)

ε̇12(ξJ)

 (for 2D)

(114)
and

F εεijklε̇
o
kl(ξ

J) =

F εε1111 F εε1122 2F εε1112

F εε2211 F εε2222 2F εε2212

F εε1211 F εε1222 2F εε1212


ε̇o11(ξJ)

ε̇o22(ξJ)

ε̇o12(ξJ)

 = [F εε,J ]{ε̇o,J} (for 2D) (115)

where this last relation also can be easily extended to the 3D case.
Finally, considering the above equations and applying equation (87) to all internal collocation

points, we obtain:

M⋃
J=1

(
{ε̇J}

)
=

M⋃
J=1

Ne⊎
e=1

(
[ḠJe ]

) Ne⊎
e=1

(
{ṫe}

)
−

M⋃
J=1

Ne⋃
e=1

(
[H̄J

e ]
) Ne⋃
e=1

(
{u̇e}

)
+

M⋃
J=1

Nc⋃
c=1

(
[Q̄Jc ] + [F εε,J ]

) Nc⋃
c=1

(
{ε̇o,c}

)
,

i.e.,
{ε̇} = [Gε]{ṫ} − [Hε]{u̇}+ [Qε]{ε̇o} (116)
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4.1.4 Integrals numerical treatment

The integrals of the discrete equations (85), (86) and (87) are usually performed numerically,
through the boundary elements and cells. For plane problems the integrals are line integrals on the
boundary and area integrals at the domain, while for three-dimensional problems the integrals are
area integrals on the boundary and volume integrals at the domain. The nature of the kernel, and
the relative position of the collocation point with respect to the element on which the integration
is being performed, defines if the type of the integral, that can be classified as regular or singular.
The technique to solve those integrals are chosen accordingly.

Regular Integrals and Nearly Singular Integrals

Integrals are considered regular when the collocation point do not coincides with an element point.
The regular integrals are performed through standard Gauss quadrature. For computational effi-
ciency it is possible to choose the number of integration points according to a fixed tolerance error
(e.g. 10−3), therefore, it varies according to the distance from the collocation point to the element
where integration is being carried out. Criterium proposed by Eberwien et al. [2005] present the
number of integration points according to the line integral kernel singularity. This criterion can be
extended for area and volume integrals.

When the collocation point is close to the element under consideration, the integral is said to
be nearly singular, and special treatment is required as the integrand varies sharply. The element
subdivision technique is an efficient approach for dealing with these integrals. A simple way is to
subdivide the element into equal subintervals, as presented in Beer et al. [2008], where the number
of subdivision is determined in order to preserve the integration accuracy. This technique can be
extended for area and volume integrals aswell.

Singular Integrals

Singular integral occurs when the collocation point lies within the element being integrated. They
are classified as weakly singular integrals when the singularity of the kernel is of orderO(ln(1/r))
for two-dimensional problems or O(1/r) for three-dimensional problems. The integrals in equa-
tions (95) and (104) are possibly in this case. On the other hand, if the singularity of the integral
kernel is of order O(1/r) for two-dimensional problems or O(1/r2) for three-dimensional prob-
lems, they are classified as strongly singular integrals, and are considered in the Cauchy principal
value sense. This might be the case for the integrals in equations (96), (105), (106) and (109). Fi-
nally, integrals with kernel of high singularity order, i.e.,O(1/r2) for two-dimensional orO(1/r3)
for three-dimensional problems, respectively, are said to be hypersingular integrals, considered as
Hadamard principal value sense. Equations (110) and (111) may carry this type of integrals.

For two-dimensional problems boundary elements (one dimension) the weakly singular inte-
grals can be evaluated using a logarithmic Gauss quadrature, as presented by Huang [1993], while
for the the strongly singular integrals the technique proposed by Guiggiani and Casalini [1987] is
usual.

The treatment of integrals for cells in two-dimensional problems and the boundary elements
in three-dimensional problems are similar (area integrals). Weakly singular integrals can be per-
formed through a variable transformation by an element subdivision technique proposed by Lachat
and Watson [1976], while for the strongly singular integrals Guiggiani and Gigante [1990] pre-
sented an efficient technique.

The volume weakly singular integrals in three-dimensional cells can also be performed using
the cell subdivision technique proposed by Lachat and Watson [1976]. Strongly singular integrals
cam be evaluated using the technique proposed by Gao and Davies [2000], where the integral can
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be divided in two parts, in such way that the first part is weakly singular and can be integrated by
the technique previously mentioned, whilst the second part, with the strong singularity, is evaluated
semi-analytically.

Direct evaluation of CPV integrals in the free-therm cij , present in equation (86) (see figure 8),
can be avoided by using the rigid body motion concept. Similarly, the use of the so called stress
recovery technique may dispense the direct evaluation of hypersingular integrals, for the assess-
ment of strains and stresses on the boundary. These well known approaches are detailed in Beer
et al. [2008] and Gao and Davies [2002].

4.2 Solution strategy

The matrix equations obtained in section 4.1 can be algebraically manipulated in order to generate
a single non linear equation, typical of the implicit BEM formulation, developed by Telles and
Carrer [1991]. Such equation is first obtained in the present section, followed by its the solu-
tion strategy, presented in Peixoto et al. [2016], which has the advantage of encapsulate different
control methods in a single computational framework.

Considering the essential and natural boundary conditions, equations (103), (108) and (116)
can be respectively reorganized in the next forms:

{u̇Ω} = [Au]{ẋ}+ [Bu]{ẏ}+ [Qu]{ε̇o} (117)

[A]{ẋ} = [B]{ẏ}+ [Q]{ε̇o} (118)

{ε̇} = [Aε]{ẋ}+ [Bε]{ẏ}+ [Qε]{ε̇o} (119)

where, in {ẏ} the prescribed values on the boundary are grouped, coming from { ˙̂u} or {ṫ}, while
the vector {ẋ} contains the unknown components of these fields. Matrices referenced by [A] and
[B], on the other hand, are composed by coefficients from those referenced by [H] and [G]. In
reality, computationally speaking, the matrix equations are already assembled directly in these last
forms, without the need to go through a rearrangement step.

Solving for {ẋ} in equation (118), we obtain

{ẋ} = [N ]{ẏ}+ [M ]{ε̇o} (120)

where
[N ] = [A]−1[B]; [M ] = [A]−1[Q] (121)

Thus, applying equation (120) into (117) and (119), the following results are respectively
ontained:

{u̇Ω} = [Nu]{ẏ}+ [Mu]{ε̇o} (122)

{ε̇} = [N ε]{ẏ}+ [M ε]{ε̇o} (123)

where
[Nu] = [Au][A]−1[B] + [Bu]; [Mu] = [Au][A]−1[Q] + [Qu] (124)

[N ε] = [Aε][A]−1[B] + [Bε]; [M ε] = [Aε][A]−1[Q] + [Qε] (125)

For rate independent constitutive models (as the ones presented in Appendix A), the time
derivatives can be substituted by finite increments, i.e., ˙(·) = ∆(·) ≡ (·)i − (·)i−1, where i
is an incremental index. In this way, for the i-th increment of the the prescribed loads, {y},
equations (120), (122) and (123) can be rewritten as

{x}i = λi[N ]{y}+ [M ]{εo}i (126)
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{uΩ}i = λi[Nu]{y}+ [Mu]{εo}i (127)

{ε}i = λi[N ε]{y}+ [M ε]{εo}i (128)

where the parameter λi, known as load factor, is a cumulative scalar quantity that defines the
amount of external load is necessary, at each increment, to guarantee the mechanical equilibrium.

From equation (128), it is possible to define an equilibrium vector in function of strain and the
load factor, {Q}i ≡ {Q(εi, λi)}, introducing also equation (66), i.e.,

{Q}i = λi[N ε]{y}+ [M ε]
(
{ε}i − [C]−1{σ(ε)}i

)
− {ε}i = {0} (129)

where [C] represents the quasi-diagonal linear elastic constitutive matrix, referring to the set of
internal collocation points.

Vector {σ(ε)} refers to the stress field obtained from a given strain state, according with the
constitutive model adopted.

The fact that the initial fields, εoij , do not appear explicitly in the equation (129) justifies the
naming of implicit formulation originally adopted by Telles and Carrer [1991]. Normally, this
equation is solved by Newton’s method, based on its linearization in relation to the total strain
vector, together with a specific equation that adequately establishes the increase in external loads.
On the other hand, in the solution strategy presented in Peixoto et al. [2016], which is based on
the ideas of Batoz and Dhatt [1979] and Yang and Shieh [1990], the load factor is treated as an
additional variable of {Q}i and the linearization procedure must be performed taking this into
account. In this way, the algorithm becomes generic enough to adopt different control methods for
non linear analysis. The description of this strategy begins, rewriting equation 129 as follows:

{Q}i = λi{P} − {F}i = {0} (130)

where
{P} = [N ε]{y} (131)

{F}i = {ε}i − [M ε]
(
{ε}i − [C]−1{σ(ε)}i

)
(132)

Thus, linearizing equation (130), i.e.,

{Q}ij−1 +

[
∂{Q}
∂{ε}

]i
j−1

{δε}ij +

[
∂{Q}
∂λ

]i
j−1

δλij ≈ {0} (133)

where j is an iterative index and δ(·)ij = (·)ij − (·)ij−1, the following result is obtained:

[D]ij−1{δε}ij = δλij{P}+ {Q}ij−1 (134)

in which

[D]ij−1 =

[
[I]− [M ε][C]−1

(
[C]−

[
∂σ

∂ε

]i
j−1

)]
(135)

where [I] is an identity matrix and
[
∂σ
∂ε

]
is assembled from the tangent operator of the constitutive

model, Ctijkl, particularized by equations (49) or (63), respectively, for elastoplastic or elastic-
degrading constitutive models.

The iterative strain vector in equation (134), {δε}ij , can be dismembered in the following
parcels:

{δε}ij = δλij{εP }ij + {δεQ}ij (136)

where vector {εP }ij corresponds to the solution associated to the external load {P}, while {δεQ}ij
is associated to the residual, {Q}ij−1, i.e.,

[D]ij−1{εP }ij = {P} (137)

Peixoto, Rodrigo G., Chaves, Alisson P. (2022)                                          The Boundary Element Method for Damage Modeling pp. 809-880

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 836



[D]ij−1{δεQ}ij = {Q}ij−1 (138)

Thus, in a given iteration, equations (137) and (138) can be solved independently and the cor-
rection of strains is obtained by equation (136), after evaluation of δλij , through a chosen control
method. This sequence of activities is further systematized in section 4.2.1. Before that, expres-
sions for the iterative corrections of vectors containing the boundary unknowns and the internal
displacements, i.e., {δx}ij and {δuΩ}ij , are shown. The same idea of breaking up equation (134)
is followed and such expressions are important for application to the different control methods,
listed in section 4.2.2.

Considering equations (126) and (128), it is possible to write

{δx}ij = {x}ij − {x}ij−1 = δλij [N ]{y}+ [M ]{δεo}ij (139)

{δε}ij = {ε}ij − {ε}ij−1 = δλij [N
ε]{y}+ [M ε]{δεo}ij (140)

Isolating vector {δεϕ}ij in equation (140) and substituting the result into the last term of equa-
tion (139), after application of equations (131), (136) and (137), the next result is obtained:

{δx}ij = δλij{xP }ij + {δxQ}ij (141)

where
{xP }ij = [N ]{y}+ [M ][M ε]−1

(
[I]− [D]ij−1

)
{εP }ij (142)

{δxQ}ij = [M ][M ε]−1{δεQ}ij (143)

Similarly, starting from equation (127), one can show that

{δuΩ}ij = δλij{uΩ,P }ij + {δuΩ,Q}ij (144)

where
{uΩ,P }ij = [Nu]{y}+ [Mu][M ε]−1

(
[I]− [D]ij−1

)
{εP }ij (145)

{δuΩ,Q}ij = [Mu][M ε]−1{δεQ}ij (146)

4.2.1 Non linear algorithm

The above equations, can be organized in a systematic procedure as described below.

i. Evaluate {P}, using equation (131), and initialize i = 0;

ii. i = i+ 1, j = 0;

iii. Se i > maximum number of increments⇒ STOP;

iv. {Q}ij = {0}, {F}ij = {0};

v. j = j + 1;

vi. Se j > maximum number of iterations⇒ STOP;

vii. Mount matrix [D]ij−1, from equation (135);

viii. Solve equations (137) and (138) for {εP }ij e {δεQ}ij ;

ix. Evaluate {xP }ij , {δxQ}ij , {uΩ,P }ij e {δuΩ,Q}ij , using equations (142), (143), (145) and
(146);
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x. Evaluate δλij , from a chosen control method (see section 4.2.2);

xi. Mount {δε}ij , {δx}ij e {δuΩ}ij , using equations (136), (141) and (144);

xii. Actualize λij , {ε̂}ij , {x}ij and {ûΩ}ij , using (·)ij = (·)ij−1 + δ(·)ij ;

xiii. Mount {F}ij , from equation (132);

xiv. Evaluate {Q}ij = λij{P} − {F}ij (equation 130);

xv. Verify convergence:

If
‖ {Q}ij ‖
‖ λij{P} ‖

< Tolerance, return to step (ii) for the next load increment, else, return to

step (v) for a new iteration.

4.2.2 Control methods

The most prominent advantage of the approach described above is its generality, especially for
being able to work with different control methods.

Control methods are equations which determine the load factor increment, δλij , at each iter-
ation. Depending mainly on the material behaviour, a specific control method has its advantages
and its limitations or disadvantages. For this reason, a great number of them were developed and
some are summarized in table 1.

Table 1: Types of control methods.

Control method δλj for j = 1 δλj for j > 1

Load control constant δλj = 0

Direct displacement δUk
1

UP,k
1

−
δUQ,k

j

UP,k
j

Arc length ± ∆S√
{UP }T1 {UP }1

−{∆U}
T
1 {δUQ}j

{∆U}T1 {UP }j

Generalized displace-
ment δλ1

1

√
{UP }1,T1 {UP }11
{UP }i−1,T

1 {UP }i−1
1

−
{UP }i−1,T

1 {UQ}ij
{UP }i−1,T

1 {UP }i−1
j

Strain control ∆e

{CΩ}T {εP }1 −{C
Ω}T {δεQ}j

{CΩ}T {εP }j

Herein the vector {U} stands for a simple collection of all displacements values at boundary
and domain collocation points which, when not prescribed, are evaluated at each iteration, and has
the following increment decomposition:

{δU}j = δλj{UP }j + {δUQ}j (147)

where index j stands for an iteration in an increment i, which has been omitted for clearer presen-
tation.

In the standard load control method, the load factor is pre-defined at the beginning of the in-
crement and no variations are made during the iterative procedure. As is well known, this method
inevitably results in non-convergence when the material exhibits softening behaviour. In the direct
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displacement control method, as developed by Batoz and Dhatt [1979], a specific displacement
component (of a specific point), identified by the superscript k in table 1, is selected to be con-
trolled. If this component is correctly chosen, the divergence problem in softening behaviour can
be solved, however, instabilities may occur if a snap-back trajectory is present in the equilibrium
path. For that reason, arc-length methods, where a combination of displacement components and
load factor increments is controlled, were developed. In expressions for this method, ∆S is the
constant which limits the increment advance and {∆U}j means the cumulative displacements in
the current increment, until iteration j. Usually, two different variations of arc-length control can
be adopted. In the first, as used by Riks [1972] and Riks [1979], the iterative correction trajectory
is always orthogonal to the first tangent of the increment, as represented in column for j > 1 in
table 1. In the second variation, proposed by Crisfield [1981] and Crisfield [1983], a cylindrical
trajectory is taken from the solution of a quadratic equation. With the intention to automatize
the size of the incremental step, Yang and Shieh [1990], introduced the generalized displacement
method, which relates two successive incremental steps, designated by i and i − 1 in the expres-
sions presented in table 1.

For some problems, it seems to be more efficient to control a linear combination of some strain
components of a limited region of the domain. Thus, the strain control method, developed by Chen
and Schreyer [1990], can be used as an alternative. In the equations of table 1, ∆e is a scalar value
which limits the mentioned linear combination and {CΩ} is the weight vector which determines
the influence of each strain component.

5 Examples of Continuum Non Linear Problems

In this section the numerical analyses of three-dimensional and plane problems, involving elasto-
plastic and continuum damage models, performed with the presented formulation and algorithm,
are presented. The results are compared to those obtained experimentally or analytically. For all
examples, the control method adopted to drive the incremental-iterative procedure in the non linear
analyses, considered a convergence tolerance of 10−4.

In the first and second examples, the von Mises elastoplastic model is applied to a perforated
strip with linear hardening and a pressurized thick cylinder, respectively. For the third example,
the isotropic constitutive models of Simo and Ju [1987] and Oliver et al. [1990] were applied
with an exponential damage evolution law for the analysis of a three-point bending beam. Three-
dimensional and plane analysis were performed in all examples.

5.1 Example 1: perforated strip

In this example the case of a perforated strip under uniaxial tension is analyzed. Reference results
where obtained experimentally by Theocaris and Marketos [1964] using the aluminum alloy 57S,
who assume the Mises yield criterion to be the most suitable and accepted as governing the mode
of nucleation and evolution of plastic enclaves for such material. The geometry of this thin plate is
presented in Figure 12, were the geometric parameters are h = 18 mm, r = 5 mm and thickness
1 mm.

The elastoplastic von Mises associative constitutive model, as detailed in Appendix A.1, is
used with the Young’s modulus E = 70 GPa, the Poisson’s ratio ν = 0.2, the initial yield limit
σY = 243 MPa and a linear hardening law with H = 0.032E. The tensile load is taken to be
σ = 0.47σY .

Due to the symmetry, only a quarter of the plane problem is discretized, following the analysis
presented in Aliabadi [2002]. Only part of the domain, where dissipative effects are probable to
occur, need to be discretized.
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Figure 12: Example 1 – Perforated strip; (a) Geometry and load, (b) Plane model
dimensions

Plane stress was considered in bidimensional analysis, where the analysis were performed
with two different meshes: a coarse one (Mesh 1) with 32 quadratic boundary elements and 16
quadratic quadrilateral cells, and a fine one (Mesh 2) with 64 linear boundary elements and 64
linear quadrilateral cells. Also, the analysis where performed with three-dimensional model. In
this case, due to the symmetry, only one eight of the problem was discretized in other two meshes:
a coarse one (Mesh 3) with 448 linear quadrilateral boundary elements and 64 constant hexahedral
cells, and a fine one (Mesh 4) with 1664 boundary elements and 256 cells. The used meshes can
be seen in Figure 13.

In both analysis, the usual load control was adopt, with a total of 50 load steps. Experimental
and numerical results are plotted in Figure 14. Additionally, in Figure 15 stress-displacement plots
obtained for the refined meshes (Mesh 2 and Mesh4) are shown for some key positions on the strip,
together with FEM results presented by Aliabadi [2002].

5.2 Example 2: pressurized thick cylinder

This example presents a steel thick cylinder subjected to internal pressure. The internal and exter-
nal radius were taken as 100 mm and 200 mm, respectively. Due to the symmetry of the problem,
only one quarter of a section is modelled. The problem is considered under plain strain condi-
tions. For three-dimensional analysis, the transversal section planes have displacements restricted
in the longitudinal direction, in order to make the analysis under a plane strain condition. The
solid modelled also consider one quarter of a section, with width 5.0 mm. Figure 16 illustrates the
geometry, load and support conditions.

Again, the elastoplastic von Mises associative constitutive model was adopted, with the Young’s
modulus E = 210 GPa, the Poisson’s ratio ν = 0.3 and the yield limit σY = 240 MPa. Perfect
plasticity were considered, with hardening parameter H = 0. The internal pressure was taken to
be σ = 180 MPa. An analytical solution for this problem, performed by Hill [1950], is presented
in de Souza Neto et al. [2006].

Two different meshes were analysed under plane strain conditions. The coarse mesh (Mesh
1) has 24 quadratic boundary elements and 32 quadratic internal cells, while the (Mesh 2) has 48
quadratic boundary elements and 128 quadratic cells. The mesh used in the three-dimensional
analysis (Mesh 3) has 648 linear quadrilateral boundary elements and 288 hexahedral constant
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Figure 13: Example 1 – Meshes considered in the analyses; (a) Mesh 1, (b) Mesh 2,
(c) Mesh 3, (d) Mesh 4

cells. A total of 30 steps, with load control, were used in the whole cases. Figure17 illustrates the
the refereed meshes.

The results achieved for hoop and radial stresses components, together with the analytical
solution are plotted in Figures 18 and 19 respectively.

5.3 Example 3: three point bending

The three point bending of a notched concrete beam, experimentally treated by Petersson [1981],
is addressed in this example. The problem geometry, load and supports are depicted in Figure 20.
The geometrical parameters were taken as l = 1000 mm, h = 200 mm, a = 100 mm and
w = 20 mm. A width t = 50 mm was considered for the beam.

To represent the concrete softening behaviour, the isotropic constitutive models of Simo and
Ju [1987] and Oliver et al. [1990] were applied with an exponential damage evolution law of the
form

D(φ) = 1−
[
κo
φ

]
e−b(φ−κo), with κo =

ft√
E

and b =
hft

Gf
√
E

(148)
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Figure 14: Example 1 – Computed stresses on net section of the plate for a load of
0.47σY , and the experimental reference [Theocaris and Marketos, 1964].
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Figure 15: Example 1 – Displacements at positions A and B (from Figure 12)

where ft is the uni-axial tensile strength, Gf is the fracture energy, h is a material’s characteristic
length and E is the Young’s modulus. For concrete mechanical properties, the following values
were adopted: ft = 3.33 MPa, Gf = 0.124 N/mm, h = 30 mm and E = 30 GPa and Poisson’s
ratio ν = 0.20.

Only the domain’s region around the expected area to be damaged was discretized by cells. For
the plane stress analysis a total of 100 constant internal cells were employed, while the boundary
was divided in 392 linear elements. For the three-dimensional analysis, the mesh has 952 quadri-
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Figure 16: Example 2 – Pressurized thick cilinder; (a) Geometry, (b) Plane model
dimensions and supports
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Figure 17: Example 2 – Meshes considered in the analyses

lateral quadratic elements and 36 hexahedral constant cells. Figure 21 illustrates these meshes.
The analyses were performed by controlling the vertical displacement of a loaded element node.

A comparison between the models results and Petersson’s experimental envelopment is pre-
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Figure 18: Example 2 – Computed circumferential stress distribution in the pressur-
ized cylinder along the radial coordinate, and the analytical solution [de Souza Neto
et al., 2006].
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Figure 19: Example 2 – Computed radial stress distribution in the pressurized cylin-
der along the radial coordinate, and the analytical solution [de Souza Neto et al.,
2006].

sented in Figure 22.
Since the region close to the applied load is subjected to compressive stress states, spurious

damage evolution is verified for Simo and Ju [1987] model, leading to a premature loss of struc-
tural strength. However, for the Oliver et al. [1990] model, where the equivalent strain norm
involves only positive strain components, as detailed in Appendix A.2, such problem is overcome
and a good agreement between the numerical and experimental results is obtained.

Peixoto, Rodrigo G., Chaves, Alisson P. (2022)                                          The Boundary Element Method for Damage Modeling pp. 809-880

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 844



P

wl

l
h

t

a

Figure 20: Example 3 – Three point bending of a concrete notched beam: geometry,
load and supports.
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Figure 21: Example 3 – Meshes considered in the analyses (a) plane stress and (b)
three-dimensional

6 Strain Localization and Material Bifurcation Analysis

This section addresses the necessary conditions for the occurrence of discontinuous bifurcation
in material media that present softening laws in their continuous (or macroscopic) constitutive
formulation. By bifurcation, we mean the instant of inelastic loading at which the strain field is
no longer continuous, which does not necessarily correspond to the appearance of discontinuities
in the displacement field. In this case, there is the emergence of the so-called weak discontinuity
surfaces. From there, strain localization bands (regions of high strain values) can be formed,
delimited by such surfaces.

Strain localization in homogeneous media with softening is associated with the loss of the el-
liptical character of the set of differential equations and, consequently, the boundary value problem
becomes ill-defined. As a result, the solution is no longer unique and, in numerical analyses, a lack
of objectivity in relation to mesh refining is verified, since the most stable solution corresponds to
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Figure 22: Example 3 – Results for vertical displacement of the loaded point: nu-
merical BEM analyses and experimental.

a zero-thickness localization band without energy dissipation during failure.
In general, bifurcation does not coincide with the beginning of the inelastic regime. Normally,

from a macroscopic point of view, it is preceded by a dissipation phase in a continuous medium.
Thus, based on a valid mathematical formalism for time-independent constitutive models, the
necessary conditions for the appearance of strain localization are established in the following.

It starts by assuming a homogeneous three-dimensional solid domain Ω, subject to a uniform
state of small deformations εij . We then look for the necessary conditions so that the rate of
the strain field, ε̇ij , can become discontinuous on two surfaces that delimit a band Ωb ⊂ Ω, as
indicated in Figure 23. It is also assumed that the two surfaces have parallel tangent planes at the
point under analysis, so that a single orthonormal basis {n,p,q} can be established, where n is
the unit vector normal to these planes.

�

�
n

�b

n

p

�b

q

Figure 23: Solid domain with strain localization band

Considering now that the displacement rate, u̇i, remains continuous on the two surfaces, we
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have:

[[∂qu̇i]] = [[u̇i,j ]]qj = 0 (149a)

[[∂pu̇i]] = [[u̇i,j ]]pj = 0 (149b)

where [[·]] represents the difference between the values of field (·), in and out of the localization
band, while ∂q(·) and ∂p(·) are the directional derivatives of (·), respectively in the directions of
q and p.

From equations (149), to occur discontinuity in the strain rate, one must have:

[[u̇i,j ]]nj = α̇mi 6= 0 ⇒ [[u̇i,j ]] = α̇minj (150)

where α̇ is a scalar corresponding to the magnitude of the jump in the velocity field and mi is
a unit vector referring to the direction of this jump. It can also be noted that the angle between
the vectors ni and mi determines the failure mode, which can vary from simple opening, when
they are parallel (mode I), to pure shear, when they are perpendicular to each other (mode II). For
intermediate angles, there are so-called mixed modes.

As a consequence of equation (150), the strain rate must satisfy the following compatibility
equation:

[[ε̇ij ]] =
1

2
([[u̇i,j ]] + [[u̇j,i]]) =

1

2
(minj +mjni)α̇ (151)

On the other hand, the equilibrium condition states that tractions, as well as their rates, must
be continuous on surfaces of weak discontinuity, i.e.,

[[σ̇ijnj ]] = [[σ̇ij ]]nj = 0 (152)

Thus, remembering that stress and strain rates are related to each other by a tangential operator –
see equations (48) and (62) –, introduction of equation (151) into (152) gives

(niC
t,Ωb
ijkl nl)α̇mk = ni(C

t,Ω\Ωb
ijkl − Ct,Ωbijkl )ε̇

Ω\Ωb
kl (153)

where Ct,Ω\Ωbijkl and εΩ\Ωbkl represent, respectively, the tangent stiffness operator and strain field

outside the strain localization band, while Ct,Ωbijkl is the tangent operator inside it.

At this point, one can differentiate between discontinuous bifurcation, when, in fact, Ct,Ωbijkl 6=
C
t,Ω\Ωb
ijkl , and continuous bifurcation, when the constitutive tangent tensors inside and outside the

localization band are the same. In the latter case, equation (153) takes the form:

(niC
t
ijklnl)mk = Qjkmk = 0 (154)

where Qjk is called the localization tensor or acoustic tensor. This second term is adopted
for historical reasons, since in elastic problems, the eigenvalues of this tensor, divided by the
specific mass of the material, are associated with the propagation speeds of waves in the solid
medium [van der Giessen and de Borst, 1998].

Rice and Rudnicki [1980] showed that the continuous bifurcation condition corresponds to a
limiting case of the discontinuous one, with a tendency to occur firstly during inelastic loading.
Thus, equation (154) can be understood as the most unfavourable case for the occurrence of dis-
continuous bifurcation and can be adopted as a necessary condition for the beginning of strain
localization.

It should also be noted that the trivial solution of the equation (154), mk = 0, corresponds to
[[ε̇ij ]] = 0 and therefore the localization will start only when Qjk is singular, i.e., the bifurcation
condition becomes:

det(Qjk) = det(niC
t
ijklnl) = 0 (155)
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In a general way, solution of equation (155) is associated to a optimization problem of find,
between all possible directions that satisfy the singularity condition (if exists at least one), the ni
that gives the maximum softening modulus,H . However, for some cases, a closed set of equations
can be analytically obtained. For example, considering an isotropic damage model with particular
parameters defined in Oliver et al. [2006], detailed in Appendix A, a critical softening modulus
and the associated band orientation can be obtained for plane problems, as described by Peixoto
et al. [2018]. On the other hand, for associative elastoplastic models, closed solutions can be found
in Oliver et al. [1999].

7 The Continuum Strong Discontinuity Approach

In the previous section, the necessary conditions for bifurcation, i.e., the appearance of discon-
tinuities in the strain field during inelastic loading with softening, were established. It is now
a subsequent step, referring to the transition between these discontinuities, called weak, and the
emergence of jumps in the displacement field, known as strong discontinuities. Such a transition
can be interpreted as a model with a localization band of variable thickness. When standard con-
tinuous constitutive models are employed together with these discontinuous kinematics, in order
to represent dissipative effects, we have the so-called Continuum Strong Discontinuity Approach
(CSDA), which is the scope of the present section.

Firstly, a kinematic formulation, valid for weak and strong discontinuities, is presented. Next,
the Strong Discontinuity Analysis where, from the imposition of equilibrium conditions on the
discontinuous surface, cohesive constitutive model is obtained – which relates tractions to dis-
placement jumps – associated with the original continuous constitutive model, is addressed. As a
consequence of this analysis, the necessary conditions for the establishment of the strong discon-
tinuity are obtained, in addition to a reinterpretation of the softening modulus of the continuous
constitutive model to make it compatible with the discrete model. Finally, the numerical aspects
that define the variable bandwidth model are presented.

7.1 Weak and Strong Discontinuity Kinematics

Kinematic equations involving weak and strong discontinuities are presented in this section, fol-
lowed by the establishment of a regularized formulation capable of treating the two cases in a
single set of equations, as developed by Oliver et al. [1998, 1999].

7.1.1 Weak discontinuity kinematics

Referring to Figure 24a, a two-dimensional domain Ω is assumed, where the material points are
designated by x. We also consider a curvilinear coordinate system, {χ, υ, ζ}, so that ζ = 0 defines
a surface S, entirely contained into a localization band, Ωb. The boundaries of this band are also
formed by surfaces of a fixed coordinate ζ, i.e., S−(ζ = ζ−) and S+(ζ = ζ+), which allows to
define its thickness as a function of only (χ, υ) : h(χ, υ). The surface S divides the domain into
two parts, Ω− and Ω+, and defines a unit vector ni, normal to S and directed to Ω+.

Being {êχ, êυ, êζ} the orthonormal basis associated with the curvilinear coordinates and
defining by rχ(χ, υ, ζ), rυ(χ, υ, ζ) and rζ(χ, υ, ζ) their corresponding scale factors, such that
dsχ = rχdχ, dsυ = rυdυ and dsζ = rζdζ are the arc lengths, respectively along χ, υ and ζ, one
can write h(χ, υ) = rζ(χ, υ, 0)(ζ+ − ζ−). It should also be noted that, for points located on S,
the unit vector êζ coincides with the normal ni.

Assuming now the following velocity field in Ω:

u̇i(x, t) = ˙̄ui(x, t) +HΩb(x, t)[[u̇i]](x, t) (156)
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Figure 24: Kinematics with discontinuities: (a) weak discontinuity, (b) strong dis-
continuity, (c) regularized formulation

where t represents time, ū(x, t) and [[ui]](x, t) are displacement fields C0-continuous andHΩb(x, t) =
HΩb(ζ, t) is a ramp function, given by:

HΩb =


0, para x ∈ Ω−\Ωb

1, para x ∈ Ω+\Ωb

ζ − ζ−

ζ+ − ζ−
, para x ∈ Ωb

(157)

where a\b means the part of a excluding b, i.e., a\b = a− (a ∩ b).
It can be seen thatHΩb represents a unit jump between the surfaces S− and S+, since, for the

same coordinate χ, {[[HΩb ]] = HΩb(ζ
+, t)−HΩb(ζ

−, t) = 1 ∀(χ, υ)}. Its gradient, in curvilinear
coordinates and written in an extended form, is given by:

HΩb,i =
1

rζ

∂HΩb

∂ζ
êζ +

1

rχ

∂HΩb

∂χ
êχ +

1

rυ

∂HΩb

∂υ
êυ = µΩb

1

hζ
êζ

hζ(χ, υ, ζ) = rζ(χ, υ, ζ)(ζ+ − ζ−)

hζ(χ, υ, 0) = rζ(χ, υ, 0)(ζ+ − ζ−) = h(χ, υ)

(158)
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where µΩb is a collocation function in Ωb, i.e., {µΩb(x) = 1 if x ∈ Ωb and µΩb(x) = 0 if x /∈
Ωb}.

Thus, taking the symmetrical part of the gradient of equation (156) and making use of equa-
tion (158), the following field of infinitesimal strain rates is obtained:

ε̇ij(x, t) =
1

2
( ˙̄ui,j + ˙̄uj,i) +

HΩb

2
([[u̇i,j ]] + [[u̇j,i]]) +

µΩb

2hζ
([[u̇i]]ê

ζ
j + [[u̇j ]]ê

ζ
i ) (159)

where êζi refer to the projections of êζ in the original cartesian coordinate system.
Note that the first two terms on the right hand side in equation (159) represent a continuous

portion of the strain field, while the last one, as indicated in Figure 24a, has non-zero values only
in the (localization) band Ωb, characterizing strain discontinuities on the surfaces S− and S+.

7.1.2 Strong discontinuity kinematics

Strong discontinuity kinematics can be defined as a limiting case of weak discontinuity kinematics
when the strain localization band tends towards the surface S, i.e., towards a band of zero thick-
ness, as represented in the Figure 24b. Thus, as ζ− → 0 and ζ+ → 0 simultaneously, the ramp
function of equation (157) collapses into the Heaviside (step) function, given by:

HS(x) =

{
0, to x ∈ Ω−

1, to x ∈ Ω+
(160)

Thus, the displacement rate field takes the form:

u̇i(x, t) = ˙̄ui(x, t) +HS(x)[[u̇i]](x, t) (161)

i.e., becoming discontinuous on S. In this case, function [[ui]](x, t) represents the magnitude of
the jump components in the displacement field over the strong discontinuity surface.

The infinitesimal strain rate field, compatible with the equation 161, is, in turn, written as:

ε̇ij(x, t) =
1

2
( ˙̄ui,j + ˙̄uj,i) +

HS
2

([[u̇i,j ]] + [[u̇j,i]]) +
δS
2

([[u̇i]]nj + [[u̇j ]]ni) (162)

where δS is the Dirac delta function over the surface S .
It can be seen that the first two terms on the right in the equation (162) correspond to a parcel

containing, at most, finite discontinuities, while the last term becomes infinite over S .

7.1.3 Regularized kinematics

Now, a regularized formulation of kinematics with discontinuities, capable of representing both
cases (weak and strong discontinuities) through a single set of equations, is presented. Such formu-
lation will prove useful, later, in the development of a numerical model with variable localization
bandwidth.

From the Figure 24c, the displacement and strain fields are written in the following forms:

u̇i(x, t) = ˙̄ui(x, t) +HS(x)[[u̇i]](x, t) (163)

ε̇ij(x, t) =
1

2
( ˙̄ui,j + ˙̄uj,i) +

HS
2

([[u̇i,j ]] + [[u̇j,i]])︸ ︷︷ ︸
˙̄εij (finite)

+
µS

2h(ζ)
([[u̇i]]nj + [[u̇j ]]ni)︸ ︷︷ ︸

infinity when h(ζ)→0

(164)

where µS is a collocation function over S, i.e., {µS(x) = 1 if x ∈ S and µS(x) = 0 if x /∈ S}.
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When the bandwidth, h(ζ), approaches zero,
( µS

2h(ζ)

)
→ δS , and equations (163) and (164) be-

come equivalent to equations (161) and (162). In this way, the kinematics of strong discontinuities
is completely recovered.

On the other hand, since h(ζ) = hζ(χ, υ, 0) and ni corresponds to êζ in S, the strain rate of
equation (164) represents its correspondent in the presence of weak discontinuities (equation 159),
provided that the localization band thickness is sufficiently small. It should be noted, however, that
in this case, h(ζ) 6= 0, and the fields of equations (163) and (164) are not compatible, in the sense

that ε̇ij 6=
1

2
(u̇i,j + u̇j,i). Compatibility is achieved only when h(ζ)→ 0.

As will be discussed later, a variable bandwidth model can be adopted, characterized by the
evolution of the strain localization band, from a finite thickness h, defined at the bifurcation instant,
tB , to a null thickness , numerically characterized by a small constant k, representing the regime
with strong discontinuity, that begins at time tSD. In this way, the state of total strains for an
instant of time after the start of the strong discontinuity regime, i.e., t > tSD, can be obtained
from time integration of equation (164), i.e.,

εij(x, t)|t>tSD =

∫ t

0

˙̄εijdt+
µS
2

∫ tSD

tB

1

h
([[u̇i]]nj + [[u̇j ]]ni)dt︸ ︷︷ ︸

ε̄ij

+
µS
2

∫ t

tSD

1

h
([[u̇i]]nj + [[u̇j ]]ni)dt

= ε̄ij︸︷︷︸
finite for h≡k→0

+µS
1

2h
(∆[[ui]]nj + ∆[[uj ]]ni)︸ ︷︷ ︸
infinity for h≡k→0

(165)
where ∆[[ui]] = [[ui]](x, t) − [[ui]](x, tSD) is the increment in the displacement jump during the
strong discontinuity regime and the material character of the discontinuous surface, i.e., ṅi = 0,
was adopted.

7.2 The Strong Discontinuity Analysis

The objective of Strong Discontinuity Analysis (SDA) is to identify the necessary conditions for
continuous constitutive models to be compatible with the kinematics represented by the equa-
tion (165). As a starting point, it should be noted that the continuity of traction (and its rate),
through the interface S, is a necessary condition for meeting the equilibrium equations, i.e.,

ti(x, t) = σ
Ω\S
ij (x, t)nj(x) = σSij(x, t)nj(x) (166a)

ṫi(x, t) = σ̇
Ω\S
ij (x, t)nj(x) = σ̇Sij(x, t)nj(x) (166b)

where σSij are the stress components at a point on S, while σΩ\S
ij are the stress components of an

infinitesimally close point localized, however, at Ω\S .
Thus, it is verified that, as the strains are finite in Ω\S (εij= ε̄ij), the components σΩ\S

ij will

also be, as will ti (ti = σ
Ω\S
ij nj). The same arguments are valid for equation (166b). On the other

hand, it should be noted that σSij and σ̇Sij must also be finite , although εSij and ε̇Sij are not, so that
the physical sense of the stress field is preserved.

As previously mentioned, the SDA establishes a discrete constitutive model, which relates
traction to jumps in displacements on S, associated with the continuum one. It also leads to a
reinterpretation of the original model’s softening modulus, causing it to be rewritten as a function
of its counterpart in the discrete model (called discrete or intrinsic softening modulus). Therefore,
such an analysis must be carried out in the light of a specific continuous model. Thus, for now
on, the discussion is particularized for the isotropic damage model (see Appendix A.2), with the
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particular parameters defined by Oliver et al. [2006]. Such a model can be summarized by the
following set of equations:

Free energy: ψ(εij , r) = [1−D(r)]ψo(εij), ψo(εij) =
1

2
εijCijklεkl (167a)

Constitutive equation: σij =
∂ψ(εij , r)

∂εij
= (1−D)Cijklεkl = Csijklεkl (167b)

Damage variable: D ≡ D(r) = 1− q(r)

r
, D ∈ [0, 1] (167c)

Internal variable evolution law: ṙ = λ̇,

{
r ∈ [ro,∞),
ro = r|t=0 = ft√

E

(167d)

Damage criterion: F̄ (εij , r) ≡ φ− r =
√
ε+ijCijklεkl − r (167e)

Loading–unloading conditions: F̄ 6 0, λ̇ > 0, λ̇F̄ = 0, λ̇ ˙̄F = 0 (167f)

Softening law: q̇ = H(r)ṙ, (H = q′(r) 6 0),

{
q ∈ [0, ro],
q|t=0 = ro

(167g)

In equation (167d), ft refer to the material’s tensile strength.
A detailed application of SDA to this model, which is shown by Oliver [2000], leads to the

following correspondent discrete model:

Free energy: ψ̂(∆[[ui]], ω) = [1− ω(∆α)]ψ̂o(∆[[ui]]), ψ̂o(∆[[ui]]) =
1

2
∆[[ui]]Q

e
ij∆[[uj ]]

(168a)

Constitutive equation: ti =
∂ψ̂(∆[[ui]], ω)

∂(∆[[ui]])
= (1− ω)Qeij∆[[uj ]] = Qsij∆[[uj ]] (168b)

Damage variable: ω ≡ ω(∆α) = 1− q∗(∆α)

∆α
, ω ∈ (−∞, 1] (168c)

Internal variable evolution law: ω ≡ ω(∆α) = 1− q∗(∆α)

∆α
, ω ∈ (−∞, 1] (168d)

Damage criterion: Ḡ(∆[[ui]],∆α) ≡ τ∆[[u]] −∆α =
√

∆[[ui]]Qeij∆[[uj ]]−∆α (168e)

Loading–unloading conditions: Ḡ 6 0, λ̇∗ > 0, λ̇∗Ḡ = 0, λ̇∗ ˙̄G = 0 (168f)

Softening law: q̇∗ = H∗α̇, (H∗ = (1/h)H < 0),

{
q∗ ∈ [0, qSD],
q∗|t=tSD = qSD

(168g)

In the above equations, ω is the discrete damage variable, analogous to the continuum variable
D; ti is the traction vector over the discontinuity surface; Qeij is the elastic localization tensor,
given by Qeij = nkCkijlnl; q∗ and α are the discrete internal variables, analogous respectively to
q and r (∆α meaning the cumulative variation in α since the beginning of the strong discontinuity
regime); and H∗ is the discrete softening modulus, which value is obtained from the analysis of
the power expended in the strong discontinuity regime as described later.

