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Abstract 

 This chapter presents an overview of principal component analysis (PCA), 

introducing and presenting the steps for using this powerful technique for data 

processing. In addition, three different examples are described, applying PCA to 

different multivariate engineering problems: in the manufacturing process using 

laser beam machining; power quality indices and in turbofan engine degradation 

data. 

Keywords: principal component analysis; multivariate statistics; laser beam machining; 

power quality indices; turbofan engine degradation. 

1 Contextualization 

Most datasets usually have datas with  multiple characteristics that can be analyzed. For 

example, in a standard machining process, which features characteristics such as 

average roughness (Ra), cutting tool wear and material removal rate (MRR). Such 

characteristics present a relationship with each other, which can be statistically verified 

through their variance-covariance structure. The need to understand the relationships 
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between several variables of a correlated nature makes multivariate analysis an 

intrinsically complex subject (Johnson, R.A., Wichern, 2007). 

When analyzing a set of characteristics, using univariate strategies (which deal with 

only one variable at a time) can bring unsatisfactory or even inadequate results. This can 

happen, because the multicollinearity existing in the set would be neglected (Almeida et 

al., 2020). Thus, it must be necessary to verify the relationship between the 

characteristics (which usually present correlation between them), requiring the use of 

multivariate strategies, promoting more informative and robust evaluations (Ferreira, 

2018). 

Among the commonly used strategies, principal component analysis (PCA) stands out, 

which was introduced by Pearson (Pearson, 1901) and later attributed differently by 

Hotelling (Hotelling, 1933). PCA is characterized as an exploratory multivariate 

technique that models correlated data from the variance-covariance structure (Ferreira, 

2018). In addition, this technique allows the reduction of the dimensionality of the 

dataset (Gaudêncio et al., 2019; Jolliffe, 2010), finding a linear combination of 

uncorrelated variables that adequately explains the original variables, with the least 

possible loss of information (Mardia et al., 1995). In this way, the principal components 

can be obtained through a diagonalization, specifically, of defined semipositive 

symmetric matrices (Ferreira, 2018). The use of this technique can be found in many 

studies with different applications, such as: (Bounoua & Bakdi, 2021; Mahmoudi et al., 

2021; Nhu et al., 2020; Song & Li, 2021; Yu et al., 2020). 

Based on the previous discussion, this chapter will present an overview of the PCA 

strategy, indicating how the application should be carried out and interpreted, from the 

previous analysis of the data (before the application of the PCA). In addition, the steps 

to be considered by using this technique in the applied in datasets with multiple 

characteristics will be discussed. Finally, three different examples will be explored 

using problems in several areas of engineering, such as the manufacturing process, 

power quality indices and heath monitoring of aeronautical engine. 

2 Principal Component Analysis 

As previously inferred, PCA is characterized by being a multivariate technique widely 

used to interpret and reduce extensive and correlated data (Wang & Chien, 2010). Thus, 

the first step to consider before using the PCA is to verify the significance of the data 

correlation structure. This analysis can be done through correlation tests such as 

Pearson's, in which it is possible to verify (through the p-value of the test) if the data 

present a significant correlation. In addition, it is possible to verify whether the 

characteristics are directly or inversely correlated. Correlation between the 

characteristics can be verified according to Equation (1): 

1, 2, ..., ; 1, 2, ...,
i j

i j
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Where: 

iy
Var   and   

jyVar  are ith and jth variance; 

i jy yCoVar  represents the covariance between the characteristics. 

Datasets with a significant level of correlation usually present an ellipsoidal geometric 

structure, while variables without correlation, that is, independent, present a spherical 

structure. Figure 1 illustrates both behaviors: no significant correlation and significant 

correlation level. 

 

 

(a) (b) 

Figure 1: Data behavior with correlation: (a) r = +0.705; (b) r = 0 (Almeida, 2021). 

 

If the data set does not show significant correlation, there is no need to use a 

multivariate strategy. However, when dealing with variables from the same source, 

there is usually a significant correlation between the analyzed characteristics. In this 

way, one can proceed with the application of the PCA strategy.  

It is known that PCA minimizes the dimensionality of the original variables, in order to 

absorb significant elements in the principal axis, while maintaining the error variation in 

the secondary axes. Consequently, PCA stands out for being very widespread in the 

literature to reduce the computational effort in analyzes involving large and correlated 

data sets. This strategy makes use of an orthogonal conversion to transform the 

observations into a set of variables that are not correlated with each other (Almeida, 

2021). Thus, one of the necessary parameterizations for the application of the PCA is to 

define the ideal number of principal components (PCi) that will be considered in the 

model. This choice is not arbitrary and can be defined through specific criteria. 

