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Foreword from FGA / UnB 

 
The engineering sector drives and enables the development of a country. The formation 
of an engineer allows a technical capacity to evaluate, plan, design, suggest and apply 
all possible techniques in search of the best construction of a technological equipment. 
Currently, the engineer must be more and more prepared to solve existing problems in 
various sectors of society. It is through it that societies grow in search of progress. 
The recognition of engineering and the training of new professionals increases every 
year in Brazil. In the 2000s, the University of Brasília (UnB) went through an expansion 
process, resulting in the implementation of the new UnB Engineering Campus in the 
city of Gama (UnB-Gama, FGA). Five new undergraduate courses were created: 
Aerospace Engineering, Automotive Engineering, Electronic Engineering, Energy 
Engineering and Software Engineering. The UnB Gama Campus project converges to 
increase the education level of the Brazilian population, especially in the five areas of 
engineering activity, all in line with current national public policies, aimed at expanding 
the population's access to quality higher education in the country. 
Following the high quality teaching line, the UnB-Gama campus has the Graduate 
Program in Integrity of Engineering Materials (PPG-Integridade). The program has the 
following lines of research: Dynamics and Vibrations, Fatigue, Structural Materials, 
Biomaterials, Structure Fluid Interaction and Numerical Simulation of the Mechanical 
Behavior of Materials. This book series is an initiative of PPG-Integridade - UnB, 
organized as a collaborative work involving researchers, engineers, scholars, from 
several institutions, universities, industry, recognized both nationally and 
internationally. 
Beside the high technical quality and relevance of the topics covered in the books, this 
series will enable an essential internationalization of the research currently developed 
within the University of Brasília. Several authors from different countries also 
contributed to these books, enabling greater interaction between national and 
international research groups. This internationalization raises the level of academic 
education for new professionals in the field of engineering, in addition to more 
advanced scientific research and technological development. 
Additionally, this book series features a strong contribution from the industrial sector. 
Several professionals from different companies collaborated with the writing of some 
chapters in the three volumes that make up this series. These initiatives are of great 
strategic importance, as they allow the grouping of different technical capabilities. On 
the part of companies in the sector, with knowledge of market demands, and on the part 
of universities, by adding the technical-scientific knowledge of their team of researchers 
to the improvement of innovative products and services.  
This book should be appreciated by anyone in need of knowledge of Materials Integrity. 
The completeness of Discrete Modeling and Inverse Methods theory combined with the 
Uncertainty Modeling in Structural Integrity makes these books mandatory for 
everybody aiming at Direct and Inverse Problems, including model-based and signal-
based inverse problems. 
 

Prof. Dr. Sandro A.P. Haddad, Director 
UnB-Gama campus (https://fga.unb.br/) 

https://fga.unb.br/
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Foreword from LAJSS 
Book Series in Discrete Models, Inverse Methods, & Uncertainty 
Modeling in Structural Integrity 
Book Series editors: Ariosto B. Jorge, Carla T.M. Anflor, Guilherme 
F. Gomes, and Sergio H.S. Carneiro 
 
This book series represents a commendable effort in compiling the latest developments 
on three important Engineering subjects: discrete modeling, inverse methods, and 
uncertainty structural integrity. Although academic publications on these subjects are 
plenty, this book series may be the first time that these modern topics are compiled 
together, grouped in volumes, and made available for the community. 
The application of numerical or analytical techniques to model complex Engineering 
problems, fed by experimental data, usually translated in the form of stochastic 
information collected from the problem in hand, is much closer to real-world situations 
than the conventional solution of PDEs. Moreover, inverse problems are becoming 
almost as common as direct problems, given the need in the industry to maintain current 
processes working efficiently, as well as to create new solutions based on the immense 
amount of information available digitally these days. On top of all this, deterministic 
analysis is slowly giving space to statistically driven structural analysis, delivering 
upper and lower bound solutions which help immensely the analyst in the decision-
making process.  
All these trends have been topics of investigation for decades, and in recent years the 
application of these methods in the industry proves that they have achieved the 
necessary maturity to be definitely incorporated into the roster of modern Engineering 
tools. The present book series fulfills its role by collecting and organizing these topics, 
found otherwise scattered in the literature and not always accessible to industry. 
Moreover, many of the chapters compiled in these books present ongoing research 
topics conducted by capable fellows from academia and research institutes. They 
contain novel contributions to several investigation fields and constitute therefore a 
useful source of bibliographical reference and results repository. 
The Latin American Journal of Solids and Structures (LAJSS) is honored in supporting 
the publication of this book series, for it contributes academically and carries 
technologically significant content in the field of structural mechanics. 
 