Particularly, deduction of equations (168b) and (168f) are detailed here, since they lead to
the mentioned reinterpretation of the softening modulus, which is a key point in the compatibility
between discontinuous kinematics and the continuous constitutive model.

From equations (167b), (167c) and (165), the stress tensor for a point on S is given by:

σSij =
qS
rS
Cijkl

[
ε̄kl +

1

2h
(∆[[uk]]nl + ∆[[ul]]nk)

]
(169)
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Assuming that this point is in the strong discontinuity regime, that is, t > tSD ⇒ h ≡ k → 0,
we have from equation (166a) that

tj = niσ
S
ij = lim

h→0

{
qS
rS
niCijkl

[
ε̄kl +

1

2h
(∆[[uk]]nl + ∆[[ul]]nk)

]}
= lim

h→0

(
1

hrS

)
qS(niCijklnl︸ ︷︷ ︸

Qejk

)∆[[uk]]

= lim
h→0

(
1

hrS

)
qSQ

e
jk∆[[uk]]

(170)

Since Qejk is a positive definite tensor, for ∆[[ui]] 6= 0, the term qSQ
e
jk∆[[uk]] must be finite

and non-zero. Thus, for the traction vector to also remain finite, as argued earlier, one must have:

lim
h→0

(hrS) 6= 0 if ∆[[uk]] 6= 0 (171)

In order for this condition to be fully satisfied, the following structure is assumed for the evolution
of the internal variable of strain-type at points on the discontinuous surface:

ṙS =
1

h
α̇ ∀t > tB; α|t=tB = 0 (172)

where α is the discrete internal variable that appears in equations (168), considered finite (as well
as α̇).

Equation (172) can be integrated up to an instant t > tSD, resulting in

rS =

∫ t

0
ṙSdt = rB +

∫ tSD

tB

1

h(τ)
α̇(τ)dτ︸ ︷︷ ︸

:=rSD

+

∫ t

tSD

1

h(τ)︸ ︷︷ ︸
h≡k

α̇(τ)dτ

= rSD +
1

k

∫ t

tSD

α̇(τ)dτ = rSD +
1

k
∆α

(173)

where ∆α = α|t − α|tSD and rB = rS |t=tB .
Note now that the term rSD, defined in the equation (173), for t > tSD satisfies the condition:

lim
h→0

(hrSD) = lim
k→0

(krSD) = lim
k→0

[
krB +

∫ tSD

tB

k

h(τ)
α̇(τ)dτ

]
= 0 (174)

Thus, applying equation (173) to (171) and taking into account the result of the equation (174),
we obtain:

lim
h→0

(hrS) = lim
h→0

(hrSD + ∆α) = ∆α 6= 0 (175)

which demonstrates that the evolution law proposed in equation (172) is consistent with the con-
dition pointed out in equation (171) and makes equation (170) compatible with ∆[[ui]] 6= 0.

Finally, replacing the equation (175) in equation (170), results in

ti =
qS
∆α

Qeij∆[[uj ]]; ∀t > tSD

which corresponds to equation (168b), i.e., the discrete constitutive equation, relating surface
forces in S to increments in the jump of displacements.
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Moreover, applying the equation(172) to (167g), the following expression is obtained for the
evolution of stress-type internal variable, in points over S:

q̇S = HṙS = H
1

h
α̇ (176)

Since q̇S and α̇ are, by definition, finite quantities, we have that the term limh→0(H/h) must
also assume finite values. Thus, the following relation is expected:

H = hH∗; ∀t > tB (177)

where H∗ < 0 is defined as finite and is called, as already said, as discrete or intrinsic softening
modulus.

Equation (177) refers to the mentioned reinterpretation of the softening modulus of the con-
tinuous constitutive model. When h → 0, the law of softening assumes the distributive character
highlighted in the original work of Simo et al. [1993], since H∗ → δSH . On the other hand, in
the structure considered here, where h assumes finite values during the regime with weak discon-
tinuities, equation (177) can be considered an appropriate extension to the variable band model.

Now, substituting the equation (177) into (176), we obtain:

q̇S = H∗α̇

which corresponds to equation (168g).

7.2.1 Strong discontinuity conditions

Applying equation (165) to (167b) leads to the following result for points over S in the strong
discontinuity regime:

σSij =
qS
rS
Cijklε

S
kl = lim

h→0

{
qS

rSD + 1
h∆α

Cijkl

[
ε̄kl +

1

2h
(∆[[uk]]nl + ∆[[ul]]nk)

]}
= lim

h→0

{
qS

hrSD + ∆α
Cijkl

[
hε̄kl +

1

2
(∆[[uk]]nl + ∆[[ul]]nk)

]}
=

qS
∆α

Cijkl

[
1

2
(∆[[uk]]nl + ∆[[ul]]nk)

] (178)

where equations (167c) and (173) were also used. In this way, one can write:

1

2
(∆[[ui]]nj + ∆[[uj ]]ni) =

∆α

qS
C−1
ijklσ

S
kl =

∆α

qS
εS,efij (179)

where εefij := C−1
ijklσkl = (1 − D)εij is the so-called effective strain. The finite character of σSij

makes εS,efij also to be limited.
Equation (179) is called the strong discontinuity equation and can be seen as a set of six

algebraic equations (due to symmetry), relating the stress components, σSij , (or of effective defor-

mation, εS,efij ) to the components of the jumps in the displacements, ∆[[ui]]. Three of them are,
in fact, the discrete constitutive equations (168b), which can be retrieved by pre-multiplying both
sides of equation (179) by ni. The other three, involving only stress components in S, correspond
to the so-called strong discontinuity conditions, which must be satisfied throughout t > tSD. To
obtain them in a more direct way, we rewrite the equation (179) in its matrix form, considering the
orthonormal basis {n,p,q}, with p and q tangent to S, i.e., ∆[[un]] 1

2∆[[up]]
1
2∆[[uq]]

1
2∆[[up]] 0 0
1
2∆[[uq]] 0 0

 =
∆α

qS

ε
S,ef
nn εS,efnp εS,efnq

εS,efpn εS,efpp εS,efpq

εS,efqn εS,efqp εS,efqq

 (180)
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from which it follows that, for S to actually correspond to a strong discontinuity line, one must
have:

εefpp = εefpq = εefqq = 0 (181)

In other words, the strong discontinuity regime is immediately initiated after bifurcation only if
these conditions are satisfied. As in general it is not the case, a bandwidth variable model, in which
a transient step with weak discontinuities is adopted, is often necessary for the correct simulation
of material failures. This model will be detailed in section 7.4. Before that, explicit expressions
for the discrete softening modulus, H∗, are deduced in the next section, from the analysis of the
energy consumed during the strong discontinuity regime.

7.3 Energy expended in the strong discontinuity regime

The power consumed, P , during a quasi-static loading process in a solid domain Ω is given by:

P =

∫
Ω
σij ε̇ijdΩ (182)

Restricting the analysis to the period after the start of the strong discontinuity regime, i.e., t > tSD,
we can substitute equation (162) into equation (182), getting∫

Ω
σij ε̇ijdΩ =

∫
Ω
σij

[
˙̄εij +

δS
2

([[u̇i]]nj + [[u̇j ]]ni)

]
dΩ

=

∫
Ω\S

σ
Ω\S
ij

˙̄εijdΩ +

∫
S
σSij

[
1

2
([[u̇i]]nj + [[u̇j ]]ni)

]
dS︸ ︷︷ ︸

PS

(183)

where definition of ˙̄εij was given in equation (164) and PS is the power consumed in the develop-
ment of the jump in the displacement field.

Considering equation (166a) and the symmetry of stress tensor, one can rewrite:

PS =

∫
S
ti[[u̇i]]dS (184)

In this way, the total energy consumed, from the beginning of the strong discontinuity regime until
the total stress relief, is given by:

WS =

∫ t∞

tSD

PSdt =

∫ t∞

tSD

∫
S
ti[[u̇i]]dSdt =

∫
S

[ ∫ t∞

tSD

ti[[u̇i]]dt︸ ︷︷ ︸
GSD

]
dS (185)

where GSD is the energy released in S, per unit area, during the strong discontinuity regime.
Assuming that the energy released during the transition in a weak discontinuity regime is small
when compared to GSD, this term can be understood as the fracture energy, Gf , usually adopted
as a property of the material and whose value can be determined by standardized tests.

We now seek to rewrite the kernel of the integral in equation (184) in a more convenient
form, taking into account the discrete damage model of the equations (168). Firstly, from equa-
tion (168e), we have:

τ̇∆[[u]] =
1

τ∆[[u]]
(∆[[ui]]Q

e
ij [[u̇j ]]) (186)

i.e.,
∆[[ui]]Q

e
ij [[u̇j ]] = τ̇∆[[u]]τ∆[[u]] (187)
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Thus, post-multiplying [[u̇i]] in the constitutive equation (168b) – after applying equation (168c) –
and considering the symmetry of Qeij , in addition to the equivalence qS = q∗(∆α), one arrives to
the following result:

ti[[u̇i]] =

[
qS
∆α

∆[[uj ]]Q
e
ji︸ ︷︷ ︸

ti

]
[[u̇i]] =

qS
∆α

(τ̇∆[[u]]τ∆[[u]]) (188)

Moreover, from equations (168e) and (168f), it is verified that dissipation occurs only if τ∆[[u]] =
∆α and τ̇∆[[u]] = α̇. Therefore, equation (188) is equivalent to

ti[[u̇i]] = qS α̇ (189)

Now, replacing equation (189) into the expression of GSD, defined in equation (185), we
obtain

GSD =

∫ t∞

tSD

qS α̇dt =

∫ t∞

tSD

qS
q̇S
H∗

dt =

∫ 0

qSD

q
1

H∗
dq (190)

where the softening law discriminated in the equation (168g) was used. In the case GSD ≈ Gf ,

we have qSD ≈ qo = ro =
ft√
E

, so that:

Gf =

∫ 0

ft√
E

q
1

H∗
dq (191)

Finally, it is highlighted that different softening laws can be defined according to the structure
of the discrete softening module. For example, linear softening is obtained from a constant H∗,
while exponential softening requires an expression like H∗(q) = A∗q, where A∗ is a constant .
Thus, for each of these two cases, the solution of equation (191) results in:

i. Linear softening:

Gf =
1

H∗
q2

2

∣∣∣∣0ft√
E

= − 1

H∗

[
f2
t

2E

]
⇒ H∗ = − f2

t

2EGf
(192)

ii. Exponential softening:

Gf =
1

A∗
q

∣∣∣∣0ft√
E

⇒ A∗ = − ft
Gf sqrtE

; ∴ H∗ = − ft

Gf
√
E
q (193)

7.4 Variable bandwidth model

With the theoretical background presented until here, it is possible to distinguish between four
steps that compose the fracture process in a solid body (in particular, the ones composed by quasi-
brittle materials), as shown in Figure 25.

Each step is briefly described below:

I. Elastic phase: proportional stress-strain relation until the limit point Y;

II. Inelastic phase: non linear behaviour with continuous strain and displacement fields. In
this phase, the isotropic damage constitutive model summarized in equations (167) is di-
rectly applied and for each new strain state the bifurcation analysis, presented in section 6,
is performed;
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Figure 25: Fracture evolution process

III. Weak discontinuity regime: characterized by the presence of discontinuities in the strain
field. The regularized kinematic equations presented in section 7.1.3 are adopted, with
finite values for h, which can be interpreted as the localization bandwidth. As the loading
process advances, its value reduces from hB , on the bifurcation instant, B, until a null value
(numerically speaking, a small parameter, k) on the point SD, which defines the beginning
of the strong discontinuity regime;

IV. Strong discontinuity regime: characterized by discontinuities in the displacement field.
the regularized kinematics is also used, with h = k ≈ 0.

If on the bifurcation time (point B) the strong discontinuity condition of equation (181) is
also achieved, we have B ≡ SD and step III above is suppressed. This is a typical case of brittle
fracture.

The bandwidth evolution is governed by a pre-defined law. One can define, for example,
a linear variation with the stress-like internal variable of the continuous constitutive model was
considered, as illustrated in Figure 26, where β̄ is an scalar value between 0 and 1.

Figure 26: Bandwidth evolution law

Particularly, the initial width of the localization band, can be obtained from Eq. (177), i.e.,

hB =

∣∣∣∣ H(qB)

H∗(qB)

∣∣∣∣ (194)

From equations (167c), (167g) and (177), besides the specification of a bandwidth evolution
law, the three steps of the inelastic loading differ basically by the expression of q(r) and, conse-
quently, of D(r). Such expressions considering an exponential softening law are:
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i. Continuum inelastic regime:

D(r) = 1− q(r)

r
=

{
0 if r 6 ro

1− ro
r
eA(1− r

ro
) if r > ro

(195)

where A is a positive scalar constant. For example, the next expression presented in Oliver
et al. [1990] can be adopted:

A =

[
Gf
r2
ol
∗ −

1

2

]−1

(196)

in which l∗ represents a length parameter associated to the numerical discretization size (the
average of cells edges sizes in the BEM formulation used here).

ii. Weak discontinuity regime:

D(r) = 1− b

r

[
− a+

(
b+ aqB
qB

)
eb(rB−r)

]−1

(for rB < r < rSD) (197)

where
a = − ftR

Gf
√
E

; b = − ft

Gf
√
E

(k −RqSD) (198)

and rB and rSD are, respectively, the values of r on the bifurcation time and on the begin-
ning of the strong discontinuity regime, this last one given by

rSD = rB −
1

b
ln

[
qB
qSD

(
b+ aqSD
b+ aqB

)]
(199)

iii. Strong discontinuity regime:

D(r) = 1− qSD
r
e

ftk

Gf
√
E

(rSD−r)
(for r > rSD) (200)

More details about the deduction of above equations are presented in Peixoto et al. [2018].

8 Boundary integral equations with presence of discontinuities

To obtain the BIE when discontinuities – whether weak or strong – are present, the regularized
kinematics presented in the section 7.1.3 can be used. However, for numerical reasons, it is im-
portant to reformulate it again, allowing the distribution of discontinuous surface effects over a
finite (and arbitrary) region of the domain. Such a reformulation is presented initially. Then, start-
ing from the differential formulation of the problem, the integral equations are obtained. Finally,
the imposition of the equilibrium equation on the discontinuous interface, in its strong form, is
highlighted as a necessary condition to complement the integral formulations.

8.1 Kinematic equations reformulation

Taking as a starting point Figure 24c, the reformulation of the kinematics with discontinuities
starts with the definition of an arbitrary subdomain Ωϕ (⊂ Ω), around S, as shown in Figure 27.

We also define a continuous function ϕ(x), also arbitrary in Ωϕ, but satisfying the following
conditions:

ϕ(x) =

{
0, for x ∈ Ω−\Ω−ϕ
1, for x ∈ Ω+\Ω+

ϕ

(201)
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Figure 27: Arbitrary subdomain Ωϕ around the discontinuous surface.

Thus, equation (163) can be rewritten in the form:

u̇i(x, t) = ˙̄ui(x, t) + ϕ(x)[[u̇i]](x, t)︸ ︷︷ ︸
˙̂ui(x,t)

+ [HS(x)− ϕ(x)]︸ ︷︷ ︸
Mϕ
S(x)

[[u̇i]](x, t)

= ˙̂ui(x, t) +Mϕ
S(x)[[u̇i]](x, t)

(202)

where ˙̂ui(x, t) are continuous functions andMϕ
S(x) has null value for all x in Ω, except in subdo-

main Ωϕ. Note, therefore, that the displacement field (or velocity field) is composed of a regular
portion, ûi(x, t), and another that contains the jump components,Mϕ

S(x)[[ui]](x, t), whose region
of influence is Ωϕ.

It should also be noted, as described by Oliver [1996], that essential boundary conditions
could not be imposed directly on the ūi or [[ui]] parcels of the displacement field. However, with
the reformulation defined in the equation (202), such conditions can be applied exclusively to the
term ûi, provided that Γu ∩ Ωϕ = 0.

Equation (164), in turn, takes the form:

ε̇ij(x, t) =
1

2
( ˙̂ui,j + ˙̂uj,i)︸ ︷︷ ︸

˙̂εij

+
Mϕ
S

2
([[u̇i,j ]] + [[u̇j,i]])−

1

2
(ϕ,i [[u̇j ]] + ϕ,j [[u̇i]])︸ ︷︷ ︸

−ε̇ϕij

+
µS
2h

([[u̇i]]nj + [[u̇j ]]ni)

= ˙̂εij − ε̇ϕij +
µS
2h

([[u̇i]]nj + [[u̇j ]]ni)

(203)
where ε̂ij is a regular portion of the strain field, εϕij has non-null values only in the subdomain Ωϕ

and the last term is restricted to points on S.
As in the case of equations (163) and (164), equations (202) and (203) are kinematically

compatible only under strong discontinuity regime, i.e., when limh→0

[µS(x)
h

]
= δS(x).
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8.2 Boundary Value Problem formulations

The boundary value problem, considering the presence of a discontinuity surface S , is fully defined
through the following set of differential equations:

σ̇ij,j + ḃi = 0 in Ω\S (internal equilibrium) (204a)

σ̇+
ijnj − σ̇

−
ijnj = 0 on S (external traction continuity) (204b)

σ̇+
ijnj − σ̇

S
ijnj = σ̇−ijnj − σ̇

S
ijnj = 0 on S (internal traction continuity) (204c)

ε̇ij −
1

2
(u̇i,j + u̇j,i) = 0 in Ω (kinematic compatibility) (204d)

σ̇ij = σ̇Sij(ε̇ij) on S (constitutive compatibility) (204e)

σ̇ij = σ̇
Ω\S
ij (ε̇ij) = Cijklε̇kl in Ω\S (constitutive compatibility) (204f)

˙̂ui = ˙̃ui in Γu (essential boundary conditions) (204g)

σ̇ijnj = ˙̃ti in Γσ (natural boundary conditions) (204h)

where σSij(εij) represents an appropriate continuous constitutive relation, e.g., equations (167),
and a linear elastic regime is considered for Ω\S . Terms σ+

ij and σ−ij refer, respectively, to the
stress at Ω+ and Ω−. The complementary equilibrium equations (204b) and (204c) are associated
with the external and internal (to S) traction continuity. Equation (204d) corresponds to (203).

Considering the arbitrariness of ϕ(x) and a fixed orientation of the discontinuity surface af-
ter its establishment (material character of S), the constitutive relations in equations (204e) and
(204f), after applying equation (203), can be rewritten in the following forms:

σ̇Sij(ε̇ij) = σ̇Sij(
˙̂εij , [[u̇i]], [[u̇i,j ]]) (205)

σ̇
Ω\S
ij (ε̇ij) = Cijklε̇kl = Cijkl

[
˙̂εkl − ε̇ϕkl([[u̇i]], [[u̇i,j ]])

]
(206)

A first integral formulation of this problem can be obtained from the following weighted resid-
ual equation:∫

Ω\S
(σ̇

Ω\S
ij,j + ḃi)u

∗
i dΩ+

∫
S
nj(σ̇

+
ij−σ̇

−
ij)u

∗
i dΓ+

∫
Γσ

( ˙̃ti− ṫi)u∗i dΓ+

∫
Γu

( ˙̂ui− ˙̃ui)t
∗
i dΓ = 0 (207)

where u∗i and t∗i represent arbitrary weighting fields.
Integrating the first term of equation (207) by parts, we obtain:∫

Ω\S
σ̇

Ω\S
ij,j u

∗
i dΩ =

∫
Γ
ṫiu
∗
i dΓ +

∫
S

(σ̇−ij − σ̇
+
ij)nju

∗
i dΓ−

∫
Ω\S

σ̇
Ω\S
ij u∗i,jdΩ (208)

and, substituting equation (208) into equation (207),∫
Ω\S

σ̇
Ω\S
ij u∗i,jdΩ =

∫
Ω\S

ḃiu
∗
i dΩ +

∫
Γσ

˙̃tiu
∗
i dΓ +

∫
Γu

[( ˙̂ui − ˙̃ui)t
∗
i + ṫiu

∗
i ]dΓ (209)

From equations (203) and (206) and considering the symmetries associated with the regime of
small displacements in isotropic media, one can write:

σ̇
Ω\S
ij = Cijkl ˙̂uk,l − Cijklε̇ϕkl (210)

In this way, applying equation (210) to the kernel of the integral on the left side in equation (209),
we obtain: ∫

Ω\S
σ̇

Ω\S
ij u∗i,jdΩ =

∫
Γ

˙̂uit
∗
i dΓ−

∫
Ω
σ∗ij,j

˙̂uidΩ−
∫

Ω
σ∗ij ε̇

ϕ
ijdΩ (211)
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and, finally, substituting equation (211) in equation (209), we arrive in the following result:

−
∫

Ω
σ∗ij,j

˙̂uidΩ =

∫
Ω
ḃiu
∗
i dΩ +

∫
Γ
ṫiu
∗
i dΓ−

∫
Γ

˙̂uit
∗
i dΓ +

∫
Ω
σ∗ij ε̇

ϕ
ijdΩ (212)

The integral equations of interest are obtained next, through the particularization of the weighting
fields.

8.3 Integral equations with discontinuities

If the solutions from the Kelvin’s fundamental problem are adopted as the weighting fields in
equation (212), similar equations as those presented in section 3 are obtained, regarding only the
substitution of terms depicted in table 2.

Table 2: Terms correspondence for integral equations.

Continuum media Presence of discontinuities

ui ûi

εij ε̂ij

εoij εϕij

Thus, equations (67), (68) and (69) take the following forms:

˙̂ui(ξ) =

∫
Γ
u∗ij(ξ,x)ṫj(x) dΓ−

∫
Γ
t∗ij(ξ,x) ˙̂uj(x) dΓ +

∫
Ω
u∗ij(ξ,x)ḃj(x) dΩ

+

∫
Ω
σ∗ijk(ξ,x)ε̇ϕjk(x) dΩ

(213)

cij(ξ) ˙̂uj(ξ) =

∫
Γ
u∗ij(ξ,x)ṫj(x) dΓ−

∫
Γ
− t∗ij(ξ,x) ˙̂uj(x) dΓ

+

∫
Ω
u∗ij(ξ,x)ḃj(x) dΩ +

∫
Ω
σ∗ijk(ξ,x)ε̇ϕjk(x) dΩ

(214)

˙̂εij(ξ) =

∫
Γ
u∗ijk(ξ,x)ṫk(x) dΓ−

∫
Γ
t∗ijk(ξ,x) ˙̂uk(x) dΓ +

∫
Ω
u∗ijk(ξ,x)ḃk(x) dΓ

+

∫
Ω
− σ∗ijkl(ξ,x)ε̇ϕkl(x) dΩ + F εεijklε̇

ϕ
kl(ξ)

(215)

8.4 Equilibrium equation on the discontinuity surface

Differently from what happens with conventional continuous solids, the integral formulations con-
sidering the presence of discontinuities do not completely define the boundary value problem rep-
resented by the equations (204). In fact, a simple inspection of equation (207) indicates that the
condition of traction external continuity – equation (204b) – is implicitly satisfied, however, the
same does not occur with equation (204c). Therefore, the condition of internal continuity must
be imposed separately. As in Oliver et al. [2003], this is done by taking the strong form of the
equation.
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Noting that equation (204c) corresponds to (166b), one can work with its corresponding in-
stantaneous version: equation (166a). Thus, considering equations (205) and (206), we obtain:

fi =
{
Cijkl

[
ε̂kl − εϕkl([[ui]], [[ui,j ]])

]
− σSij(εij)

}
nj = 0 (216)

where εij is given by the instantaneous version of equation (203) which, for points on S, corre-
sponds to

εij = ε̂ij − εϕij +
1

2h
([[ui]]nj + [[uj ]]ni) (217)

Equation (216) is called the interface equilibrium equation and, in the context of the BEM,
discussed in the next section, its numerical solution is obtained by adopting cells with embedded
discontinuities, providing the components of the displacement jumps, [[ui]], needed to calculate
εϕij . As will become clear, these components are assumed to be constants within a cell, resulting
in null gradient tensors, i.e., [[ui,j ]] = 0. Thus, for a given regular strain, ε̂ij , and considering
equation (217), equation (216) has as unknowns only the components [[ui]], i.e., one can write
fi ≡ fi([[ui]]) = 0. In this format, its solution can be obtained by Newton’s method after its
linearisation.

Thus, a regularized constitutive equation, relating stresses to regular strains, ε̂ij , can be defined
using equation (206):

σ̃ij(ε̂ij) = σ
Ω\S
ij

(
ε̂ij − εϕij

(
[[ui]](ε̂ij)

))
= Cijkl(ε̂kl − εϕkl) (218)

where [[ui]](ε̂ij) represents the solution of equation (216).

9 A BEM Formulation for Problems with discontinuities

Discretization of the boundary equations (213) to (215), follows the same procedures already
discussed in section 4. The same can be said about the solution strategy presented there. In this
way, only the main special aspects, regarding the analysis involving discontinuities, are described
here. Such main aspects are: cells with embedded discontinuity, displacement jump evaluation
and the numerical counterpart of the regularized constitutive equation (218).

9.1 Cells with embedded discontinuity

Subdomain Ωϕ, illustrated in Figure 27, needs to be discretized by new concept of internal cells,
called as cells with embedded discontinuity, which are now described. Furthermore, regions under
inelastic behaviour, but still in the pre-bifurcation phase, must also be divided into standard cells,
as illustrated in Figure 28a.

In cells with embedded discontinuity, only one collocation point is commonly adopted, so that
the initial strains are considered constant in its interior. Thus, for such cells, typically represented
in Figure 28b, one can write, for x ∈ Ωc,


ε̇ϕ11(x)
ε̇ϕ22(x)
ε̇ϕ12(x)

 ≈

ε̇ϕ,c11

ε̇ϕ,c22

ε̇ϕ,c12

 = {ε̇ϕ,c} (for 2D),



ε̇ϕ11(x)
ε̇ϕ22(x)
ε̇ϕ33(x)
ε̇ϕ12(x)
ε̇ϕ13(x)
ε̇ϕ23(x)


≈



ε̇ϕ,c11

ε̇ϕ,c22

ε̇ϕ,c33

ε̇ϕ,c12

ε̇ϕ,c13

ε̇ϕ,c23


=
{
ε̇ϕ,c
}

(for 3D), (219)
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Figure 28: (a) Solid with region divided into cells, (b) Cell with embedded strong
discontinuity

whereas, in the pre-bifurcation phase (in which εϕij is replaced by εoij) and in the case of plane strain
state, a fourth term must be added to this vector: ε̇o33(x) = ε̇o,c33 , since the out-of-plane component
σ∗i33 is not necessarily null. In the post-bifurcation steps, this fourth term is naturally null.

On the other hand, the cell geometry is parameterized through conventional linear or quadratic
shape functions:

Xj(η1, η2) ≈Mα(η1, η2)Xα
j (for 2D), Xj(η1, η2, η3) ≈Mα(η1, η2, η3)Xα

j (for 3D), (220)

where the index α refers to the cell’s geometry interpolation points (indicated in Figure 28b – in
which quadratic shape functions are considered) and ηi are natural coordinates, such that ηi ∈
[−1,+1].

The geometry interpolation functions can also be used to define the function ϕ(x) inside a cell
with embedded discontinuity, since the conditions of equation (201) are fully satisfied from the
choice:

ϕ(x(η1, η2)) =
∑
α+

Mα+
(η1, η2) (for 2D), ϕ(x(η1, η2, η3)) =

∑
α+

Mα+
(η1, η2, η3) (for 3D),

(221)
where the summation is performed over the interpolation functions associated with the cell’s points
located on the Ω+

c side of the cell. For example, in Figure 28b, the points associated to α− or α+

are indicated.
Within a cell with embedded discontinuity, it is further assumed that the jump components in

the displacements are constant, so that, for plane problems[[ui]](x) ≈ [[uci ]] =

{
[[uc1]]

[[uc2]]

}
= {[[uc]]}, para x ∈ Ωc

[[ui,j ]] = 0, para x ∈ Ωc

(222)

analogously for three-dimensional problems.
In the next subsection, the way to obtain these components is detailed, based on the numerical

solution of the equation (216).

9.2 Displacement jump evaluation

The components of the displacement jump inside a cell with embedded discontinuity are obtained
through the numerical solution of the interface equilibrium equation. For this, it is necessary to
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determine the gradient of the regularizing function, ϕ(x), which can be done from equation (221),
i.e.,

ϕ,i =
∂ϕ

∂ηk

∂ηk
∂xi

=

(
∂Mα

∂ηk
xαi

)−1 ∂ϕ

∂ηk
=

(
∂Mα

∂ηk
Xα
i

)−1[ ∂

∂ηk

(∑
α+

Mα+

)]
(223)

Rewriting in a matrix form and applying to the collocation point:

{∇ϕ(ξc)} = [J(ηξc1 , η
ξc
2 )]−1{∇ηϕ(ηξc1 , η

ξc
2 )} (for 2D), and,

{∇ϕ(ξc)} = [J(ηξc1 , η
ξc
2 , η

ξc
3 )]−1{∇ηϕ(ηξc1 , η

ξc
2 , η

ξc
3 )} (for 3D),

(224)

where ηξci refer to the natural coordinates of the cell’s collocation point, {∇ηϕ(ηξc1 , η
ξc
2 )} (or

{∇ηϕ(ηξc1 , η
ξc
2 )}) correspond to the vector defined by the term in square brackets in equation (223)

and matrix [J(ηξc1 , η
ξc
2 , η

ξc
3 )] for plane problems is given by

[J(η1, η2)] =


∂M1(η1, η2)

∂η1
· · · ∂Mnc(η1, η2)

∂η1
∂M1(η1, η2)

∂η2
· · · ∂Mnc(η1, η2)

∂η2


X

1
1 X1

2
...

...
Xnc

1 Xnc
2

 (225)

in which nc represents the number of geometry interpolation points for the cell. Similar expression
can be easily extended to three-dimensional problems.

Returning now to equation (203) and taking into account equation (222), it can be noted that,
for three-dimensional problems,

{εϕ,c} =



ϕ,1 (ξc) 0 0

0 ϕ,2 (ξc) 0

0 0 ϕ,3 (ξc)
1
2ϕ,2 (ξc) 1

2ϕ,1 (ξc) 0
1
2ϕ,3 (ξc) 0 1

2ϕ,1 (ξc)

0 1
2ϕ,3 (ξc) 1

2ϕ,2 (ξc)




[[uc1]]

[[uc2]]

[[uc3]]

 = [∇sϕ]{[[uc]]} (226)

and, for two-dimensional problems,

{εϕ,c} =

 ϕ,1 (ξc) 0
0 ϕ,2 (ξc)

1
2ϕ,2 (ξc) 1

2ϕ,1 (ξc)

{[[uc1]]
[[uc2]]

}
= [∇sϕ]{[[uc]]} (227)

Thus, using equations (217), (222) and (227) (or(226)), the following matrix form is obtained
for equation (216):

{f} = [N̄ c]T
(
[C]{ε̂c} − [C][∇sϕ]{[[uc]]} − {σS({ε̂c} − [∇sϕ]{[[uc]]}+

1

h
[N c]{[[uc]]})}

)
= {0}
(228)

where [C] is the elastic linear constitutive matrix, corresponding to the tensor Cijkl, and

[N̄ c] =



n1 0 0
0 n2 0
0 0 n3

n2 n1 0
n3 0 n1

0 n3 n2

 ; [N c] =



n1 0 0

0 n2 0

0 0 n3

1
2n2

1
2n1 0

1
2n3 0 1

2n1

0 1
2n3

1
2n2


(229)
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for three-dimensional problems, while for two-dimensional problems

[N̄ c] =

n1 0
0 n2

n2 n1

 ; [N c] =

 n1 0
0 n2

1
2n2

1
2n1

 (230)

For a given state of regular strains, {ε̂c}, equation (228) can then be solved from its linearisa-
tion, i.e.,

{f}j−1 +

[
∂{f}
∂{[[uc]]}

]
j−1

{δ[[uc]]}j ≈ 0 (231)

where j is an iterative index, {δ[[uc]]}j = {[[uc]]}j − {[[uc]]}j−1 and[
∂{f}
∂{[[uc]]}

]
j−1

= [N̄ c]T
[
− [C][∇sϕ]−

[
∂σS

∂ε

]
j−1

[
1

h
[N c]− [∇sϕ]

]]
(232)

It is emphasized here that vector {σS(·)}, present in equation (228), corresponds to the stress
provided by the constitutive model adopted to represent the effects of the discontinuity. For ex-
ample, such stresses can be given by equation (167b), with the damage variable being provided
by one of the equations: (197) or (200), depending on the discontinuity regime (weak or strong).
Term

[
∂σS

∂ε

]
, present in the equation (232), is the matrix form of the tangent operator defined, for

example, in equation (62).
The complete algorithm to evaluate the displacement jump inside a cell is:

i. Set j = 0 and {[[uc]]}0 with the final values of the last displacement jump components
evaluation;

ii. j = j + 1;

iii. If j > maximum number of iterations specified, the process is interrupted;

iv. Calculate {f}j−1 and
[
∂{f}
∂{[[uc]]}

]
j−1

, respectively from equations (228) and (232);

v. Solve equation (231),
[
∂{f}
∂{[[uc]]}

]
j−1

{δ[[uc]]}j = −{f}j−1, for {δ[[uc]]}j ;

vi. Actualize {[[uc]]}j = {[[uc]]}j−1 + {δ[[uc]]}j ;

vii. If
‖ {δ[[uc]]}j ‖
‖ {[[uc]]}j ‖

> TOL, where TOL is a pre-defined scalar tolerance, return to step (ii).

Else:

viii. Return with the result {[[uc]]} = {[[uc]]}j .

9.3 Regularized constitutive equation

Through equation (226) or (227), one can also write the matrix form of the regularized constitutive
equation (218) for a cell with discontinuity, i.e.,

{σ̃(ε̂c)} = [C]({ε̂c} − {εϕ,c}) = [C]({ε̂c} − [∇sϕ]{[[uc]]}) (233)

The stresses provided by this equation are necessary for the non linear solution strategy, for the
post-bifurcation steps. In addition to them, one must define a tangent operator for the regularized
constitutive equation, which can be done by taking its derivative:[

∂σ̃

∂ε̂c

]
= [C]

(
[I]− [∇sϕ]

[
∂{f}
∂{[[uc]]}

]−1

[N̄ c]T
(

[C]−
[
∂σS

∂ε

]))
(234)
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9.4 Solution strategy

The algorithm for a complete analysis involving discontinuities, follows exactly the same steps as
listed in section 4.2.1. The only exceptions are in steps (vii) and (xiii) for post-bifurcation phases,
as described below:

vii. The tangent matrix [∂σ/∂ε] present in equation (135) is substituted by equation (234) dur-
ing evaluation of [D]ij−1;

xiii. To evaluate the stress inside a cell with discontinuity, firstly the displacement jumps are
calculated, as described in the algorithm at the end of section 9.2. Then, such result is
applied to equation (233).

10 Examples of Non Linear Problems with discontinuities

This section presents numerical analyses of problems where occur the presence of discontinuity
– like analysis of crack propagation in quasi-brittle materials – to illustrate the application of the
formulation and algorithms discussed in the last sections. The first two examples are concrete frac-
ture experiments available in the literature, that consider mixed-mode crack propagation: the first
presented by Arrea and Ingraffea [1982], and the second by Gálvez et al. [1998]. They were mod-
eled under plane stress assumption, with the CSDA. The third example consider a prismatic bar
under simple tension, with a circular corner notch, where a three-dimensional model containing
cells with embedded strong discontinuity was used. For all examples, the control method adopted
to drive the incremental-iterative procedure in the non linear analyses, considered a convergence
tolerance of 10−4.

10.1 Example 1: Arrea and Ingraffea four point bending of a notched beam

The four point bending of a concrete notched beam, experimentally studied by Arrea and Ingraffea
[1982], was analyzed in this example to present the capability of the formulation for the treatment
of mixed-mode fracture problems. Geometry, loads, boundary conditions and material properties
are presented in Figure 29, together with the approximate crack path observed in the experiments.
As non linear analysis control method, the vertical displacement of the right point in the notch
mouth (point A in fig. 29), was considered.

Figure 29: Example 1 – Arrea and Ingraffea experiment: four point bending of a
notched concrete beam.
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The boundary was divided by 642 linear elements and a initial square cell with diagonal of 1.6
mm was introduced at the tip of the initial notch, such that, the origin of the discontinuity line is
imposed in the midpoint of that cell edge on the notch.

Initially, this cell works in elastic regime. Once the bifurcation condition is reached, the
discontinuity activation occurs, and a new cell is generated in elastic regime, and this process is
repeated through the analysis. The discontinuity tracking algorithm used, starts with a cell of 0.7
mm side length, and with a growth factor of cell size β = 1.001, until a maximum crack segment
size of 8 mm.

This example consider analysis with strong discontinuity regime is imposed directly after the
end of the elastic regime, and also, analysis with variable bandwidth model. The final mesh
achieved with the variable bandwidth model is presented in Figure 30, in which 72 new cells were
generated. The final mesh for the analysis with direct strong discontinuity is quite similar. The
curve of load P in function of the Crack Mouth Sliding Displacement (CMSD) of the original
notch is presented in Figure 31. The numerical results are plotted over the empirical envelopment
taken from the reference, showing a good accuracy.

(a) (b)

Figure 30: Example 1 - Final mesh: (a) Total mesh, (b) Detail
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Figure 31: Example 1 - Crack mouth sliding displacement equilibrium path
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10.2 Example 2: Gálvez et al. three and four point bending

Other shear tests, resulting in mixed-mode fracture patterns of a pre-notched concrete beam, re-
ported by Gálvez et al. [1998], were also analysed with the numerical formulation with CSDA.
The problem description is represented in Figure 32.

Figure 32: Example 2 – Gálvez et al. experiment data

Two cases were considered: three and four point bending. In the first one, point B in Figure 32
is free (K = 0), while in the second, the vertical displacement of such point was constrained
(K =∞). Each analysis is individually described next.

10.2.1 Three point bending

The non linear procedure was controlled by fixed increments of the vertical displacement of point
B.

Problem boundary was divided by 607 linear elements and a initial square cell, with diagonal
of 1.2 mm, was placed at the notch tip. The tracking algorithm was used, however with no variation
of cells sizes (β = 1.0). The final mesh, where 92 new cells were generated, is shown in
Figure 33.

(a) (b)

Figure 33: Example 2 - Final mesh: (a) Complete mesh, (b) Detail

Results for the external load P in function of point B vertical displacement and of the crack
mouth opening displacement (CMOD) are presented in Figure 34, for the analysis with variable
bandwidth model. Moreover, the numerical crack path is plotted in Figure 35. All these results
are compared, in the mentioned figures, with experimental data.
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Figure 34: Example 2 - Results for three point bending: (a) Point B vertical dis-
placement, (b) Crack mouth opening displacement

10.2.2 Four point bending

In the four point bending case of Gálvez et al. [1998] experiment, the vertical displacement com-
ponent of point A (see Fig. 32) was used to control the non linear increments.