One of the guidelines used when defining the amount of PCi is the Kaiser criterion 

(Johnson, R.A., Wichern, 2007). This criterion indicates that: the more correlation there 

is between the variables, the smaller the number of components needed to represent the 

observations. Thus, the components need to explain at least 80% of the accumulated 
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variance. For example, on a suitable dataset with seven correlated characteristics: if the 

first principal component (PC1) has an explanation of 63.4% and the second principal 

component (PC2) has a 19.9% explanation, it is known that two components are enough 

to adequately explain the original data set. Thus, there is a dimensionality reduction of 

71.43% of the original dataset. 

In addition to the percentage of explanation, another criterion commonly used to define 

the number of principal components is based on their eigenvalue. Thus, if the 

eigenvalue associated with the component is greater than or equal to 1 (λ ≥ 1), this 

principal component will be associated in the model. Figure 2 shows the “Scree Plot” 

graph, which exemplifies the behavior of the eigenvalue in data from a welding process 

(adapted from (Almeida, 2017). 

 

Figure 2: Scree plot 

An alternative way to represent the behavior of both criteria (to choose the number of 

principal components) is through the Pareto chart (Figure 3). This graph illustrates the 

study's eigenvalue along with the explanation percentage of each component. In 

addition, the percentage of cumulative explanation is also presented, favoring decision 

making. 

 

 

 

(Intentionally left blank) 
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Figure 3: Pareto chart with eigenvalues and percentage of explanation 

Since PCA is the combination of a linear set for q random variables  qYYY ,,, 21  , it can 

be inferred that the coordinate system represents a new set of coordinates before its 

original rotation, where the new axes hold the greatest data variability (Johnson, R.A., 

Wichern, 2007). Figure 4 shows the geometric interpretation of the axes. 

 

 

Figure 4. Constant density ellipsoid (Almeida et al., 2020). 

PCA aims to find a combination of uncorrelated variables that adequately explains the 

original variables (Velasco et al., 2020). For this, we consider the random vector XT= 

[X1, X2, …, Xp] which has the covariance matrix Σ with eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ … ≥ 

λp ≥ 0. Then, the linear combinations can be described as in Equation (2). 
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Considering that Yi for the ith principal component, then, in Equation (3) and Equation 

(4): 
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Thus, the principal components represent the uncorrelated linear combinations Y1, Y2, 

…, Yp, in which the variances described in Equation (3) are the largest possible. That is, 

the ith component can be defined from Equation (5), which was previously obtained 

through the formulation written in Equation (6) (Almeida, 2017). 
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Therefore, the original variables can be replaced by an uncorrelated linear set, i.e., the 

scores of the principal components. According to Johnson, R.A., Wichern, (2007), in 

possession of the standardized data matrix Z and the eigenvectors matrix E (from a 

multivariate set), the scores of the principal components can be obtained by Equation 

(7). 
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Principal component scores are dimensionless, independent representations of an entire 

original dataset. These scores can be used in the most varied applications: from 

techniques such as artificial neural networks, cluster analysis to optimization 

techniques. 

In the following topics, three real examples will be detailed using PCA on data from 

different multivariate processes in engineering. In such manner, applications of PCA 

will be addressed in data from a laser machining process (Belinato et al., 2019); in 

power quality sector (Almeida et al., 2021) and on data from NASA's Turbofan engine 

degradation analysis (Saxena & Goebel, 2008).  

3 On the Use of PCA in Engineering Applications  

3.1 PCA-based LBM process 

The first example to be addressed will be based on the article by Belinato et al., (2019). 

In this study, the authors used the PCA technique with other statistical methods for 

experimentation and optimization in the machining process through laser beam 

machining (LBM). In general, this machining process has multiple objectives due to its 

quality characteristics. The authors performed a design of experiments (DOE) using the 

Response Surface Methodology (RSM) for the parameters of laser frequency (f), cut 

speed (S), laser power (I). The quality characteristics investigated were: material 

removal rate (MRR) and different roughness metrics (Ra, Rq, Rz, Rp and Rt). Table 1 and 

Table 2 present the parameter levels and the experimental matrix with the multiple 

quality characteristics analyzed, respectively. 

The experiments were performed on a Deckel Maho Lasertec® machine model 

DML40SI (Figure 5a) and data collection used a Mahr® rugosimeter model M300 with 

an RD18 measuring device (Figure 5b). The workpieces used can be seen in Figure 6. 

All planning, experiment and data collection were carried out at Instituto Superior 

Técnico, University of Lisbon. 