On behalf of LAJSS, 

 Prof. Dr. Marcílio Alves (USP), Editor-in-Chief 
 Prof. Dr. Rogério J. Marczak (UFRGS), Assoc. Editor 

 Prof. Dr. Pablo A. Muñoz-Rojas (UDESC), Assoc. Editor 
 Prof. Dr. Marco L. Bittencourt (Unicamp), Assoc. Editor 

 

 

Latin American Journal of Solids and Structures (LAJSS) 
(www.lajss.org) 

https://www.lajss.org/index.php/LAJSS
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Foreword from ABCM 

 
 
The Brazilian Society of Mechanical Sciences and Engineering – ABCM welcomes 
enthusiastically the publication of the Book Series in Models, Inverse Methods & 
Uncertainty Modeling in Structural Integrity.  
The initiative, undertaken by Prof. Ariosto B. Jorge, Dr. Carla T.M. Anflor, Dr. 
Guilherme F. Gomes and Dr. Sergio H. S. Carneiro, with the support of the University 
of Brasília, is received by the scientific community as a valuable contribution to the 
dissemination of knowledge encompassing the large number of topics covered in the 
three volumes of the series.  
These topics have been judiciously selected to encompass comprehensively the 
theoretical aspects, modeling techniques and numerical methods related to Structural 
Integrity, and are presented in a large collection of chapters authored by renowned 
experts, from both academia and industry. We gladly realize that many members of 
ABCM have contributed as authors.  
Besides the comprehensive and well-articulated content, one distinguishing 
characteristic of this book series is that it has been conceived to serve both for 
educational purposes at graduate level and as an information source for researchers and 
engineering practitioners, which amplifies, to a large extent, its utility. Another relevant 
feature is that the material is intended to be available to the public in electronic format 
at no cost, which highlights the generosity of the authors and editors and their 
commitment to the most fundamental academic principles.  
On behalf of the scientific community of the field of Mechanical Sciences and 
Engineering, ABCM acknowledges the editors and authors of the present book series 
for their contribution to the progress of Engineering research and education. 
 
 
 
 

Prof. Dr. Domingos Alves Rade 
President of ABCM 

 
On behalf of 

 

Brazilian Society of Mechanical Sciences and 
Engineering (ABCM) 
(www.abcm.org.br) 

 

http://www.abcm.org.br/
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Foreword from ABMEC 
 
 
The whole range of topics related to Direct & Inverse Problems and Modeling of 
Uncertainties is substantially associated with the needs of the mechanical, civil, 
aeronautical/aerospace, nuclear, and naval/oceanic industries. Indeed, they play a core 
role in industrial renewal, contributing to productivity and competitiveness. Especially 
taking Brazil into account, this book series, conceived as a comprehensive one that 
covers these important topics, is very welcome. 
 
These themes are also among the main interests of the Brazilian Association of 
Computational Methods in Engineering, ABMEC. ABMEC is concerned with the 
application of numerical methods and digital computers to the solution of engineering 
problems. Its mission is to promote, foster, and organize activities encompassing the 
development and use of such computational methods in Brazil. 
 
We are fortunate to have the opportunity to support this book series as a collaborative 
work that intends to involve scholars from different institutions and researchers from 
industry, with national and international relevance. We sincerely believe that this work 
will provide a common forum for discussion, education, and research information 
transfer between the several subjects concerning computational methods in engineering.   
 
Our congratulations to the editors, professors Ariosto Bretanha Jorge, Carla Tatiana 
Mota Anflor, Sergio Henrique da Silva Carneiro, Guilherme Ferreira Gomes for this 
important contribution to the Brazilian engineering. 
 