The boundary discretization was the same of the three point bending case, i.e., 607 linear
elements. The initial cell was again squared, however with a diagonal of 0.6 mm. The generated
cells had their sizes incremented by the adoption of β = 1.001 in the tracking algorithm. Such
increment was suspended when a new discontinuity segment exceeded 0.75 mm length. The final
mesh is shown in Figure 36, in which 188 additional cells were generated.

To compare the numerical and experimental results, a curve of the applied load P versus the
loaded point vertical displacement is presented in Figure 37, while the crack path is plotted in
Figure 38.
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Figure 35: Example 2 - Results for three point bending crack path [Gálvez et al.,
1998]

(a)

(b) (c)

Figure 36: Example 2 - Final mesh for simulation of four point bending [Gálvez
et al., 1998]: (a) Complete mesh, (b) First cell detail, (c) Final cells detail.

10.3 Example 3: Prismatic bar with a circular corner notch

A prismatic bar under simple tension, with a circular corner notch is considered in this example.
Dimensions and material properties are presented in Figure 39. The failure surface is supposed to
occur at the horizontal notch plane highlighted, with the discontinuity fracture surface spreading
from the interior notch border. Quadrilateral boundary elements were used, and hexahedral cells
with embedded uniform strong discontinuity were applied for the discretization of specific regions
of the solids, where cracks were expected to propagate. Strong discontinuity regime is imposed
directly after the end of the elastic regime. Direct displacement control method was adopted to
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Figure 37: Exemplo 2 - Results for four point bending: Loaded point vertical dis-
placement
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Figure 38: Exemplo 2 - Results for four point bending: Crack path

drive the incremental-iterative procedure of the non linear analyses.
Two meshes, with different refinements, were considered as shown in Figure 40. Displace-

ment control of the corner point A (figure 39) was adopted for the non linear analysis progress.
Results for the displacement equilibrium path of point A and an intermediate point B are plotted in
Figure 41. The reference critical fracture stress σfcrit, shown in Figure 41, was achieved as a par-
ticular case of the stress-intensity solution for a quarter-elliptical corner crack, given by Anderson
[2005].

The equilibrium path present a peak stress a little under the reference critical fracture stress.
The increase in mesh refinement provides an accurate representation of the unload behaviour.
Also, from the results for point B (not a control node) it is possible to note a typical snap-back
of the equilibrium path. At this point neighbourhood, the discontinuity is activated only when the
unload stress is around 0.136 MPa. The unloading branches of all equilibrium paths present a non
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Figure 39: Example 3 - Prismatic bar under simple tension, with a circular corner
notch - dimensions and material properties

mesh 1 mesh 2

Figure 40: Example 3 - Cells distribution for mesh 1 and mesh 2
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Figure 41: Example 3 - Displacement equilibrium path for control point A, for point
B, and the reference critical fracture stress σfcrit.

smooth curve. This can be explained by the gradual activation of discontinuity at the cells on the
fracture plane, in different load steps, schematically presented in Figure 42.
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Figure 42: Example 3 - Gradual activation of discontinuity at the crack plane

11 Final Remarks

This chapter has presented the Boundary Element Method as a versatile technique for dealing with
damage modeling analysis, both for continuum medium and in the presence of discontinuity.

The non linear constitutive modelling, with elastoplastic or elasto-degrading models were as-
sociated with the implicit BEM formulation for physically non linear problems. The solution
strategy was detailed in a general algorithm applicable to different control methods.

For dealing with problems with discontinuity in the strain or displacement fields, the CSDA
was introduced with a variable bandwidth model, together with a review in the boundary element
equations. The integral equations with discontinuity and the equilibrium equation on the discon-
tinuity surface allowed the evaluation of displacement jumps that occur in the non linear analysis.
Algorithms for the evaluation of displacement jumps and strategy solution were presented.

The techniques presented in this chapter requires the discretization of the region of the domain
where dissipation effects occur, using cells. Conventional cells were used for the continuum non
linear analysis, while, in the possible presence of discontinuities there were needed the use of cells
with embedded discontinuity, presented in a section, with its particularities.

The results for some problems presented, showed the potential of the application of BEM in
the analysis of physically non linear problems, using a minimum of domain discretization.
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A Particular non linear constitutive models

Particular constitutive models, associated with the general equations presented in section 2.3, are
presented here. As an example of the elastic-plastic class, the von Mises associative isotropic
model is detailed, while for the elastic-degrading class, several isotropic damage models are pre-
sented.
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A.1 Elastoplastic von Mises associative isotropic model

The elastoplastic von Mises yield criterion defines a loading function of the type

F (σij , q) =
√

3J2(sij) + q(r)− σY (235)

where,

sij = σij −
1

3
σkkδij and J2(sij) =

1

2
sijsij , (236)

σY is the original material’s yield stress and q is a scalar stress-like internal variable, thermody-
namically conjugated to the scalar strain-like variable, r, by the hardening-softening modulus:

q̇ = −H(r)ṙ (237)

Particularly, the strain-like hardening-softening internal variable is the so called equivalent
plastic strain, defined by

r(t) =

∫ t

0
‖ ε̇pij(τ) ‖ dτ (238)

in which the variable t is associated to time.
The first term in the right side of equation (235) is known as von Mises equivalent stress, while

the second and third terms, represent the current yield limit.
Equation (237) makes the role of the hardening-softening law of equation (43), since, from

equations (46-b) and (235),

H = − ∂q

∂εpij
mij (239)

and thus, using equation (42),

q̇ = −λ̇h =
∂q

∂εpij
ε̇pij =

∂q

∂εpij
mij λ̇ = −Hλ̇ ⇒ h = H, ṙ = λ̇ (240)

Such law is a material property. For example, a linear hardening is defined by taking H(r) as
a constant (positive for hardening and negative for softening).

Moreover, as the model is associative,

mij = nij =
∂F

∂σij
=

√
3

2

sij√
sklskl

=

√
3

2

sij
‖ sij ‖

(241)

Now, to rewrite the loading function gradients and the hardening-softening modulus in a strain-
based formulation, equations (50) may be used to give

m̄ij = −n̄ij = −
√

6µ
sij
‖ sij ‖

(242)

H̄ = −q′(r) + 3µ (243)

where, µ is the shear modulus, defined in equation (11).
Thus, applying equations (242) and (243) to equation (49), the appropriate tangential stiffness

operator is directly obtained.
It is worthy to mention that the development made in this subsection is valid for three-dimensional

and plane strain problems, but not for plane stress case, for which an operator is commonly ap-
plied to account for the constraint of zero out-of-plane stress (see, for example, references Simo
and Hughes [1998] or de Souza Neto et al. [2006]).
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A.2 Isotropic damage models

A simple isotropic damage model can be characterized by a single scalar damage variable, D,
which defines the relation between initial and current secant stiffness, in the spirit of the original
damage interpretation by Kachanov [1958], i.e.,

Csijkl = (1−D)Cijkl, D ∈ [0, 1] (244)

The loading function, in the strain space, can be written in the following generalized form

F̄ (εij , r) ≡ F̄ (εij , D) = φ(εij)− r(D) (245)

where φ(εij) is called as equivalent strain and r(D) is the (scalar) strain-like variable and repre-
sents the current limit value of this equivalent strain for elastic behaviour.

For the hardening-softening law, the following generic assumptions are made

ṙ = −λ̇h̄, h̄ = − ∂r

∂D
⇒ Ḋ = λ̇ (246)

Thus, using equations (244) and (246), equations (64-b) and (64-a) assume the respective
forms

M̄ijkl =
∂Csijkl
∂D

= −Cijkl (247)

m̄ij = M̄ijklεkl = −Cijklεkl (248)

Moreover, from equations (64-c) and (245),

n̄ij =
∂φ

∂εij
(249)

Different constitutive models can be defined here simply by changing the definition of the
equivalent strain. Some examples are presented in table 3.

Table 3: Particular parameters for isotropic damage models.

Model φ(εij) n̄kl

Mazars and Lemaitre [1984] √
εijεij εkl

φ(εij)

Simo and Ju [1987] √
εijCijklεkl εijCijkl

φ(εij)

Oliver et al. [1990] √
ε+ijCijklε

+
kl

ε+ijCijkl

φ(εij)

Oliver et al. [2006] √
ε+ijCijklεkl ε+ijCijkl

φ(εij)

Lemaitre and Chaboche
[1990]

√
1

E
εijCijklεkl

1

E

εijCijkl

φ(εij)

Particularly, for Oliver et al. [1990] constitutive model,

ε+ij = 〈εij〉 =

ndim∑
k=1

〈εk〉p̂k ⊗ p̂k (250)
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where ndim is the problem’s dimension, εk represents the k-th principal strain, p̂k is the unit vector
in the corresponding principal direction and 〈εk〉 = (|εk|+ εk)/2.

Finally, the hardening-softening modulus is given from equation (64-d), using equations (245)
and (246), i.e.,

H̄ =
∂r

∂D
(251)

or, as during damage loading, r = φ,

H̄−1 =

[
∂r

∂D

]−1

=
∂D

∂φ
(252)

and an expression for evaluation of D is usually postulated as a function of the equivalent strain.
The tangent operator is then obtained by substitution of equations (244), (248), (249) and

(252) into equation (63).
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Abstract 

This chapter presents applications of the roving mass technique associated to Wavelet 

transforms in damage identification and localization, in beam-like structures, using numerical 

and experimental data, the research works developed at the Graduate Programs of Integrity 

of Engineering Materials and Structures and Civil Construction of University of Brasília.  

 

Keywords: Wavelet application, Structural Health Monitoring, Wavelet Transform, 

Continuous Wavelet, Discrete Wavelet, Wavelet Family Function. 

 

1 Introduction 

Structural pathologies or even structural collapse are often initiated by cracks in 

structural members. Structural damages must be identified in its initial state before 

compromising the integrity and service life of the structure. However, in its initial state, 

a crack is relatively small making it difficult to detect changes in the dynamic 

properties. Moreover, there are situations where damages may be hidden due to external 

cover façade, finishing, or skinning of buildings, bridges, etc. turning the detection of 

damages a difficult process. Therefore, auxiliary tools to indicate possible existence of 

damages are always welcome. 

 Aktan et all (1997) introduced the firsts concepts of structural identification. 

However, methods for identifying cracks, based on the changes of dynamic properties 

of bridges and buildings, are not very well effective and practical. Moreover, depending 

on the size of the surface crack, a crack can be detected using traditional technique like 
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the visual inspection. However, it is not possible to visually identify cracks when the 

structure surface is covered, insulated or located in unreachable locations. To overcome 

these difficulties, numerical/computational techniques have been under development 

(Breysse et al., 2008; Schabowicz, 2010) thus enabling quick decision-making process 

concerning the minimization or elimination of damages.  

 From the point of view of safety and economy, the detection of damages 

especially in bridges is an important issue. It is essential to perform periodic inspection 

to detect changes in the structural stability (Radzieński, Krawczuk and Palacz, 2011). 

Recent research on the technical literature shows that many damage identification 

algorithms were developed using dynamic characteristics, especially in the frequency 

domain (Doebling et al., 1996). In general, these techniques use comparisons between 

the intact and damaged response of the structure. Techniques based on Wavelet 

Transforms can overcome this limitation. Such techniques have been applied over the 

years and have been presented satisfactory results (Wang and Deng, 1999; Law et al., 

2005; Ren and Sun, 2008; Liu, Li and Zhang, 2009; Mikami, Beskhyroun and Oshima, 

2009; Palechor et al., 2014). 

 The purpose of this report is presents applications of the roving mass technique 

associated to Wavelet transforms in damage identification and localization, in beam-like 

structures, using numerical and experimental data. The research works was developed at 

the Graduate Programs of Integrity of Engineering Materials and Structures and Civil 

Construction of University of Brasilia. The numerical analysis models damage beams 

by Timoshenko FE model with additional mass. And the experimental essay applies 

non-stationary forces signal to excite commercial profiles of steel beams simply 

supported (close to real situations). 

 Firstly, Section 2 presents a description of the roving mass technique and a 

dimensional analysis of principal parameters. Section 3 carries out a numerical analysis 

using Timoshenko FE model combined with wavelet transform. Finally, section 4 

presents experimental results of a steel beam obtained in Vibration Laboratory of 

Dynamical Systems Group developed by Graduate Programs of Structures and Civil 

Construction and Integrity of Engineering Materials of University of Brasília. 

2 Roving Masses Technique 

 Damage identification may be seen as an inverse problem of identification of a 

system whose input signals and output signals are known, but the geometry of the 

damage location and shape are unknown (Ticona Melo et al., 2016). This means that the 

purpose of damage detection is to describe a damage in an existing structural model, 

based on output data obtained experimentally (dynamic response) from specific input 

signals. It is often desirable to detect irregularities or changes in structure response, 

considering properties that have been altered by the presence of the damage in the 

structure. 

 Studies of identification of damage in structures using an auxiliary mass have 

been done (Mermetas and Erol, 2001; Zhong and Oyadiji, 2008; Zhong, Oyadiji and 

Ding, 2008; Erwin Ulises Lopez Palechor et al., 2018; Palechor, Bezerra, Morais, et al., 

2019; Santos et al., 2019). This technique consists of the application of an additional 

mass along the length of structure to magnify the effect of the discontinuities. 
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 In free vibration case, the Euler-Bernoulli beam’s motion equation beams is 

described by follow expression, 

𝐸𝐼
𝜕4𝑢

𝜕𝑥4
+ [𝜌𝐴 + 𝑚𝑎𝛿(𝑥 − 𝐿𝑑)]

𝜕2𝑢

𝜕𝑡2
= 0, (1) 

where 𝐸 and 𝜌 are Young modulus and density, respectively, cross-sectional area 𝐴, 

beam length 𝐿, 𝑢 is the transverse displacements (and acceleration �̈�), and 𝑚𝑑 is the 

damage mass. 

 To obtain the dimensionless of Euler-Bernoulli beam equation, we assume 𝑢 =
𝛿𝑢�̅�, (beam static deflection 𝛿𝑢), 𝑥 = 𝐿�̅� and 𝑡 = 𝑇𝑡̅ = 𝑡̅ 𝑓𝑛⁄  (𝑓𝑛 = 1/𝑇 is the 

fundamental frequency) in which �̅�, �̅�, and 𝑡̅ are dimensionless parameters. 

4𝜋2

𝛽4
�̅�𝐼𝑉 + �̈̅� +

𝑚𝑑

𝜌𝐴𝐿
�̈̅�𝛿 (�̅� −

𝐿𝑑

𝐿
) = 0, (2) 

where, the dynamic characteristic of beam is described by the parameters 𝛽 (done by 

expression 2𝜋𝑓𝑛 = (𝛽2 𝐿2⁄ ) √𝐸𝐼 𝜌𝐴⁄ ) and function of boundary conditions), mass 

discontinuity 𝑚𝑑 and its position 𝐿𝑑. For the present analysis, the damage beam is 

characterized by the presence of mass discontinuity to simulate an open crack, i.e., a 

rigidity discontinuity. Santos (2019; 2020) shows the correspondence between mass and 

rigidity discontinuity for small values.  

  Frequency-shift curve is the modal frequency of damage beam (with mass 

discontinuity for this analysis) as function of a roving mass along essayed beam. Zhong 

Oyadiji (2008) and Zhong Oyadiji and Ding (2008) shows the possibility to determine 

damage location in beam-like structures by discontinuity in curvature of frequency-shift 

for first frequencies. Palechor et al. (2014; 2018; 2019) use Discrete Wavelet Transform 

(DWT) to evidence discontinuity in frequency-shift curves with good results. 

3 Numerical Damage Identification in Beam-like Structures with Roving 

Masses Technique 

 This work section presented a numerical study of additional mass spatial probing 

identification technique using DWT of frequency shift curves of damaged Timoshenko 

FE 2-nodes beam (Santos et al., 2019; Santos, 2020). Simply supported and free-free 

beams was analyzed for two damage mass, ¼ and ½ of beam span. WDR index is 

proposed to analyze the magnitude of the damage. 

 Numerical analyses of an aluminum beam with geometric and material 

properties are presented in Table 1. 

  

Palechor, Erwin U. L., et al. (2022)                                Roving Mass & Wavelet to Structural Damage Detection and Localization pp. 881-898

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 884



Table 1: Geometric and material properties of the aluminum beam. 

Characteristics of the beam 

Mass [g] 385,33 

Length [m] 395,00 

Base of the cross-section [m] 19,00 

Height of the cross-section [m] 19,00 

Cross section area [mm²] 361,00 

Moment of inertia [mm4] 1,09.10-4 

Modulus of elasticity [GPa] 66,66 

Shear modulus [GPa] 24,18 

Density [kg/m³] 2702,27 

Poisson’s ratio 0,33 

  Free-Free (F-F) and Supported-Supported (S-S) boundary conditions are studied. 

The damage was simulated as discontinuity mass positioned at half and a quarter span 

from left support, respectively, L/2 and L/4 (Figure 1). 

 

Case 1 Case 2 

  

Case 3 Case 4 

  

Figure 1: Beam cases with different boundary conditions and damage positions. 

3.1 Frequency-Shift Curve 

  The frequency-shift technique was applied for three first modal frequencies for 

each case. Using a roving mass 𝑚𝑎 of 2% of total beam mass 𝑚𝑡, the frequency-shift 

curve was used to determine a discontinuity mass 𝑚𝑑 varied from 1% to 10% of 𝑚𝑡. 

Figure 2 and Figure 3 shows the frequency-shift curves for F-F and S-S beams, 

respectively, as function of discontinuity mass 𝑚𝑑. It was observed the influence of the 

structure's mode shape. But, also, it was observed minor variations in frequency-shift 

L/2

m d

L/4

m d

L/2

m d

L/4

m d
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curve when discontinuity mass is located at a nodal point (Figure 2b1, Figure 2a2 nd 

Figure 3b1). 

 

Case 1 Case 2 

(a1) (a2) 

(b1) (b2) 

(c1) (c2) 

Figure 2: Frequency-shift fn(x/L)/max (fn(x/L)) function of ma position in F-F beams (cases 
C1 and C)2: (a) first frequency, (b) second frequency and (c) third frequency. 
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Case 3 Case 2 

(a3) (a4) 

(b3) (b4) 

(c3) (c4) 

Figure 3: Frequency-shift fn(x/L)/max (fn(x/L)) function of ma position in S-S beams (cases 
C1 and C)2: (a) first frequency, (b) second frequency and (c) third frequency. 

3.2 DWT of roving mass (𝒎𝒂) and damage mass (𝒎𝒅) relationship 

For a discontinuity mass located at middle span of F-F (C1) and S-S (C3) beams, using 

the bior6.8 mother wavelet, the influence of the additional mass 𝑚𝑎 on the frequency 

shift curve is studied. To define a useful metric, it is proposed wavelet damage ratio 

(WDR) that relate damage level by the ratio between damage signal 𝑆𝑑 and base signal 

𝑆𝑏 (Figure 4).  
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Figure 4: WDR index determination using the wavelet functions bior6.8. 

  The WDR index is expressed by equation, 

𝑊𝐷𝑅[𝑑𝐵] = 20𝑙𝑜𝑔10 (
𝑆𝑑

𝑆𝑏
), (3) 

in which 𝑆𝑑 and 𝑆𝑏 corresponds, respectively, to the maximum absolute value of DWT 

coefficient at damage position and without singularities positions, as shown in Figure 4. 

Figure  and Figure 6 present frequency-shift curve for 1 and 10% damage relative to 

roving masses of 1, 2 and 5% additional mass. 

(a) (b) 

Figure 5: Frequency-shift curve of C1 beam as function of roving mass 𝒎𝒂  

for damage mass 𝒎𝒅 of 1% (a) and 10% (b). 

(a) 
 

(b) 

Figure 6: Frequency-shift curve of C1 beam as function of roving mass 𝒎𝒂  

for damage mass 𝒎𝒅 of 1% (a) and 10% (b). 
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  Figure  show WDR index for additional mass of 5% with a slight tendency to 

saturation. Figure 6 present the same tendency in this regard. Increasing of roving mass 

does not improve the damage perception, i.e., an increase in WDR. 

3.3 Final Comments on the Numerical Example 

 The frequency-shift curve makes possible detect and locate a damage using only 

damaged response, eliminating comparison to an intact response. The proposition of 

WDR index as a metric to reduce frequency-shift curve to a value need more analysis. 

The damage perception was not increased with more roving mass. Palechor (2013) have 

the same impression in his experimental study. But it is necessary more numerical and 

experimental observation about this question. 

4 Experimental Damage Identification in Beam-like Structures with 

Roving Masses Technique 

This work presents the application of an identification methodology based on the 

analysis of the dynamic properties of simply supported steel beams. Beams here are 

submitted to the action of additional masses that can generate progressive changes of 

the natural frequencies (Mermetas and Erol, 2001; E. U.L. Palechor et al., 2018). The 

change in the structural stiffness due to the existence of damage in the beam may not be 

so evident. Therefore, in this research, the Wavelet Transform is used to help in the 

process of locating possible stiffness changes due to damages (Rizos, Aspragathos and 

Dimarogonas, 1990; Mermetas and Erol, 2001; Kotambkar, 2014; Khoa and Quang, 

2016). This research also presents experimental tests results on steel beams with 

simulated damages. The experimental tests were carried out in the Laboratory of 

Vibrations of the Department of Mechanical Engineering in the University of Brasília. 

Even though the experiments were conducted within the laboratory, the size of the 

beams tested corresponds to small commercialized steel beams available in the market. 

  The additional mass placed on the beams were small steel plates fixed with 

braces and bolts. The assembly of the added masses is schematically shown in Figure 7. 

 

 

(a) Additional Mass 

 

(b) Additional Mass 

 

(c) Steel plate to add mass. 

Figure 7: Additional mass on the beam. 

  Figure 8 show schematic representation for location and characteristics of 

induced damage on essayed beams. The additional masses (M) add together 3.366 kg 

for Case C1 and 24.718 kg for Case C2. 
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(a) Case C1 

 

(b) Case C2 

Figure 8: Schematic representation of Damage Position for Cases 1 (a) and 2 (b) 

 

 Figure 9 shows details of the test scheme assemblage the steel beams in the 

Laboratory of Vibration and Dynamics of Systems of the University of Brasília. 

 

 (a)  (b) 

Figure 9: Experimental setup of simply support beam: (a) general view of essayed beam, 
and (b) detail of measurement points (discretization of 20cm). 

 To ensure simple support (Figure 10a), two plane plates and a roller were used 

to allow displacement only in the x direction. For the hinged support (Figure 10b), two 

20 cm
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grooved plates with a roller were designed to restrict the translation in all direction, 

permitting only rotation. 

 

 

(a) Left Support. 

 

(b) Right support. 

Figure 10: Detail for simple support at steel beam ends. 

 In order to carry out the dynamic tests the following tools are used 

accelerometers PCB 352C34 and PCB352C33, modal hammer PCB 086C0 (with steel 

tip) and NI cDAQ + NI 9187 + LabView software as data acquisition. 

 

The experimental procedure follows the steps below for each roving mass position: 

• Step 1: the experimental specimens were subjected to impact load (modal 

hammer) applied in middle span (Figure 11). 

 

 

Figure 11: Impact modal analysis for beam essayed with roving mass. 

 

• Step 2: Force and acceleration dynamic signals was acquired by NI+Labview 

signal conditioner (Figure 12). This modal impact test was carried out four 

times. Exponential ad force windows were applied to acceleration and force 

signal, respectively, to reduce leakage effect. Force and acceleration temporal 

signals were saved for posterior treatment. 

• Step 3: Estimation of inertance response of force and acceleration dynamic 

signals by a Matlab script. First modal frequencies were accurately identified 

performing a weighted average of values around a peak detected in spectrum 

response. 

Uz=0Uy=0

Y

Z

X

Ux=0

Ux=0
Uy=0

Y

Z

X

Palechor, Erwin U. L., et al. (2022)                                Roving Mass & Wavelet to Structural Damage Detection and Localization pp. 881-898

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 891



 

Figure 12: LabView control panel. 

 The frequency resolution is very important to determine frequency variations 

due to additional mass location along essayed beam. Thus, several parameters are 

necessary configure to be able the analysis of dynamic signals: analyzed data size (N), 

acquisition rate (∆t) and sampling frequency (Fs). The best results were obtained with 

the following parameters: (a) 𝐹𝑠 = 1653 𝐻𝑧, (b) ∆𝑡 = 0.000605 𝑠, and (c) 𝑁 =
16384 (214). 

 Once inertance FRF estimated (Figure 13), the peaks correspond to firsts modal 

frequencies are identified for each roving mass position. After the peak identification, 

the estimated modal frequency 𝑓𝑛,𝑒𝑠𝑡 is performed a weighted average of frequencies 

around the lobe of spectrum frequency (National Instruments, 2009). 

𝑓𝑛,𝑒𝑠𝑡 =
∑ 𝑃𝑜𝑤𝑒𝑟(𝑖) 𝑖 ∆𝑓

𝑗+𝑚
𝑖=𝑗−𝑚

∑ 𝑃𝑜𝑤𝑒𝑟(𝑖) 
𝑗+𝑚
𝑖=𝑗−𝑚

  (4) 

where, 𝑗 is array position of frequency peak and 𝑃𝑜𝑤𝑒𝑟 (𝑖) represents the amplitude 

value of FRF spectral line.  

 Once the corrected frequencies are obtained, these values are plotted to 

compound the frequency-shift curve. The discretization of essayed beam for roving 

mass position was done by 20 cm. For C1 and C2 beams (5m and 6m long), 

respectively, there are 26 and 31 positions for the roving mass. The frequency-shift 

curve are interpolated to obtain a vector with a larger number of data and thus calculate 

the wavelet coefficients as described in Palechor et al. (Palechor, 2013; Palechor, 

Bezerra, Morais, et al., 2019; Palechor et al., 2022). 
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Figure 13: Example of inertance FRF spectrum for essayed beam with a roving mass. 

 In the frequency domain, the peaks corresponding to the first natural frequency 

of the structure are identified. Figure 13 shows an example inertance FRF spectrum 

with/without application of the exponential window. Noise reduction and signal 

stabilization are clearly visible due to the use of the exponential window. 

4.1 Experimental Results of Case C1 

 Figure 14 represents the frequency-shift curve for first frequency of case C1 

beam. This graph corresponds to first frequency of C1 beam as function of roving mass 

position along its 26 measured nodes. The added mass used was 3.266 kg, positioned on 

each node. 

 

 

Figure 14: Frequency-shift curve for first frequency of beam C1. 

In Figure 14, the dashed line represents the FRF peak frequencies. The dotted line is 

estimated frequency using Equation (4). And the solid line is the cubic spline 
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interpolation of estimated frequency (Erwin Ulises Lopez Palechor et al., 2018; 

Palechor, Bezerra, Morais, et al., 2019; Palechor et al., 2022). This numerical 

interpolation obtains best fits signals to damage location. 

 Figure 15 are the DWT of frequency-shift curve using four mother wavelet 

functions (sym6, rbio2.6, db5 and bior6.8). It can be observed a group of spikes 

between nodes 8 and 9 and between nodes 23 and 24 which matches to damage located 

at 1.5m and 4.5m, respectively. This last one shows less prominent, but still noticeable. 

Such peaks are big enough to be seen compared with the other peaks exists. 

 

 

(a) symlet 6 

 

(b) rbio 2.6 

 

(c) db5 

 

(d) bior 6.8 

Figure 15: DWT first frequency using (a) symlet 6, (b) rbio2.6,  
(c) db5 and (d) bior 6.8 mother wavelets. 

 

4.2 Experimental Results of Case C2 

 Figure 16 represents frequency-shift curve for first frequency of case C2 beam. 

This graph corresponds to first frequency of C2 beam as function of roving mass 

position along its 31 measured nodes. The roving mass used was 24.718 kg, positioned 

on each node. 
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Figure 16: Frequency-shift curve for first frequency of beam C2. 

 Figure 17 presents the DWT of frequency-shift curve using four mother wavelet 

functions (sym6, rbio2.6, db5 and bior6.8). It can be observed a group of spikes 

between nodes 25 and 27 and between nodes 28 and 29 which matches to damages 

induced. The techniques of signal interpolation with the cubic spline in the frequency 

domain and the method of main lobe correction showed good results. 

 

 

(a) symlet 6 

 

(b) rbio 2.6 

 

(a) db6 

 

(b) bior 6.8 

Figure 17: DWT first frequency using (a) symlet 6, (b) rbio2.6,  
(c) db5 and (d) bior 6.8 mother wavelets. 
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4.3 Final Comments on the Experimental Example 

 This section presented experimental results using roving mass technique to 

locate damages in essayed beams with simulated open cracks. Measuring of 

fundamental frequency of essayed beams with an added mass positioned along it. Two 

cases were analyzed: case C1 and C2, respectively, with 5m and 6m. Both beams are 

commercial steel I-section. The damage is responsible for pronounced peaks clusters on 

DWT coefficients of frequency-shift curve. 

 The experimental results illustrate the roving mass methodology for damage 

identification based only on structure damaged response. According to Rytter 

classification (Palechor, Bezerra, de Morais, et al., 2019; Silva et al., 2019), this method 

has level II, i.e., determine damage location but not damage quantification. The 

amplitudes of the wavelet coefficients can vary even if the same beam and damage are 

used in the same test since the signal processing is affected by the noise signal present, 

but the coefficients wavelets do not stop generating larger amplitudes in the regions 

proximate to the damage location. 

 

5 Conclusions 

This chapter presents applications of a non-destructive method called roving mass 

technique. This technique based on the frequencies shift using an additional roving mass 

presented coherent results for the two cases that were investigated (free-free and simply 

supported beam). This response-only technique, associated to Wavelet transforms, carry 

out damage localization in beam-like structures using numerical and experimental data. 

It was possible to locate the damage presence due to a discontinuity in modal frequency 

curve along beam. Also, it is possible to observe that the bigger the damage, the bigger 

this variation. The research works is developed at the Graduate Programs of Integrity of 

Engineering Materials and Structures and Civil Construction of University of Brasília. 

 Different mother wavelet functions (db5, coif3, sym6, and bior6.8) were 

analyzed with a better signal to noise ratio.  

 Finally, the proposed methodology has shown promise as it only needs to 

analyze the dynamic data of the damaged structure to successfully localize the damage, 

unlike other techniques that require the intact and damaged response.  
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Abstract

This chapter presents the most recent developments on mesh free numerical meth-
ods at the Department of Civil Engineering and Environment of the University of
Brası́lia. Therefore, the concern of this chapter is a local mesh free method for solv-
ing linear elastic and fracture mechanics two-dimensional problems. For a nodal
discretization of the problem domain, based in the work theorem from the theory of
structures, the global system of equilibrium equations is constructed using a node-
by-node process, performed in the local domain of each node. The reduced numerical
integration is implemented to improves the model accuracy. Both regular and irreg-
ular nodal distributions can be considered, which makes it a reliable model. Local
mesh free numerical methods depends on two arbitrary parameters for the analysis:
the size of the compact support, which control the accuracy; and the local domain of
integration, which control the efficiency. Both parameters are automatically defined
by means of a multi-objective optimization process, based on genetic algorithms and
symbiotic organism search algorithm, which makes it a robust model. Linear elas-
tic fracture mechanics applications of local mesh free are performed through the
singularity subtraction technique (SST), which regularizes the elastic field, before
the numerical solution, thus introducing the stress intensity factors (SIF) as addi-
tional primary unknowns of the problem. Hence, the numerical model performs a
direct computation of the SIF and does not require a refined discretization to obtain
accurate results which, therefore, is an efficient model strategy. On all this cases,
benchmark problems were solved for an assessment of the accuracy and efficiency of
these techniques.

Keywords: Meshfree; Work theorem; Multi-objective optimization; Singularity Subtraction Tech-
nique.

1 Introduction

This section provides a brief overview on mesh free numerical methods over the recent years.
Several widely used numerical methods are outlined in a concise manner and should be a good
way to introduce the reader to those methods.
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Mesh free, or meshless, have some advantages when compared to mesh-based methods, such
as the Finite Element Method (FEM) and the Boundary Element Method (BEM), see Basu et al.
[2003]. The essential feature of these methods is that they perform the discretization of the prob-
lem domain and boundaries with a set of scattered field nodes that do not require any mesh for the
approximation of the field variables. In general, their formulation is based in the weighted-residual
method, see Finalyson [1972].

Some of these meshless methods are based on a weighted-residual weak-form formulation.
After discretization, the weak form is used to derive a system of algebraic equations through a
process of numerical integration using sets of background cells, globally or locally constructed in
the domain of the problem. Research on meshfree methods, based on a weighted-residual weak-
form formulation, significantly increased after the publication of the Diffuse Element Method
(DEM), introduced by Nayroles et al. [1992]. The Reproducing Kernel Particle Method (RKPM),
presented by Liu et al. [1995], and the Element-free Galerkin (EFG) method, presented by Be-
lytschko et al. [1994b], were the first weak-form meshless methods applied in solid mechanics.

All these weak-form meshless methods rely on background cells for the integration of the
weighted-residual weak form over the global domain, in the process of the generation of the system
of algebraic equations and therefore, they are not truly meshless methods.

In order to overcome the use of a global integration background mesh, a class of mesh-
free methods based on local weighted-residual weak forms, such as the Meshless Local Petrov–
Galerkin (MLPG) method, presented by Atluri and Zhu [1998] and also by Atluri and Shen [2002];
the Meshless Local Boundary Integral Equation (MLBIE) method, presented by Zhu et al. [1998];
the Local Point Interpolation Method (LPIM), presented by Liu and Gu [2001], and the Local
Radial Point Interpolation Method (LRPIM) presented by Liu et al. [2002], have been developed.
Among them, the most popular of these methods is the MLPG, based on a moving least-squares
(MLS) approximation. Later, the MLPG was implemented with the Finite Volume Method (FVM),
as presented by Atluri et al. [2004], which improved the efficiency of the previous method.

The main difference of the MLPG method to other global meshless methods, such as EFG
or RKPM, is that local weak forms are used for integration on overlapping regular-shaped local
subdomains, instead of global weak forms and consequently the method does not require the use
of a background global mesh, but only a background local grid which usually has a simple shape.

One of the issues faced by many numerical methods is solution instability when reduced in-
tegration is considered. In FEM, elements with a reduced integration are commonly employed
because they are computationally efficient and avoid locking of fully integrated elements. But the
main drawback is that these elements are susceptible to spurious singular modes, named as hour-
glass modes, which are zero-energy modes in which the element can deform without an associated
increase of the internal energy. Stabilization techniques are usually employed to prevent these
undesired effects, as presented by Zienkiewicz and Taylor [1983] and Bathe [2014].

This is also an issue faced by many mesh free methods, resulting in well known unstable
hourglass deformation and zero-energy modes, such as the EFG, as reported by Beissel and Be-
lytschko [1996], and the RKPM, as reported by Belytschko et al. [2000]. For local mesh free
methods, the nodal integration was considered to improve computational efficiency, leading to un-
stable performance during the integration and formation of the stiffness matrix. Since each domain
of integration is associated with just one integration point, which is the node, the integration of
higher order functions inevitably causes fatal instabilities. In order to overcome these instabilities
that are present in direct nodal integration, Taylor series expansions have been used, to serve as
stabilization terms, as presented by Liu et al. [1985] for FEM, and by Liu et al. [1996] and Liu
et al. [2007] for mesh free methods. While stable, the main problem of this stabilization technique
is that it requires the computation of high order derivatives, nevertheless.

The mesh free discretization parameters, the compact support size and the local domain size,
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are paramount and greatly affect the efficiency of a mesh free analysis. Most mesh free methods
and author define both parameters arbitrarily depending on the nodal distribution, later studied by
Moussaoui and Bouziane [2013] for the MLPG. Heuristically defined discretization parameters
are not optimal and in most cases, inefficient.

Later, optimization attempts were carried out by Baradaran and Mahmoodabadi [2009] for two
dimensional heat conduction problems, by Bagheri et al. [2011] for three dimensional elastostatic
problems, and by Ebrahimnejad et al. [2015] for MLPG-FVM with adaptive refinement technique;
all of them with Genectic Algorithm (GA). Even though successful, their attempts were time
consuming and bounded to the analytical solution, which limits their usefulness.

In linear elastic fracture mechanics, the stress field becomes infinite at the crack tip, as pre-
sented by Brahtz [1933] and Williams [1952], becoming a source of singularity in numerical
modeling. In order to overcome this difficulty, different ways have been used to model crack
discontinuities.

In early attempts, Carpinteri et al. [2003] used the EFG considering a virtual extension of the
crack in the tangent direction at the crack tip, meanwhile Wen and Aliabadi [2007] and Flem-
ing et al. [1997] consider enriched basis/weight functions to mathematically capture jumps across
crack displacement fields. More recently, Nguyen et al. [2020] used the mesh free particle method
for thermal-mechanical crack growth analysis and Qingbo et al. [2021] used LRPIM to model
shear crack propagation, both with enriched functions. The main drawback of this modeling strat-
egy is that a limitation of the enrichment area must be considered in the presence of a densely
distribution of cracks or crack tips too close to the boundaries. Different approaches were at-
tempted to overcome this drawback. Rabczuk and Belytschko [2007] presented a method without
the representation of the crack topology, Bordas et al. [2008] performed the analysis without near-
tip enrichment, with extrinsic discontinuous enrichment; and Liu et al. [2004] presented a method
with crack-tip specific enrichment functions used to simulate failure.

To avoid representing the singularity entirely, Symm [1963] subtracted the singularity from
the numerical model, introducing the Singularity Subtraction Technique (SST). The method was
used by Xanthis et al. [1981] to solve anti-plane problems and by Aliabadi et al. [1987] to solve
crack problems with the Boundary Element Method (BEM).

2 Moving Least Square (MLS) Approximation

MLS approximation, schematically represented in Figure 1 for one-dimensional approximation,

Figure 1: Schematic representation of the MLS approximation in one dimension.

is based on three components: a weight function of compact support associated with each node, a
complete set of polynomial basis functions and a set of coefficients that are function of the space
coordinates, as presented by Atluri and Zhu [1998]. In the following, the local mesh free method
uses the basic MLS mesh-free terminology presented by Atluri and Zhu [2000].
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Consider the domain of a body Ω with boundary Γ and let N = {x1,x2, ...,xN} ∈ Ω be a
set of scattered nodal points that represents a mesh free discretization. It can be seen that some of
them are located on the boundary Γ, as represented in Figure 2. The distribution of nodes in Ω and
Γ is represented by xi, while Ωs, represented as ΩP , ΩQ and ΩR, is the local compact support of
a node xi, represented as xP , xQ and xR. Ωx is the domain of definition of a sampling point x
and Ωq is the local weak-form domain or quadrature domain of a node xi.

P

Q

P

R

Figure 2: Representation of a meshless discretization of the domain.

Circular or rectangular local supports, centered at each nodal point, can be used. In a neigh-
borhood of a sampling point x, the domain of definition of MLS approximation is the subdomain
Ωx.

2.1 Shape Functions

Now, let Ωx be the MLS approximation domain of definition, in a neighborhood of a sampling
point x. To approximate the displacement u(x) ∈ Ωx, over a number of scattered nodes xi ∈ Ω,
i = 1, 2, . . . , n, where the nodal parameters ûi are defined, the MLS approximation is given by

uh(x) = pT (x)a(x), (1)

for x ∈ Ωx, in which
pT (x) = [p1(x), p2(x), . . . , pm(x)] , (2)

is a vector of the complete monomial basis of order m and a(x) is the vector of unknown co-
efficients aj(x), j = 1, 2, . . . ,m that are functions of the space coordinates x = [x1, x2]

T , for
two-dimensional problems.

The coefficient vector a(x) is determined by minimizing the weighted discrete L2 norm

J(x) =
1

2

n∑
i=1

wi(x)
[
uh(xi)− ûi

]2
=

1

2

n∑
i=1

wi(x)
[
pT (xi)a(x)− ûi

]2
, (3)

with respect to each term of a(x), where wi(x) is the weight function associated with the node
xi, with compact support that is wi(x) > 0, for all x in the support of wi(x). Figure 2 represents
schematically the compact support of the MLS weight functions associated with a few scattered
nodes. Finding the extremum of J(x) with respect to each term of a(x), leads to

A(x)a(x) = B(x)û, (4)
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in which

A(x) =

n∑
i=1

wi(x)p(xi)p
T (xi), (5)

B(x) = [w1(x)p(x1), w2(x)p(x2), . . . , wn(x)p(xn)] (6)

and
û = [û1, û2, . . . , ûn] . (7)

Solving equation (4) for a(x) yields

a(x) = A−1(x)B(x)û, (8)

provided n ≥ m, for each sampling point x, as a necessary condition for a well-defined MLS
approximation. Finally, substituting for a(x) into equation (1) leads to the MLS approximation

uh(x) =
n∑

i=1

ϕi(x)ûi, (9)

in which

ϕi(x) =
m∑
j=1

pj(x)
[
A−1(x)B(x)

]
ji

(10)

is the shape function of the MLS approximation corresponding to the node xi, schematically
represented in Figure 3.
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Figure 3: Typical weight function and shape function of the MLS approximation
for a node at x = [1/2 0]T.