 

 

Figure 5: (a) DML40SI LBM machine and (b) Mahr® M300 rugosimeter (Belinato et al., 2019). 
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Table 1: Input parameters and levels (Belinato et al., 2019). 

Input parameters 
Level 

-1.682 -1 0 +1 +1.682 

f [kHz] 11.2 15 20.5 26 29.7 

S [mm/min] 29.5 200 450 700 870.4 

I [%] 26.3 40 60 80 93.6 

Table 2: Experimental matrix (Belinato et al., 2019). 

N 

Setup Responses 

f S I Ra Rq Rz Rp Rt MRR 

[kHz] [mm/min] [%] [µm] [µm] [µm] [µm] [µm] [cm3/s] 

1 15.0 200.0 40.0 4.54 5.85 31.30 14.46 39.58 5.95 x10-4 

2 26.0 200.0 40.0 2.12 2.65 12.77 6.70 14.00 4.20 x10-4 

3 15.0 700.0 40.0 7.27 9.03 42.06 22.59 47.90 7.81 x10-4 

4 26.0 700.0 40.0 3.68 4.53 17.47 8.82 18.86 4.21 x10-4 

5 15.0 200.0 80.0 12.38 15.07 66.30 33.68 78.49 1.84 x10-3 

6 26.0 200.0 80.0 5.28 6.91 35.33 20.30 45.70 6.57 x10-4 

7 15.0 700.0 80.0 11.82 14.66 63.70 31.40 79.66 2.05 x10-3 

8 26.0 700.0 80.0 6.08 7.25 36.26 17.15 52.88 2.33 x10-3 

9 11.2 450.0 60.0 11.93 14.93 61.52 33.55 80.09 1.77 x10-3 

10 29.7 450.0 60.0 3.14 4.71 14.96 8.04 17.93 1.21 x10-3 

11 20.5 29.55 60.0 11.91 15.91 69.30 33.67 95.14 2.24 x10-4 

12 20.5 870.45 60.0 3.07 4.14 26.24 12.64 30.49 1.24 x10-3 

13 20.5 450.0 26.36 3.64 4.36 17.57 8.68 22.42 3.07 x10-4 

14 20.5 450.0 93.64 10.73 12.92 71.64 32.47 89.21 2.70 x10-3 

15 20.5 450.0 60.0 6.22 7.62 36.61 17.18 47.00 1.54 x10-3 

16 20.5 450.0 60.0 5.90 7.38 36.71 17.81 42.50 1.57 x10-3 

17 20.5 450.0 60.0 6.17 7.51 36.35 16.91 38.37 1.56 x10-3 

18 20.5 450.0 60.0 6.23 7.71 36.14 18.10 41.29 1.56 x10-3 

19 20.5 450.0 60.0 5.88 7.55 36.52 17.95 44.76 1.58 x10-3 

20 20.5 450.0 60.0 6.17 7.60 35.60 17.33 38.25 1.60 x10-3 

 

   

   

   
Figure 6: Machined surface workpieces (Belinato et al., 2019). 
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To emphasize principal components analysis, initially a correlation analysis is 

performed to verify the behavior of the quality characteristics. From Table 3, it appears 

that there is a significant correlation between the characteristics. This analysis can be 

verified using Pearson's correlation test and the relationship between the quality 

characteristics can also be verified through the correlation matrix illustrated in Figure 7. 

Then, information on eigenvalue and percentage of explanation is showed to define the 

number of components to be used in the analysis. Figure 8 presents the Pareto chart for 

the eigenvalues and cumulative percentage of explanation of the components. Through 

this analysis, it can be seen that the first component (PC1) is the only one to present an 

eigenvalue greater than 1, in addition to explaining 86% of the original data. Thus, only 

1 component is sufficient to represent all the quality characteristics analyzed. 

Knowing the number of components needed (only 1), in this case, it is enough to extract 

the component scores, which represent the original dataset in a dimensionless way. 

From this result, it is possible to verify that the multivariate PCA technique provides a 

data dimensionality reduction by 83.33%. This result favors a less complex analysis 

with less computational effort for the next steps (such as optimization, forecasting etc). 

For more details about the process and the approach performed by the authors, see the 

study by Belinato et al., (2019). 

 

Table 3: Correlation analysis for the LBM process characteristics (Belinato et al., 2019). 