 
 
 

Prof. Dr. Felício Bruzzi Barros 
President of ABMEC 

 
 
On behalf of 

 

Brazilian Association of Computational 
Methods in Engineering (ABMEC) 
(www.abmec.org.br) 

 

 
  

http://www.abmec.org.br/
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Abstract 
This chapter presents an overview of the Book Series in Direct Methods, Inverse Methods and 
Uncertainty Modeling, of which the first two volumes have already been published (Volume I: 
Model-Based and Signal-Based Inverse Methods, DOI: https://doi.org/10.4322/978-65-
86503-71-5, and Volume II: Fundamental Concepts and Models for the Direct Problem, DOI: 
https://doi.org/10.4322/978-65-86503-83-8), and a presentation of the current Volume III: 
Uncertainty Modeling: Fundamental Concepts and Models. The chapter includes an 
introduction to the different topics in Optimization and Identification Techniques detailed in 
Volume I, an introduction to topics related to materials, technologies, and discrete modeling 
detailed in Volume II, and an introduction to topics related to uncertainty modeling and 
probabilistic methods, comprising the several chapters included in this Volume III of the Book 
Series. 

1 Book Series in Discrete Models, Inverse Methods, & Uncertainty Modeling 
in Structural Integrity: overview 
The Book series in “Discrete Models, Inverse Methods, & Uncertainty Modeling in 
Structural Integrity” is an initiative of the Post-Graduate Program - Integrity of 
Engineering Materials (PPG-Integridade) of University of Brasilia (UnB), organized as 
a collaborative work involving researchers, engineers, scholars, from several 
institutions, universities, industry, recognized both nationally and internationally. 
This book series is an activity related to the Research, Development & Innovation 
(R,D&I) Project at UnB, titled: “Technological Demonstration Platform for Inverse 
Methods and Uncertainty Modeling Integrity of Structures and Components”, available 
at the UnB Central Library (in Portuguese) (Jorge, 2020). 
The Book Series project is comprised by three Volumes: 

• Volume I – Model-based and Signal-Based Inverse Methods (Jorge, Anflor, et al., 
2022d) 

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 2
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• Volume II – Fundamental Concepts and Models for the Direct Problem (Jorge, 
Anflor, et al., 2022a) 
o Part I – Technologies and Materials Modeling 
o Part II - Discrete Modeling 

• Volume III – Uncertainty Modeling: Fundamental Concepts and Models 
The different book chapters were elaborated encompassing the relevant project topics, 
including chapters covering: 

• Fundamentals, including topics such as: basic principles, concepts & 
foundations, for the Direct & Inverse Problems (including model-based and 
signal-based inverse methods), and for the Modeling of Uncertainties; 

• Special Topics, Applications, and Research Review, including topics such as: 
research review, state-of-the-art & future trend topics, for the Direct & Inverse 
Problems (including model-based and signal-based inverse methods), and for the 
Modeling of Uncertainties. 

The book chapters were prepared as a collaborative work by researchers, engineers, 
scholars, involved in research, development and applications in the related areas. 
The research areas of interest throughout the book chapters include: 

• Modeling of the inverse problem, monitoring & diagnosis / prognosis: models 
and methods for inverse problems, optimization methods (including techniques 
such as; multi-objective optimization, topology optimization, evolutionary 
optimization), Wavelets, Kalman Filter (KF), Particle Filter (PF), Machine 
Learning (ML), Artificial Intelligence (AI), Data Science (DS), for applications 
such as Structural Health Monitoring (SHM) (including impedance-based and 
Lamb Wave-based techniques), Health & Usage Monitoring Systems (HUMS); 

• Modeling of the direct problem: mechanics of materials (including metallic 
materials, composites), structures (including civil, mechanical naval, 
aeronautical structures) machinery design and mechanical components, fracture 
mechanics, impact, fatigue, damage tolerance, integrity, mechanical vibrations, 
dynamics of structures, computational mechanics, including mathematical 
methods and numerical methods for discrete modeling for continuum mechanics 
(such as Finite Element Methods (FEM), Boundary Element Methods (BEM), 
Mesh-Free Methods (MFM)); 

• Probabilistic methods and modeling of uncertainties: probabilistic methods in 
engineering, Design of Experiments (DOE), Response Surface Methods (RSM), 
Risk & Reliability (including structural and system reliability), Uncertainty 
Modeling (UM) & Uncertainty Quantification (UQ), Bayesian Approaches 
(BA), stochastic Finite Element approaches (Stochastic FEM, Spectral FEM, 
Polynomial Chaos), stochastic optimization, meta-modeling (including 
techniques such as Surrogate Models (SM), Reduced Order Models (ROM)), 
model Verification & Validation (V&V). 