The MLS shape functions are not nodal interpolants that is ϕi(xj) ̸= δij . Since ϕi(x) vanishes
for x not in the local domain of the node xi, the local character of the MLS approximation is
preserved. The nodal shape function is complete up to the order of the basis. The smoothness of
the nodal shape function is determined by the smoothness of the basis and of the weight function.
The spatial derivatives of the shape function ϕi(x) are given by

ϕi,k =
m∑
j=1

[
pj,k(A

−1B)ji + pj(A
−1B,k −A−1A,k A

−1B)ji
]
, (11)

in which (),k = ∂()/∂xk.
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2.2 Weight Functions

Weight functions wi(x), schematically represented in Figure 3, introduced in equation (3) for each
node xi, have a compact support which defines the subdomain where wi(x) > 0, for all x. For
the sake of simplicity, this chapter considers rectangular compact supports with weight functions
defined as

wi(x) = wix(x)wiy(x) (12)

with the weight function given by the quartic spline function

wix(x) =

1− 6

(
dix
rix

)2

+ 8

(
dix
rix

)3

− 3

(
dix
rix

)4

for 0 ≤ dix ≤ rix

0 for dix > rix

(13)

and

wiy(x) =

1− 6

(
diy
riy

)2

+ 8

(
diy
riy

)3

− 3

(
diy
riy

)4

for 0 ≤ diy ≤ riy

0 for diy > riy ,

(14)

in which dix = ∥x− xi∥ and diy = ∥y − yi∥. The parameters rix and riy represent the size of the
support for the node i, respectively in the x and y directions.

3 Structural Modeling

Consider the domain Ω of a body with boundary Γ, further divided in Γu and Γt, with Γ = Γu∪Γt,
as Figure 4 represents. The work theorem is defined in an arbitrary domain ΩQ ∈ Ω∪Γ, assigned
to a reference point Q ∈ ΩQ, with boundary ΓQ = ΓQi ∪ ΓQt ∪ ΓQu, in which ΓQi is the
interior local boundary, and ΓQt and ΓQu are local boundaries that share the global boundaries,
respectively the static boundary Γt and the kinematic boundary Γu; points P and R, have arbitrary
local domains, respectively ΩP and ΩR.

Figure 4: Representation of the body’s domain Ω, with boundary Γ.

The mixed fundamental boundary value problem of linear elastostatics aims to find, in Ω, the
distribution of stresses σ, strains ε and displacements u, when it has displacements u, constrained
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on Γu, and is under the action of an external system of distributed surface and body forces with
densities represented, respectively by t, on Γt and b, in Ω.

The solution of the posed problem is a totally admissible elastic field that simultaneously sat-
isfies the kinematic admissibility and the static admissibility. If this solution exists, see Fichera
[2006], it can be shown that it is unique, provided linearity and stability of the material are admit-
ted. Such is the uniqueness theorem of Kirchhoff [1859] which, in the framework of the variational
calculus, leads to the theorem of virtual displacements and the theorem of virtual stresses. Since
these theorems consider the totally admissible elastic field that is the actual solution of the posed
problem, they are only particular cases of the general work theorem. Therefore, the general work
theorem will be used to solve the posed problem.

Now consider the domain Ω of a body, loaded by a system of external forces under the condi-
tions already mentioned, and a statically admissible stress field σ, which therefore satisfies

LTσ + b = 0, (15)

in Ω, with boundary conditions
t = nσ = t, (16)

specified on Γt; where L is a matrix differential operator; t denotes traction components; t denotes
prescribed tractions and n is the matrix of the components of the unit normal to the boundary
outwardly directed.

In the body, consider an arbitrary local domain ΩQ ∈ Ω ∪ Γ, assigned to a reference point
Q ∈ ΩQ, with boundary ΓQ = ΓQi ∪ΓQt ∪ΓQu, in which ΓQi is the interior local boundary, with
local boundaries ΓQt and ΓQu sharing the global boundaries, respectively the static boundary Γt

and the kinematic boundary Γu, as Figure 4 clearly represents. The work theorem will be derived
for this arbitrary local domain ΩQ. This local domain ΩQ ∪ ΓQ ∈ Ω ∪ Γ can be overlapping with
other similar sub-domains that can be defined in the body, due to its arbitrariness.

3.1 The Work Theorem

The work theorem establishes an energy relationship, in an arbitrary local domain ΩQ ∈ Ω, be-
tween two independent elastic fields that can be defined in the body. These elastic fields are,
respectively, a statically admissible stress field σ that satisfies equilibrium with a system of exter-
nal forces, and a kinematically admissible strain field ε∗ that satisfies compatibility with a set of
constrained displacements. Expressed as an integral form, defined in the domain ΩQ ∪ ΓQ, the
work theorem can be written in a compact way, simply as∫

ΓQ

tTu∗ dΓ +

∫
ΩQ

bTu∗ dΩ =

∫
ΩQ

σTε∗ dΩ, (17)

in which no constitutive relation links the stress σ and the strain ε∗. Therefore, they do not depend
on each other, as Figure 5 schematically represents, where Dbc and Tbc stands for Displacement
boundary condition and Traction boundary condition, respectively.

The statically admissible stress field σ, can be any field that guarantee the equilibrium with
the system of external forces, therefore satisfying equations (15) and (16). This elastic field is not
necessarily the stress that the system of external forces actually introduces in the body.

The kinematically admissible strain field ε∗, can be any field, assuming continuous displace-
ments u∗ with small derivatives, compatible with an arbitrary set of constraints specified on the
kinematic boundary. This elastic field is not necessarily the strain that actually settled in the body.

Lastly, the local domain ΩQ ∪ ΓQ is an arbitrary sub-domain of the body, associated with
the reference point Q, as represented in Figure 4, where the independent fields σ and ε∗ are
established.
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Dbc

Tbc

Figure 5: Schematic representation of the work theorem, an energy relationship,
valid in an arbitrary local domain ΩQ ∪ ΓQ ∈ Ω, between two independent fields.

3.2 Kinematic Formulation

Different formulations of local mesh free methods can be derived when one of the two independent
fields are locally defined in the body, usually in accordance with some particular convenience of
the numerical method formulation.

Kinematic formulations consider a particular specification of the strain field ε∗, leading thus
to a mechanical equilibrium equation, which is used in numerical model to generate the respective
stiffness matrix. A simple case of a kinematic formulation, based on a strain field generated by a
rigid-body displacement, is therefore presented.

3.3 Rigid-Body Displacement Formulation

One of the key feature of the work theorem, the complete independence of the admissible fields σ
and ε∗, allow the formulation to be simplified by defining kinematically admissible strain fields.
Hence, the simplest and obvious choice is to use a strain field generated by a rigid-body displace-
ment that can be defined as

u∗(x) = c, (18)

in which c is a constant vector that conveniently generates null strains

ε∗(x) = 0. (19)

The great virtue of this formulation is the simplicity used in the generation of the strain field.
Additionally, this formulation leads to a simple form of equilibrium equations that, in the absence
of body forces, involves only non-singular boundary integrals with no domain terms.

When the rigid-body displacement formulation is considered, the work theorem, equation (17),
simply leads to the equation ∫

ΓQ−ΓQt

t dΓ +

∫
ΓQt

t dΓ +

∫
ΩQ

bdΩ = 0 (20)
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which is nothing else other than the local version of Euler-Cauchy stress principle that is some-
times referred to as the defining principle of continuum mechanics. Equation (20) presents the
mechanical equilibrium of tractions and body forces, in the domain ΩQ, in an integral form. There-
fore, it is used to generate the stiffness matrix associated to the local node.

4 Numerical Modeling Strategy

Based on the work theorem and choosing a proper and convenient kinematic formulation, the
numerical model can derive the equilibrium equations that are used to generate the stiffness matrix.
This numerical modeling strategy is adopted to solve the actual elastic problem set up in Section 3.

First of all, locally defined in the work theorem, an appropriate strain field ε∗ is specified
in the kinematic formulation. The mesh free numerical model considers the arbitrary rigid-body
displacement, presented in Section 3.2, thus leading to the equilibrium equation (20).

On the other hand, the statically-admissible local field σ, will be always assumed as the elastic
field that actually settles in the body, required to satisfy equilibrium with a system of external
forces and loaded by the actual system of distributed surface and body forces, with the actual
displacement constraints.

Besides satisfying static admissibility, through equations (15) and (16), , or through equa-
tion (20), this elastic field also satisfies kinematic admissibility defined as

ε = Lu, (21)

in Ω, with boundary conditions
u = u, (22)

on Γu, in which continuous displacements are assumed with small derivatives, leading to geomet-
rical linearity of the strain field, in order to satisfy compatibility. Therefore, equations (22), which
specifies the constraints of the actual displacements, must be enforced in the numerical model, in
order to provide a unique solution of the posed problem.

5 Local Mesh free Method

The discretization of the domain is performed considering a set of scattered nodes in the domain
Ω and boundary Γ = Γu∪Γt. Each node of the mesh free discretization is associated with its local
domain, as schematically represented in Figure 6, where the reference nodes P , Q and R can be
seen. These nodes have associated local domains ΩP , ΩQ and ΩR; the local domain ΩQ, assigned
to the node Q, where the work theorem is defined, has boundary ΓQ = ΓQi∪ΓQt∪ΓQu, in which
ΓQi is the interior local boundary and ΓQt ∈ Γt and ΓQu ∈ Γu.

In general, this local domain is a circular or rectangular region and centered at the respective
node, for the sake o simplicity, where the rigid-body displacement formulation of the work the-
orem is defined as a local form of mechanical equilibrium. This local domain can assume any
geometry and is highly susceptible to optimization and topology studies.

The MLS approximation uphold the local aspect of the formulation,throughout the compact
support of each node, where the respective MLS shape functions are defined. As presented in Sec-
tion 2, local compact supports can also have circular or rectangular shapes, centered at each node.
The size of the compact support determines, in a neighborhood of a sampling point, the respective
MLS domain of definition of this reference point, as schematically represented in Figure 2.

The domain of definition contains all the nodes that do not vanish, within a compact support at
a sampling point, when constructing the MLS shape functions. Therefore, the union of the MLS
domains of definition of all points in the local domain of each node, defines the domain of influence
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Figure 6: Mesh free discretization of the domain Ω and boundary Γ = Γu ∪ Γt.

of the node. Based on this domain of influence of each node, the local mesh free method perform
a node-by-node stiffness computation to generate the respective rows of the global stiffness matrix
of the node.

The rigid-body displacement mesh free formulation of the local work theorem, equation (20),
can be written, in the absence of body forces, simply as∫

ΓQ−ΓQt

t dΓ = −
∫

ΓQt

t dΓ (23)

which is nothing else than the mechanical equilibrium of the boundary tractions in the local domain
ΩQ.

Local mesh free numerical methods can be effectively formulated through a reduced integra-
tion of the equilibrium equation (23). For simplicity sake, linear variation of tractions is assumed
on each boundary of the local domain, leading to a point-wise discrete form.

The reduced integration presented readily overcomes the well-known difficulties posed by
the reduced integration on mesh-based methods, regarding accuracy and stability of the solution,
which makes the local mesh free formulation a reliable and robust method.

Therefore, for a linear variation of tractions, along each boundary segment of the local domain,
the local form of equilibrium (23), can be accurately evaluated with only one quadrature point,
centered on each segment, thus leading to

Li

ni

ni∑
j=1

txj = −Lt

nt

nt∑
k=1

txk
, (24)

in which ni and nt denote the total number of integration/quadrature points, or linear segments,
defined on, respectively the interior local boundary ΓQi = ΓQ − ΓQt − ΓQu, with length Li, and
the local boundary ΓQt, with length Lt. This equation effectively represents a point-wise discrete
form of mechanical equilibrium of boundary tractions, evaluated at a set of points of the local
domain ΩQ.

For any given nodal distribution of scattered nodes, the local mesh free method with linear
reduced integration, symbolically referred from now on as ILMF, an simple acronym that stands
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for Integrated Local Mesh Free method, is used to compute the stiffness matrix. ILMF uses a node-
by-node process to construct the stiffness matrix, throughout traction evaluation at each central
point of boundary segments, by using equation (24) assigned to each node.

These local domains can assume rectangular or circular geometries, as schematically repre-
sented in Figure 7 for interior nodes, Figure 8 for corner nodes and Figure 9 for boundary nodes.

q

(a) Rectangular

q

(b) Circular

Figure 7: Schematic representation of rectangular and circular local domains, with
1 integration point per side, or quadrant, of the local domain, for the computation

of the local form (24) of ILMF.

q

(a) Rectangular

q

(b) Circular

Figure 8: Schematic representation of rectangular and circular local domains on
corner nodes, with 1 integration point per side, or quadrant, of the local domain.

q

(a) Rectangular

q

(b) Circular

Figure 9: Schematic representation of rectangular and circular local domains on
boundary nodes, with 1 integration point per side, or quadrant, of the local domain.

The integration point and the node share the same coordinates on one of the
boundaries.

As ti can be seen, any special treatment for traction evaluation is considered in the linear reduced
integration process.

The MLS approximation of a displacement component uh(x), is performed in terms of the un-
known nodal parameters ûi. Consequently, the approximation of the elastic field is also performed
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in terms of the unknown nodal parameters û, as

u =

[
uh(x)
vh(x)

]
=

[
ϕ1(x) 0 . . . ϕn(x) 0
0 ϕ1(x) . . . 0 ϕn(x)

]

û1
v̂1
...
ûn
v̂n

 = Φû (25)

and
ε = Lu = LΦ û = Bû, (26)

in which geometrical linearity is assumed in the differential operator L and thus,

B =

ϕ1,1 0 . . . ϕn,1 0
0 ϕ1,2 . . . 0 ϕn,2

ϕ1,2 ϕ1,1 . . . ϕn,2 ϕn,1

 . (27)

Stress and traction components are respectively approximated as

σ = D ε = DBû (28)

and
t = nσ = nDB û, (29)

in which D is the matrix of the elastic constants and n is the matrix of the components of the unit
outward normal, defined as

n =

[
n1 0 n2

0 n2 n1

]
. (30)

Accordingly, the MLS approximation of the integrated local form (24) is carried out in terms
of the unknown nodal parameters û. Hence, this process leads to the system of two algebraic
equations

Li

ni

ni∑
j=1

nxjDBxj û = − Lt

nt

nt∑
k=1

txk
(31)

that can be written as
KQ û = FQ, (32)

in which KQ, denotes the stiffness matrix of the node Q, which is of the order 2 × 2n, where n
represents the number of nodes of the influence domain of Q, given by

KQ =
Li

ni

ni∑
j=1

nxjDBxj (33)

and FQ denotes the vector of forces

FQ = − Lt

nt

nt∑
k=1

txk
. (34)

For a numerical model with N nodes in total, in which M is the number of interior and static-
boundary nodes, the assembly of equations (32) for all M nodes leads to the 2M × 2N system of
equations

Kû = F. (35)
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Finally, the N −M kinematic-boundary nodes, are used to generate the remaining equations
of the problem. For each of these nodes, the kinematic boundary condition is imposed through a
direct interpolation method as

uk = Φk û = uk, (36)

with k = 1, 2, where uk denotes the specified displacement component. These equations are
assembled into the global system (35).

ILMF naturally compute a symmetric and banded global system of equations, even though
it generates the global system of equations in a node-by-node process, through equations (32)
to (35). This generation process is systematically different from the one used in the traditional
FEM that considers an element-by-element process to generate the global stiffness matrix.

A very short processing time to run the analysis is expected from ILMF, since the nodal stiff-
ness matrix is computed, in equations (33), with only 4 integration points, one point for each
segment of the local domain.

Another advantage is that the reduced integration leads to very accurate results. ILMF inte-
gration process plays an important role in the behavior of the numerical model, since it results in a
reduction of the stiffness of the body, corresponding to an increase of the strain energy, which has
the desirable effect of increasing the solution accuracy and, most important, presents no instabili-
ties. It is important to highlight that this improved accuracy, generated by the reduced integration,
has been already used in the standard FEM and other mesh free methods to prevent locking of
fully integrated elements.

5.1 Convergence Analysis

The convergence analysis of ILMF can be done in a similar way of the convergence analysis of
the standard displacement-assumed FEM, see Oliveira and Portela [2016].

A virtual displacement δu, which is a continuous virtual variation of the displacement field u
that actually settles in the body’s domain Ω, is such a way that

δu = 0 (37)

on Γu is where the prescribed kinematic boundary conditions cannot be varied.
In the local domain ΩQ, with ΓQ = ΓQi ∪ ΓQt, consider the stress field σ, that settles in the

body’s domain Ω. Now consider the work theorem, equation (17), with displacements defined as
u∗ = δu, leading to the theorem of virtual displacements that is∫

ΓQ−ΓQt

tT δudΓ +

∫
ΓQt

t
T
δudΓ =

∫
ΩQ

σT δε dΩ, (38)

or simply ∫
ΓQ

tT δudΓ =

∫
ΩQ

σT δε dΩ, (39)

in which δε denotes the strain variation corresponding to the virtual displacement δu.
The total potential energy functional in the local domain ΩQ, is defined as

T = U + P, (40)

in which the strain energy U is defined in terms of the respective density w as

U =

∫
ΩQ

w dΩ =

∫
ΩQ

1

2
σT δε dΩ (41)
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and the potential energy P of the external forces is defined as

P = −
∫
ΓQ

tT δudΓ. (42)

The theorem of the total potential energy states that the elastic field that satisfies static ad-
missibility, with the applied tractions, makes the total potential energy stationary, in the set of all
elastic fields that satisfy kinematic admissibility, with the displacement constraints of the body.
As a matter of fact, the first variation of the total energy T generates virtual variations of displace-
ments δu and strains δε and thus, equation (39) of the theorem of virtual displacements leads to a
stationary condition

δT = δU + δP =

∫
ΩQ

σT δε dΩ−
∫
ΓQ

tT δudΓ = 0, (43)

that is a minimum, when the material stability of the body is assumed. Under these circumstances,
the total potential energy theorem limits to a minimum value the total potential energy of the exact
solution settled in the body. For now, consider that the work theorem (17), applied for the case
of the elastic field that settles in the body, leads to P = −2U and consequently T = −U . It can
be seen that the minimum value of the total potential energy corresponds to a maximum value of
the strain energy, which is, therefore, equivalent to a minimum value of the stiffness of the elastic
field that settles in the body.

Discretization of the local form (24) is performed with the MLS approximation, generating
a system of two algebraic equations. When more refined nodal distributions are considered, the
approximated solution converge monotonically to the exact solution, likewise the standard FEM,
provided the MLS approximation satisfies completeness and continuity, as FEM does.

As a final remark on the matter, it is important to point out that the presented reduced integra-
tion of the ILMF model does not lead to any sort of spurious instability. This behavior is a direct
consequence of the use of 4 integration points to calculate the stiffness associated to each local
node, on each boundary of the local domain. Therefore, this integration prevents the generation of
spurious zero-energy modes, unlike nodal integration methods without stabilization.

5.2 Discretization Parameters

Local mesh free methods posses two key parameters that can greatly effect the analysis. The first
is the size rΩs of the compact support Ωs, where shape functions are defined; and the second is
the size rΩq of the local integration domain Ωq, where the work theorem is defined. Usually these
parameters are heuristically determined by most authors employing mesh free methods.

For a node i, in a mesh free nodal distribution, these parameters can be defined, respectively
as

rΩs = αs ci (44)

and
rΩq = αq ci, (45)

in which ci denotes the distance of the reference node i, to the nearest node and αs and αq are
arbitrary constant parameters that must be defined in any application.

Equations (44) and (45) show that the accuracy of a mesh free numerical application can be
controlled an even improved through a proper specification of these discretization parameters αs

and αq. In general, the discretization parameters are considered as αs > 1.0 and αq < 1.0, for
regular node distributions on linear elastic problems.
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The discretization parameter αs, which is the size of the influence domain of each node, is
directly determined by the compact supports, as seen in Section 2. The parameter is primarily
linked to the accuracy of the mesh free formulation since it defines the total number of nodes
required to build the respective nodal shape functions, in order to perform the MLS approximation
of variables.

Meanwhile, The discretization parameter αq, which is the local domain of integration of each
node, where the stiffness matrix of each node is build, is primarily linked to the efficiency of the
formulation. This domain must be within the solution domain, without intersecting the boundary
of the body.

In order to further the efficiency of ILMF, proper values for these discretization parameters,
αs and αq, are obtained automatically through a multi-objective optimization scheme.

6 Optimization Scheme for Discretization Parameters

The required background and terminology of multi-objective optimization, evolutionary algo-
rithms and Pareto optimality are defined in optimization literature, formally introduced here by
Hwang and Masud [1979], Sawaragi et al. [1985], Steuer [1986] and Ringuest [1992]. Some basic
concepts and premises, important for comprehension of the optimization scheme formulated are
presented here, for the sake of completeness.

6.1 Genetic Algorithms (GA)

GA belong to a broad category of evolutionary algorithms, which are optimization techniques that
perform a search motivated by the principles of natural genetics and natural selection, proposed
by Holland [1975]. They are known for performing a non-derivative global heuristic search and
solve a wide rage of optimization problems, as presented by Kelner and Leonard [2004], McCall
[2005] and Ebrahimnejad et al. [2015], for mesh free methods.

Basically, GA keep a population of individuals, in this case P(t), for generation t. Each indi-
vidual contains a possible solution to the posed problem. Each individual is programmed to give
some measure of its fitness that will be evaluated later. Some of these individuals undergo stochas-
tic transformations by means of genetic operations to form new individuals. This transformation
can be a mutation, which creates new individuals by making changes in a single individual, or can
be a crossover, which creates new individuals by combining parts from two others. The offspring
C(t), the new individuals created, are then evaluated. A brand new population is formed by select-
ing the more fit individuals from the parent population and the offspring population. After several
generations, or function evaluations, the algorithm converges to the best and most fit individual,
which hopefully represents an optimal or sub-optimal solution to the problem, see Gen and Cheng
[2000].

6.2 Symbiotic Organisms Search (SOS)

SOS is a powerful meta-heuristic optimization algorithm, also member of the broad category of
evolutionary algorithms, originally introduced by Cheng and Prayogo [2014]. The method is
described by a relationship between any two distinct species, from the Greek word for ”living
together”.

The relationship between species can be either obligate, meaning the two organisms depend
on each other for survival, or facultative, meaning the two organisms choose to cohabitate in a
mutually beneficial but nonessential relationship. Mutualism, commensalism, and parasitism are
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the most common symbiotic relationships found in nature. Mutualism denotes a symbiotic rela-
tionship between two different species in which both benefit, while commensalism is a symbiotic
relationship between two different species in which one benefits and the other is unaffected or
neutral. Parasitism is a symbiotic relationship between two different species in which one benefits
and the other is actively harmed. Naturally, organisms develop symbiotic relationships as a strat-
egy to adapt to changes in their environment. Symbiotic relationships may also help organisms
increase fitness and survival advantage over the long-term.

Similar to other meta-heuristic algorithms, SOS is population-based and also uses a candidate
solution to search for the optimal solution in the search space. Both GA and SOS provide a
directed random search in complex landscapes. Genetic operations and symbiotic relationships
perform essentially a blindfold search, while selection operators hopefully direct the search toward
the desirable area of the solution space. The key feature of evolutionary algorithms is that they
make a good balance between exploration and exploitation of the search space.

6.3 Objective Functions

The objective function provide the output required for the algorithm to evaluate a function. The
optimization performance is highly dependable on well defined functions.

The first objective function results from the features of the parameter αs. Consider any state
of the elastic field that actually settles in the body, the strain energy U is given by

U =

∫
Ω

1

2
σTε dΩ (46)

and the potential energy P , of the external loads, given by

P = −
∫
Γt

t
T
udΓ, (47)

can be used to handle the total potential energy T . The work theorem for the global domain of the
body, results in P = −2U and therefore T = −U , as well as T = P/2; for the actual elastic field
of the body. It is clear that the minimum value of the total potential energy of the body corresponds
to a minimum value of the potential energy P or a maximum value of the strain energy U .

There are two ways to handle the evaluation of the energy. The first is to evaluate the strain
energy U of the body, which is computationally inefficient, since it requires the computation of the
stress field for all nodal values and the evaluation of derivatives of shape functions that can degrade
the numerical accuracy. The second is to evaluate the potential energy P , which is computationally
more efficient, since only nodes with no-null applied external forces, albeit the ones at the static
boundary, need to be evaluated. As it can be seen, this process is performed only at a few nodes
and does not require the computation of derivatives of shape functions. Therefore, the objective
function can be defined with the structural compliance C, as

C =
1

2

∫
Γt

t
T
udΓ = −1

2
P. (48)

In the end, the minimum value of the potential energy P is equivalent to a minimum value of
C that corresponds to a maximum value of −C.

The second objective function results from the features of the parameter αq. The total area
of integration of the body, the combined area of all local integration domains for each node, in
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a nodal discretization, must be as close as possible to the geometrical area of the domain of the
body. The objective function is defined by the resulting local domain area

Aq =

n∑
l=1

AΩq

Ωq
, (49)

in which AΩq considers equation (45) to compute the total area of integration of each node and Ωq

is the total area of the domain of the body. Since the local domain can be defined with an arbitrary
geometrical shape, usually a rectangular or a circular domain, that can intersect each other if
necessary; the efficiency of the approximation is dependent on the geometry of the domain of the
problem, which is adaptable through optimization.

6.4 Mathematical Formulation and Algorithm Implementation

The numerical problem optimization obtain optimal values for mesh free parameters αs and/or αq

by minimizing the objective function through mesh free models, in this case ILMF, such that the
geometrical constraints of the problem are satisfied. Three optimization schemes based on relative
error, compliance and local domain are presented in the following.

The first multi-objective optimization scheme mathematical formulation is presented as

minimize rε(αs,αq)

ru(αs,αq)

subject to e(αs) = αs
min ≤ αs ≤ αs

max

e(αq) = αq
min ≤ αq ≤ αq

max

where αs = (αs1, αs2, ..., αsn) ∈ α

αq = (αq1, αq2, ..., αqn) ∈ α ,

(50)

in which rε and ru are, respectively the energy and displacement relative error, to be presented
in section 8 and commonly used to measure numerical methods accuracy; αs

min/αq
min and

αs
max/αq

max denote the minimum and the maximum allowable limits for the mesh free dis-
cretization parameters αs and αq, respectively.

The second multi-objective optimization scheme mathematical formulation is presented as

minimize C(αs)

CPU time(αs)

subject to e(αs) = αs
min ≤ αs ≤ αs

max

where αs = (αs1, αs2, ..., αsn) ∈ α ,

(51)

for GA and for SOS is defined in a mono-objective form as

minimize C(αs)

subject to e(αs) = αs
min ≤ αs ≤ αs

max

where αs = (αs1, αs2, ..., αsn) ∈ α ,

(52)

in which C is the structural compliance, presented in equation (48), and CPU time is the processing
time required to generate and solve the global system of algebraic equations.

Finally, the third multi-objective optimization scheme mathematical formulation is presented
as

minimize Aq(αq)

subject to e(αq) = αq
min ≤ αq ≤ αq

max

where αq = (αq1, αq2, ..., αqn) ∈ α ,

(53)
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in which Aq is the resulting local domain area, as presented in equation (49).
When mono-objective optimization is considered, the fitness function containing the mesh

free formulation should accept a vector, whose length is the number of independent variables αq,
one for each node of the problem domain, and return a scalar value (Aq), the objective function.
For multi-objective optimization, the same mesh free formulation should return a row vector of
objective function values C, CPU time, rε and ru. This process can be easily be extended to any
local mesh free method from other authors.

Global variable is a function that can be used to perform multiple optimization processes and
carry over the output of one optimization iteration phase, usually to optimize αq first, to a second
phase, where αs can be optimized.

For GA, the proper values for population size, selection function, scaling function and etc, are
different in each optimization scheme and will be properly addressed later. SOS requires only the
population size and the maximum number of function evaluations, which is a key advantage of
this method and will be addressed later.

Lastly, the automatic optimization of the discretization parameters is a combination of the
features presented in section 6.3 into a single and unique routine, to automatically compute mesh
free discretization parameters, αs and αq, in a robust and efficient way.

The optimization is divided in two distinct procedures, as presented in Figure 10.
In the first step, a single-objective optimization is performed, considering the mesh free model

to evaluate Aq as an objective function. By the end of this process, the parameter αq is optimized
for n nodes of the model, as a vector n × 1, which will be eventually introduced in the next
iteration phase. In the second step, the parameter αs is optimized as a scalar value, in a multi-
objective optimization using the mesh free model to evaluate the compliance and the CPU time as
objective functions.

The process is separated in two steps so that the parameter αq is completely independent from
αs. As consequence, both can be calculated considering only the boundary conditions of the posed
problem and the local domain of integration geometry. When combined, the routine guarantee
that the integration will be effectively computed in the first phase and later that parameter αs

is effectively calculated considering the compliance and the CPU time, just to ensure that this
optimization will result in fast computations, with no detriment for the solution accuracy.

As it can be seen from the optimization scheme, the fully automated routine can perform the
optimization without the need of any analytical solution and for any bi-dimensional domain. Paral-
lel environment can be included in the routine to improve the processing time of the optimization,
which makes a robust tool to solve complex mesh free problems, although only ILMF and linear
elastic problems are presented.

7 Linear Elastic Fracture Mechanics

Mixed-mode deformation of cracked plates can be effectively analyzed through the direct compu-
tation of the Stress Intensity Factor (SIF), carried out with the Singularity Subtraction Technique
(SST). After implemented in a mesh free model, SST introduces the SIF as primary unknowns of
the numerical model, by subtracting the crack tip singularity before the numerical solution.

Consider a two-dimensional cracked plate, with domain Ω and boundary Γ = Γu ∪ Γt, in the
absence of body forces, satisfies the equations

LTσ = 0 (54)

ε = Lu (55)

σ = D ε (56)
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Start GA optimization

Start 1st iteraction phase

Objective Function: Aq

Design variables: αq (vector)
Constraints: [0.495 0.95]

Create initial population
or use random population

from previous analysis (200)

Run ILMF model and eval-
uate objective function

Select individual members of pop-
ulation using stochastic selection

Crossover (constrained)

Mutation (constrained)

Creation of a new population

Stop
criterion
met?

αq optimized (vector)

Start 2nd iteraction phase

Objective Function: C and CPU Time
Design variables: αs

Constraints: [1.5 10]

Create initial population (20)

Run ILMF model and eval-
uate objective function

Select individual members of pop-
ulation using tournament selection

Crossover (constrained)

Mutation (constrained)

Creation of a new population

Stop
criterion
met?

αs optimized

End GA optimization

No

Yes

No

Yes

Figure 10: Optimization flowchart showing the required steps for the fully
automated routine; the 1st step is presented on the left and the 2nd step is presented

on the right.
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in the domain Ω, with boundary conditions

u = u on Γu (57)

and
t = nσ = t on Γt, (58)

in which matrix L represents a differential operator; vectors σ represent the stresses and ε repre-
sent the strains; matrix D represents the elastic constants; vectors u, t u and t represent, respec-
tively displacements, tractions, prescribed values of displacements and tractions; and n denotes
the components of the unit normal to the boundary, outwardly directed.

The singularity subtraction can be used to avoid inaccuracies due to unbounded stress at one
point but with displacements bounded everywhere, in the numerical method. In linear elastic frac-
ture mechanics, the stress field is singular at the crack tip and can be conveniently modified even
before the solution is carried out with mesh free analysis. Based non the principle of superposition
that allows linear behavior, the elastic field can be decomposed into a regular (R) and a singular
(S) component as

σij = (σij − σS
ij) + σS

ij = σR
ij + σS

ij (59)

and
ui = (ui − uSi ) + uSi = uRi + uSi , (60)

where σR
ij = σij − σS

ij and uRi = ui − uSi denotes the regular parts of the stress and displacement
of the initial problem, respectively; σS

ij and uSi represents, respectively the stress and displacement
of a particular solution of the initial problem that is the singular field in this case. The particular
singular field, equations (59) and (60), regularize the initial elastic field when proper functions are
used, since the stress σR

ij become non-singular.
The regularization strategy employed allow the analysis of the initial problem to be performed

with the only regular elastic field, given by components σR
ij and uRi . Therefore, these components

automatically satisfy the field equations, because they represent a particular solution of the initial
problem. Hence, elasticity equations (54) to (56) are now written as

LTσR = 0 (61)

εR = LuR (62)

σR = D εR (63)

in domain Ω, with boundary conditions

uR = u− uS on Γu (64)

and
tR = t− tS on Γt. (65)

Note that, except for boundary conditions from equations (64) and (65), this regularized prob-
lem is governed by the same equations of the initial problem, where the additional terms, compo-
nents uS and tS of a singular particular solution of the initial problem, are included.

The singular field around the crack tip, represented by components of the particular solution
σS
ij and uSi in equations (59) and (60), can be defined through the first term of the Williams [1952]

eigenexpansion, derived for a semi-infinite edge crack. The stress components are

σS
11 =

KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
+

KII√
2πr

sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)
, (66)
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σS
22 =

KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
− KII√

2πr
sin

θ

2
cos

θ

2
cos

3θ

2
(67)

and

σS
12 =

KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
+

KII√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
(68)

and the displacement components are

uS1 =
KI

4µ

√
r

2π

[
(2κ− 1) cos

θ

2
− cos

3θ

2

]
+

+
KII

4µ

√
r

2π

[
(2κ+ 3) sin

θ

2
+ sin

3θ

2

]
(69)

and

uS2 =
KI

4µ

√
r

2π

[
(2κ+ 1) sin

θ

2
− sin

3θ

2

]
+

+
KII

4µ

√
r

2π

[
(2κ− 3) cos

θ

2
+ cos

3θ

2

]
, (70)

where KI and KII represent the SIF, respectively of the opening and sliding modes; the constant
κ = 3− 4ν is established for plain strain and κ = (3− ν)/(1 + ν) for plain stress, in which ν is
Poisson’s ratio; and constant µ is the shear modulus. A polar coordinate reference system (r, θ),
centered at the crack tip, is defined such that θ = 0 is the crack axis, ahead of the crack tip, as
Figure 11 represents.

Figure 11: Polar coordinate reference system for William’s singular particular
solution.

It is noticeable that the order r−1/2 of the stress field becomes singular when r tends to zero.
Note also that rigid-body terms are not included in the displacement field, which leads to null
components at the crack tip. As demonstrated by Caicedo and Portela [2015], the first term of the
William’s eigenexpansion, derived for an edge crack, can also be used to represent the elastic field
around the crack-tip, where the singular behavior of the stress field is dominant, for the case of
internal piecewise-flat multi-cracked finite plates, under mixed-mode deformation.

Traction components are defined, at a boundary point, through the singular stress of equa-
tions (66) to (68), as follow

tS =

[
tS1
tS2

]
=

[
σS
11 σS

21

σS
12 σS

22

] [
n1

n2

]
=

[
g11 g12
g21 g22

] [
KI

KII

]
= g k, (71)
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where ni refers to the i-th component of the unit normal to the boundary, outwardly directed;
functions gij = gij(r

−1/2, θ) were introduced for a convenient notation of equations (66) to (68)
and the vector k contains the SIF.

The displacement field, presented in equations (69) and (70), similar to the stress field, can be
defined in a vector form as

uS =

[
uS1
uS2

]
=

[
f11 f12
f21 f22

] [
KI

KII

]
= f k, (72)

where functions fij = fij(r
1/2, θ) are a convenient notation of equations (69) and (70).

7.1 Mesh free Formulation for Fracture Mechanics

Generally, an analytical solution of the regularized problem, equations (61) to (63), with boundary
conditions (64) and (65), are not available for practical problems. Therefore, numerical methods,
in this case ILMF, are employed and considered to obtain the approximate solution.

Consider the domain ΩQ associated with the node Q ∈ ΩQ ∪ ΓQ, the equilibrium equa-
tions (23) are now rewritten as ∫

ΓQ−ΓQt

tR dΓ = −
∫

ΓQt

(
t− tS

)
dΓ, (73)

in which the static boundary conditions (65), of the regularized problem, are considered.
Therefore, for a linear reduced integration, along each boundary segment of the local domain,

equation (73) simply leads to

Li

ni

ni∑
j=1

tRxj
= −Lt

nt

nt∑
k=1

txk
+

∫
ΓQt

tS dΓ, (74)

in which ni and nt denote the total number of integration points, or boundary segments, defined
on, respectively the interior local boundary ΓQi = ΓQ − ΓQt − ΓQu, with length Li, and the local
static boundary ΓQt, with length Lt.

Now, consider a mesh free discretization of the domain Ω, with circular or rectangular local
domains, as Figure 7 schematically represents. The MLS approximation is used to perform the
discretization of the local form, equation (74), in terms of the unknown nodal parameters ûR,
which leads to the system of two linear algebraic equations

Li

ni

ni∑
j=1

nxjDBxj û
R = − Lt

nt

nt∑
k=1

txk
+

∫
ΓQt

g dΓ k (75)

that can be written as
KQ ûR +GQ k = FQ, (76)

in which the stiffness matrix KQ is given by

KQ =
Li

ni

ni∑
j=1

nxjDBxj , (77)

of the order 2 × 2n, where n is the number of nodes inside the influence domain of the node Q.
Matrix GQ, of the order 2× 2, computed from equations (71), is presented as

GQ = −
∫

ΓQt

g dΓ (78)
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and FQ is the force vector given by

FQ = − Lt

nt

nt∑
k=1

txk
. (79)

In the case of an interior node, it can be seen that matrix GQ and vector FQ are null. For
a problem with a total of N nodes, the assembly of equations (76) for all M interior and static-
boundary nodes generates the global system of 2M × (2N + 2) equations

KûR +Gk = F. (80)

On the kinematic boundary, the N −M nodes are used to generate the remaining equations of
the model, adding the kinematic boundary conditions of the regularized problem, equations (64).
Thus, for a kinematic-boundary node, the boundary conditions of the regularized problem are
enforced by a direct interpolation method as

uR
k = Φk û

R = uk − uS
k = uk − fk k, (81)

with k = 1, 2, where uk denotes the specified displacement component and uS
k = fk k is the

displacement component of the particular singular solution, derived from equations (72). Equa-
tions (81) are written in the same form of equations (76), for a point Q, as

KQk û
R +GQk k = FQk, (82)

in which KQk is now given by
KQk = Φk, (83)

while GQk is given by
GQk = fk (84)

and FQk is given by
FQk = uk. (85)

Local equations (82) are assembled into the global system of equations (80) which results in

[
K G

] [ ûR

k

]
=

[
F
]
, (86)

in which K is a matrix of the order 2N × 2N , G is a matrix of the order 2N × 2 and F is a
vector of the order 2N ; the unknowns are the vector ûR, of the order 2N , and the vector k of
the order 2. Is important to highlight that this global system of equations introduce the SIF KI

and KII , in the vector k, as additional unknowns of the numerical problem. Hence, to end with a
well-posed problem, additional constraint equations are necessary, , one for each mode considered
in the analysis, in order to obtain a unique solution. These additional constraint are defined as two
rows that goes into to the bottom of the system of equations (86).

Considering the regularized problem, the required additional constraints enforce the singular-
ity cancellation. The regular displacement components or the regular stress components can be
canceled out at the crack tip, that is

uRi = 0 ⇒ ui = uSi , (87)

or
σR
ij = 0 ⇒ σij = σS

ij (88)
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which ensure that, at the crack tip, the initial problem is singular.
In order to be more effective, the additional constraints must be defined in terms of the un-

known regularized MLS nodal parameters of ûR. Null displacement components are obtained
from the use of conditions (87) at the crack tip, which can over-constrain the initial problem, be-
cause the singular displacement components, equations (69) and (70), do not include rigid-body
terms. Thus, can not be used as the required additional constraints.

Conditions (88) can be redefined, in terms of the respective traction components at the crack
tip, as

tRj = σR
ijni = 0 ⇒ tj = tSj , (89)

where ni denotes the unit normal components of the crack faces, as represented schematically in
Figure 12. After the MLS approximation, conditions (89), defined at the crack tip xtip, can be

t
R
I

t
R
II

t
R
I

t
R
IItRI

tRII

tRI

tRII

Figure 12: Crack tip tractions of the regularized elastic field.

defined as
tRxtip

= nxtipDBxtip ûR = 0, (90)

or
C ûR = 0, (91)

in which matrix C is written as
C = nxtipDBxtip . (92)

Moreover, the additional constraints (92) can now be added into the global system of equa-
tions (86), leading to the final system of equations of the order (2N + 2)× (2N + 2)[

K G
C 0

] [
ûR

k

]
=

[
F
0

]
, (93)

which can be solved without any inconsistency.