  Ra     

Rq 
0.996(1) 

Rq  
      

0.000(2)       

Rz  
0.973(1) 0.969(1) 

Rz  
    

0.000(2) 0.000(2)     

Rp  
0.979(1) 0.979(1) 0.989(1) 

Rp  
  

0.000(2) 0.000(2) 0.000(2)   

Rt  
0.960(1) 0.962(1) 0.987(1) 0.976(1) 

 Rt 
0.000(2) 0.000(2) 0.000(2) 0.000(2) 

MRR  
0.460(1) 0.415(1) 0.500(1) 0.454(1) 0.462(1) 

0.041(2) 0.069(2) 0.025(2) 0.044(2) 0.040(2) 

      (1) Pearson correlation 

      (2) P-Value 
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Figure 7: Correlation matrix from LBM process. 

3.2 On the use of PCA in electric power substation quality indices 

The second example to be addressed is derived from an analysis of power quality 

indices of electric power substations addressed by Almeida et al., (2021). In this study, 

the authors used data from 17 substations with 31 power quality characteristics. The 

substations are located in southeastern Brazil, corresponding to a total area of 41,241 

km2, about 90% of the state of Espírito Santo. Figure 9 illustrates, geographically, the 

location of the analyzed substations. 
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Figure 8: Pareto chart with eigenvalues and percentage of explanation (Belinato et al., 2019). 

 

 

Figure 9: Location of the investigated substations in the State of Espírito Santo (Almeida et al., 

2022). 
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Power quality measurements were collected over a year, in order to cover different 

seasonalities that influence the performance of the electricity distribution network (such 

as rain, winds, among other phenomena). In addition, 30 power quality monitors from 

Schweitzer Engineering Laboratories, model SEL 734, were used to acquire this data. 

The behavior of the dataset towards the substations is illustrated in Figure 10. The set 

were applied in a method to find the best clustering technique for this set and, 

consequently, classify the substations based on the power quality. Due to the correlated 

structure of the data (originally available in Miranda et al., (2016), the use of 

exploratory techniques such as PCA is recommended. 

 

Figure 10: Relationship between power quality indices and substations (Almeida, 2021). 

After test and confirm that data structure presents a significant correlation, the 

eigenvalues and the percentage of explanation of each component are calculated. This 

procedure is intended to determine the number of principal components needed for the 

study. As an alternative view of the first example (applied to the process by LBM), the 

behavior of the eigenvalues can also be visualized through the Scree plot (Figure 11). In 

this graph it is possible to verify that the first six components present eigenvalues 

greater than 1 (λ ≥ 1). Figure 12 illustrates the behavior of eigenvalues 1 and 2 of their 

respective principal components. 

 

 

 

(Intentionally left blank) 
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Figure 11: Scree plot of eigenvalues from power quality indices (adapted from Almeida, 2021). 

 

 

Figure 12: Plot of eigenvectors 1 and 2 (Miranda et al., 2016). 

 

Almeida, Fabricio A., et al. (2022) PCA: Overview & Applications Multivariate Eng. Problems pp. 172-194

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 185



Complementarily, the Pareto chart (Figure 13) also provides information on the 

explanation percentage of each principal component. In this graph it is possible to verify 

that the fourth component presents a cumulative percentage of 80%. In this case, it is 

advisable to use the number of components necessary to respect the eigenvalue 

criterion. By using 6 components instead of 4, there data explanation contribution 

increases from 9.53%, in addition to properly respecting the Kaiser criterion discussed 

above. 

 

Figure 13: PCA Pareto chart for substation data. 

There is a discussion in literature about the number of components to be used in 

exploratory analysis studies, both for principal components and factor analysis (another 

widely used exploratory technique). Some of these discussions can be verified in studies 

such as Visinescu & Evangelopoulos (2014) and Almeida (2021). 

Considering the six principal components, the extraction of scores can be performed, 

thus generating 6 vectors of dimensionless and independent scores. These values 

adequately represent and explain the 31 original variables of the study. From this 

application, there is an 80.5% reduction in the data dimensionality. This result favors 

further analyzes that involve computational effort, as in the application of cluster 

algorithms used in the aforementioned power quality studies. The following studies 

bring more details and information about the object of study: (Almeida et al., 2022); 

(Almeida et al., 2021) and (Miranda et al., 2016). 

3.3 On the use of PCA in Turbofan engine degradation data 

The analysis and investigation of aeronautical engine data is widely investigated by 

industries and researchers (Chatterjee & Litt, 2003; Deng et al., 2020; Goebel et al., 
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2007; Kurosaki et al., 2004; Listou Ellefsen et al., 2019; Saxena et al., 2008; Xu et al., 

2020), comprising the collection of numerous information generated by several different 

sensors in specific positions. The diagnosis of this magnitude generates a large amount 

of data that usually present a multivariate characteristic. Thus, the PCA strategy can 

also be explored in this context. Data referring to turbofan engine degradation 

predictions will be analyzed. This set can be found in the public archives of the National 

Aeronautics and Space Administration (NASA), referring to the study by Saxena et al., 

(2008) and available at Saxena and Goebel, (2008). The data were generated using C-

MAPSS – Commercial Modular AeroPropulsion System Simulation software, based on 

the behavior of turbofan engines, shown in the diagram of Figure 14. 