The different models, methods and approaches presented throughout the several 
chapters in the three Volumes of this Book Series are intended as an introductory 
presentation of some possibilities of methods that could be used in problems related to 
integrity of structures and components, and maybe even extended to other engineering 
areas, as appropriate. The list of models is not unique, and is neither comprehensive nor 

Jorge, Ariosto B., et al. (2022) Introduction to Probabilistic Methods & Uncertainty Modeling pp. 1-18
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exhaustive, and the reader is encouraged to look for different possibilities of methods 
that may be applicable to the particular engineering problem at hand. 
A common aphorism, often presented as "All models are wrong, but some are useful", is 
usually considered to be applicable to scientific models in general, and to statistical 
models in particular. The aphorism recognizes that statistical or scientific models 
always fall short of the complexities of reality but can still be of use. The aphorism is 
generally attributed to the statistician George E. P. Box, although the underlying 
concept predates Box's writings. 
Section 2 presents an overview of Volume I - Model-Based and Signal-Based Inverse 
Methods, which includes chapters on several Optimization Models and Identification 
Techniques. An introduction and context is presented, as well as a listing of the chapters 
included in Volume I. 
Section 3 presents an overview of Volume II - Fundamental Concepts and Models for 
the Direct Problem, which includes chapters distributed in Part I – Technologies and 
Materials Modeling, and in Part II - Discrete Modeling. An introduction and context is 
presented, as well as a listing of the chapters included in Volume II. 
Section 4 presents an overview of Volume III - Uncertainty Modeling: Fundamental 
Concepts and Models, which includes chapters on Probabilistic Methods and 
Uncertainty Modeling. An introduction and context is presented, as well as a listing of 
the chapters included in Volume III. 
Section 5 presents some final remarks and acknowledgements. 
 

2 Overview of Volume I 

2.1 Model-Based and Signal-Based Inverse Methods – context 
The detection, localization, classification and identification of parameters and/or 
material properties, related to the integrity of structures and components, with and 
without defects or damages, involves the modeling of inverse problems, as well as an 
adequate modeling and quantification of the uncertainties involved in the problem. 
The formulation of the direct problem, of the inverse problem, and the related 
uncertainties modeling, needed for an adequate description of the structure and/or the 
mechanical component, and of its potential defects or damages, involves 
multidisciplinary modeling techniques, whose understanding and proper application 
transcends the field of integrity and damage tolerance, being able to serve as a basis for 
applications, in other contexts or fields. 
Among the application problems of interest for inverse methods, one can cite Structural 
health monitoring (SHM) and Health and Usage Monitoring Systems (HUMS). 
The monitoring of structural integrity (SHM) is a competitive technique for damage 
detection and identification, wherein information is collected online, and compared with 
an existing database for an undamaged (“healthy”) structure. From this comparison, 
real-time information on the presence of damages can be obtained, including their 
localization, size, propagation speed, and, ultimately, the remaining operational life of 
the structural component. 

Jorge, Ariosto B., et al. (2022) Introduction to Probabilistic Methods & Uncertainty Modeling pp. 1-18
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The monitoring of mechanical components (HUMS) is a technique which is being used 
to follow / accompany the state of the integrity of mechanical systems / components 
(Health) and to monitor the appearance of indicators of the presence of damage (usage) 
in dynamic systems, such as rotating components (in engines, for example) and in 
gearboxes (in mechanical transmission systems, for example). In this case, the 
comparison is made between vibration signals from the healthy components 
(accumulated historical data) and from the components being monitored, to identify 
significant discrepancies in the vibration signals, which could be correlated to specific / 
particular / known damages. 
The scientific challenge of the modeling of inverse problems, as well as of the adequate 
modeling and quantification of the related uncertainties, in a problem of integrity of 
structures and components, involves several aspects: 

• The modeling of the problems (direct problem, inverse problem, uncertainties) 
needs to be done, whenever possible, by using more than one technique, for each 
case being described, in order to implement, for the particular problem at hand, 
model techniques which are independent, complementary, and/or redundant. 
Whenever possible, more than one model should be used, for redundancy and/or 
comparative analysis, especially in the case of unavailability of prior data for the 
healthy structure and/or component. 