8 Numerical Results

Some numerical results are presented in this section to illustrate the accuracy and efficiency of the
ILMF numerical formulation, under linear elastic problems and linear elastic fracture mechanics
problems, on two-dimensional spaces. The results are compared with the analytical solution and
the MLPG-5, presented by Atluri and Shen [2002], from now on refereed as MLPG; and for some
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applications with the MLPG-FVM, introduced by Atluri et al. [2004] and the EFG, presented by
Belytschko et al. [1994b].

For error estimation, important to measure the accuracy of numerical methods, displacement
and energy L2 norms can be used, respectively as

∥u∥ =

∫
Ω

uTudΩ

1/2

(94)

and

∥ε∥ =

1

2

∫
Ω

εTD ε dΩ

1/2

. (95)

Moreover, the relative errors, respectively for ∥u∥ and ∥ε∥ are given by

ru =
∥unum − uexact∥

∥uexact∥
(96)

and

rε =
∥εnum − εexact∥

∥εexact∥
. (97)

All the routines and numerical applications were compared when using MATLAB 2015a on
an Intel Core I7-4700MQ computer with CPU of 2.4GHz and 16 GB of RAM.

8.1 Benchmark Problem 1 – Cantilever-Beam

First, consider a beam of dimensions L×D and of unit depth, subjected to a parabolic traction at
the free end as shown in Figure 13.

Figure 13: Timoshenko cantilever beam.

The beam is assumed in a plane stress state and the parabolic traction is given by

t2(x2) = − P

2I

(
D2

4
− x22

)
, (98)

where I = D3/12 is the moment of inertia. The exact displacement components for this problem
are given by

u1(x1, x2) = −Px2
6EI

[
(6L− 3x1)x1 + (2 + ν)

(
x22 −

D2

4

)]
(99)

and

u2(x1, x2) =
P

6EI

[
3νx22(L− x1) + (4 + 5ν)

D2x1
4

+ (3L− x1)x
2
1

]
(100)
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and the exact stress components are given by

σ11(x1, x2) = −P (L− x1)x2
I

, σ12(x1, x2) = − P

2I

(
D2

4
− x22

)
and σ22(x1, x2) = 0.

(101)
Material properties are taken as Young′s modulus E = 3.0 × 107 and the Poisson′s ratio

ν = 0.3 and the beam dimensions are D = 12 and L = 48. The shear force applied is P = 1000.
To solve this problem, a regular nodal distribution, represented in Figure 14, was considered with

0 6 12 18 24 30 36 42 48

6

−6

3

0

−3

x1

x
2

Figure 14: The regular nodal distribution of the cantilever-beam discretization with
33× 5 = 165 nodes.

a nodal distribution of 33× 5 = 165 nodes. The discretization parameters, αs and αq, need to be
properly defined, through equations (44) and (45), in order to obtain a stable and accurate solution.
for the applications presented in this first example, these parameters are heuristically defined as
αs = 3.0 ∼ 4.5 and αq = 0.5 ∼ 0.6.

A first-order polynomial basis was considered in MLS approximation. Rectangular local
domains Ωq of each node were considered, with 1 point for ILMF integration and 10 Gauss-
quadrature points to integrate the MLPG, placed along the sides of the local domain, as schemati-
cally represented in Figure 15.

q

(a) ILMF

q

(b) MLPG

Figure 15: Integration points placed on each side of the local domain Ωq, to
compute the equilibrium equations of ILMF and MLPG.

8.1.1 Displacement and Stress

The displacements resulting from this analysis, represented in Figure 16, show very good agree-
ment with the results of the analytical solution. Albeit this relatively coarse nodal configuration,
relative errors of ru = 6.33×10−4 and rϵ = 7.51×10−5 were obtained with ILMF. Stresses, com-
puted at the center of the beam that is x1 = L/2 and x2 ∈ [−D/2, D/2], also present excellent
agreement with the results of the exact solution, as shown in Figure 17.
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Figure 16: Normalized displacements of the beam with nodal distribution of
33× 5 = 165 nodes.
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Figure 17: Stress distribution for x1 = L/2 and x2 ∈ [−D/2,D/2] of the beam
with nodal distribution of 33× 5 = 165 nodes.
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Figure 18: Normalized displacements of different mesh free methods, along with
CPU time in seconds, for nodal distribution of 33× 5 = 165 nodes.

When compared to other local mesh free methods, ILMF obtained a good accuracy and ef-
ficiency, as shown in Figure 18, where the processing time is also present. The EFG considered
10 Gauss-quadrature points on each background cell and the MLPG FVM considered 10 Gauss-
quadrature points distributed on the local domain, for this application. In this initial performance
analysis, the fastest computation is obtained with the ILMF, which is 21% faster than the MLPG
FVM, the second best result.

8.1.2 Reduced Integration performance

One of the key advantages of ILMF is the reduced integration that differentiates it from other mesh
free numerical methods. The linear reduced integration employed by ILMF consider only 1 point
per segment of the local boundary. If necessary, additional integration points can be placed by
subdividing a boundary segment in identical segments, which leads to equally-spaced integration
points. for the general case, it is necessary to assess the performance of ILMF, driven by the
location of integration points on each boundary of the local domain. Figure 19 shows the behavior
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Figure 19: ILMF and MLPG relative error rϵ, as a function of the number of
equally-spaced integration points, on each boundary of the respective local domain,

for a regular distribution of 33× 5 = 165 nodes.

of the relative error rϵ of ILMF, as a function of the number of integration points, for the nodal
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distribution of 33×5 = 165 nodes; for comparison, the relative error of MLPG, computed with 10
Gauss points, is also plotted. It can be seen that the relative error of ILMF always monotonically
converge for the relative error of MLPG with full integration. Physically, this means that the
MLPG approximation always leads to stiffer models than the ones of the ILMF approximation.
The minimum value of the error is always obtained for 1 collocation point. This is a very important
result that evidences that ILMF linear reduced integration leads to better results than those obtained
with the MLPG full integration.

Another test was required to assess the influence of the discretization on the accuracy of ILMF,
regarding the number of integration points along the boundaries of the local domain. Therefore,
four regular distributions of 13×4 = 52, 65×9 = 585, 97×13 = 1261 and 129×17 = 2193 nodes
were considered. he results obtained for the ILMF relative error rϵ, as a function of the integration
points are presented in Figure 20, where it can be seen that the accuracy of ILMF increases with
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Figure 20: ILMF relative error rϵ, for beam discretizations with 13× 4 = 52,
65× 9 = 585, 97× 13 = 1261 and 129× 17 = 2193 nodes, as a function of the

equally-spaced integration points, on the boundaries of the respective local domain.

the total number of nodes of the discretization, as expected. Effectively, the overall relative error
of ILMF decreases with finer nodal distributions, requiring only one integration point along each
boundary to obtain the most accurate results. This is a very important result that evidences that
ILMF is a very efficient method.

The accuracy of the proposed method when considering higher order polynomial basis need
to be addressed, hence another test was carried out. For this case, three regular distributions of
13 × 4 = 52, 33 × 5 = 165 and 65 × 9 = 585 nodes were considered. The results, presented in
Figure 21 clearly evidence the accuracy of the reduced integration even for high-order polynomial
basis, providing a stable convergence rate regardless of the polynomial basis.

8.1.3 Irregular Nodal Distributions

Irregularity on a nodal distribution can be introduced into a regular distribution by randomly
changing nodal coordinates, within a local domain of integration. This procedure, referred to
as level-1 of irregularity, can be addressed through an arbitrary variable cn that varies in the range
from 0.0 to 0.4, where cn = 0.4 corresponds to a maximum irregularity, as seen in Liu [2003].
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Figure 21: ILMF relative error rϵ for the beam modal distribution of 13× 4 = 52,
33× 5 = 165 and 65× 9 = 585 nodes, as a function of the number of nodes,

considering a complete set of first and second order polynomial basis for the MLS
approximation.

Irregularity of a nodal distribution can greatly affect the solution accuracy, since it has a direct
influence in the size of the compact support αs and the size of the local integration domain αq.
If the distance between nodes is too large, the support regions around each node do not intersect
with each other, thus providing no output. In the other extreme, if the distance between nodes is
too small, too many nodes are crammed, thus losing the local character of the approximation. For
this specific example, these parameters are heuristically defined as αs = 2.11 and αq = 0.5.

Three nodal distributions of the beam discretization, with 189 nodes and level-1 of irregular-
ity, with two different irregularity configurations, regarding the boundary nodes, are presented in
Figure 22. In configuration A, only interior nodes have an irregular distribution, as presented by
Liu [2003], while in configuration B, all nodes are irregularly distributed. Results for this level-1
irregularity are presented in Figure 23, where it can be seen that ILMF obtained stable results with
a high accuracy, even for mild irregular nodal distributions.

The generation of nodal distributions with severe irregularity are divide in two major steps.
First, the coordinates of a nodal regular distribution are randomly changed, allowing each node
to move outside the respective local domain of integration. Second, each local domain is regen-
erated, in order to include the new location of the respective node, by considering the middle of
the distance between the node and its neighboring nodes. This procedure, referred to as level-2 of
irregularity, can be addressed through an arbitrary variable cn that now varies in the range from
0.0 to 0.9, where cn = 0.9 corresponds to a maximum irregularity, as seen in Liu [2003].Figure 24
represent three nodal distributions of the beam discretization, with 55 and 189 nodes with irreg-
ularity of level-2 for interior nodes. Due to the high irregularity, αs = 12.00 was considered for
this case.

Figure 25 show the results obtained for irregular nodal distributions of level-2, preserving the
high accuracy level obtained by ILMF. These results demonstrate that high irregularities require
higher values for parameter αs, in order to keep the accuracy of results. The results show that
ILMF is a reliable mesh free numerical model, since even with nodal distributions with severe
irregularities, the solution is still accurate.
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(b) cn = 0.4, configuration A
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(c) cn = 0.4, configuration B

Figure 22: Nodal distributions of the beam discretization with 189 nodes and level-1
of irregularity.
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Figure 23: ILMF and MLPG energy error, as a function of the irregularity
parameter cn, obtained with irregular nodal distributions with 189 and 561 nodes

of the beam discretization.
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The Figure shows the variation of energy relative error as a function of the size of the parameter of nodal 
irregularity which vary between 0.0 to 0.4 with 0.1 increments. Results are presented for three nodal 
discretization using values fixed of the local support domain (αs = 2.11) and the local quadrature domain 
(αq = 0.5), using both nodal configuration (A and B).  

 

Effect of irregularity on the nodal arrangement on energy relative error with αs = 2.11 and αq = 0.5, 
carried out with 11 x 5 = 55 nodes, 21 x 9 = 189 nodes and 33 x 17 = 561 nodes.   

8.1.4.2 Local domain non-fixed 

The second methodology, the nodes are moved according to equation (8.11) and the local domain is 
modified according to the new node position, the new local domain is generated from the middle of the 
distance between the node and its neighboring nodes, in this situation the parameter Cn vary randomly 
in the range of 0.0 to 0.9, because the node will always remain within its local domain. 

 

55 nodes – Cn = 0.4 (Level 2) – Configuration A (a) 55 nodes with cn = 0.4

 

55 nodes – Cn = 0.9 (Level 2) – Configuration A 

The energy relative error for two different methods is presented in the Fig??. These values for MLPG were 
obtained by Liu (Liu, G. R. (2003) Meshfree methods moving beyond the finite element method. CRC Press, 
1st edition). The ILMF results are presented for three nodal discretization using values fixed of the local 
support domain (αs = 12) and the local quadrature domain (αq = 0.5), using nodal configuration A. 

 

Effect of irregularity on the nodal arrangement on energy relative error for MLPG (level 1) and ILMF 
(level 1 and 2), carried out with 21 x 9 = 189 nodes. 
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Figure 24: Nodal distributions of the beam discretization, with 55 and 189 nodes
with level-2 irregularity.
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(a) Level-1 and level-2 irregularities

Other different irregular nodal discretization was carried out to know the influence on the accuracy on 
the energy and displacement relative error. Two additional configurations were presented with 11 x 5 = 
55 nodes and 33 x 17 = 561 nodes.  

The Figure shows the variation of energy relative error as a function of the size of the parameter of nodal 
irregularity which vary between 0.0 to 0.9 with 0.1 increments. Results are presented for three nodal 
discretization using values fixed of the local support domain (αs = 12) and the local quadrature domain (αq 

= 0.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) ILMF with level-2 irregularities

Figure 25: Energy relative error of ILMF and MLPG, as a function of the
irregularity parameter cn, obtained with irregular nodal distributions of the beam

discretization.
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8.1.4 Automatic Parameter Optimization

Several optimization schemes are presented with different objective functions. In the end, the
ultimate optimization approach computes automatically the ILMF discretization parameters, αs

and αq, in a very efficient way.
In the first scheme, GA is implemented in order to minimize the CPU time and the relative

error rε and ru, defined as objective functions for this approach. Tha main goal is to asses the
performance of the optimization process related to the accuracy and the computational effort.
Only the major computational cost that is the cost of generating and solving the global system of
algebraic equations, was measured. The decision variables, αs and αq, are defined as continuous
in the intervals, respectively

αs = [1.1 10] and αq = [0.1 0.9]. (102)

There is a strong relationship between the objective functions and the decision variables. This
means that by choosing different values for the design variables, αs and αq, we can change the
output in the objective functions CPU time, rε and ru, during a msh free numerical analysis.

The initial population is 20 individuals, randomly generated. Then, the fitness function is eval-
uated for each individual and scaled using a rank process, to be later used in the selection process.
The reproduction operator is implemented based on a tournament selection, with constraint depen-
dent mutation and crossover. The optimization process is terminated if the number of generations
exceeds 100, or if the average change in fitness function is less than 1× 10−6.

The results obtained for this first multi-objective optimization process are presented in Fig-
ure 26, for the first two objective functions, and Tables 1 to 3;

Table 1: The multi-objective Pareto front results for the regular nodal distribution
of 52 nodes.

Index CPU Time(s) rε ru αs αq

1 0.2513 0.06615 0.06682 1.3628 0.4930
2 0.6347 1.413E-5 4.772E-4 3.9200 0.506
3 0.6437 7.194E-4 4.211E-4 3.7666 0.5109
4 0.2507 0.2327 0.2531 1.3818 0.5067

Table 2: The multi-objective Pareto front results for the regular nodal distribution
of 165 nodes.

Index CPU Time (s) rε ru αs αq

1 3.7081 6.557E-5 2.009E-7 5.2789 0.5138
2 3.6090 1.336E-7 7.075E-5 5.2775 0.5137
3 3.6585 5.171E-5 1.552E-5 5.2788 0.5139

all the presented points are considered optimum from a computational point of view and non-
dominated to each other, see Eberhart and Shi [2007]. For each point of the Pareto front, a couple
of optimized parameters αs and αq are presented. As it can be seen, the optimization can lead to
very accurate and convergent results. Moreover, the results show that αs is constantly changing
when different nodal distributions are considered, usually steadily increasing when more nodes
are added to the model discretization, even though for αq the best results are always obtained for
values close to 0.5, regardless of the nodal distribution used.

This approach has one major drawback that is extremely high computational effort required,
which could take hour, or days, depending on the number of nodes, even when running in parallel.
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(a) Regular nodal distribution of 52 nodes.
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(b) Regular nodal distribution of 165 nodes.
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(c) Regular nodal distribution of 585 nodes.

Figure 26: The multi-objective Pareto front for regular nodal distributions of the
beam discretization, considering CPU time, rε and ru as objective functions; only

the first two are graphically presented.
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Table 3: The multi-objective Pareto front results for the regular nodal distribution
of 585 nodes.

Index CPU Time (s) rε ru αs αq

1 10.8267 6.190E-10 0.0001 7.2685 0.4971
2 5.2903 0.0002 1.314E-07 4.2103 0.4971
3 10.8503 3.733E-05 6.978E-05 7.2686 0.4973
4 1.5595 0.0042 0.0046 1.7677 0.4995

Another major drawback is analytical solution requirement, which is necessary to compute the
relative error and is not available for more complex problems. Both drawbacks are unacceptable
and require a more efficient approach, such as the one presented by the end of this section.

In the second optimization scheme, the compliance indicator, also known as flexibility indica-
tor, derived from the local work theorem and computed only on the static boundary Γt, is chosen
as objective function. CPU time is added as a objective function to control the analysis efficiency.
Figures 27 to 29 demonstrate the behavior of the compliance indicator C and the relative energy
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Figure 27: Compliance and relative error rε of the beam discretization with
13× 4 = 52 nodes, as function of αs and for a fixed αq = 0.5.

error rε, function of αs and a fixed αq = 0.5. Both parameters showed to have a similar behavior,
thus proving that C can be effectively used instead of rε. Furthermore, the computational effort
required to perform the analysis is about 15 times faster for the compliance.

Consequently, for this second optimization approach, the GA is implemented in order to min-
imize the objective functions CPU time and the compliance indicator C. The decision variable αs

is defined as continuous in the interval

αs = [1.5 10]. (103)

The initial population is 20 individuals, randomly generated. Then, the fitness function is eval-
uated for each individual and scaled using a rank process, to be later used in the selection process.
The reproduction operator is implemented based on a tournament selection, with constraint depen-
dent mutation and crossover. The optimization process is terminated if the number of generations
exceeds 100, or if the average change in fitness function is less than 1× 10−6.

The results obtained with the multi-objective optimization process are presented in Figure 26
and Tables 4 to 6, for a fixed αq = 0.5. From the results, it can be seen that all points in the Pareto
front obtained a good accuracy, regardless of the nodal distribution. Once more, the convergence
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Figure 28: Compliance and relative error rε of the beam discretization with
33× 5 = 165 nodes, as function of αs and for a fixed αq = 0.5.
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Figure 29: Compliance and relative error rε of the beam discretization with
65× 9 = 585 nodes, as function of αs and for a fixed αq = 0.5.
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(a) Regular nodal distribution of 52 nodes.

0.1 0.2 0.3 0.4 0.5

−1.000

−0.998

−0.996

−0.994

−0.992

−0.990

CPU Time (s)

C
om

p
li
an

ce
(C

)

(b) Regular nodal distribution of 165
nodes.
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(c) Regular nodal distribution of 585
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Figure 30: The multi-objective Pareto front for regular nodal distributions of the
beam discretization with 13× 4 = 52, 33× 5 = 165 and 65× 9 = 585 nodes,

considering CPU time and compliance indicator as objective functions; for a fixed
αq = 0.5.
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Table 4: The multi-objective Pareto front results for the regular nodal distribution
of 52 nodes and a fixed αq = 0.5

Index CPU Time (s) Compliance rε ru αs

1 0.0427 -0.887 0.0993 0.1069 1.3585
2 0.0923 -1 0.0051 0.0042 3.1515
3 0.0726 -0.989 0.0044 0.0067 2.0053
4 0.0528 -0.958 0.0346 0.0373 1.7414

Table 5: The multi-objective Pareto front results for the regular nodal distribution
of 165 nodes and a fixed αq = 0.5

Index CPU Time (s) Compliance rε ru αs

1 0.4131 -0.9987 6.660E-04 5.510E-04 4.4932
2 0.4940 -1 0.0019 0.0017 4.7085
3 0.1730 -0.9915 0.0064 0.0066 1.8935
4 0.3835 -0.9932 0.0049 0.0050 3.9966

Table 6: The multi-objective Pareto front results for the regular nodal distribution
of 585 nodes and a fixed αq = 0.5

Index CPU Time (s) Compliance rε ru αs

1 2.5991 -0.9989 4.022E-04 3.821E-04 4.4965
2 3.7328 -0.9991 2.040E-04 1.883E-04 4.5330
3 1.0455 -0.9984 8.209E-04 8.768E-04 1.8733
4 7.5833 -1 6.614E-04 6.352E-04 9.6232

is guaranteed, meaning that an increase in the overall number of nodes of the nodal distribution
also increases the overall accuracy. Although the lowest relative error is not always obtained with
the lowest compliance indicator, this is barely a problem since the local Pareto-optimal is always
close to the global Pareto-optimal, leading to very good results for all points. The aforementioned
reduced computational effort is also present in this analysis, as expected, performing computations
in minutes instead of hours.

For a complete optimization of mesh free parameters, αq also need to be addressed. The
shortest and most convenient approach is to guarantee that the total area of the local weak form
domain is as similar as possible to the overall area of the whole body domain. Hence, the output
area of the local domain, equation (49), is chosen as an objective function for this optimization.
For the sake of simplicity, a single-objective optimization is performed. If a problem has N nodes
in total, the design variable αq is a vector containing N components defined as continuous in the
interval

αq = [0.495 0.95] , (104)

to ensure the locality of the MLS approximation and that the local sub-domains of the internal
nodes are entirely within the solution domain, without being intersected by the global boundary.

The initial population is 200 individuals, randomly generated. Also, random populations from
previous analysis within the optimization process are introduced randomly to increase the compu-
tational efficiency. Then, the fitness function is evaluated for each individual and scaled using a
rank process, to be later used in the selection process. The reproduction operator is implemented
based on a stochastic uniform selection, with constraint dependent mutation and crossover. The
optimization process is terminated if the number of generations exceeds predefined values, or if
the average change in fitness function is less than 1× 10−6.

Figure 31 presented the results of the single-objective optimization, as function of different
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Figure 31: Relative energy error of ILMF as function of the local sub-domain of
integration area Aq, for the regular nodal distribution of 165 nodes.

predefined maximum number of generations in the algorithm stopping criteria, considering 100,
200, 400 and 800 generations, for a fixed αs = 4.5. The accuracy gradually improves as Aq

converge to the area of the posed problem.
Note that the computational effort of this analysis is also very low, thus leading to fast results.

This is mostly due to the introduction of random populations from previous analysis. The first
analysis, preferably from a smaller nodal distribution, can be performed really fast and the popu-
lation used saved in MATLAB internal memory. Later, now for a greater nodal distributions, the
optimization will run faster since it will use random feasible results from the previous analysis,
accelerating the whole process.

Lastly, this final optimization approach combines the features of the previous optimization
schemes into a single fully automated routine to compute ILMF discretization parameters αs and
αq, preserving the presented effectiveness.

This last optimization is divided in two steps. First, αq is optimized using Aq as objective
function. The output of this process is a vector containing one value of αq for each node in
the nodal distribution. Second, αs is optimized using compliance C and CPU time as objective
functions, considering the results obtained in the previous optimization.

The results obtained from the automated multi-objective optimization are presented in Fig-
ure 32 and Tables 7 to 9, in which all of the presented points in the Pareto front are feasible,

Table 7: Pareto front of the multi-objective optimization for the regular nodal dis-
tribution of 52 nodes using the automatic parameters optimization routine.

Index CPU Time (s) Compliance rε ru αs

1 0.0495 -0.942 0.0495 0.0522 1.6919
2 0.0773 -0.990 0.0046 0.0051 2.9747
3 0.0821 -1 0.0052 0.0043 3.1443
4 0.0649 -0.984 0.0091 0.0117 1.9415
5 0.0507 -0.959 0.0091 0.0117 1.7464

non-dominated and optimum, from a computational perspective. The results are a clear evidence
of the accuracy and efficiency of the automated routine, effectively combining the aforementioned
features into a single process.

In order to present the efficiency of the optimization process, regardless of the optimization
technique, GA and SOS algorithms are compared. Thus, similar settings and stopping criteria
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(a) Regular nodal distribution of 52 nodes.
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(b) Regular nodal distribution of 165 nodes.
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(c) Regular nodal distribution of 585 nodes.

Figure 32: The multi-objective Pareto front for regular nodal distributions of the
beam discretization with the automatic parameters optimization routine.
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Table 8: Pareto front of the multi-objective optimization for the regular nodal dis-
tribution of 165 nodes using the automatic parameters optimization routine.

Index CPU Time (s) Compliance rε ru αs

1 0.3744 -0.9894 0.0083 0.0083 3.8145
2 0.4575 -1 0.0023 0.0022 4.6639
3 0.1713 -0.9891 0.0084 0.0087 1.9470
4 0.4330 -0.9975 1.281E-04 1.980E-04 4.3474
5 0.4059 -0.9918 0.0059 0.0059 3.9606

Table 9: Pareto front of the multi-objective optimization for the regular nodal dis-
tribution of 585 nodes using the automatic parameters optimization routine.

Index CPU Time (s) Compliance rε ru αs

1 0.7201 -0.997 0.0016 9.535E-04 1.5
2 2.8858 -0.999 1.660E-04 2.557E-04 4.5010
3 1.8870 -0.998 2.463E-04 6.637E-05 3.4838
4 7.9617 -1 9.110E-04 9.074E-04 9.5744

were defined for both of them. Because SOS is a parameter-free optimization method, only the
population size and the maximum number of function evaluations were defined, for this case as 20
and 100, respectively. Both algorithms stop if the average change in fitness function is less than
1× 10−6 or the maximum number of function evaluations or generations is reached.

The compliance C is chosen as the objective function, for a fixed scalar αq = 0.5. The
decision variable αs is defined as continuous in the interval

αs = [1.5 10]. (105)

The comparison is presented in Figure 33, based on the number of generations or function it-

5 10 15 20 25 30 35 40 45 50

−1.0000

−0.9999

−0.9998

−0.9997

−0.9996

−0.9995

−0.9994

Generation/Iteraction

C
om

p
li
an

ce
(C

)

GA
SOS

Figure 33: Comparison between GA and SOS relative to the maximum number of
generations/iterations.

erations, and Table 10, where the optimization efficiency of both techniques can be seen. Note that
GA is slightly less efficient than SOS. Nevertheless, the values of αs obtained on both approaches
are very similar, close to the ones previously obtained and therefore leading to very accurate re-
sults. SOS as a computational cost higher than GA due to the efficiency of the genetic operators
that are refined for this type of problem.

Oliveira, Tiago, et al. (2022)                   Local Mesh Free Methods in Linear Elasticity and Fracture Mechanics pp. 899-958

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 942



Table 10: The comparative analysis of GA and SOS, for a single-objective optimiza-
tion of the cantilever beam. C and OCE stands for structural compliance and opti-
mization computational effort, respectively.

SOS GA
Nodes C OCE (s) αs C OCE (s) αs

52 -0.999993 7.05 3.156 -1 5.94 3.151
165 -0.981476 52.28 4.705 -0.981477 26.48 4.708
585 -0.962864 144.40 9.631 -0.962865 127.70 9.623

The simplicity is a key advantage provided by the SOS optimization, which requires only 2
parameters to be set, in contrast to the GA optimization that requires a lot more parameters. Even
though SOS is a very promising optimization algorithm, there is a set of libraries and optimization
option on MATLAB environment for GA that are not yet available for SOS.

8.2 Benchmark Problem 2 – Plate with a Circular Hole

On this example, an infinite plate with a centered circular hole under unidirectional unit tension
along the x1 direction is analyzed, as portrait in Figure 34. The symmetry of the problem about

Figure 34: Plate with a hole.

the horizontal and the vertical axes allow the use of only a portion of the upper right quadrant of
the plate. The section has dimensions b× b and the center circle has a radius a = 1, with b = 5a.

The analytical stress distribution in the plate is

σ11(r, θ) = 1− a2

r2

(
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2
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)
+
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cos 4θ

σ12(r, θ) = −a2

r2

(
1

2
sin 2θ + sin 4θ

)
+

3

2

a4

r4
sin 4θ,

(106)

where r and θ are the usual polar coordinates, centered at the center of the hole. A plane-stress
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state is considered, which leads to displacements

u1(r, θ) = − cos θ

2r3E

[
4a4 cos2 θ (1 + ν)

(
1− r2

)
− 3a4(1 + ν) + (ar)2(1− 3ν)− 2r4

]
u2(r, θ) = − sin θ

2r3E

[
4a4 cos2 θ (1 + ν)

(
1− r2

)
− a4(1 + ν) + (ar)2(ν − 3) + 2r4ν

]
.

(107)

In the bottom and left edges of the plate are defined as kinematic boundaries, with displace-
ments u2(x1, x2 = 0) specified on the bottom and (u1(x1 = 0, x1 = L, x2) = 0) specified on
the left edges. For the right and top edges, static boundaries are assumed, with tractions computed
from the stresses of the analytical solution (106) applied as tj = σijni, in which ni represents the
components of the unit outward normal to the edge of the plate. Young′s modulus E = 1.0× 105

and the Poisson′s ratio ν = 0.25 are considered.
In order to solve this plate, discretization with 9 nodes in the tangential direction and 15 nodes

in the radial direction, distributed as shown in Figure 35, with circular local domains and second

Figure 35: Discretization of the plate with a hole.

order polynomial basis for the MLS approximation. ILMF integration was performed with 1 point
at the boundary of each quadrant of the circular integration domain, as schematically represented
in Figure 7.

The computed displacements are shown in Figure 36, where it can be seen a very good agree-
ment with the results of the analytical solution. The stresses at nodes also provided very good
outputs when compared to the exact solution, as shown in Figure 37.

Relative errors of ru = 9.2 × 10−3 and rϵ = 4.1 × 10−3 were obtained for this simple
discretization, which highlight the versatility of ILMF.

8.3 Benchmark Problem 3 – Edge-Cracked Plate

This benchmark problem presents the direct evaluation of SIF, through the SST implemented in
the ILMF model, an efficient and accurate tool for the analysis of cracked plates. For this analysis,
two problems of edge-cracked square plates, respectively under mode-I and mode-II loadings
are presented; and a third case of a square plate with an edge slant crack, under mixed-mode
deformation, is also presented.
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Figure 36: Boundary displacements of the plate with a hole.

The presence of the crack in a mesh free model requires a special treatment of the non-convex
domain resulting from the crack discontinuity. Crack faces are modeled with two sets of overlap-
ping nodes, in a way that the nodes of each line have influence only in the respective side, shared
by a single crack tip with influence in both sides of the crack. For each node within the crack, the
visibility criterion is used to define the compact support, as represented in Figure 38. Therefore,
for nodes within the crack faces, the compact support and the local integration domain are defined
as in the case of a traction-free boundary node. However, for the crack tip node, the compact
support is defined as in the case of an interior node, while for the local integration domain the size
as half of the case of the interior nodes.

Matrices g and f , containing the William’s singular solution at each crack tip, equations (71)
and (72) respectively, are computed with 3 Gauss quadrature points.

The DBEM with the J-integral (J-DBEM), presented by Portela and Aliabadi [1993], is used
to compare the results obtained with ILMF formulation. The DBEM modeling strategy consid-
ers piecewise-straight cracks that are discretized with straight discontinuous quadratic boundary
elements. Continuous quadratic boundary elements are used along the remaining boundaries of
the problem, except at the intersection between a crack and an edge, where semi-discontinuous
boundary elements are used on the edge. Self-point discontinuous boundary elements are inte-
grated analytically, while Gaussian quadrature, with sub-element integration, is carried out for the
remaining integrations.

In the ILMF numerical model, rectangular local domains of integration, with discretization
parameters αs = 1.5 ∼ 3 and αq = 0.5 are considered. The MLS approximation with first-order
polynomial basis and quartic spline weighting function are also considered.

8.3.1 Mode-I Loading

First, a square edge-cracked plate, represented in Figure 39, is considered for the analysis, in which
a denote the length of the crack, w the width of the plate and the height by h = w/2. The uniform
traction t = σ is applied at the plate, symmetrically at the ends. In order to compare the ILMF
accuracy with the highly accurate values reported by Civelek and Erdogan [1982], h/w = 0.5 is
considered on this problem. Five cases are presented, for a/w = 0.2, 0.3, 0.4, 0.5 and 0.6. The
nodal distribution used in the analysis is represented in Figure 40, with a regular nodal distribution
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Figure 37: Stress distribution of the plate with circular hole for θ = 0, π
4
, π
2

.
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Figure 38: The visibility criterion, originally introduced by Belytschko et al.
[1994a].
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Figure 39: Square plate with a single edge crack under mode-I loading
(h/w = 0.5).
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Figure 40: Discretization of the plate with a regular nodal distribution, for
a/w = 0.5. The red line represents the crack faces.
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of 10 × 10 = 100 nodes, with additional overlapping nodes on the crack faces. For all the five
cases of crack length, only the nodal distribution of the crack faces was modified, adding more
nodes for longer lengths, always without any refinement of the discretization around the crack tip.

Results obtained are presented in Table 11, where ILMF correspond the values obtained in this

Table 11: Square plate with a single edge crack under mode-I loading.

KI/(t
√
πa) % Error

a/w ILMF J-DBEM Reference ILMF J-DBEM
0.2 1.520 1.495 1.488 0.0216 0.005
0.3 1.967 1.858 1.848 0.0647 0.005
0.4 2.413 2.338 2.324 0.0387 0.006
0.5 2.973 3.028 3.010 0.0122 0.006
0.6 3.991 4.184 4.152 0.0387 0.008

analysis, J-DBEM represents the values obtained with the J-integral implemented in the DBEM,
published by Portela and Aliabadi [1993], and reference represent the values published by Civelek
and Erdogan [1982]. Percentage errors are calculated from the values of reference. The results
clearly show that ILMF have a good agreement with J-DBEM and the reference values. Since this
is a mode-I loading crack problem, the SIF values of the mode-II are always below 10−7. The
plate deformed configuration is schematically represented in Figure 41.
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Figure 41: Deformed configuration of the plate, for a/w = 0.5, under mode-I
loading.

8.3.2 Mode-II Loading

Now, consider a square edge-cracked plate, as presented in Figure 42. The crack length is denoted
by a and h/w = 0.5 is considered. The uniform traction t is applied anti-symmetrically at the
plate sides, parallel to the crack. This is a very complex and difficult problem, for which there are
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Figure 42: Square plate with a single edge crack under mode-II loading (w = 2h).

no published benchmark results. Hence, the results provided by J-DBEM are used as reference for
this problem. Five cases are presented, for a/w = 0.2, 0.3, 0.4, 0.5 and 0.6. The nodal distribution
used in the analysis is represented in Figure 43, with a regular nodal distribution of 16×16 = 256
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Figure 43: Discretization of the plate with a regular nodal distribution, for
a/w = 0.5. The red line represents the crack faces.

nodes, with additional overlapping nodes on the crack faces. For all the five cases of crack length,
only the nodal distribution of the crack faces was modified, adding more nodes for longer lengths,
always without any refinement of the discretization around the crack tip.

Results obtained are presented in Table 12, where percentage errors are calculated from the
values of J-DBEM. For this problem, the SIF values obtained for the mode-I are always below
10−3, since this is a typical mode-II crack problem. Figure 44 shows the deformed configuration
of the plate.
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Table 12: Square plate with a single edge crack under mode-II loading.

KII/(t
√
πa)

a/w ILMF J-DBEM % Error
0.2 0.416 0.435 0.0436
0.3 0.338 0.358 0.0532
0.4 0.296 0.304 0.0261
0.5 0.248 0.262 0.0522
0.6 0.218 0.223 0.0218
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Figure 44: Deformed configuration of the plate, for a/w = 0.5, under mode-II
loading.

8.3.3 Mixed-Mode Loading

Consider now a plate with an edge slant crack, as showed in Figure 45, in mixed-mode deformation
derived from a remote stress σ. Three cases are presented, for a/w = 0.2, 0.4 and 0.6 with
α = 30o; and two cases, for a/w = 0.2 and 0.4 with α = 60o. This problem was analyzed with
the nodal distribution represented in Figure 46; with a regular nodal distribution of 16× 16 = 256
nodes, with additional overlapping nodes on the crack faces. For all cases of crack length, only the
nodal distribution of the crack faces was modified, adding more nodes for longer lengths, always
without any refinement of the discretization around the crack tip.

Tables 13 and 14 show, respectively, the values of KI/(σ
√
πa) and KII/(σ

√
πa), as well as

the percentage relative to the difference between the appropriate values published by Murakami
[1987b], used as reference, and ILMF results; as a function of a/W and for α = 30o. Tables 15
and 16 present the values of KI/(σ

√
πa), KII/(σ

√
πa) and the percentage relative to the differ-

ence between the appropriate values published by Murakami [1987b] and ILMF; as a function of
a/W , for α = 60o. Once more, the results obtained for this problem are in agreement with those
obtained with the J-DBEM and those published in references, provided by Murakami [1987b] and
Tada [2000]. It is important to remark the high level of accuracy obtained in all cracked plate
problems, always considering coarseness nodal distributions, without any refinement around the
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Figure 45: Square plate with an edge slant crack, under remote stress σ loading.
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Figure 46: Discretization of the plate with a regular nodal distribution, for
a/w = 0.5. The red line represents the crack faces.

Table 13: Stress intensity factor KI/(σ
√
πa) for the edge slant crack (α = 30o).

KI/(σ
√
πa) % Difference

a/W ILMF J-DBEM Reference ILMF J-DBEM
0.2 1.164 1.082 1.100 0.058 0.016
0.4 1.513 1.545 1.550 0.024 0.003
0.6 2.732 2.572 2.550 0.071 0.009

crack tip.
The deformed configuration of the plate is show in Figure 47.
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Table 14: Stress intensity factor KII/(σ
√
πa) for the edge slant crack (α = 30o).

KII/(σ
√
πa) % Difference

a/W ILMF J-DBEM Reference ILMF J-DBEM
0.2 0.325 0.351 0.350 0.071 0.003
0.4 0.471 0.474 0.470 0.002 0.009
0.6 0.580 0.700 0.700 0.171 0.000

Table 15: Stress intensity factor KI/(σ
√
πa) for the edge slant crack (α = 60o).

KI/(σ
√
πa) % Difference

a/W ILMF J-DBEM Reference ILMF J-DBEM
0.2 0.543 0.495 0.500 0.086 0.010
0.4 0.603 0.592 0.600 0.055 0.013

Table 16: Stress intensity factor KII/(σ
√
πa) for the edge slant crack (α = 60o).

KII/(σ
√
πa) % Difference

a/W ILMF J-DBEM Reference ILMF J-DBEM
0.2 0.327 0.356 0.360 0.092 0.011
0.4 0.439 0.413 0.420 0.045 0.017
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Figure 47: Deformed configuration of the plate, for a/w = 0.5, under mixed-mode
loading.

8.4 Benchmark Problem 4 – Central Cracked Plate

For practical applications, albeit curved in most cases, can be effectively modeled as piece-wise
flat, when the path of a crack is concerned. As reported by Caicedo and Portela [2015], the
Williams’ fields can be locally used at each crack tip, as a particular solution of an arbitrary piece-
wise flat crack. Hence, to deal with several cracks simultaneously, superposition is used in SST
strategy in a way that, in the proximity of each crack tip, the Williams’ field is locally used in the
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regularization procedure. As a direct consequence, the central cracked plate can be considered as
a multi-cracked plate, with two distinct crack tips.

Consider a rectangular plate with a central slant crack, as show in Figure 48. The uniform

h

h

2a

W W

Figure 48: Rectangular plate with a central slant crack, under uniform traction.

traction t is applied symmetrically at the ends. The ratio between the height and the width of
the plate is given by h/w = 2. The crack length is 2a and form an angle of θ = 45o with the
horizontal direction. The results published by Murakami [1987a] are used as reference. Three
cases are presented, for a/w = 0.2, 0.4 and 0.6. For this particular case, discretization parameters
were considered as αs = 5 ∼ 8 and αq = 0.5. The discretization was performed with the nodal
distribution, as show in Figure 49; with a regular nodal distribution of 7 × 12 = 84 nodes, with
additional overlapping nodes on the crack faces. For all three cases of crack length, only the nodal
distribution of the crack faces was modified, adding more nodes for longer lengths, always without
any refinement of the discretization around the crack tip.

Tables 17 and 18 demonstrate the results obtained, for the values of KI/(t
√
πa) and KII/(t

√
πa),

as well as comparisons with the appropriate values of the reference presented by Murakami
[1987a], as a function of a/W . The results obtained clearly demonstrate the excellent accuracy

Table 17: Stress intensity factor KI/(t
√
πa) for the central slant crack (θ = 45o).

KI/(t
√
πa) % Difference

a/W ILMF J-DBEM Reference ILMF J-DBEM
0.2 0.519 0.521 0.518 0.002 0.006
0.4 0.575 0.576 0.572 0.005 0.007
0.6 0.626 0.666 0.661 0.053 0.001

of this new formulation of the ILMF numerical model that is an efficient tool for the mixed-mode
deformation analysis of cracked plates.

The deformed configuration of the plate is presented in Figure 50.
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Figure 49: Discretization of the plate with a regular nodal distribution for
a/w = 0.6. The red line represents the crack faces.

Table 18: Stress intensity factor KII/(t
√
πa) for the edge slant crack (θ = 45o).