 

Figure 14: Diagram of engine simulated (Saxena et al., 2008). 

For this example, a set will be selected that describes the simulation of 218 motors in 

constant execution until the moment of failure (between 127 and 356 cycles). The set 

presents information for analysis, using 21 C-MAPSS outputs with 33,991 collections 

for each characteristic (totaling 713,811 data). Table 4 describes the characteristics of 

the C-MAPSS outputs. Figure 15 illustrates the behavior of the sensors as a function of 

the engine's remaining useful life (RUL). The complete dataset and more details about 

the collection are available in the articles and database mentioned above. 

Through correlation analysis it is possible to assume that there is a significant variance-

covariance structure for the whole set, considering a confidence interval of 95%. Given 

the large amount of data, the correlation analysis will not be presented here, but it can 

be easily replicated with the help of any statistical software.  

From the correlation level, the data are able to be used in the PCA strategy. Thus, the 

eigenvalues and contribution percentage of each component are initially verified to 

estimate the ideal amount for this data set. Through this initial analysis, it is possible to 

verify that only two principal components present λ ≥ 1 (16,908 and 3,578, 

respectively). The behavior of the eigenvalues can be verified through Figure 16. In 

addition, the second component presents an accumulated explanation percentage of 

97.55% of the data. Such results infer that only two components are sufficient to 

adequately represent all 21 quality characteristics collected through the sensors. The 
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Pareto chart illustrates the behavior of both results mentioned above, as shown in Figure 

17. 

Table 4: C-MAPSS outputs (Adapted from (Saxena et al., 2008). 

Symbol Description Units 

T2 Total temperature at fan inlet °R 

T24 Total temperature at LPC outlet °R 

T30 Total temperature at HPC outlet °R 

T50 Total temperature at LPT outlet °R 

P2 Pressure at fan inlet psia 

P15 Total pressure in bypass-duct psia 

P30 Total pressure at HPC outlet psia 

Nf Physical fan speed rpm 

Nc Physical core speed rpm 

epr Engine pressure ratio (P50/P2) -- 

Ps30 Static pressure at HPC outlet psia 

phi Ratio of fuel flow to Ps30 pps/psi 

NRf Corrected fan speed rpm 

NRc Corrected core speed rpm 

BPR Bypass Ratio -- 

farB Burner fuel-air ratio -- 

htBleed Bleed Enthalpy -- 

Nf_dmd Demanded fan speed rpm 

PCNfR_dmd Demanded corrected fan speed rpm 

W31 HPT coolant bleed lbm/s 

W32 LPT coolant bleed lbm/s lbm/s 
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Figure 15: Sensors signal (#1 to #21) in function of the engine's RUL. 
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Figure 16: Scree plot of eigenvalues from C-MAPSS outputs. 

 

Figure 17: PCA Pareto chart for C-MAPSS outputs. 

In a complementary way, it is possible to verify which variables have the greatest effect 

on these components. This relationship can be seen through a loading plot, as described 

in Figure 18. In this graph, the variables closer to 0 have a weak influence and, 

antagonistically, those close to 1 or -1 have a strong influence on the component.  
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From the ideal number of components (in this case, only 2), it is possible to extract the 

scores that will represent all the original variables through independent and 

dimensionless vectors. From the application of the analysis, it is possible to reach a 

reduction of the data dimensionality of 95.25%, i.e., the original set that had 713,811 

data points can be properly represented by 67,822 data points. This significant reduction 

favors the computational and analytical performance of the data, reducing the time and 

helping for more accurate evaluations, since the PCA considers the correlated structure 

of the data. The following studies bring more details and information about the object of 

study: Saxena et al., (2008); Saxena and Goebel, (2008). 

 

Figure 18: Loading plot from the C-MAPSS outputs 

4 Conclusion 

In this chapter we present a general and brief overview of the principal component 

analysis technique. This technique is characterized as a powerful tool to reduce the data 

dimensionality and create uncorrelated response vectors, being widely used in several 

segments. In addition to an explanation of this strategy, this chapter described 3 

examples that cover different areas of engineering, showing the possibilities of using 

PCA. Finally, it is hoped that this chapter will help readers understand PCA, as well as 

how to apply this strategy to other multivariate data sets. 
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