• The techniques used for inverse methods may involve: 
i. Optimization techniques, based on multi-objective optimization models, using 

classical optimization techniques (such as Sequential Quadratic Programming 
(SQP), BFGS, etc), or evolutionary optimization techniques (such as Genetic 
Algorithms (GA), Differential Evolution (DE), Sunflower Optimization (SFO), 
Lichtenberg Algorithm (LA), etc.); 

ii. Identification techniques based on Artificial Intelligence, Machine Learning, 
Pattern Recognition, Data Science, etc., models (such as identification models 
based on Artificial Neural Networks (ANN), for example; 

iii. Models based on the Wavelet Transform (continuous Wavelet Transform 
(CWT), discrete Wavelet transform (DWT), with different types and sizes of the 
Wavelet window, for example); 

iv. Stochastic models (such as Kalman Filter (KF), Extended Kalman Filter (EKF), 
Extended Information Filter (EIF), Particle Filter (PF), Least Squares (LS), etc). 

• In several situations, the direct models to be implemented may involve different 
problem physics (Multi-physics Modeling), and multiple scales (Multi-scale 
Modeling). In such cases, the description for the direct problem may involve coarser 
global models, and more detailed local models; 

• The computational simulations and the experimental / laboratory tests must take into 
account the additional challenge of properly simulating / representing the local 
behavior of a complex structure, in the regions of interest, where the defect of 
damage is expected to be, or is expected to appear. For example, Fracture 
Mechanics (FM) problems and Damage Tolerance (DT) problems cannot be 
properly represented by reduced-scale models, as the damaged region must be 
represented using full-scale models. In these cases, the computational simulations 
(and also the experimental / laboratory tests) are required to reproduce the situation 
in the region of the damage using high fidelity local models. Thus, the region of the 
damage must be modeled in full scale, with the model also representing properly the 
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geometry, the mechanical properties, and the real loading in that local region 
(loading that is coming from the external loads that were applied in the structure or 
in the component as a whole). 

• In many cases, inverse problems may belong to the category of ill-posed problems, 
which represents an additional challenge in the modeling of the problem at hand. In 
these cases, the approach for the inverse method may require additional hypothesis 
to be made (for problem regularization, for example), or that a meta-modeling 
approach is adopted (such as surrogate models, reduced order models, etc), 
replacing the original model by the proper meta-model, and then solving this 
approximate model for the problem. 

• The modeling of inverse problems, such as in the case of SHM and/or HUMS, must 
take into account the proper modeling of the sensor behavior, and also the 
uncertainties associated to these sensors, as well as the simultaneous use of multiple, 
independent, techniques for monitoring, with different sensors. The optimal sensor 
positioning, to maximize the Probability of Detection (PoD), may be seen as a 
topological optimization problem and/or as a stochastic optimization problem. 

• The modeling of inverse problems may involve the detection, localization, and 
identification of parameters and/or material properties (for example, properties such 
as elasticity modulus, Poisson’s ratio, etc), which may vary through time (for 
example, material degradation thought time) and also along the length of the 
structure or mechanical component (for example, local changes which may occur in 
the material properties and / or mechanical properties of a composite plate, due to 
the debonding between the layers of the composite material). 

 

2.2 Chapter topics in Volume I: presentation 
Along Volume I of the Book Series, several topics related to model-based and signal-
based methods for inverse problems were presented in the several book chapters, 
representing the collaborative work from researchers, engineers, scholars, engaged in 
research, development and applications in the related areas, affiliated to several 
institutions, universities, industry, and recognized both nationally and internationally. 
The book chapters in Volume I of the Book Series were distributed as follows: 

• Chapter 1: Introduction to Optimization and Identification Techniques for Model-
Based and Signal-Based Inverse Problems (Jorge, Anflor, et al., 2022b) 

• Chapter 2: Overview of Some Optimization and Identification Techniques for 
Inverse Problems of Detection, Localization and Parameter Estimation (Sousa et al., 
2022) 

• Chapter 3: An overview of Linear and Non-linear Programming methods for 
Structural Optimization (Choze, Santos, Jorge, et al., 2022) 

• Chapter 4: Overview of Traditional and Recent Heuristic Optimization Methods 
(Choze, Santos, & Gomes, 2022) 

• Chapter 5: Application of Machine Learning and Multi-Disciplinary/Multi-
Objective Optimization Techniques for Conceptual Aircraft Design (Mattos et al., 
2022) 

• Chapter 6: On a Bio-Inspired Method for Topology Optimization via Map L-
Systems and Fractone Modeling (Kobayashi, 2022) 
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• Chapter 7: Fundamentals on the Topological Derivative concept and its classical 
applications (Carvalho et al., 2022) 

• Chapter 8: Ultrasound Obstacle Identification using the Boundary Element and 
Topological Derivative Methods (Cisilino & Anflor, 2022) 