KII/(t
√
πa) % Difference

a/W ILMF J-DBEM Reference ILMF J-DBEM
0.2 0.529 0.508 0.507 0.043 0.002
0.4 0.532 0.529 0.529 0.005 0.001
0.6 0.585 0.569 0.567 0.032 0.003
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Figure 50: Deformed configuration of the plate, for a/w = 0.6, under uniform
traction.
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9 Concluding Remarks

The local mesh free method for solving linear elastic and fracture mechanics problems were pre-
sented on this chapter. The method is derived from the work theorem, where the formulation leads
to a weak form of the weighted residual statement of a statically admissible stress field, kinemat-
ically formulated with a rigid-body displacement. The node-by-node discretization considers the
MLS approximation and implements a reduced numerical integration.

In a nodal discretization, the size of the compact support and the size of the local integration
domain of each node are parameters directly linked to the accuracy and efficiency of local mesh
free methods. In this paper, both discretization parameters are automatically defined through a
multi-objective optimization process based on genetic algorithms and symbiotic organism search
algorithm.

Benchmark test problems were analyzed in order to assess the accuracy and efficiency of the
local mesh free method. Both regular and irregular nodal distributions can be considered. For
irregular nodal distributions, the combination of stable results and a high accuracy are obtained,
even for severe irregular distributions. The optimization scheme defined on this chapter is very
efficient, from a computational point of view, and do not require any analytical solution to be
performed. Therefore, the local mesh free method proved to be a reliable and robust formulation
for solving linear elastic problems.

Linear elastic fracture mechanics problems using the local mesh free method are performed
through the singularity subtraction technique (SST), which regularizes the elastic field, before
the numerical solution, thus introducing the stress intensity factors (SIF) as additional primary
unknowns of the problem. This strategy result in a direct computation of the SIF and does not
require a refined discretization to obtain accurate results. The high efficiency of this model strategy
can be seen in the numerical results, for simple coarse nodal distributions, without any refinement
around crack tips. Therefore, the reliability and robustness can also be extend for solving fracture
mechanics problems.

This chapter shows that the local mesh free method, along with optimization processes, could
provide stable and accurate solutions for linear elastic and fracture mechanics problems, with-
out most known setbacks, contributing to a mainstream use of mesh-free numerical methods in
the near future. For the next research projects, the local mesh free method, with the SST imple-
mentation and optimization, will be extended for the analysis of multiple crack growth problems,
nonlinear plates and dynamic problems.
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Abstract

Damage models represent an important tool for the analysis of the degradation
of quasi-brittle media and, due to their continuous formulation, present certain ad-
vantages with respect to other modelling strategies. However, they also exhibit a
number of issues when combined with the standard finite element method, like mesh-
objectivity and mesh-bias, that can significantly affect the results of a simulation.
Due to their nature, meshless techniques are a valid candidate to deal with such is-
sues. The lack of an element-like connectivity between the meshless nodes can allivi-
ate the mesh-bias in damage propagation, while the intrinsic nonlocality of meshless
approximation functions can act as a regularisation technique at the numerical level.
The present work aims to review the application of a specific class of meshless meth-
ods, the smoothed point interpolation methods (SPIMs) to the problem of damage
modelling.

Keywords: meshless methods; smoothed point interpolation methods; damage mechanics; strain
localisation

1 Introduction

In order to solve the system of partial differential equations (PDEs) governing a problem of con-
tinuum mechanics (or any other continuum problem representable in terms of PDEs), the finite
element method (FEM) discretises the problem domain with a mesh (see, e.g. Bathe [1996] or
Zienkiewicz and Taylor [2000]), in the following manner:

“
1. The continuum is separated by imaginary lines or surfaces into a

number of “finite elements”.

2. The elements are assumed to be interconnected at a discrete num-
ber of nodal points situated on their boundaries and occasionally
in their interior.

”[Zienkiewicz and Taylor, 2000, pag. 18]
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The unknown parameters of the problem are then represented by the nodal values of the field
variable (e.g. the displacement field in a solid mechanics problem). The choice of proper approxi-
mation functions within each element allows to mount a system of linear equations for the solution
of the problem. On the other hand:

“The meshfree method is used to establish a system of algebraic equa-
tions for the whole problem domain without the use of a predefined
mesh, or uses easily generable meshes in a much more flexible or “freer”
manner. Meshfree methods essentially use a set of nodes scattered within
the problem domain as well as on the boundaries to represent the prob-
lem domain and its boundaries. The field functions are then approxi-
mated locally using these nodes.”[Liu, 2009, pag. 14]

As pointed out by Liu in his book [Liu, 2009], the standard finite element method suffers for
a number of limitations. Among them there are:

• the need for a quality mesh, that reduces the automation in mesh generation;

• the “overly stiff” behaviour, resulting from the full compatibility in the assumed displace-
ment field, and leading to locking and poor solutions in gradient/derivatives;

• the loss of accuracy due to element distorsions in problems with large deformations;

• the mesh bias in problems like crack growth and phase transformations;

• the difficult simulation of breakage and fragmentation problems;

• the costly adaptive and remeshing approaches;

• the availability of solely a “lower bound” to the exact solution.

An examination of this list reveals that most of the mentioned issues are due to the “heavy and
rigid reliance on the use of quality elements that are the building blocks of FEM ” [Liu, 2009, pag.
17], and to the predefined connectivity required by such elements.

The basic idea of meshless methods is then to mitigate these issues by eliminating or reducing
the reliance on a mesh1. Among the most common meshless methods there are the smoothed
particle hydrodynamics (SPH) method [Gingold and Monaghan, 1977], the element-free Galerkin2

(EFG) method [Belytschko et al., 1994], the reproducing kernel particle method (RKPM) [Liu
et al., 1995], the family of point interpolation methods (which the smoothed point interpolation
methods discussed in this manuscript belong to), and the meshless local Petrov-Galerkin (MLPG)
method [Atluri and Zhu, 1998]. Despite a computational cost that is, in general, higher than in
the standard FEM, meshless methods exhibit a number of important features. Among them, the
following can be highlighted [Liu, 2009]:

• easy automatic mesh generation using triangulation strategies;

• absent or limited mesh alignment sensitivity;

• no need for remeshing operations, especially in problems with large deformations or mov-
ing discontinuities;

1Though meshless discretisations are not based on a conventional mesh as intended in the standard FEM,
the term “mesh” will still be used in the following to indicate such discretisations.

2Based on the diffuse elements method (DEM) originated by Nayroles et al. [1992].
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• construction of shape functions of any desired order of continuity.

Regarding physically nonlinear problems, and especially the problem of continuum damage
mechanics discussed in this manuscript, the standard FEM suffers for other issues besides the
aformentioned ones. The presence of damage indeed, results in a strain-softening behaviour. Nu-
merical simulations of strain-softening problems, where localisation occours, performed with the
standard finite element method (FEM), are usually affected by certain pathological behaviours,
such as strong mesh-dependency, premature fracture initiation, and instantaneous perfectly-brittle
fracture [de Borst et al., 1993, Peerlings et al., 2002]. These pathological effects are due to the
fact that, at a certain load level, the continuum boundary value problem may become ill-posed (the
so-called loss of ellipticity of the equilibrium equations), resulting in an infinite set of solutions
(discontinuous bifurcation), from which the numerical method selects the one corresponding to the
smallest energy dissipation. This approximated solution strongly depends on the mesh; at mesh
refinement it tends to a failure with zero energy dissipation, and then to a nonphysical behaviour.

It has been pointed out that the pathological behaviours that may affect the numerical simula-
tions where localisation occours are due to the local representation offered by the classic contin-
uum theory, in contrast with the nonlocal nature of phenomena like damage and plasticity [Bažant,
1991]. The main aim of the proposed solutions to this problem (the so-called regularisation tech-
niques) is the introduction of an internal length in the continuum model, allowing to recover
the nonlocal character of the phenomenon; an interesting overview on the different regularisation
methods can be found in the papers by de Borst et al. [de Borst et al., 1993] and by Bažant et al.
[Bažant and Jirásek, 2002].

Some classes of meshless methods have been shown to be capable to deal with the aformen-
tioned localisation issues, due to their intrinsic nonlocal character. As pointed out in a paper by
Chen et al. [Chen et al., 2000], the nonlocality of these methods is due to the fact that their approx-
imation functions are not constructed locally as in the finite element method, because of the use
of basis and weighting functions with support size greater than the nodal spacing. In the same pa-
per the authors pointed out the analogy between MLS/RK approximations and gradient-enhanced
models, and also showed the beneficial effects on localisation associated to the use of an assumed
strain method where the nonlocal equivalent strain measure is directly approximated in terms of
displacement parameters. Moreover, the use of a meshless method allows, in general, to overcome
the problem of mesh orientation bias, that may appear in damage propagation problems. Among
the methods that have been shown to possess certain regularisation effects in localisation prob-
lems there are moving least square (MLS) and reproducing kernel (RK) approximations, as well
as methods based on strain smoothing techniques [Liu et al., 1999, Chen et al., 2000, Li et al.,
2000, Chen et al., 2004, 2007, Wang and Li, 2012, Pozo et al., 2014]. As strain smoothing meth-
ods, also the smoothed point interpolation methods (SPIMs) discussed in this manuscript have
been shown to exhibit regularisation properties, as illustrated by Gori et al. [Gori et al., 2019b],
both alone as well as when combined with other regularisation strategies, like the micropolar con-
tinuum theory [Gori et al., 2019a,c]. Particle methods, like the SPH, have also been shown to be
capable to deal with strain-softening problems [Vignjevic et al., 2014].

One of the main issues in the most common meshfree approaches is the lack of the Kro-
necker delta property, which requires a special treatment for the imposition of essential boundary
conditions, like the use of the well-known Lagrange multipliers and penalty methods or other pro-
cedures [Chen and Wang, 2000, Wu and Plesha, 2002, Fernández-Méndez and Huerta, 2004]. The
smoothed point interpolation methods discussed in this manuscript [Liu, 2009, 2010a,b, Liu and
Zhang, 2013] allow for a more simple imposition of boundary conditions, since they are based
on shape functions constructed with the point interpolation method (PIM), which guarantee the
Kronecker delta property. The price for a more simple imposition of the boundary conditions is
the presence of incompatible shape function, which may present discontinuities in the problem
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domain, requiring the use of a so-called weakened-weak form of the continuum problem [Liu,
2010a,b] based on a strain smoothing technique [Liu, 2008]. Regarding the field of continuum
mechanics, these methods have been applied to linear elasticity [Liu, 2010b] and elasto-plasticity
[Zhang et al., 2015]. The smoothing operation which these methods are based on is a sort of gen-
eralisation of the Stabilised Conforming Nodal Integration (SCNI) technique originally proposed
by Chen et al. [Chen et al., 2001].

1.1 Outline

The outline of this manuscript is organised as follows. In the first section after this introduc-
tion (Section 2), the fundamental aspects of meshless methods, like discretisation, field variables
approximation, and numerical integration, are reviewed, and compared with the approach of the
standard FEM. Section 3 is the core of the manuscript; it discusses in details the main aspects of
smoothed point interpolation methods, and their application to problems of continuum damage
mechanics (more specifically, to problems with scalar damage). Section 4 briefly discusses the is-
sue of localisation in strain-softening problems, and the different regularisation strategies that can
be applied to scalar damage problems and to other problems where localisation may occour. Fi-
nally, Section 5 illustrates some numerical results obtained with SPIM stategies applied to damage
problems, while Section 6 presents some concluding remarks.

1.2 Notations and tools

Some standard notations used in the body of the manuscript are summarised here. The symbol
D ⊂ E indicates the domain of a body embedded in the three-dimensional Euclidean space E,
and DS

k ⊂ D one of its subsets, referred to as smoothing domain. Vectors are indicated as x̄ ∈ Ē,
with x̄ = xi ēi, where Ē is the vector space associated to E, and (ēi) a basis in E. Second-order
and fourth-order tensors are indicated, respectively, by x ∈ Ē⊗ Ē, with x = xij ēi ⊗ ēj , and by
x̂ ∈ Ē ⊗ Ē ⊗ Ē ⊗ Ē, with x̂ = xijk` ēi ⊗ ēj ⊗ ēk ⊗ ē`. The symbol “·” denotes the standard
dot product between vectors and the one index contraction between tensors (or between a tensor
and a vector) like, for example, x̄ · ȳ = xi yi and x · ȳ = xij yj ēi, while the symbol “..” denotes
the double contraction between tensors like, for example, x̂ · y = xijk` yk` ēi ⊗ ēj and the other
possible combinations. With the symbol “⊗”, the standard tensor product, as x̄⊗ȳ = xi yj ēi⊗ēj
or x ⊗ y = xij yk` ēi ⊗ ēj ⊗ ēk ⊗ ē`, is indicated. In some applications the Voigt notation will
be used to represent second-order and fourth-order tensors; once a certain coordinates system has
been fixed, a generic second-order tensor with dimension three x can be represented by means of
an array with nine components, indicated with the symbol {x}. In an analogous way, a fourth-
order tensor with dimension three x̂ can be represented by means of a 9 × 9 matrix, indicated as
[x̂]. It should be noted that the provided dimensions refer to a general three-dimensional case; in
different situations (e.g. plane-strain or plane-stress states, or peculiar symmetries), the size of
arrays and matrices in Voigt representation is minor, in general. The same symbols {·} and [·]
are also used to indicate, respectively, arrays and matrices in numerical equations. The numerical
implementations of the strategies discussed in this paper, as well as the numerical simulations,
have been performed in the open-source program INSANE3. The triangular background cells
used for the construction of the meshfree discretisations, as well as the contour plots of the results
obtained with the meshfree models, have been generated with the program Gmsh [Geuzaine and
Remacle, 2009].

3More information on the project can be found at https://www.insane.dees.ufmg.br/
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2 Fundamentals of meshless methods

Before presenting the fundamentals of meshless methods it’s worth it to briefly illustrate the main
aspects of the finite element method (FEM); these will be used later to introduce the meshless
approach, serving as a basis for the reader that is familiar with the FEM. Given a domain D, an
FEM model is contructed as a tesselation of this domain using a finite number of elements De that
don’t overlap and don’t leave gaps in the domain (Figure 1); this tesselation is commonly referred
to as mesh. Finite elements may present different geometrical shapes, depending on the size of the
domain of the problem; straight lines and curves in one-dimensional domains, polygons in two-
dimensional domains, and polyhedra in three-dimensional domains. Regardless of the peculiar
shape of an element, each one of its vertices is a so-called node (Figure 1).

D De

Figure 1: Two-dimensional FEM mesh

The role of the nodes is to discretise the field variables of the problem. A generic continuous
problem characterised by the field variable u(p), with p being a point in the domain D, is trans-
formed into a discrete one, where the field variable is only sampled at a finite number of points pi
in the domain, corresponding to the nodes, ui = u(pi). Regarding the discretisation of a problem,
the elements have a double task. Firstly, they serve as units for the interpolation of the field vari-
ables. Once the field variables are known at the nodes of a model, their values can be interpolated
inside each element using the so-called shape functions Ni of the element (Figure 2):

u(p) ' uh(p) =
N∑
i=1

Ni(p) ui, p ∈ De (1)

i

ui

Figure 2: Two-dimensional FEM interpolation

The second task of the elements is to allow the numerical integration of the weak form that
describes the behaviour of the problem at hand. Regardless of the kind of problem, a weak form
usually requires to perform an integration over the problem domain. In this sense, the tesselation
of the domain allows to build a quadrature rule, where the integral is performed considering a
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certain number of integration points within each element (Figure 3); such points are also referred
to as Gauss points, since the Gauss quadrature rule is the one usually adopted in the FEM.

×

×

×

×

Figure 3: Two-dimensional FEM integration points

Meshless methods still need to perform the aformentioned tasks, i.e. the field variables inter-
polation and the numerical integration of the weak form. However, while in the FEM these tasks
are performed using a single object, the finite element, in meshless methods there are usually two
distinct objects, the support domain, that allows to perform the interpolation (or approximation),
and the integration domain, that allows to perform the numerical integration.

2.1 Field variables interpolation/approximation

As pointed out in Section 2, in the FEM the field variables interpolation is element-based, i.e. it’s
defined within each finite element. In meshless methods on the other hand, the interpolation (or
approximation, as it will be pointed out later) is node-based, i.e. it only uses the nodes scattered
on the domain, without any information about their connectivity. Many meshless methods still
use some sort of mesh-like grid for different purposes, but this grid is not stricly needed for the
interpolation of the field variables.

As mentioned before, the object responsible for the interpolation is the support domain. A
support domain Sd (Figure 4) is defined at each interest point p ∈ D where the field variables
must be interpolated, and is composed by the set of nodes (the so-called support nodes) in the
neighbourhood of the point p.

D ×
p

Figure 4: Meshless support domain
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Given a point p ∈ D, the interpolation of a generic field variable u(p) is built using the nodes
belonging to the support domain at p:

u(p) ' uh(p) =
∑

i∈Sd(p)

φi(p) ui (2)

In the summation above, the terms ui = u(pi) are the values of the field variable at the support
nodes, and the functions φi are the shape functions. Unlike FEM shape functions, there isn’t
always a closed form expression for meshless shape functions; the shape functions for a certain
support domain are usually evaluated with a numerical procedure that involves a matrix inversion,
resulting in a higher computational cost.

While the concept of support domain is the same for the different meshless method, each
method is characterised by it’s own strategy for the construction of shape functions4. Among the
different strategies there are5:

• the moving least square (MLS) method;

• the point interpolation method (PIM);

• the radial point interpolation method (RPIM);

• the radial point interpolation method with polynomial reproduction (RPIMp).

In the present section the terms interpolation and approximation have been mentioned; while
many meshless shape functions possess the delta Kronecker property, resulting in an interpolation
of the field variables, many other shape functions, like the ones obtained with the MLS, don’t
possess such a property and are only capable to provide an approximation of the field variables.

2.2 Numerical integration

Just like the FEM many meshless methods are based on the weak form of a certain problem
(or a weakened-weak form, like for the SPIM strategy discussed in Section 3), that requires a
numerical integration over the problem domain. While in the FEM the integration is performed
using a quadrature rule within each element, meshless methods perform this operation making use
of the so-called integration domains. Together with the kind of shape function, the specific type
of integration process is a characteristic of each meshless method.

In the present section, the concept of numerical integration for meshless methods is illustrated
using the procedure adopted in the EFG method [Belytschko et al., 1994], also similar to the one
adopted in the MLPG method [Atluri and Zhu, 1998] and in the PIM [Liu and Gu, 2001]. In these
methods the numerical integration is performed in a way that is similar to the FEM integration.
As illustrated in Figure 5, the domain is tesselated into integration domains, that may form a
regular or an irregular grid. Each integration domain is endowed with integration points, where
the approximation functions are evaluated. The main difference with the FEM integration is that
in the FEM all the integration points of the same element are supported by the same nodes (i.e.
the nodes of the element), while in a meshless method each integration point usually has its own
support domain, that may vary from point to point even in the same integration domain (Figure 5).

As it will be shown in Section 3, SPIM strategies are based on a different approach to the nu-
merical integration process, due to the presence of a smoothing operation; the resulting integration

4Shape functions construction will be discussed with more details in Section 3.1, for the case of
smoothed point interpolation methods.

5A comprehensive account on the different strategies for the construction of the most common meshless
shape functions can be found in Liu [2009]
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Figure 5: Meshless grid-like integration domains

is similar to the one of the stabilised conforming nodal integration (SNCI) proposed for the EFG
method by Chen et al. [2001].

3 Meshless Smoothed Point Interpolation Methods (SPIMs)

Smoothed point interpolation methods, like other meshfree methods, rely on a set of nodes scat-
tered in the problem domain, usually obtained through a triangulation operation. In a smoothed
point interpolation method the field variable of the boundary value problem in linear elasticity, i.e.
the displacement field ū(p) at each point p ∈ D, is approximated as [Liu, 2009]

ū(p) '
∑
i∈Sd

[φi(p)]{di} (3)

where the index i indicates a node pi in the support domain Sd, i.e. the set of nodes in the
neighbourhood of the point p ∈ D usually selected using a T-scheme [Liu, 2009], [φi(p)] is the
nodal matrix of approximation functions, and {di} is an array containing the nodal parameters of
the field variable, i.e. its values ū(pi) at each node pi.

The shape functions, in this class of methods, are usually generated using the point interpola-
tion method [Liu and Gu, 2001] (PIM), or the radial point interpolation method with or without
polynomial reproduction [Wang and Liu, 2002b] (RPIM and RPIMp), and are characterised by
the following properties: they are linearly independent, posses the Kronecker delta property, form
a partition of unity, posses the linear reproducing property, present compact support, and are not
compatible. The first meshfree methods based on these shape functions were proposed by Liu
and his co-authors in Liu and Gu [2001] and Wang and Liu [2002b], as an alternative to existent
meshfree methods. Indeed, due to their delta Kronecker property they allowed a more simple
imposition of essential boundary conditions, with respect to other meshfree methods.

As pointed out above, however, the price for the delta Kronecker property is a lack of com-
patibility of the shape functions, meaning that the approximated fields may exhibit discontinuities
when passing from a support domain to another. This makes such shape functions unable to satisfy
the requirement of square integrable first derivatives needed for the formulation of standard weak
forms. In order to overcome this issu, Liu [Liu, 2010a,b] proposed the use of a weakened-weak
form of the elastic problem, based on a smoothing operation6 [Liu, 2008] applied to the gradi-

6As mentioned by Liu (see, e.g. the introduction of Liu [2010a]) such smoothing technique [Liu, 2008]
is analogous to the one adopted in other contextes like non-local continuum mechanics [Zhang et al., 2006,
Eringen and Edelen, 1972], SPH methods [Liu and Liu, 2003, Lucy, 1977, Liu et al., 2008, Monaghan,
1982], hybrid FEM [Quarteroni and Valli, 1994], for the regularisation of spatial instabilities in nodal

Gori, Lapo (2022) Meshless smoothed point interpolation methods for damage modelling pp. 959-1006

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 967



ents involved in the formulation, that allows to reduce the continuity requirement of the shape
functions.

The combination of the smoothing technique with point interpolation functions allowed to
obtain different smoothed meshfree methods78, like the node-based smoothed point interpolation
(NS-PIM) method [Liu et al., 2005, Zhang et al., 2007], the edge-based smoothed point interpo-
lation (ES-PIM) method [Liu and Zhang, 2008], and the cell-based smoothed point interpolation
method [Liu and Zhang, 2009]. In order to deal with the presence of incompatible shape func-
tions and smoothing operations, Liu developed a new theoretical framework, establishing two
novel concepts: the G-space theory and the weakened-weak form (W2) formulation (see, e.g. Liu
[2010a,b], Liu and Zhang [2013]). These concepts were later extended to the case of the microp-
olar continuum theory by Gori et al. [2019c].

3.1 Shape functions

As pointed out above, three types of shape functions are commonly used in SPIMs strategies:
PIM, RPIM and RPIMp. The present section focuses on shape functions obtained with the radial
point interpolation method with polynomial reproduction, since they are the ones adopted in the
numerical simulations of Section 5. Furthermore, the formulation of RPIMp shape function is
more general and PIM and RPIM shape functions can be obtained as special cases.

The RPIMp approximation of a function u is expressed by

u(q) ' uh(q) =
n∑
i=1

Ri(q)ai +
m∑
j=1

pj(q)bj = {R(q)}T {a}+ {p(q)}T {b} (4)

where the terms Ri(q) are a set of radial functions evaluated at q, constituting a radial basis,
n is the number of support nodes in the local support domain at the point q, the terms pj(q)
constitute a polynomial basis, and m is the number of monomials composing the polynomial
basis. The number of monomials should be sufficient to guarantee, at least, the linear reproduction
(e.g. in a two-dimensional domain three monomials are sufficient to pass the standard patch test,
the constant term and the two linear terms in the coordinates x and y). The approximation of
Equation 4 is characterised by two sets of unknown coefficients:

{a} =
(
a1, . . . , an

)T
, {b} =

(
b1, . . . , bm

)T (5)

which can be evaluated imposing the interpolation condition

uk =

n∑
i=1

Ri(qk)ai +

m∑
j=1

pj(qk)bj , k = 1, . . . , n (6)

and the following additional condition [Golberg et al., 1999]:

n∑
i=1

pj(qi)ai = 0, j = 1, . . . ,m (7)

integrated meshfree methods Chen et al. [2001], and for the regularisation of material instabilities [Chen
et al., 2000].

7The smoothing technique has been also applied by Liu and his co-authors to the standard FEM, obtain-
ing the so-called smoothed finite element method (see, e.g. Liu et al. [2007] and Liu et al. [2009]).

8As pointed out in Liu and Zhang [2013], the smoothed point interpolation methods belong to the more
general class of strain constructed methods, which still relies on point interpolation function, but with a
different strategy for the treatement of the gradients.
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that can be recast in the following compact form:{
{U} = [Rq]{a}+ [Pm]{b}
{0} = [Pm]T {a} →

(
[Rq] [Pm]

[Pm]T [0]

)(
{a}
{b}

)
=

(
{U}
{0}

)
(8)

where the matrix [Rq] with dimension n×n is the moment matrix, each line of which is composed
by the radial basis function evaluated at a support node, while the matrix [Pm] with dimension
n×m has its lines formed by the polynomial basis evaluated at the support nodes:

[Rq] =

{R(q1)}T
...

{R(qn)}T

 , [Pm] =

{p(q1)}T
...

{p(qn)}T

 (9)

After some manipulations of the involved equations (see, e.g. Liu [2009]), the unknown coeffi-
cients can be evaluated as

{a} = [Sa]{U}, {b} = [Sb]{U} (10)

where the matrices [Sa] and [Sb] are represented by

[Sa] := [Rq]
−1 − [Rq]

−1[Pm][Sb] (11)

[Sb] :=
(
[Pm]T [Rq]

−1[Pm]
)−1

[Pm]T [Rq]
−1 (12)

resulting in the approximation

uh(q) =
(
{R(q)}T [Sa] + {p(q)}T [Sb]

)
{U} = {φ(q)}T {U} (13)

where each shape function φi(q) is given by

φi(q) = Rj(q)[Sa]ji + pj(q)[Sb]ji (14)

The radial functions Ri(p) appearing in Equation 4 defined for each node i in the support
domain, depend only on the distance ri between the point p ∈ D at which they must be evaluated
and the node i. In the numerical simulations presented in Section 5 the following exponential
(EXP) function was adopted:

Ri(ri) = exp (−cr2
i ) (15)

depending on the shape parameter c [Wang and Liu, 2002b]. Investigations on the choice of
optimal shape parameters for the accuracy of the approximation can be found in Wang and Liu
[2002b] and Wang and Liu [2002a], for example. However, as pointed out in Liu [2009], in
presence of polynomial terms as in the RPIMp, and when smoothing techniques are adopted, the
reliance of the accuracy on the shape parameters is significantly reduced.

By neglecting the polynomial term {p(q)}T {b} appearing in Equation 4 it’s possible to obtain
the formulation of of RPIM shape functions. PIM shape functions, on the other hand, can be
obtained by neglecting the same term {p(q)}T {b} and by replacing the radial functions Ri with
polynomial functions.

3.1.1 Shape functions properties

As already pointed out, the main advantage of PIM, RPIM and RPIMp shape functions over other
common meshless shape functions is the delta Kronecker property, that allows a more simple im-
position of boundary conditions. This property is obtained at the price of possible discontinuities
of the shape functions over the domain, resulting in incompatible shape functions. According to
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Liu [2009], these discontinuities are due to the absence of a smooth transition between support
domains. When passing from an integration point to another, with different support domains, the
shape function for a node changes suddenly, resulting in a discontinuity at that point. This doesn’t
happen, for example, in the moving least square (MLS) method [Liu, 2009], where the presence of
weight functions allows for a smooth transition between support domains; MLS shape functions
indeed, are compatible, in general.

PIM, RPIM and RPIMp shape functions require a matrix inversion operation in order to be
evaluated at each interest point, and may suffer from singularity issues. PIM functions are more
prone to the singularity of the moment matrix, that may occour due to peculiar alignments of the
support nodes [Liu, 2009]. The moment matrix of RPIM and RPIMp, in general, is not singular
and, as pointed out by Liu [2009], the construction of an RPIMp approximation is possible as long
as the matrix [Pm]T [Rq]

−1[Pm] appearing in Equation 12 is invertible; the invertibility of such
matrix is guaranteed, in general, as long as n ≥ m.

Despite being more complex, RPIMp shape functions are usually preferred over the two other
strategies, because of the singularity issues of PIM interpolations and because RPIM functions
lack of consistency, in the sense that they don’t exhibit polynomial reproduction of any order,
meaning that they cannot pass the standard patch test.

3.1.2 Support nodes selection strategies

In order to construct a meshless approximation at a certain point q of the problem domain it is
necessary to use a number of n support nodes, composing the so-called support domain at the
point q. In order to compose the support domain by selecting proper nodes in the neighbourhood
of the point q, two different strategies have been adopted in this work: the selection via influence
domains and via T-schemes9.

The selection of support nodes via influence domains is a standard approach adopted in a
number of meshfree methods. Each node is endowed with an influence domain, characterised by
a shape and its dimensions. For example, in Figure 6, each node possesses a circular influence
domain, characterised by a certain radius which may vary from node to node. For each integra-
tion point, the corresponding support domain is generated adding all the nodes which influence
domains contain the selected integration point. In the example depicted in Figure 6, the support
domain at the selected integration have been marked with an hollow circle. The number of nodes
in each support domain is controlled by the ratio between the size of the influence domains and the
mean nodal distance. While this method works well for MLS and RPIM shape functions, when
applied to PIM shape functions it may lead to a singular moment matrix, in case of peculiar nodal
alignments.

An alternative is represented by the so-called T-schemes [Liu, 2009]. Such methods perform
the support nodes selection making use of background triangular cells, constructed as a trian-
gulation of the scattered nodes of the discrete model. In general, there is no need to construct
such set of cells specifically for the application of the T-schemes. A triangulation indeed, could
have been already constructed during the discretisation of the domain, at the moment of the nodes
generation. Furthermore, in smoothed point interpolation methods, like the ones considered in

9Another strategy, that hasn’t been considered in this treatise but that could improve the performances
of this class of meshfree methods, especially in case of large models, is the support nodes selection via K-
Nearest Neighbor (KNN) algorithms, that could also be useful as an alternative to the methods considered
in this treatise for the investigation of the regularisation properties related to the non-locality of PIM and
RPIM approximations. As pointed out in 3.1.3, the use of the influence domains strategy tends to affect
the sparseness of the stiffness matrix in a negative way; in this case, KNN strategies should introduce a
non-locality analogous to the one of the influence domains strategy, with a reduced effect on the sparseness
of the stiffness matrix.
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Node
Support node
Integration point

Figure 6: Support nodes selection via influence domains

this treatise, a set of background cells is necessary for the construction of the smoothing domains
(Section 3.2); hence, the triangular cells are already available for nodes selection. In the examples
presented in Section 5, two kind of T-schemes have been considered: the T3-scheme and the T6/3-
scheme, which, as pointed out by Liu [Liu, 2009], allow to obtain invertible moment matrices with
both PIM and RPIM shape functions10. For an integration point belonging to a certain cell, the
T3-scheme selects as support nodes the three nodes at the vertices of the cell (Figure 7(a)). The
T6/3-scheme distinguishes between interior and boundary cells. The former are cells which have
no one of their edges on the boundary of the problem domain, while the latter are cells with at
least an edge on the boundary of the domain. For a boundary cell, the three nodes at the vertices
of the cell are selected as support nodes, like in the T3-scheme. On the other hand, in case of an
interior cell, a total number of six nodes is selected: the three nodes located at the vertices of the
cell, and three nodes located at the remote vertices of the three neighbouring cells (Figure 7(b)).

Node
Support node
Integration pointInterior cell

Boundary cell

(a) T3-scheme

Node
Support node
Integration pointInterior cell

Boundary cell

(b) T6/3-scheme

Figure 7: Support nodes selection via T-schemes

10As pointed out in Liu [2009], two further methods based on triangular background cells are available,
the so-called T6 and T2L schemes, which selects, in general, a larger number of nodes with respect to the
T-schemes already mentioned in this section. However, the example discussed in Section 5 focused only on
the two T-schemes discussed in this section.
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3.1.3 T-schemes vs influence domains

It has been mentioned that T-schemes are useful to guarantee the invertibility of the moment matrix
in the PIM strategy. As pointed out by Liu [2009], they are also important to obtain a sparse
stiffness matrix, which eases the solution of the linear system of equations. The sparseness of
the stiffness matrix results from the compact character of the support domains generated with the
T-schemes. Another interesting feature is that they also allow to know a priori the parts of the
domain where the approximation functions may exhibit discontinuities, which is important for
the node- and edge-based methods presented in Section 3.2.2. The influence domains strategy on
the contrary, depending on the size of the influence domains, tends to destroy the sparseness of
the stiffness matrix. Furthermore, when using the influence domains strategy, the positions of the
shape functions discontinuities is not known a priori. Despite these disadvantages, this strategy
was adopted in the simulations of Section 5.1 in order to investigate the non-local effects of the
PIM and RPIM meshfree methods.

3.2 Smoothing domains creation and weakened-weak form

As pointed out in the beginning of Section 3, the use of incompatible approximation functions
led Liu and his co-authors to the introduction of a novel theoretical structure, constituted by the
G-space theory and the weakened-weak form (W2) formulation (see, e.g. Liu [2010a,b] and Liu
and Zhang [2013]), which will be briefly recalled here. First, the concept of weak form in classic
elasticity is briefly recalled. Then, the novel formulation introduced by Liu and his co-authors is
recalled, focusing on the following points:

• smoothing domains generation;

• smoothing operation;

• G-spaces;

• weakened-weak form.

3.2.1 Weak form in classic elasticity

For a problem of classic elasticity, characterised by the unknown field variable ū defined over the
problem domain D, by the essential boundary condition ū = ū∗ at ∂De, by the natural boundary
condition n̄ · σ = t̄ at ∂Dn, and subjected to volume forces b̄V defined over the whole domain
D, the weak form of the problem can be expressed as in the following: find the field ū ∈ V(D)
such that∫

D
ε(w̄) ..

(
Ê .. ε(ū)

)
dV −

∫
∂Dn

w̄ · t̄ dS −
∫
D
w̄ · b̄V dV = 0, ∀w̄ ∈ V0(D) (16)

where ε(ū) = (ui,j + uj,i)/2 ēi ⊗ ēj , and where V(D) and V0(D) are, respectively, the spaces
of trial and test functions, defined as

V(D) :=
{
ū ∈

(
H1(D)

)n | ū = ū∗ at ∂Du
e

}
(17)

V0(D) :=
{
w̄ ∈

(
H1(D)

)n | w̄ = 0 at ∂Du
e

}
(18)

where
(
H1(D)

)n is the space of square integrable n-dimensional vector fields with square in-
tegrable first derivatives over the domain D. The weak form of Equation 16 can be recast in a
compact for as

a(w̄, ū) = f(w̄), ∀w̄ ∈ V0(D) (19)
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where the bilinear form a(w̄, ū) and the linear functional f(w̄) have been introduced, defined as

a(w̄, ū) :=

∫
D
ε(w̄) ..

(
Ê .. ε(ū)

)
dV (20)

f(w̄) :=

∫
∂Dn

w̄ · t̄ dS +

∫
D
w̄ · b̄V dV (21)

It is worth it to note that the requirement ū, w̄ ∈
(
H1(D)

)n is necessary to bound from above the
value of the bilinear form11.

Introducing the Voigt notation for a plane stress case, the components of the weak form of
Equation 19 can be recast as

a(w̄, ū) :=

∫
D

([L]{w̄})T [Ê] ([L]{ū}) dV (22)

f(w̄) :=

∫
∂Dn

{w̄}T {t̄} dS +

∫
D
{w̄}{b̄V } dV (23)

where the derivative operator [L] is such that

{ε(ū)} = [L]{ū} →

εxxεyy
εxy

 =

∂x 0
0 ∂y
∂y ∂x

(ux
uy

)
(24)

Within the FEM approach the weak form of Equation 19 is discretised by replacing the trial
and test functions ū and w̄ with the approximations ūh ∈ Vh(D) and w̄h ∈ V0

h(D), where Vh(D)
and V0

h(D) are the discretised spaces of trial and test functions such that

Vh(D) :=
{
ū ∈

(
H1
h(D)

)n | ū = ū∗ at ∂Du
e

}
(25)

V0
h(D) :=

{
w̄ ∈

(
H1
h(D)

)n | w̄ = 0 at ∂Du
e

}
(26)

where
(
H1
h(D)

)n is the space of square integrable n-dimensional discretised vector fields (i.e.
constructed with approximation functions in terms of a set of nodal parameters) with square in-
tegrable first derivatives over the domain D. The discretisation results in a matrix system of the
kind

[K] {X} = {R} (27)

where [K] is the global stiffness matrix of the system, {X} the nodal parameters vector collecting
all the nodal parameters {di}, and {R} the vector of nodal forces. In a FEM model, the stiffness
matrix [K] would be evaluated through the contribution of each finite element:

[K]el =

∫
Del

[B(p)]T [Ê(p)][B(p)] dV (28)

where the symbol
∫
Del

indicates the integral over an element, and where the matrix [B(p)] is
composed by the submatrices [Bi(p)] as [B(p)] = ([B1(p)] . . . [Bi(p)] . . . [BN (p)]), such that

{ε(p)} =

N∑
i=1

[Bi(p)]{di} =

∂xNi(p) 0
0 ∂yNi(p)

∂yNi(p) ∂xNi(p)

(duxi
duyi

)
(29)

11Taking into account the analogy between the bilinear form and the total strain energy of a body it is
possible to emphasise that this requirement is necessary to bound from above the strain energy.
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The requirement of the approximated field variable to belong to the discretised space
(
H1
h(D)

)n
is satisfied when the approximation is constructed with FEM shape functions, which exhibit a
piecewise continuous first derivative that is bounded in an integral sense. This requirement how-
ever, poses a limitation on the use of the meshless shape functions generated with the PIM and
RPIMp strategies. Since such shape functions are, in general, incompatible, also the resulting ap-
proximation of the field variable will be incompatible, i.e. it will present discontinuities. Hence, if
the trial and test functions ū and w̄ are replaced by the approximations ūh and w̄h obtained with
PIM or RPIM shape functions, the requirement on the square integrable first derivative won’t be
satisfied anymore.

3.2.2 Smoothing domains creation

G-spaces are defined for discrete models, where the field variables are expressed in terms of ap-
proximation functions and nodal parameters, like the space

(
H1
h(D)

)n containing the approxi-
mated field variables of an FEM model as pointed out in the previous section. Before recalling the
definition of G-spaces is then necessary to present the peculiar discretisation strategy which they
rely on.

As pointed out in Liu [2010a], the domain D is discretised with a set of Ne non-overlapping
background cells DC

i , with i = 1, . . . , Ne, which vertices correspond to a set of Nn scattered
nodes; these cells are, in general, triangular. It is worth it to note that, if one of the T-schemes illus-
trated in Figure 7 is adopted, the boundaries ∂DC

i of the cells represent parts of the domain where
the approximation functions may be discontinuous. A further tessellation of the domain is per-
formed, introducing a set of NS non-overlapping smoothing domains ∂DS

k , with k = 1, . . . , NS .
When generating this second subdivision, the following no-sharing rule must be considered: the
boundaries ∂DS

k of the smoothing domains must not share any finite portion with the boundaries
∂DC

i of the background cells, i.e. they may share at most a finite number of points with the parts
of the domain where the approximation functions may be discontinuous. The reason for this re-
quirement is to guarantee the possibility to perform the integration of the approximation functions
along the boundary of the smoothing domains.

In this treatise, two different strategies for the creation of smoothing domains are considered:

• the node-based smoothed point interpolation method (NS-PIM), and

• the edge-based smoothed point interpolation method (ES-PIM).

The node-based smoothed point interpolation method (NS-PIM) was originally proposed by Liu
and his co-authors in Liu et al. [2005], Liu and Zhang [2007], and Zhang et al. [2007] as a meshfree
method based on point interpolation shape functions with a nodal integration procedure12, and was
later shown to belong to the more general class of methods obtained with a gradient smoothing
technique [Liu, 2008]. Such method relies on the weakened-weak form presented in Section 3.2.5
and, as anticipated by its name, on smoothing domains based on the scattered nodes of the discrete
model. Despite it could be used also for one- and three-dimensional problems, in the following
attention is focused on the two-dimensional case. The generation of smoothing domains with
the equally-shared smoothing domains strategy13 (see, e.g. Liu and Zhang [2013]) is depicted in
Figure 8, for an internal and a boundary domains. The generic smoothing domain DS

k at the node
k is generated using the surrounding triangular cells, by connecting sequentially, the midpoints of

12In the cited papers the method was originally called linearly conforming point interpolation method
(LC-PIM).

13The equally-shared smoothing domain strategy is the most common in the NS-PIM. However, as
pointed out in Liu and Zhang [2013], for example, also Voronoi cells can be used as smoothing domains, as
done in Chen et al. [2001] for the nodal integration strategy in the EFG method.
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the cells edges containing the node k with the centroids of the cells. With this strategy, the number
of smoothing domains is equal to the number of nodes (NS = Nn), which satifies the minimum
number requirement discussed in Liu [2008]. From Figure 8 it can be observed that these domains
also satisfy the requirements presented in Section 3.2.2, since they are non-overlapping and they
respect the no-sharing rule; indeed, the boundary ∂DS

k of a generic smoothing domain doesn’t
share any finite portion with the edges of the surrounding cells, where the approximation functions
may be discontinuous, but share only the midpoint of their edges.

Node

Background cell centroid

Integration point

Background cells

Smoothing domain

Highlighted smoothing domain

Figure 8: Node-based smoothing domain

The edge-based smoothed point interpolation method (ES-PIM) was introduced by Liu and his
co-authors in Liu and Zhang [2008] in order to correct the excessive softnening effect of the NS-
PIM, which resulted in temporally unstable dynamic problems. As pointed out in Liu and Zhang
[2013], the ES-PIM exhibits a stiffer behaviour with respect to the NS-PIM, is both spatially and
temporally stable, and is capable to produce much more accurate results compared to the NS-PIM
and the standard FEM.

The difference between the NS-PIM and the ES-PIM relies in the strategy for the generation of
the smoothing domains, which in the latter, as anticipated by the name of the method, is based on
the edges of the background cells instead of the nodes. As illustrated in Figure 9, the smoothing
domain associated to aninternal edge is constructed by connecting the two nodes at the ends of
the edge with the centroids of the two triangular cells that share the edge. For a boundary edge
the procedure is the same, except for the fact that also the edge belongs to the boundary of the
smoothing domain. As pointed out in Liu [2009], also this strategy satisfies the requirement on
the minimum number of smoothing domains, is non-overlapping, and respect the no-sharing rule.

Node

Background cell centroid

Integration point

Background cells

Smoothing domain

Highlighted smoothing domain

Figure 9: Edge-based smoothing domain
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3.2.3 Smoothing operation

The smoothing operation illustrated in this section was introduced by Liu (see, e.g. Liu [2008])
in order to reduce the requirement of continuity of the field variable appearing in the weak form
expressed by Equation 16. Such smoothing operation is based on the domain tessellation discussed
in Section 3.2.2, assuming the tessellation to be stationary14 during the analysis. Within this
approach, the derivative grad( ū) = ui,j ēi ⊗ ēj of the field variable ū at a certain point p ∈ DS

k

is replaced inside the smoothing domain DS
k by the smoothed derivative g̃rad( ū) = ũi,j ēi ⊗ ēj ,

where
ui,j(p) ' ũi,j(pk) :=

∫
DS

k

ui,j(ξ) W̃ (pk − ξ) dV, p ∈ DS
k (30)

is constant within a smoothing domain. In the equation above, W̃ is a smoothing function, and pk
is the centre of the smoothing domain. If the field variable ū is continuous, the Green’s divergence
theorem can be applied, resulting in

ũi,j(pk) =

∫
∂DS

k

(
ui(ξ)⊗ n(k)

j (ξ)
)
W̃ (pk − ξ) dS −

∫
DS

k

ui(ξ)⊗ W̃,j(pk − ξ) dV (31)

where n̄(k) is the unitary outward normal vector field on the boundary ∂DS
k . A common choice

for the smoothing function W̃ is the following Heaviside-type function

W̃ (pk − ξ) :=

{
1/Ak ξ ∈ DS

k

0 ξ /∈ DS
k

(32)

where Ak =
∫
DS

k
dV , which results in

ũi,j(pk) =
1

Ak

∫
∂DS

k

ui(ξ)⊗ n(k)
j (ξ) dS (33)

As pointed out by Liu and Zhang:

“The “smoothed derivatives” defined in Equation (2.67) [Equation 33
in this treatise] is a generalized concept. It is NOT “the derivative ob-
tained by smoothing the derivatives of the function”, because such a
gradient does not in general exist, as the function may not be contin-
uous! Rigorously speaking, the “smoothed derivative” is the outward
flux of the function across the smoothing domain boundary Γsx [∂DS

k in
in this treatise]. The smoothed derivative of a function can be approxi-
mated using only the function values, and no differentiation is needed.
Hence the consistency requirement on the function is reduced, if only
the approximate derivative is required.” [Liu and Zhang, 2013, pag. 67]

As emphasised in the quoted text, the smoothing operation consists into replace the derivative
of the field variable with the smoothed derivative illustrated in Equation 33. This substitution is
assumed to be valid whether the field variable is continuous or not, i.e. whether the application of
the Green’s theorem in Equation 31 is licit or not. As pointed out in Liu [2008], though not rigorous
in theory, this operation is possible to implement, since Equation 33 require no differentiation of
the field variable, opening the possibility to use PIM and RPIM incompatible functions for the
approximation of the field variable.

14The stationarity requirement was originally adopted in Liu [2010a]; however, other smoothed methods
don’t rely on this assumption (see, e.g. Liu and Zhang [2013]).
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3.2.4 G-space theory

A general treatement on the G-space theory can be found in Liu [2010a] and Liu and Zhang [2013],
and its application to classic elasticity in Liu [2010b]. Briefly, the G-space15 G1

h(D) is defined as
the following space of functions u(p) discretised in terms of approximation functions φj(p) and
nodal parameters dj

G1
h(D) :=

{
u | u(p) =

Nn∑
j=1

φj(p)dj , u ∈ L2(D),

NS∑
k=1

(∫
∂DS

k

u(ξ) n
(k)
i (ξ) dS

)2

> 0⇔ u 6= c ∈ R, i = 1, . . . , d
} (34)

where c ∈ R is a constant, d the dimension of the space D, and L2(D) the Lebesgue space of
square integrable functions. When n-dimensional vector fields are considered, the following space
can be introduced (

G1
h(D)

)n
:=
{
ū = ui ēi | ui ∈ G1

h(D), i = 1, . . . , n
}

(35)

This space is endowed with the following inner product

< ū, w̄ >G1 =

∫
D

(ū · w̄) dV︸ ︷︷ ︸
< ū, w̄ >L2

+

∫
D

(
g̃rad( ū) .. g̃rad(w̄ )

)
dV︸ ︷︷ ︸

< g̃rad( ū ), g̃rad( w̄ ) >L2

, ū, v̄ ∈
(
G1
h(D)

)n (36)

with induced norm ‖·‖2G1 and semi-norm |·|2G1 expressed as combination of norms in the Lebesgue
space L2(D)

‖ū‖2G1 = ‖ū‖2L2 + |ū|2G1 , ū ∈
(
G1
h(D)

)n (37)

|ū|2G1 =
∥∥∥g̃rad( ū)

∥∥∥2

L2
, ū ∈

(
G1
h(D)

)n (38)

As it can be observed in Equation 34, the shape functions must be (i) linearly independent,
in order to form a basis, (ii) bounded, i.e. square integrable, and (iii) must verify the following
positivity condition:

NS∑
k=1

(∫
∂DS

k

u(ξ) n
(k)
i (ξ) dS

)2

> 0 (39)

The two last requirements, as pointed out by Liu [Liu, 2010a], are necessary to guarantee the
stability and convergence of the numerical models built upon the weakened-weak formulation
based on G-spaces.

The main difference between the space G1
h(D) and the spaceH1

h(D) usually adopted in FEM
applications (i.e. the discretised space of square integrable functions with square integrable first
derivative), is the fact that the latter requires both the function and its first derivative to be square
integrable (‖ū‖2L2(D) < ∞ and ‖grad( ū)‖2L2(D) < ∞) in order to ensure an upper bound to
the strain energy (aka the bilinear form), while in the former only the function is required to
be square integrable since, as it will be discussed in the following section, the bilinear form of
the weakened-weak form depends only on the function and not on its first derivative. While in the
weakened-weak form the strain energy is automatically bounded from above once the functions are

15The more general case of spaces Gmh (D) with m > 1 is not considered here.
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square integrable, a lower bound must be explicitly imposed, with the aforementioned positivity
condition; in the standard weak form, as pointed out in Liu [2010a], an explicit lower bound
is not necessary, since the condition ‖grad( ū)‖2L2(D) = 0 is attained only if the function is
zero everywhere, due to the Poincare-Friedrichs inequality16 [Liu, 2009]. The reduced order of
continuity required by the space G1

h(D) opens the possibility to use PIM and RPIM shape functions
as a basis to generate its elements. The main characteristics of G-spaces needed to guarantee
the existence and uniqueness of the solution of the weakened-weak formulation discussed in the
following Section 3.2.5 have been widely discussed by Liu and his co-authors in a number of
papers and books (see, e.g. Liu [2010a,b, 2009] and Liu and Zhang [2013]) and won’t be recalled
here.

3.2.5 Weakened-weak form of the classic elasticity problem

The weakened-weak form in classic elasticity have been presented in Liu [2010b]. As discussed in
the mentioned paper, such formulation can be obtained by replacing the strain tensor ε appearing
in the bilinear form of Equation 20 with its smoothed version ε̃, resulting in the smoothed bilinear
form

ã(w̄, ū) =

∫
D
ε̃(w̄(pk))

..
(
Ê .. ε̃(ū(pk))

)
dV (40)

where the smoothed strain tensor ε̃ is obtained considering the smoothing derivatives of Equa-
tion 33

ε̃ij =
1

2
(ũi,j + ũj,i) (41)

In plane stress case, the strain tensor assumes the following matrix expression:

{ε̃(ū(pk))} =
1

Ak

∫
∂DS

k

[L̃n(ξ)]{ū(ξ)} dS (42)

ε̃xxε̃yy
ε̃xy

 =
1

Ak

∫
∂DS

k

n
(k)
x (ξ) 0

0 n
(k)
y (ξ)

n
(k)
y (ξ) n

(k)
x (ξ)

(ux(ξ)
uy(ξ)

)
dS (43)

Recalling that the smoothed derivatives are constant within each smoothing domain defined in
Section 3.2.2, and also assuming the constitutive operator Ê to be constant within each smoothing
domain, the integral

∫
D may be replaced with a summation over the smoothing domains, resulting

in

ã(w̄, ū) =

NS∑
k=1

Ak

(
ε̃(w̄(pk))

..
(
Ê .. ε̃(ū(pk))

))
(44)

The weakened-weak form of the classic elasticity problem recalled in Section 3.2.1 consists
then into find the field ū ∈ V(D) such that

ã(w̄, ū) = f(w̄), ∀w̄ ∈ V0(D) (45)

where V(D) and V0(D) are, respectively, the spaces of trial and test functions, defined as

V(D) :=
{
ū ∈

(
G1
h(D)

)n | ū = ū∗ at ∂Du
e

}
(46)

V0(D) :=
{
w̄ ∈

(
G1
h(D)

)n | w̄ = 0 at ∂Du
e

}
(47)

16As pointed out in Liu [2009], the Poincare-Friedrichs inequality is represented by c‖w̄‖2H1 ≤ |w̄|2H1 ,
∀ w̄ ∈

(
H1

0(D)
)k

, with c ∈ R and c > 0, and expresses an equivalence between the norm and the seminorm
for k-dimensional vector fields in the space H1

0(D) of square integrable k-dimensional vector fields with
square integrable first derivative with prevented rigid-body motions.

Gori, Lapo (2022) Meshless smoothed point interpolation methods for damage modelling pp. 959-1006

In Jorge, Ariosto B., et al. (Eds.) Fundamental Concepts and Models for the Direct Problem, Vol. 2, UnB 978



Discussions on the properties of the weakened-weak form of Equation 45, as well as on the condi-
tions that ensure the existence and uniqueness of the solution ū ∈ V(D) can be found in Liu and
Zhang [2008] and Liu [2010b].

The absence of derivatives in the smoothed bilinear form (Equation 44) allows to express both
the trial and the test functions in terms of PIM and RPIM shape functions φi(p), since they are
well suited to form a basis for the space

(
G1
h(D)

)n, resulting (for the trial functions) in

{ū(p)} =
∑
i∈Sd

[φi(p)]{di} (48)

where {di} is the array collecting the nodal parameters at the node i, and where Sd is the support
domain of the point p ∈ D. The smoothed strains can be expressed in terms of the smoothed
strain-displacement matrix [B̃i(pk)] as

{ε̃(ū(pk))} =
∑
i∈Sd

[B̃i(pk)]{di} (49)

where [B̃i(pk)], in a plane stress state, is represented by

[B̃i(pk)] =
1

Ak

∫
∂DS

k

[L̃n(ξ)][φi(ξ)] dS

=
1

Ak

∫
∂DS

k

n
(k)
x (ξ) φi(ξ) 0

0 n
(k)
y (ξ) φi(ξ)

n
(k)
y (ξ) φi(ξ) n

(k)
x (ξ) φi(ξ)

 dS

=

φ̃i,x(pk) 0

0 φ̃i,y(pk)

φ̃i,y(pk) φ̃i,x(pk)


(50)

where the terms φ̃i,l(pk) are the smoothed derivatives of the shape functions, expressed by

φ̃i,l(pk) :=
1

Ak

∫
∂DS

k

n
(k)
l (ξ) φi(ξ) dS, l = x, y (51)

The smoothed shape functions appearing in Equation 51, which allow to evaluate the smoothed
bilinear form, are calculated performing a numerical integration along the boundary ∂DS

k of each
smoothing domain. Since the boundary of each smoothing domain is composed by a set of linear
segments, the integration can be expressed as a sum of Gaussian quadratures over each segment,
resulting in

φ̃i,l(pk) =
1

Ak

nseg∑
m=1

Lm
2

(ngp∑
n=1

W gp
n φi(pm,n) n

(k)
l,m

)
, l = x, y (52)

where nseg is the number of segments, Lm the length of the m-th segment, ngp the number of inte-
gration points of each segment, pm,n the n-th integration point of the m-th segment with associated
weight W gp

n , and n(k)
l,m the component in the direction l of the unit normal to the m-th segment of

the k-th smoothing domain.
Finally, the discretisation results in the same algebraic system expressed in Equation 27, where

now the stiffness matrix [K] is evaluated in terms the contribution of each smoothing domain

[K(pk)]Sd = Ak[B̃(pk)]
T [Ê(pk)][B̃(pk)] (53)
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where, as in the FEM, the matrix [B̃(pk)] is composed by the submatrices [B̃i(pk)] as:

[B̃(pk)] =
(

[B̃1(pk)] . . . [B̃i(pk)] . . . [B̃N (pk)]
)

(54)

where N is the number of nodes in the support domain Sd at the point pk.
Due to the peculiar domain tessellation and to the adoption of the smoothing operation, SPIM

models exhibit different properties when compared to the standard FEM. In Liu and Zhang [2007]
and Liu [2008], the authors pointed out that the smoothed bilinear form is capable to provide softer
results with respect to the standard weak form, when the same approximation functions are used
(ã(w̄, w̄) ≤ a(w̄, w̄), w̄ ∈ V0

h(D)). They also showed that it is also capable to provide an upper
bound approximation to the exact solution. This last characteristic however, depends on both the
kind of approximation functions that are being adopted, and on the peculiar strategy used for the
generation of the smoothing domains.

3.3 SPIMs for damage modelling

The first application of SPIM strategies to the modelling of damage problems was proposed by
Gori et al. [2019b], where the authors also pointed out the regularisation properties induced by the
SPIM approach; later, in Saliba et al. [2021], a strategy was proposed to analyse damage models
with a coupled SPIM-FEM model. Some of the results discussed in Gori et al. [2019b] are recalled
in this section.

Here, attention is focused on the case of scalar-isotropic damage models in a geometrically
linear context. Such models belong to the more general class of elastic-degrading models, and are
expressed in terms of a secant stress-strain relation σ = ÊS .. ε, where ÊS is the secant constitu-
tive operator, which components depend both on the initial constitutive tensor Ê and on a scalar
damage variableD, assuming values from 0 to 1. When the damage is assumed to be isotropic the
secant constitutive operator is represented by the well-known expression ÊS(D, Ê) = (1−D) Ê.
In such models the loading process is represented in terms of a loading function which is usually
expressed as the following additive decomposition:

f(ε, D) = εeq(ε)−K(D) ≤ 0 (55)

where εeq(ε) is a function depending only on the strain tensor, usually indicated as equivalent
deformation, that represents the loading condition of the continuum, while K(D) is a historical
parameter that depends only on the damage variable and that is representative of the maximum
level of deformation reached during the loading process. The rate of the previous secant relation,
σ̇ = ÊS .. ε̇ +

˙̂
ES .. ε, can be recast in the tangent relation σ̇ = Êt .. ε̇ between the stress and the

strain rates, where Êt is the tangent constitutive operator expressed by Carol et al. [1994]

Êt = (1−D) Ê− 1

H∗
(m∗ ⊗ n∗) (56)

where

m∗ := −Ê · ε, n∗ :=
∂εeq
∂ε

, H∗ :=
∂K(D)

∂D
=

(
∂D(εeq)

∂εeq

)−1

(57)

The functionD(εeq) is a prescribed damage evolution law; in the numerical examples of Section 5,
the following exponential damage law was considered:

D(εeq) = 1− K0

εeq

(
1− α+ αe−β(εeq−K0)

)
(58)
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In the expression above, K0 is a threshold value for the equivalent deformation, representing
the onset of damage, and where α and β are parameters that define, respectively, the maximum
allowed damage level and the damage evolution intensity. Different scalar damage models can be
obtained choosing a peculiar equivalent deformation; in the numerical examples of Section 5, the
following equivalent deformation by Mazars [Mazars, 1984, de Borst and Gutiérrez, 1999] was
adopted:

εeq =

√√√√[ 3∑
k=1

(
< ε(k) >+

)2] (59)

where ε(k) the k-th eigenvalue of the strain tensor, and < ε(k) >+= (ε(k) + |ε(k)|)/2 its positive
part.

As discussed by Gori et al. [2019b], the main issue for the application of SPIM strategies to
elastic-degradation is the transition from Eq. 40 to Eq. 44, i.e. the passage from a smoothed bilin-
ear form expressed in terms of the domain integral

∫
D to a smoothed bilinear form expressed as a

summation over the number of smoothing domains, that relies on the assumption of a linear elastic
constitutive operator Ê constant within a smoothing domain. In a physically linear problem, since
the material properties are independent on the state of the body, this assumption is verified both
in case of homogeneous and heterogeneous materials; an eventual heterogeneous distribution of
the material properties indeed, could be easily considered with the attribution of different material
properties at each smoothing domain, constant over the same smoothing domain.

When dealing with elastic-degrading models, the initial elastic constitutive operator Ê appear-
ing in the smoothed bilinear form (Eq. 40) must be replaced with the secant operator ÊS , which
depends on the state of the body, and which varies during the loading process:

ã(w̄, ū) =

∫
D
ε̃(w̄(pk))

..
(
ÊS(ε(ū)) .. ε̃(ū(pk))

)
dV (60)

In order to obtain an expression similar to the second one of Eq. 44, a smoothed constitutive

operator ˜̂ES(pk), constant over the smoothing domain DS
k , must be introduced, resulting in

ã(w̄, ū) =

NS∑
k=1

Ak

(
ε̃(w̄(pk))

..

(˜̂
ES(pk)

.. ε̃(ū(pk))

))
(61)

Regarding how to obtain such smoothed constitutive operator it can be observed that the secant
operator depends on the state of the body at each point ξ ∈ DS

k , i.e. on the current strain tensor
ε(ū(ξ)) which depends on the displacement field. In NS-PIM and ES-PIM procedures, the dis-
placement field is calculated at the point pk of each smoothing domain DS

k , resulting in a smoothed
strain tensor ε̃(ū(pk)) which is constant within a smoothing domain. The smoothed constitutive
operator can then be approximated with the secant operator generated using the smoothed strain
as ˜̂

ES(pk) ' ÊS(ε̃(ū(pk)) (62)

resulting in

ã(w̄, ū) =

NS∑
k=1

Ak

(
ε̃(w̄(pk))

..
(
ÊS(ε̃(ū(pk))

.. ε̃(ū(pk))
))

(63)

In the specific case of a scalar-isotropic damage models the secant constitutive operator depends
on the scalar damage variable D which, according to Eq. 58, can be expressed as a function that
depends on the current strain state of the body through an equivalent strain measure, D = D(εeq)
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with εeq = εeq(ε(ū(p))). In this case, the smoothed constitutive operator will depend on the
smoothed damage variable D̃(pk), depending on the smoothed equivalent strain measure ε̃eq as

˜̂
ES(pk) = (1− D̃(pk)) Ê, D̃(pk) = D(ε̃eq), ε̃eq = εeq(ε̃(ū(pk)) (64)

3.4 Linearisation of the weakened-weak form

In presence of damage, the algebraic systems of Eq. 27 must be recast as the following nonlinear
system:

[KS ] {X} = {R} (65)

where [K]S is the global secant stiffness matrix of the discrete model, resulting from the discreti-
sation of the smoothed bilinear form of Eq. 63. This nonlinear system can be solved with an
incremental-iterative strategy based on the Newton-Raphson method, which requires the lineari-
sation of Eq. 65, as in the standard nonlinear FEM [Wriggers, 2008].

The first step for the linearisation within the Newton-Raphson method consists in the intro-
duction of a space of admissible variations δV(D), associated with the space of trial functions
V(D), defined as

δV(D) :=
{
δū ∈

(
G1
h(D)

)n | δū = 0̄ at ∂Du
e

}
(66)

The admissible variations δū allow to obtain a set of perturbed configurations Vε(D), whose
elements ūε = ū+ ε δū satisfy the kinematical boundary conditions of the problem prescribed at
∂Du

e . The weakened-weak form of Eq. 45 can be recast as

G(w̄, ū) := ã(w̄, ū)− f(w̄) = 0, ∀w̄ ∈ V0(D) (67)

with the introduction of the functional G(w̄, ū). In order to obtain a linearisation of such func-
tional, a perturbed configuration G(w̄, ūε) near the known equilibrium configuration G(w̄, ū)
(which satisfies Eq. 67) is introduced; such perturbed configuration must satisfy the condition

G(w̄, ūε) = ã(w̄, ūε)− f(w̄) = 0, ∀w̄ ∈ V0(D) (68)

The vector field δū which allows to reach the new equilibrium configuration can be calculated
with the linearisation G(w̄, ūε) ' L [G(w̄, ūε)], resulting in

L [G(w̄, ūε)] = G(w̄, ū) +DG(w̄, ū) · δū = 0, ∀w̄ ∈ V0(D) (69)

where the terms DG(w̄, ūε) · δū is the following directional (or Fréchet) derivative

DG(w̄, ū) · δū =
∂G(w̄, ūε)

∂ε

∣∣∣∣
ε=0

(70)

that can be shown to be expressed by

DG(w̄, ū) · δū =

NS∑
k=1

Ak

(
ε̃(w̄(pk))

..
(
Êt(ε̃(ū(pk))

.. δε̃(ū(pk))
))

=

NS∑
k=1

Ak

(
ε̃(w̄(pk))

..
(
Êt(ε̃(ū(pk))

.. ˙̃ε(ū(pk))
)) (71)

where the admissible variation of the smoothed strain tensor (δε̃) coincides with its rate ( ˙̃ε), and
where the tangent constitutive operator Êt is the one defined in Eq. 56 (see Gori et al. [2019b] for
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further details). The linearised weakened-weak form can then be recast into: find the increments
δū ∈ δV(D) such that

DG(w̄, ū) · δū = −G(w̄, ū), ∀w̄ ∈ V0(D) (72)

The right hand side of Eq. 72 is known, since it depends on the displacement field ū of a
known equilibrium configuration, and is expressed as

G(w̄, ū) = ã(w̄, ū)− f(w̄) =

NS∑
k=1

Ak (ε̃(w̄(pk))
.. σ̃(ū(pk)))− f(w̄) (73)

Introducing PIM or RPIM approximation functions into Eq. 72, for both the test functions w̄(p)
and the increments δū(p):

{w̄(p)} =
∑
i∈Sd

[φi(p)]{dwi }, {δū(p)} =
∑
i∈Sd

[φi(p)]{δdi} (74)

the following algebraic system can be obtained

[Kt] {∆X} = {N} (75)

where [Kt] is the global tangent stiffness matrix of the discrete model, {∆X} the nodal parameters
vector collecting all the nodal parameters {δdi}, and {N} an array containing the discretisation
of the right hand side of Eq. 72. The matrix [Kt] is evaluated through the contribution of each
smoothing domain

[Kt(pk)]Sd = Ak[B̃(pk)]
T [Êt(ε̃(ū(pk))][B̃(pk)] (76)

where as in the linear SPIM, the matrix [B̃(pk)] is composed by the submatrices [B̃i(pk)] as
[B̃(pk)] =

(
[B̃1(pk)] . . . [B̃i(pk)] . . . [B̃N (pk)]

)
, where N is the number of nodes in the support

domain Sd at the point pk, and where [Êt(ε̃(ū(pk))] is the matricial expression of the tangent
constitutive operator of Eq. 56.

4 Regularisation strategies for damage models

As already stated in Section 1, the objective of this manuscript is to discuss the application of
SPIM strategies to the analysis of damage models, taking advantage of the regularisation effects
provided by the intrinsic nonlocal character of such formulations. Damage models and other
strain-softening models are characterised by the phenomenon of localisation, and when analised
with the standard FEM they may exhibit certain pathological behaviours such as strong mesh-
dependency, premature fracture initiation, and instantaneous perfectly-brittle fracture [de Borst
et al., 1993, Peerlings et al., 2002], as already discussed in Section 1. As pointed out in the
literature (see, e.g. the paper by Bažant [Bažant, 1991]), these pathological behaviours are due
to the local representation offered by the classic continuum theory, in contrast with the nonlocal
nature of phenomena like damage and plasticity. The main aim of the proposed solutions to this
problem, the so-called regularisation techniques, is the introduction of an internal length in the
continuum model, allowing to recover the nonlocal character of the phenomenon.

Regularisation techniques may act on two different levels: at the formulation level, i.e. directly
in the continuum description, or at the numerical level, i.e. within the discretisation method.
Among the different alternatives for regularisation at the formulation level there are: nonlocal and
gradient-enhanced models [Bažant and Lin, 1988, Pijaudier-Cabot and Bažant, 1987, de Borst
and Mühlhaus, 1992, Peerlings et al., 1996, 2001, 2002, Badnava et al., 2016], viscous models
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[Needleman, 1988], cohesive zone models [Dugdale, 1960, Barenblatt, 1962], methods based on
the fracture energy approach [Bažant and Oh, 1983], phase-field models [Frémond and Nedjar,
1996, Miehe et al., 2010, 2016], and the micropolar theory [de Borst, 1991, de Borst and Sluys,
1991, Dietsche et al., 1993, Iordache and Willam, 1998, Xotta et al., 2016, Gori et al., 2017b,a,
Gori, 2018]. The micropolar theory has been used in combination with the SPIM approach in the
numerical simulations of Section 5.3, in order to obtain a two-levels regularisation strategy (for
more details on the application of the micropolar theory to damage models and it’s combination
with the SPIM strategy refer to the papers by Gori et al. [Gori et al., 2017a,b, 2019c]).

Regularisation techniques at the numerical level can be based on the FEM or on other dis-
cretisation methods. Among the various solutions based on the finite element method there are,
for example, the use of elements with embedded discontinuities [Ortiz et al., 1987], able to rep-
resent various kind of weak and strong discontinuities, or element with embedded localisation
zones [Pietruszczak and Mróz, 1981, Belytschko et al., 1988]. Meshless methods have also been
shown to be capable of providing certain regularisation effects. One of the first works devoted
to the investigation of the regularisation properties of meshless methods is a paper by Chen et al.
[Chen et al., 2000], where the authors, focusing on moving least square and reproducing kernel
approximations, pointed out that these methods posses an intrinsic nonlocality due to the presence
of weight functions whose support size is greater than the nodal spacing. They also emphasised
that a further regularisation effect can be introduced when an assumed strain method based on the
direct discretization of a nonlocal equivalent strain measure is adopted. Recently, in a paper by
Wang and Li [Wang and Li, 2012], also the SCNI technique [Chen et al., 2001] have been shown
to be able to provide regularisation effects in localisation problems.

SPIM strategies present some analogies with the aformentioned methods and are also capable
to provide regularisation effects, as pointed out by Gori et al. [Gori et al., 2019b]. Despite the
absence of weight functions (which are present in MLS approximations), also PIM and the RPIM
approximations embed a certain nonlocality, due to the use of support domains with a size larger
than the nodal spacing. As discussed by Chen et al. [Chen et al., 2000], the MLS approximation
functions are capable to introduce a length scale which can be considered an intrinsic length,
“since it resides in the approximation but is independent of the degree of discretization refinement”
(Chen et al. [Chen et al., 2000], p. 1320). This independence on the discretisation is due to the
use influence domains which allows to obtain support domains which size is independent on the
nodal spacing. As it will be pointed out in Section 5.2, PIM strategies based on T-schemes for the
support nodes selection can’t be rigorously considered as intrinsically nonlocal, since the size of
the support domains, though larger than the nodal spacing for certain selection schemes, depends
on the refinement of the discretisation. However, a stronger nonlocal character, like the one of
MLS shape functions, can be recovered by combining SPIM strategies with the influence domain
technique for the selection of support nodes (Section 5.2). Another analogy with the discussion of
Chen et al. [Chen et al., 2000] is the presence of the smoothing operation in SPIM strategies that,
in the NS-PIM coincides with the nodal integration scheme adopted by Chen et al. [Chen et al.,
2001] and by Wang and Li [Wang and Li, 2012].

5 Numerical results

5.1 Mesh objectivity

The purpose of this section is to illustrate the mesh objectivity properties induced by the intrinsic
nonlocality of the SPIM approach. As it will be pointed out, SPIM strategies are capable to provide
better results with respect to the standard FEM regarding mesh objectivity issues in simulations
with damage models. This quality of the SPIM strategies is illustrated through the simulation
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performed by Gori et al. [2019b] of the plain concrete L-shaped panel depicted in Figure 10,
investigated experimentally and numerically by Winkler et al. [2004]. While in each plot the
experimental results obtained by Winkler et al. [2004] have also been represented, it’s important
to emphasise that the aim of this section wasn’t to exactly reproduce the experimental results,
but to illustate the capability of the adopted strategies to reproduce the general behaviour of the
experimental test due to their regularisation properties. A more detailed comparison with the
experimental results would have required accurate calibrations of the damage laws and, possibly,
the use of damage models more complex than a simple scalar one, able to better capture the
physical behaviour of the sample.

500

25
0

25
0

250 250

F

A

Experimental crack path

Figure 10: L-shaped panel by Winkler et al. [2004] - Geometry (measures in mm)

The concrete investigated by Winkler et al. [2004] was characterised by a Young’s modulus
E = 25850 N/mm2, a Poisson’s ratio ν = 0.18, tensile and compressive uniaxial strengths ft =
2.7 N/mm2 and 4.0 N/mm2, a fracture energy Gc = 0.065 N/mm2, and a characteristic length of
the material h = 28 mm; in the following simulations its behaviour was reproduced adopting the
Mazars scalar damage model (Equation 59), with the following parameters for the exponential
damage law, α = 0.950, β = 1100 and K0 = 1.12 ×10−4.

5.1.1 FEM simulations

The sample of Figure 10 was first investigated with the FEM, using four different discretisations
(Figure 11), each one composed by three-node triangular elements in a plane-stress state, with a
thickness of 100 mm. The four meshes were characterised by a different mean nodal spacing near
the concave corner, equal to 25 mm, 15 mm, 10 mm, and 5 mm, while it was equal to 50 mm
elsewhere. The analyses were performed adopting a loading process driven by the generalized
displacement control method [Yang and Shieh, 1990], assuming a reference load F = 7000 N, an
initial loading factor increment of 0.005, and a tollerance for convergence in relative displacement
of 1 × 10−4. The simulations discussed in this section were performed considering the tangent
approximation of the constitutive operator, except for some of the meshfree simulations with influ-
ence domains discussed later which, due to convergence issues, required a secant approximation.

The results of the FEM analyses are illustrated in Figure 12, where the values of the vertical
displacement at the point A of Figure 10 are plotted against the load factor, together with the
experimental results presented by Winkler et al. [2004]. As it can be observed, the results obtained
with the coarsest mesh were in good agreement with the experimental results, both in terms of peak
value of the load factor and shape of the softening branch, except for an initial stiffness higher
than the one observed in the experiment; this issue however, is common to other simulations
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 11: L-shaped panel - FEM meshes

of such a test that can be found in the literature, and it can be observed also in the simulations
performed by Winkler et al. [2004]. However, the problem appeared to be strongly dependent on
the discretisation, since the analyses performed with the other meshes showed sensibly lower peak
values of the load factor. The presence of mesh dependency is also pointed out by the contour plots
of the scalar damage variable illustrated in Figure 13. Indeed, despite their shape was compatible
with the experimental cracking path depicted in Figure 10, the most refined meshes exhibited a
narrower width.
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Figure 12: L-shaped panel - FEM - Equilibrium paths

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 13: L-shaped panel - FEM - Damaged configurations

5.1.2 SPIM simulations

Node- and edge-based discretisations were constructed according to the same procedure discussed
in Section 3.2.2, i.e. using the triangular finite elements illustrated in Figure 11 as background
cells, resulting in the meshes depicted in Figures 14 and 15, maintaining the same nodal distribu-
tions adopted in the FEM simulations.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 14: L-shaped panel - NS-RPIM meshes

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 15: L-shaped panel - ES-RPIM meshes

At each integration point, the support domains were generated using both the T3 and the T6/3
schemes, while the shape functions were constructed with the radial point interpolation method
with polynomial reproduction, using the exponential radial function with c = 0.002, and adopting
3 polynomial terms. The analyses were performed adopting the same loading process of the FEM
simulations. The results of the analyses performed with the NS-RPIM in terms of equilibrium
paths are illustrated in Figure 16, while the contour plots of the damaged configurations are de-
picted in Figures 17 and 18. As it can be observed, due to the upper bound approximation [Liu and
Zhang, 2007], the NS-RPIM produced solutions with peak values higher than the ones obtained
with the FEM. However, they exhibited the same mesh dependency issues of the finite element
solutions. It is interesting to note that both the T3 and the T6/3 schemes produced almost the same
results, both in terms of equilibrium paths and damage distributions.
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Figure 16: L-shaped panel - NS-RPIM - Equilibrium paths
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 17: L-shaped panel - NS-RPIM T3 - Damaged configurations

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 18: L-shaped panel - NS-RPIM T6/3 - Damaged configurations

As expected from the known properties of the edge-based scheme [Liu, 2009], the equilibrium
paths obtained with the ES-RPIM (Figure 19) exhibited values that were intermediate between
the ones of the FEM and the ones of the NS-RPIM. Regarding the equilibrium paths obtained
with the T6/3 scheme it is interesting to note that while they still presented different peak values
depending on the discretisation, they were characterised by less dispersed results with respect
to the ones obtained with the T3 scheme. The effect of the T6/3 scheme was more evident in
the meshes 2, 3, and 4, which exhibited a considerable growth of the peak values; the coarsest
mesh instead, manifested almost the same peak values with the two schemes, though the post-
peak branch presented a reduced decay with the T6/3 approach. The fact that the results obtained
with the T6/3 scheme were less dispersed is also emphasised by the contour plots of the scalar
damage variable depicted in Figures 20 and 21. While the damaged zones obtained with the T3
scheme Figure 20 presented a considerably narrower width as the discretisation was refined, the
ones obtained with the T6/3 scheme appeared to be more uniform.

5.2 SPIM with influence domains

The improved results, in terms of mesh objectivity, obtained with the T6/3 scheme with respect
to the T3 scheme in the ES-RPIM simulations seems to corroborate again the hypothesis that this
class of methods, like other meshfree methods, are characterised by a certain degree of nonlocality
embedded in their formulation, as commented in Section 4. As discussed by Gori et al. [2019b],
this nonlocality can be further exploited using a different approach for the support nodes selec-
tion, switching from the T-schemes strategy to the influence domains strategy commonly adopted
in the Element-Free Galerkin method and other meshfree methods. As discussed in Section 4,
when T-schemes are being used a method can’t be rigorously considered as intrinsically nonlo-
cal in the sense given by Chen et al. [2000], since the spatial size of the support domain, and
hence the induced internal length, depends on the discretisation. On the contrary, if the support
nodes are selected using the influence domains strategy, it is possible to obtain support domains
with a spatial size that is independent on the discretisation refinement. The SPIM strategy with
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Figure 19: L-shaped panel - ES-RPIM - Equilibrium paths

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 20: L-shaped panel - ES-RPIM T3 - Damaged configurations

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 21: L-shaped panel - ES-RPIM T6/3 - Damaged configurations
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influence domains presented in this section is similar to the two-level regularisation method pro-
posed by Chen et al. [2000]. In the cited paper the authors showed the regularisation effects of
RK discretisations in damage problems, while in case of elasto-plastic problems with more pro-
nounced softening they adopted the aforementioned two-level regularisation, consisting in the use
of a smoothing operation for the strain measure and an assumed strain method for the weak form.
Despite some similarities in the approach, the strategy presented in this section differs from the one
of the mentioned paper regarding the kind of shape functions, weak form and integration strategy.

The L-shaped panel was then further investigated assuming a different approach for the support
nodes selection: in the zone near the concave corner (the hatched area in Figure 22), the support
domains were constructed using the influence domains strategy, while in the other parts of the
problem domain the T3 scheme was maintained. The adopted influence domains were circular,
and the analyses were performed with three different values for their radius, 20 mm, 25 mm, and
30 mm. This approach was applied only to the meshes 2, 3, and 4, while for the mesh 1 the results
obtained with the T3 scheme were maintained. As already stated, the idea of this approach was to
try to improve the nonlocality of the SPIM strategy by using support domains larger than the ones
obtainable with the sole T6/3 scheme.

Influence domains strategy

T3 scheme

Figure 22: L-shaped panel - Area with support nodes selection via influence domains

As it can be observed in Figure 23, when circular influence domains with radius R = 20 mm
were adopted, the meshes 3 and 4 exhibited almost the same equilibrium path, with a slight dis-
crepancy in the softening branch. For the values R = 25 mm and R = 30 mm the two discretisations
still manifested the same peak value, though with larger differences in the post-peak branch. Fur-
thermore, it should be noted that to higher radii corresponded higher peak values. Considering the
results obtained for the mesh 2, it is interesting to observe that as the radius of the influence do-
mains was increased, the difference in terms of peak-values between the mesh 2 and the meshes 3
and 4 tended to decrease, emphasising the behaviour obtained with the T6/3 scheme and observed
in Figure 19.

On the other hand, despite a better agreement on the value of the peak load factor, the softening
branches still presented different paths. This behaviour can be ascribed, at least partially, to the fact
that, as pointed out by Figure 22, the influence domains stategy was applied only near the damage
initiation zone. In the other zones interested by damage propagation, that have an influence on the
shape of the post-peak branch, the approximation was constructed using the T3 scheme, without
the introduction of further nonlocal effects. This fact seems to be confirmed also by the contour
plots illustrated in Figures 24, 25 and 26. Indeed, as it can be observed, as long as the damage
developed in the area subjected to nodes selection by influence domains, the width of the damaged
zones was almost the same among the three discretisations. As it started to grow outside of that
area, the damaged zones became mesh dependent again.
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Figure 23: L-shaped panel - ES-RPIM with influence domains strategy - Equilib-
rium paths

(a) Mesh 2 (b) Mesh 3 (c) Mesh 4

Figure 24: L-shaped panel - ES-RPIM with influence domains strategy - R = 20 mm
- Damaged configurations

(a) Mesh 2 (b) Mesh 3 (c) Mesh 4

Figure 25: L-shaped panel - ES-RPIM with influence domains strategy - R = 25 mm
- Damaged configurations
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(a) Mesh 2 (b) Mesh 3 (c) Mesh 4

Figure 26: L-shaped panel - ES-RPIM with influence domains strategy - R = 30 mm
- Damaged configurations

5.2.1 Drawbacks of the influence domains strategy

While the application of the influence domains strategy to PIM and RPIM shape functions exhib-
ited certain beneficial effects concerning mesh objectivity, it also presents three main drawbacks.
The first one is related to the efficiency of the numerical method. The influence domains strat-
egy indeed, tends to generate support domains with a larger number of nodes with respect to the
T-schemes, affecting the sparseness of the stiffness matrix of the discrete model, increasing the
computational cost for the solution of the model. The effects of this issue however, may be re-
duced by limiting the application of such strategy to specific parts of the problem domain, as done
in Figure 22 where it was applied in the area interested by damage propagation.

The second issue is related to the convergence of the iterative process for the solution of the
nonlinear problem. As discussed before, while most of the simulations were performed consider-
ing the tangent approximation of the constitutive operator, the most refined mesh combined with
the influence domains strategy required a secant approximation of the constitutive operator, in
order to attain convergence. The application of the influence domains strategy to the most refined
mesh resulted in support domains with a considerable number of nodes, which led to a bad con-
ditioning of the moment matrix used for the generation of the shape functions, and then to a bad
conditioning of the stiffness matrix with respect to the other situations, as illustrated in Table 1,
affecting the stability of the iterative process. It is necessary to emphasise that the analysis of the
most refined mesh with the influence domains strategy also required an adjustment of the shape
parameter of the radial function which was modified to 0.003, since the initial value of 0.002 led
to a singular stiffness matrix.

Mesh T3 T6/3 R = 20 mm R = 25 mm R = 30 mm

2 1.7310× 104 4.1281× 104 3.1798× 104 2.7123× 104 3.3014× 104

3 2.2411× 104 6.7891× 104 6.0680× 104 6.2369× 104 8.2492× 104

4 2.5352× 104 1.1324× 105 4.5255× 1016 1.6335× 1013 2.3189× 1013

Table 1: Condition number of the initial stiffness matrix

The third and final issue is the possibility to obtain a singular moment matrix for the integration
points near the domain boundary. As discussed by Liu [2009], PIM shape function suffer from
singularity issues in presence of peculiar support nodes alignments, like the one that may arise
when a large number of support nodes is selected on a straight domain boundary; the same issue
may appear also with RPIM and RPIMp shape functions. While nodes alignments are naturally
avoided with T-schemes, when using an influence domains strategy there is no such control over
possible alignments.
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These issues point out that the use of the influence domains strategy as a mean for improving
the regularisation properties of the SPIM approach still need further investigations to guarantee a
more general applicability.

5.3 Mixed-mode fracture in concrete

The previous section pointed out the mesh objectivity properties induced by the intrinsic nonlocal-
ity of the SPIM approach. In a number of situations however, such properties are not sufficient to
completely regularise a simulation and further tools are needed. The purpose of the present section
is then to show that the SPIM approach can be combined with other regularisation strategies, in
this case the micropolar continuum theory, to provide a stronger regularisation effect. This quality
of the SPIM is illustrated with the simulation performed by Gori [2018] and Gori et al. [2019a] of
the four-point shear test of the plain concrete beam depicted in Figure 27, investigated experimen-
tally by Arrea and Ingraffea [1982]; this test has been widely used in the literature as a benchmark
for numerical investigations on concrete behaviour. The beam is characterised by a mixed-mode
loading, with an high shear gradient between the fixed constraint and the applied load P. The fail-
ure corresponds to a curved crack path, going from the top of the notch to the point of application
of the load P. Due to its characteristics, the simulation of such test is difficult with scalar-isotropic
damage models, and usually requires more complex approaches, like discrete cracking methods
(see, e.g. Oliver et al. [2002], Rabczuk and Belytschko [2004], de Borst et al. [2004] and Fang
et al. [2008]), or special treatments for scalar damage models like the non-local approach (see, e.g.
Jirásek [2007]), for example. As it will be shown in the present section, analyses performed with
classic scalar damage models were not able to reproduce the experimental results of the four-point
shear test, due to instabilities in the loading branch of the equilibrium paths. On the other hand, it
was possible to reproduce the behaviour of the experimental test by providing the SPIM approach
with a further level of regularisation, using the micropolar approach (Section 4). This result was
expected for this peculiar loading condition since, in presence of high values of shear stresses,
couple-stresses usually arise, leading to the activation of the internal bending length, and to the
regularisation effects of the micropolar formulation.

0.13 P P

203 397 61 61 397 203

82

224
CMSD

Experimental crack path

Figure 27: Four-point shear test by Arrea and Ingraffea [1982] - Geometry (mea-
sures in mm)

The concrete used by Arrea and Ingraffea [1982] in the experimental test was characterised by
a Young’s modulus E = 24800 N/mm2, Poisson’s ratio ν = 0.20, tensile uniaxial strength between
2.8 N/mm2 and 4.0 N/mm2, and fracture enegy between 0.10 N/mm2 and 0.14 N/mm2; these
characteristics were reproduced in these simulations adopting the Mazars scalar damage model
(Equation 59), with the following parameters for the exponential damage law (Equation 58), α =
0.950, β = 1000 and K0 = 1.6 ×10−4.
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5.3.1 FEM simulations

The analyses with the finite element method were performed considering meshes composed by
three-node triangular elements in a plane-stress state, with a thickness of 156 mm. Three dis-
cretisations were adopted (Figure 28), with mean nodal spacing of 30 mm, 20 mm, and 10 mm
between the notch and the point of application of the load P, and 70 mm elsewhere. The notch was
represented as sharp, with an initial opening of 5 mm.

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3

Figure 28: Four-point shear test - FEM meshes

The FEM analyses were performed adopting a loading process driven by a cylindrical arc
length control method, assuming a reference load P = 130000 N, an initial loading factor incre-
ment of 0.0125, and a tollerance for convergence in relative displacement of 1 × 10−4. All the
simulations presented in this section were performed considering the tangent approximation of the
constitutive operator. The results of the analyses performed with the classic medium, in terms of
crack mouth sliding displacement (CMSD) plotted against the load factor are illustrated in Fig-
ure 29, together with the experimental results obtained by Arrea and Ingraffea [1982]. As it can be
observed, no one of the three meshes was able to describe the behaviour of the beam; the meshes
1 and 2 exhibited an elastic unloading once the peak value of the load factor was reached, while
the third mesh lost convergence before the maximum load factor value.
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Figure 29: Four-point shear test - FEM - Equilibrium paths

The analysis of the four-point shear test was repeated for the three discretisations using the
micropolar medium, with six different combinations of the additional material parameters, adopt-
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ing the values 500 N/mm2, 2500 N/mm2, and 3500 N/mm2 for the Cosserat’s shear modulus Gc,
and the values 5.0 mm and 10.0 mm for the internal bending length Lb. The results are collected
in the plots of Figure 30. As it can be observed, the use of the micropolar medium with a simple
scalar damage model allowed to investigate also the post-peak branch of the equilibrium paths,
which were affected by both the additional material parameters; specifically, to higher values of
Gc and Lb corresponded higher peak values of the load factor. Despite the fact that, on the contrary
of the classic medium, the micropolar one allowed to reproduce the softening phase of the load-
ing process, it can be observed that the solutions depicted in Figure 30 strongly depended on the
discretisation, with lower peak values obtained with the most refined meshes. This fact is empha-
sised also by the damaged configurations illustrated in Figure 31. The damaged zones obtained
with the three meshes were compatible with the expected cracking path (Figure 27); however, it
can be observed that to a finer mesh corresponded a narrow damaged zone, pointing out the mesh
dependency of the problem, which wasn’t mitigated by the micropolar formulation.
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(c) Gc = 2500 N/mm2 - Lb = 5.0 mm (d) Gc = 2500 N/mm2 - Lb = 10.0 mm

(e) Gc = 3500 N/mm2 - Lb = 5.0 mm (f) Gc = 3500 N/mm2 - Lb = 10.0 mm

Experimental Mesh 1 Mesh 2 Mesh 3

Figure 30: Four-point shear test - Micropolar FEM - Equilibrium paths
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(a) Mesh 1 (b) Mesh 2

(c) Mesh 3

Figure 31: Four-point shear test - Micropolar FEM - Gc = 2500 N/mm2 - Lb = 10.0
mm - Damaged configuration

5.3.2 ES-RPIM simulations

The beam of Figure 27 was investigated using also the ES-RPIM, with the discretisations de-
picted in Figure 32, each one obtained constructing the edge-based smoothing domains using as
background cells the triangular finite elements of Figure 28, hence maintaining the same nodal
distributions of the finite element meshes17.

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3

Figure 32: Four-point shear test - ESRPIM meshes

Regarding the generation of the support domains, both the T3 and the T6/3 schemes were
adopted. The shape functions were constructed with the radial point interpolation method with
polynomial reproduction, using the exponential radial function (15) with c = 0.002, and adopting
3 polynomial terms. As for the finite element analyses, the nonlinear simulations were performed
adopting a loading process driven by a cylindrical arc length control method, assuming a reference
load P = 130000 N, an initial loading factor increment of 0.0125, and a tollerance for convergence
in relative displacement of 1 × 10−4, considering the tangent approximation of the constitutive
operator. The results of the analyses performed with the classic medium are illustrated in Fig-
ure 33. As it can be noted, in this case the behaviour of the ES-RPIM was similar to the finite
element method (Figure 29); in all the simulations the models lost convergence already in the

17The simulation of the four-point shear test was performed using also node-based smoohing domains.
Both polynomial and radial basis functions were tested, as well as both the selection schemes T3 and T6/3.
However, neither with the classic nor with the micropolar medium it was possible to obtain satisfactory
results, since damage initiated long before the expected threshold and the analyses arrested soon after the
onset of damage. Hence, only the results obtained with the edge-based method are presented in this section.
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loading path, except for the mesh 1 with the T3 scheme, which manifested an elastic unloading
along the original loading path once the peak value was attained.
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Figure 33: Four-point shear test - ES-RPIM - Equilibrium paths

Like in the case of the finite element method, the analyses with the micropolar medium gave
significantly better results. Adopting the T3 scheme it was possible to investigate the softening
phase of the loading process, except for the combinations with Gc = 500 N/mm2, which exhibited
instabilities with the meshes 1 and 3, and for the mesh 3 with the combination Gc = 2500 N/mm2

and Lb = 10.0 mm, which also lost convegence in the loading phase, as it can be observed in
Figure 34. Figure 35 illustrates the damaged configurations obtained for the three discretisations
with the combination Gc = 3500 N/mm2 and Lb = 10.0 mm, showing damaged zones compatible
with the expected crack path depicted in Figure 27. However, observing the results illustrated
in Figures 34 and 35 it is worth it to note that also in this case, as previously observed for the
finite element method, the analyses were strongly dependent on the discretisation, with lower
peak values and narrower damaged zones in the finest meshes.

The adoption of the T6/3 selection scheme in the ES-RPIM simulations led to an improvement
of the results. Observing the equilibrium paths of Figure 36 it can be noted that more stable anal-
yses were obtained, also with the combinations with Gc = 500 N/mm2, which were characterised
by instabilities in the case of the T3 scheme. Furthermore, while the simulations with the coarsest
discretisation led to results well above the experimental ones, both the meshes 2 and 3 produced
results that fell in the experimental rage. The most interesting result however, is that a certain
mesh objectivity was observed adopting this scheme. Indeed, observing the equilibrium paths of
the meshes 2 and 3 it can be noted that they exhibited similar results in terms of peak value, and
were almost coincident in the final part of the softening branch, especially for the combinations
with Gc = 3500 N/mm2, with some discrepancies in the middle of the post peak branch. This result
is emphasised also by the contour plots of the scalar damage variable depicted in Figure 37. Com-
paring Figure 37(b) with Figure 37(c) it can be observed that the two discretisations with the T6/3
scheme produced damaged zones with a similar width, while with the T3 scheme the difference in
width was considerably higher (see Figures 35(b) and 35(c)).
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Figure 34: Four-point shear test - Micropolar ES-RPIM T3

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3

Figure 35: Four-point shear test - Micropolar ESRPIM-T3 - Gc = 3500 N/mm2 - Lb

= 10.0 mm - Damaged configuration
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Figure 36: Four-point shear test - Micropolar ESRPIM-T6/3

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3

Figure 37: Four-point shear test - Micropolar ESRPIM-T6/3 - Gc = 3500 N/mm2 -
Lb = 10.0 mm - Damaged configuration
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6 Concluding remarks

The main aim of this paper was to review the main aspects of the application of smoothed point
interpolation methods, a family of meshless methods, to the problem of damage modelling. It
has been clearly pointed out that this class of meshless methods is a valid alternative to deal with
constitutive models that exhibit a strain-softening behaviour, such as the scalar damage model
considered in the paper. Different levels of regularisation can be obtained, depending on how the
meshless method is used. It has been shown that, when used as the sole regularisation strategy,
SPIM techniques are not capable to provide a sufficient level of regularisation in certain situations.
Whenever this occours, SPIM techniques can be combined with other regularisation strategies, like
the micropolar continuum theory considered in this paper, in order to obtain a stronger regularisa-
tion effect. The paper also briefly discussed other existing results regarding regularisation effects
provided by other meshless methods. Despite the promising results reviewed in this paper, further
investigations seems to be necessary to truly point out the potential of meshless methods when ap-
plied to damage modelling and to other nonlinear phenomena. Among the possible studies there
are:

• the evaluation of the influence of different kind of shape functions on the regularisation
effects provided by SPIM strategies;

• the investigation of regularisation effects provided by other meshless methods like the
MLPG, for example;

• the evaluation of the optimal size of the support domain to give a good trade-off between
regularisation effects and the sparseness of the stiffness matrix;

• the association of meshless methods with other regularisation techniques.
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Abstract

Several classes of inverse reconstruction problems are written in the form of over-
determined boundary value problems. The general idea consists in rewriting them
as an optimization problem. Therefore, a cost functional measuring the misfit be-
tween observed and predicted data is minimized with respect to a set of admissible
solutions, leading to a non-iterative second order reconstruction algorithm. As a
result, the reconstruction process becomes very robust with respect to noisy data and
independent of any initial guess. In particular, we are interested in the spatial recon-
struction and characterization of (micro-) seismic events via joint source location
and moment tensor inversion from pointwise boundary measurements.

Keywords: Topological derivative method, non-iterative reconstruction method, full-waveform
inversion, seismic moment tensor, multiple micro-seismic events.

1 Introduction

The topological derivative has been specifically conceived to provide a precise informa-
tion on the sensitivity of a given shape functional with respect to topological domain per-
turbations. It appears in the first term of the asymptotic expansion of the shape functional
with respect to a small parameter measuring the size of the perturbation under considera-
tion, typically a hole, an inclusion, a source-term, or a crack. See, for instance, the books
by Novotny and Sokołowski [2013, 2020].

The origin of the topological derivative method in optimal design can be dated to the
work by Schumacher [1995] on the optimal location of holes within elastic structures. It
is nevertheless worth mentioning prior related mathematical developments on the asymp-
totic behaviour of solutions to singularly perturbed boundary value problems and on the
notions of polarization and capacity matrices. These objects are essential ingredients in
the formulation of topological derivatives. The first mathematical justifications for topo-
logical derivatives in the framework of partial differential equations are due Sokołowski
and Żochowski [1999] and Garreau et al. [2001], in the context of the Poisson equation
and the Navier system for Neumann and Dirichlet holes.

In the last decade, the topological sensitivity analysis has become a rich and fasci-
nating research field that combines the modern theory of calculus of variations, partial
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differential equations, differential geometry, numerical analysis, physics, engineering and
computational mechanics. The field grew up rapidly to develop many extensions and ad-
dress a variety of physical and industrial problems. The topological derivative method
has applications in shape and topology optimization [Novotny et al., 2007, Amstutz and
Novotny, 2010], inverse problems [Canelas et al., 2015, Ferreira and Novotny, 2017], im-
age processing [Auroux et al., 2007, Amstutz et al., 2014], multi-scale material design
[Amstutz et al., 2010, Giusti et al., 2010] and mechanical modelling, including damage
[Allaire et al., 2011] and fracture [Xavier et al., 2017] evolution phenomena. See, for
instance, the book by Novotny et al. [2019a] and the special issue on the topological
derivative method and its applications in computational engineering recently published
in the Engineering Computations Journal [Novotny et al., 2022], covering various topics
ranging from new theoretical developments [Amstutz, 2022, Baumann and Sturm, 2022,
Delfour, 2022] to applications in structural and fluid dynamics topology optimization
[Kliewe et al., 2022, Romero, 2022, Santos and Lopes, 2022], geometrical inverse prob-
lems [Bonnet, 2022, Canelas and Roche, 2022, Fernandez and Prakash, 2022, Louër and
Rapún, 2022a,b] synthesis and optimal design of metamaterials [Ferrer and Giusti, 2022,
Yera et al., 2022], fracture mechanics modelling [Xavier and Van Goethem, 2022], up to
industrial applications [Rakotondrainibe et al., 2022] and experimental validation of the
topological derivative method [Barros et al., 2022].

In this chapter, we are interested in the spatial reconstruction and characterization
of (micro-) seismic events via joint source location and moment tensor inversion from
pointwise boundary measurements. Seismic and micro-seismic source characterization is
a keen area of research in geophysics, engineering, hydrocarbon production, and ma-
terials science due to its central role in the understanding of earthquake and faulting
processes [Shearer, 2009]; monitoring of mines, highway bridges, and offshore plat-
forms [Koerner et al., 1981]; tracking the progress of hydraulic fracturing [Baig and Ur-
bancic, 2010], and investigating the failure of brittle materials [Grosse and Ohtsu, 2008].
Generally speaking any (micro-) seismic source, interpreted as a sudden material failure,
can be characterized by its spatial support, temporal variation, and the underpinning fail-
ure mechanism. In situations when the extent of a material failure is small relative to the
remaining length scales in the problem (e.g. seismic wavelengths and source-receiver dis-
tances), the seismic source can be interpreted as a point source [Scruby et al., 1985, Jost
and Herrmann, 1989]; a hypothesis that is implicitly assumed hereon. In this setting, the
accepted continuum mechanics description of a seismic source is given by a linear com-
bination of force dipoles [Aki and Richards, 2009] whose weights are specified in terms
of the so-called seismic moment tensor [Gilbert, 1973]; a second-order tensorial quantity
whose accurate reconstruction from remote wavefield measurements is the key point of
seismic source characterization.

In contrast to the classical approaches to moment tensor inversion in laboratory [Scruby
et al., 1985] and geophysical [Jost and Herrmann, 1989] environments that rely on prior
knowledge of the source location and possibly other simplifying assumptions (e.g. far
field hypothesis), recent attempts at seismic source characterization are increasingly based
on the full waveform analysis of multi-axial seismic observations [Cesca and Dahm,
2008]. In general, the latter can be pursued either via time- or frequency-domain ap-
proaches. As an example of the former class of inverse solutions, the paper by Song and
Toksöz [2011] deploys grid search for the source location – aiming to minimize the misfit
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between the observed and synthetic waveforms, followed by a least-squares solution for
the moment tensor that relies on an a priori premise of the source time function. In the
paper by Sjögreen and Petersson [2014], on the other hand, the investigators pursue simul-
taneous inversion for the source location, moment tensor, and two-parameter source time
function via nonlinear minimization of the germane waveform misfit, aided by adjoint-
field sensitivity estimates. In recent years, studies by Bazargani and Snieder [2015] and
Kawakatsu and Montagner [2008] have demonstrated the utility of time reversal methods
as a viable (time- or frequency-domain) alternative for exposing the seismic source loca-
tion. With the latter information at hand, a full-waveform reconstruction of the moment
tensor, including the underpinning source time function, can be conveniently pursued in
the frequency domain [Cesca and Dahm, 2008] by solving the underpinning linear system
of equations.

A common thread to the above and related inverse source analyses entails (i) the fun-
damental premise of a synchronous seismic source, where all components of its moment
tensor share the same time dependence (given by the source time function); and (ii) the
assumption of a single seismic (point) source, precluding the possibility that two events
– originating from distinct locations – may overlap in time. To provide an alternative to
the foregoing analyses that is free of such impediments, this work deals with spatial re-
construction and characterization of micro-seismic events in the frequency domain from
pointwise wavefield measurements, where the associated moment tensors are fully recon-
structed. Since the inverse problem at hand is (as expected) ill-posed, the idea is to rewrite
it as an optimization problem in which a functional measuring the misfit between synthetic
and observed waveforms is minimized with respect to a set of admissible point sources
representing the hidden faults. The necessary optimality conditions are derived in the
spirit of the topological derivative method as proposed by Novotny et al. [2019b] which,
in this context, consists in exposing the perturbation of the functional as a quadratic func-
tion of the germane moment tensor components. Then, the resulting expansion is trivially
minimized with respect to the sought source parameters, leading to a non-iterative re-
construction algorithm that is initial guess-free and robust with respect to perturbations
of sensory data. We test the proposed technique via numerical experiments designed to
examine its performance under a variety of source, sensing, and uncertainty scenarios.

The chapter is organized as follows. The germane (frequency-domain) forward prob-
lem and affiliated inverse problem, targeting the locations and moment-tensor “strengths”
of micro-seismic events from the observed acoustic emission data, are described in Sec-
tion 2. In Section 2.1 the germane cost functional, measuring the misfit between the
synthetic and sensory data, is expanded with respect to the set of admissible source densi-
ties. The resulting expansion is used to devise a novel reconstruction algorithm presented
in Section 2.2. A set of numerical experiments examining the effectiveness of the pro-
posed reconstruction algorithm is provided in Section 3. Finally, the chapter ends with
some concluding remarks presented in Section 4.

2 Full-Waveform Inversion of Seismic Moment Tensors

Following the original ideas presented in the paper by Amad et al. [2020], let us consider
an open and bounded domain Ω ⊂ R2 representing an elastic body. Its boundary is
denoted as ∂Ω, such that ΓN ⊂ ∂Ω and ΓD = ∂Ω\ΓN denote respectively the parts of ∂Ω
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subjected to homogeneous Neumann and Dirichlet boundary conditions. In this setting,
we are interested in the inverse source problem of reconstructing the source density f ∗

such that 
−divσ(u)− ρω2u = f ∗ in Ω,

u = u∗ on Γm ⊂ ΓN ,
u = 0 on ΓD,

σ(u)n = 0 on ΓN ,

(1)

where u : Ω → R2 is the elastodynamic displacement field; ω denotes the frequency
of wave motion; ρ is the density; n is the unit outward normal on ∂Ω; Γm ⊂ ΓN is
the measurement surface; and u∗ are the acoustic emission data from which we aim to
resolve f ∗. See Fig. 1. In addition, σ(u) = C(∇u)s is the Cauchy stress tensor, with C
the elasticity tensor and (·)s the symmetric part of a second order tensor (·). Without loss
of generality, we assume the elastic body Ω to be homogeneous and isotropic, in which
case the elasticity tensor reads

C = 2µ I + λ(I⊗ I), (2)

where λ and µ are the Lamé moduli, and I and I are the fourth and second order identity
tensors, respectively. The source density f ∗ ∈ Cδ(Ω) to be reconstructed is given by a
superposition of a finite number of dipoles, where

Cδ(Ω) =
{
f : Ω→ R2 | f(x) =

N∑
i=1

Mi∇xiδ(x− xi)
}
. (3)

Here, δ(·) is the two-dimensional Dirac delta function; N denotes the number of point
sources located at xi ∈ Ω (i = 1, 2, . . . , N ), and Mi ∈ R2 × R2 is a symmetric seismic
moment tensor characterizing the i-th point source. For completeness, we recall from the
continuum mechanics definition [Aki and Richards, 2009] that a generic seismic moment
tensor is represented as

M = aC(JuK� η), (4)

where a is the area of a newly created micro-fracture (giving rise to the acoustic emission)
whose unit normal is denoted by η, and JuK is the average displacement jump across the
micro-fracture. Finally, u � v denotes the symmetric tensor product between the vectors
u and v, namely u�v = 1

2
(u⊗v+v⊗u). On the basis of (3), we write the sought source

density satisfying (1) as

f ∗(x) =
N∗∑
i=1

M∗
i ∇x∗i

δ(x− x∗i ). (5)

Now, let us rewrite the inverse problem (1) as an optimization problem. The associated
functional to be minimized in Cδ(Ω) is given by

J (u) :=
1

2

∫
Γm

‖u− u∗‖2, (6)

where u : Ω→ R2 solves the boundary value problem
−divσ(u)− ρω2u = f in Ω,

u = 0 on ΓD,
σ(u)n = 0 on ΓN ,

(7)
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Figure 1: Problem setting.

for a trial source term f ∈ Cδ(Ω). In this setting, the relevant optimization problem can
be stated as

Minimize
f∈Cδ(Ω)

J (u), subject to (7). (8)

2.1 Sensitivity Analysis

The next step is to minimize the misfit functional (6) with respect to the set of admissible
solutions (3). In order to evaluate the germane sensitivities of this functional, the idea is
to perturb the trial source term f ∈ Cδ(Ω) in (7) by a fixed number N of point sources
with arbitrary locations xi and generic moment tensors Mi as

fδ(x) = f(x) +
N∑
i=1

Mi∇xiδ(x− xi), (9)

where Mi ∈ R2 × R2 are symmetric. On the basis of (7) and (9), we can introduce the
forward solution uδ : Ω→ R2 as that solving

−divσ(uδ)− ρω2uδ = fδ in Ω,
uδ = 0 on ΓD,

σ(uδ)n = 0 on ΓN ,
(10)

which gives rise to the perturbed cost functional

J (uδ) =
1

2

∫
Γm

‖uδ − u∗‖2. (11)

Assuming a sufficient number of micro-seismic source locations xi (i = 1, 2, . . . , N ),
we are interested in obtaining the variation of (6) with respect to the components of the
moment tensor Mi at each location. To facilitate the analysis, one may decompose Mi

into its Cartesian components using Einstein summation notation over repeated indexes
k, l = 1, 2, namely

Mi = Mkl
i (ek ⊗ el), (12)

where ek and el are the unit vectors of the reference Cartesian frame, and Mkl
i are the

components of Mi. With such definitions, the solution of (10) can be conveniently de-
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composed as

uδ(x) = u(x) +
N∑
i=1

Mkl
i p

kl
i (x), (13)

where pkli : Ω→ R2 solve the canonical boundary value problems of the form
−divσ(pkli )− ρω2pkli = (ek ⊗ el)∇xiδ(x− xi) in Ω,

pkli = 0 on ΓD,
σ(pkli )n = 0 on ΓN ,

(14)

for k, l = 1, 2. Here it is useful to note that, thanks to ansatz (13), canonical problems
(14) are independent of the components Mkl

i of the moment tensor Mi in (12). Now we
have all elements needed to evaluate the variation of functional (6) with respect to Mkl

i .
Specifically, on substituting (13) in (11), we obtain

J (uδ) = J (u) +
N∑
i=1

Mkl
i

∫
Γm

pkli · (u− u∗) +
1

2

N∑
i=1

N∑
j=1

Mkl
i M

mn
j

∫
Γm

pkli · pmnj , (15)

assuming implicit summation over repeated indexes k, l,m, n = 1, 2.
For a systematic treatment of (15), we next introduce the vector of trial source loca-

tions
ξ = (x1, x2, . . . , xN) ∈ R2N (16)

and the affiliated strength vectors

α = (α1, α2, . . . , αN)> ∈ R3N , (17)

collecting the respective components of Mi, where

αi = (M11
i ,M

22
i ,M

12
i = M21

i )>.

With such definitions, the residual in (15) can be rewritten more compactly as

Ψ(α) := J (uδ)− J (u) (18)

= h · α +
1

2
H α · α. (19)

Here, vector h ∈ R3N and matrix H ∈ R3N × R3N are respectively defined as

h :=


h1

h2
...
hN

 , and H :=


H11 H12 . . . H1N

H21 H22 . . . H2N
...

... . . . ...
HN1 HN2 . . . HNN

 , (20)

whose entries are given by

hi :=

 h1
i

h2
i

h3
i

 , and Hij :=

 H11
ij H12

ij . . . H13
ij

H21
ij H22

ij . . . H23
ij

H31
ij H32

ij . . . H33
ij

 , (21)
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where

h1
i :=

∫
Γm

p11
i · (u− u∗), h2

i :=

∫
Γm

p22
i · (u− u∗), h3

i :=

∫
Γm

(p12
i + p21

i ) · (u− u∗),

and

H11
ij :=

∫
Γm

p11
i · p11

j , H12
ij :=

∫
Γm

p11
i · p22

j , H13
ij :=

∫
Γm

p11
i · (p12

j + p21
j ),

H21
ij :=

∫
Γm

p22
i · p11

j , H22
ij :=

∫
Γm

p22
i · p22

j , H23
ij :=

∫
Γm

p22
i · (p12

j + p21
j ),

H31
ij :=

∫
Γm

(p12
i + p21

i ) · p11
j , H32

ij :=

∫
Γm

(p12
i + p21

i ) · p22
j ,

H33
ij :=

∫
Γm

(p12
i + p21

i ) · (p12
j + p21

j ).

2.2 Reconstruction Algorithm

For each fixed pair (N, ξ), we seek α that minimizes Ψ according to (19). Since Ψ repre-
sents a quadratic form with respect to α, sufficient optimality condition

〈DαΨ(α), δα〉 = 0, ∀ δα ∈ R3N , (22)

lead to the linear system
Hα = −h. (23)

In this setting, the solution α of (23) is implicitly a function of the vector (16) of source
locations ξ, namely α = α(ξ). On substituting (23) into (19), the optimal vector of source
locations ξ? can be trivially obtained via combinatorial search over a prescribed grid, X ,
of M > N trial source locations geared toward solving the minimization problem

ξ? = argmin
ξ⊂X

{
Ψ(α(ξ)) =

1

2
h · α(ξ)

}
. (24)

On resolving ξ?, the components of N reconstructed moment tensors M?
i are then given

by the optimal strength vector α? = α(ξ?). The associated optimal value of the objective
function is denoted as Ψ? := Ψ(α?). We remark that when the true number of micro-
seismic sources, N?, is less than N , numerical simulations show that a number N − N?

of components α?i , in the solution set α?, take near-trivial values.
To complete the analysis, we next introduce a second-order optimization algorithm

that synthesizes the process of obtaining ξ? and α? from the computational point of view.
The input of the algorithm is listed below:

• Upper bound N on the number of (micro-seismic) point sources.

• Grid X of M > N trial source locations.

• Canonical solutions pkli for each grid point xi ∈ X .
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Algorithm 1: Micro-seismic source reconstruction
input : N , X , pkli ∀xi ∈ X

1 Initialization: ξ? ← 0; α? ← 0; Ψ? ←∞; M ← card(X)
2 for i1 ← 1 to M do
3 for i2 ← i1 + 1 to M do

...
4 for iN ← iN−1 + 1 to M do

5 h←


h(i1)

h(i2)
...

h(iN )

; H ←


H(i1i1) H(i1i2) · · · H(i1iN )

H(i2i1) H(i2i2) · · · H(i2iN )
...

... . . . ...
H(iN i1) H(iN i2) · · · H(iN iN )


6 α← −H−1h; Ψ← 1

2
h · α

7 I ← (i1, i2, . . . , iN); ξ ← Π(I)
8 if Ψ < Ψ? then
9 ξ? ← ξ; α? ← α; Ψ? ← Ψ

10 end if
11 end for
12 end for
13 end for
14 return ξ?, α?, Ψ?

The algorithm returns the optimal set of source locations ξ? and respective moment tensor
components given by α?. The above procedure, originally developed in the paper by
Canelas et al. [2014] in the context of inverse potential problems, is shown in Algorithm 1
using pseudo-code format. Therein, Π : {1, 2, . . . ,M}N 7→ X maps the vector of source
indices I = (i1, i2, . . . , iN) to the corresponding vector of source locations ξ ⊂ X . For
further applications of this algorithm, we refer to the paper by Novotny et al. [2019b].

In Algorithm 1, optimal source locations ξ? are obtained through a combinatorial
search over M trial points sampling the set of admissible locations X . As a result, the
computational complexity C(M,N) of the algorithm can be evaluated by the formula

C(M,N) ≈
(
M
N

)
N3 =

M !

N !(M −N)!
N3.

In Fig. 2, the graphs of N × log10(C(M,N)) for M = 100 and M = 400 are plotted as
solid and dashed lines, respectively. As can be seen from the display, the computational
cost of the algorithm may become prohibitive for a large N , with N ≈ M/2. In the
ensuing numerical examples (Section 3), we set N � M , so that Algorithm 1 runs in a
few seconds for all examples.
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Figure 2: Complexity order of Algorithm 1: N× log10(C(M,N)) for M = 100 (solid)
and M = 400 (dashed).

3 Numerical Results

Thanks to the fact that the moment tensor Mi ∈ R2 × R2 is symmetric, its eigenvalues
can be conveniently written as

m1,2
i :=

1

2

(
tr(Mi)±

√
MD

i ·MD
i

)
(25)

in terms of the volumetric tr(Mi) and deviatoric MD
i components of Mi, with

MD
i = Mi −

1

2
tr(Mi)I. (26)

In the sequel, we denote the affiliated eigenvectors by v1,2
i .

For the purposes of source inversion, we next consider three types of micro-seismic
events given by the moment tensors M∗

i ∈ R2 × R2 (i = 1, . . . , N∗) featuring [Aki and
Richards, 2009]: (i) real amplitude γi ∈ R, (ii) unit normal to the micro-crack ηi ∈ R2

(when applicable), and (iii) Lamé moduli µ and λ of the background solid. Specifically,
when generating the synthetic data u∗ according to (1) and (5), we allow for

1. Cavitation:
M∗

i = 2γi(µ+ λ)I ⇒ m1,2
i = 2γi(µ+ λ); (27)

2. Mode I crack:

M∗
i = γi(2µ(ηi ⊗ ηi) + λI) ⇒ m1

i = γi(2µ+ λ), m2
i = γiλ; (28)

3. Mode II crack:

M∗
i = γiµ(η⊥i ⊗ ηi + ηi ⊗ η⊥i ) ⇒ m1,2

i = ±γiµ. (29)
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(a) m1
i = m2

i > 0 (b) m1
i > m2

i > 0 (c) m1
i > 0 > m2

i

Figure 3: Representation of the moment tensors in terms of their eigenvalues and
eigenvectors: (a) cavitation, (b) mode I crack, and (c) mode II crack.

For future reference, the moment tensors given by (27)–(29) are depicted graphically in
Fig. 3.

The elastic body Ω used for numerical simulations is taken as an ` × ` block of rock
with mass density ρ and Lamé moduli λ = µ (Poisson’s ratio ν = 0.25), fixed at the
bottom corners. The pointwise motion sensors are assumed to be distributed along the
boundary ∂Ω with various densities and apertures as described in the sequel. The dimen-
sionless frequency of acoustic emission is taken as

ω̄ =
ω `√
µ/ρ

= 10π,

resulting in the specimen-size-to-shear-wavelength ratio of `/λs = 5. With reference
to (4), (9) and (27)–(29), we also introduce the dimensionless coordinates y = `−1x;
we consider the dimensionless source strength γ̄ = `−3γ, and we specify the unit nor-
mal to the micro-crack as η = (cos θ, sin θ), where θ is the angle measured counter-
clockwise from the horizontal axis. The forward elastodynamic problem is solved via
standard Galerkin finite element method. To handle the germane wave propagation with
sufficient accuracy, domain Ω is first subdivided into a uniform 10 × 10 grid of square
subdomains. Then, each subdomain is discretized via 4n triangular finite elements with
n = 7. Next, the set of admissible source locations X is taken as the union of vertices
of like triangles with n = 1, giving M = 221 in Algorithm 1. Finally, the dipoles are
represented by a Gaussian distribution of the form

δ(x− xi) = lim
ε→0

1

2πε2
exp

(
−‖x− xi‖

2

2ε2

)
. (30)

The gradient of δ(x− xi) with respect to xi can be obtained as follows

∇xiδ(x− xi) = lim
ε→0

x− xi
2πε4

exp

(
−‖x− xi‖

2

2ε2

)
, (31)

where the parameter ε = 10−2 × he for the numerical purposes, with he used to denote
the size of the finite element.

To illustrate the performance of the inversion algorithm, we adopt the graphical rep-
resentation of moment tensors introduced in Fig. 3, and we denote the true (resp. recon-
structed) sources by thick red (resp. thin blue) arrows. Finally, the pointwise sensors are
represented by black dots.
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3.1 Example 1

In this example, we pursue reconstruction of one, two and three micro-seismic sources
representing: (i) cavitation, (ii) mode I and mode II cracks and (iii) cavitation, mode I
and mode II cracks. More precisely, in Fig. 4 there are: (a) γ̄1 = 0.02; (b) γ̄1 = 0.04 and
θ1 = 20◦, γ̄2 = 0.01 and θ2 = 15◦; and (c) γ̄1 = 0.01, γ̄2 = 0.03 and θ2 = 20◦, γ̄3 = 0.02
and θ3 = 15◦. As sensory data, we consider the biaxial motion measurements captured by
one, two and three pairs of sensors, respectively. As expected, the sources reconstructions
shown in Fig. 4 are nearly exact in all cases.

(a) single micro-fault (b) two micro-faults (c) three micro-faults

Figure 4: Reconstruction of one, two and three micro-faults using different configu-
rations of biaxial motion sensors.

At this point, it is worth noting that the reconstruction fails if a smaller-than-featured
number of sensors is deployed in each of the foregoing examples. Qualitatively speaking,
this suggests the use of at least two sensors per (micro-seismic) source. When using S
sensors in a laboratory setting, one should accordingly expect to reliably reconstruct up
to S/2 simultaneous sources. In situations where the reconstruction algorithm consis-
tently exposes more than S/2 contemporaneous events, the above result suggests either
(i) deploying additional motion sensors, or (ii) retaining only the ”strongest” S/2 events,
as quantified e.g. in terms of Frobenius norm of the moment tensors Mi, i = 1, 2, . . . , N .
For completeness, we note that in conventional acoustic emission (AE) testing [Grosse
and Ohtsu, 2008], micro-seismic events are reconstructed one at a time, which precludes
the existence of contemporaneous sources.

3.2 Example 2

In this second and last example, we examine the robustness of the reconstruction algo-
rithm with respect to random modeling errors. To this end, we assume the true material
parameters to be corrupted with White Gaussian Noise according to

µτ = µ(1 + τϕ) , λτ = λ(1 + τϕ) and ρτ = ρ(1 + τϕ) , (32)

where ϕ : Ω 7→ (0, 1) is a random variable and τ specifies the amplitude of fluctuations.
The domain Ω is subdivided into 10×10 subregions. To have a meaningful representation
of material heterogeneities, each subregion is discretized by 44 triangular elements where
the corrupted material parameters are evaluated according to (32). In this way, the average
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heterogeneity size dh can be computed as dh/λs = (5/10)/42 ' 0.03, i.e. 3% of the shear
wavelength. For consistency, such material distribution is then projected onto a finer
mesh with 47 triangular elements per subregion, leading to a finite element discretization
that is commensurate with those in the former example. As before, the reconstruction
algorithm assumes a homogeneous background model with Lamé parameters λ = µ and
mass density ρ. The perturbation function (1 + τϕ) is plotted in Fig. 5 with τ = 1. For
completeness of discussion, we next introduce the effective noise level in the data due
to (32) as

τ ? :=
‖u0 − uτ‖L2(Ω)

‖u0‖L2(Ω)

, (33)

where u0 = uτ |τ=0
and uτ is the acoustic emission field due to exact source distribution (5)

computed assuming (32) for the background solid.

Figure 5: Corrupted background with White Gaussian Noise.

In this scenario, let us reconstruct a single mode II event with γ̄1 = 0.05 and θ1 = 15◦

using the six sensors shown in Fig. 6. We assume that the number of faults is not known,
and we set N = 2 > N∗ = 1. The results of source reconstruction for 0.5%, 1.0% and
2.0% are shown in Fig. 6. For τ = 0.0%, the reconstruction is nearly exact and thus the
result is not reported. For τ = 0.5% (τ ? = 10%), the reconstruction is still good, but there
is a minuscule artifact in the form of a phantom second event as permitted by the premise
N = 2. This type of solution degradation continues to grow for τ = 1.0% (τ ? = 21%)
and τ = 2.0% (τ ? = 51%) as can be seen from the respective displays.

(a) τ = 0.5% (τ? = 10%) (b) τ = 1.0% (τ? = 21%) (c) τ = 2.0% (τ? = 51%)

Figure 6: Reconstruction of a single micro-fault under varying levels of noise.
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4 Concluding Remarks

In this study, we propose an algorithm for the frequency-domain reconstruction of micro-
seismic events using full-waveform analysis of the acoustic emission data. The inversion
approach integrates a combinatorial grid search for source locations with the sensitivity
analysis in terms of moment tensor components to arrive at an effective algorithm that
simultaneously returns both micro-seismic source coordinates and respective tensorial
strengths. We investigate the performance of the algorithm, assuming pointwise wave-
form observations, via numerical examples that include both isolated and multiple point
sources. Under ideal testing conditions, the results suggest that two point receivers per
acoustic emission source may provide sufficient information for accurate moment ten-
sor inversion. For generality, we also investigate the micro-seismic source reconstruction
under the adverse condition of randomly perturbed background medium, whose local fluc-
tuations are unavailable as prior information. The results show a significant resilience of
the reconstruction algorithm to this type of modeling errors.
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