• Chapter 9: Fundamental Concepts on Wavelet Transforms (Palechor, Silva, Morais, 
et al., 2022) 

• Chapter 10: Application of Wavelet Transforms to Structural Damage Monitoring 
and Detection (Palechor, Silva, Gomes, et al., 2022) 

• Chapter 11: Inverse Methods using KF, EKF, EIF, PF, and LS Techniques for 
Detection, Localization, and Parameter Estimation (Myers & Jorge, 2022) 

• Chapter 12: Fundamental Concepts for Impedance-based Structural Health 
Monitoring (Finzi Neto & Moura, 2022) 

• Chapter 13: Fundamental Concepts for Guided Lamb Wave-based Structural Health 
Monitoring (Finzi Neto et al., 2022) 

• Chapter 14: Machine Learning and Pattern Recognition: Methods and Applications 
for Integrity Monitoring of Civil Engineering Structures (Alves et al., 2022) 

 

3 Overview of Volume II 

3.1 Fundamental Concepts and Models for the Direct Problem – context 
The modeling of the Direct Problem includes disciplines related to: 

• Materials Science, Mechanics of Materials (applications to engineering materials, 
such as metallic materials, composites, biomaterials, etc.), Material Characterization 
Techniques (Digital Image Correlation (DIC), etc.); 

• Modeling & Design of Structures (applications to several Engineering branches such 
as Mechanical, Aeronautical, Civil, Naval, Ocean & Offshore, Nuclear, Energy, Oil 
& Gas, etc.); 

• Design of Machines and Mechanical Components; 
• Manufacturing Technologies and Processes (Additive Manufacturing, etc.) 
• Structural & Component Integrity (Fracture Mechanics, Fatigue, Impact, Contact, 

Damage Tolerance, Inspection, Non-Destructive Testing (NDE), Maintenance, 
Structural Health Monitoring (SHM), Health and Usage Monitoring Systems 
(HUMS), etc.); 

• Mechanical Vibrations, Acoustics, Structural Dynamics (Data Acquisition, Modal 
Testing & Modal Analysis Techniques, etc.); 

• Computational Mechanics, Mathematical Methods, Numerical Methods (such as 
Finite Element Methods (FEM), Boundary Element Methods (BEM), Meshless / 
Meshfree Methods, etc.). 

Regarding structural integrity applications, the problem of detecting damage in a 
structure involves modeling the direct problem, that is, the behavior of that structure in 
the presence of one or more pre-established damages, of assumed shape and size, and at 
given locations. This modeling can be done, for example, involving the analysis of the 
distribution of stresses and strains in parts with cracks, done through a FEM, BEM or 
Meshless modeling, or by analyzing the distribution of sound waves in this cracked part, 
emitted by a pre-established source, by means of a FEM, BEM or Meshless modeling. 
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Regarding component integrity applications, for the problem of detecting faults in 
dynamic components, experimental vibration data can be acquired from accelerometers 
conveniently distributed in the vicinity of the components of interest. In this case, there 
would be no direct problem modeling (the direct model is implicit), as the vibration data 
would be acquired for the healthy components to be later compared with the vibration 
data of the defective (with failures) components. 
With respect to Direct Problem Modeling, several problems of interest in structural 
integrity can be modeled as initial value problems and/or boundary value problems. In 
the case of boundary value problems, not varying in time, there is a valid partial 
differential equation in the region that represents the problem domain, and valid 
boundary conditions at the boundary of this region. In the case of time-dependent initial 
value problems, there are also valid initial conditions in this domain. 
A boundary value problem can be represented by a general equation of type Au = p, 
valid in the domain D, with boundary conditions valid in the boundary ∂D. The 
complexity of the problem, the geometry of the boundary, the actions (external loads, 
restrictions on supports) limit the possibilities of analytical solution for this problem, 
which generates a demand for approximate solutions, such as, for example, through: 

• replacement of the differential operator A by an approximate operator A*. This is the 
case of the finite difference method, which adopts an algebraic operator A*, where 
the derivative at a given point is expressed through the values of the function at 
points located in a neighborhood of that point, allowing the construction of a system 
of linear equations, to be solved with the proper application of the initial and 
boundary conditions; 

• replacement of the variable u by an approximate variable u*, expressed in the form 
of a linear combination of a set of basic functions. These functions can be 
polynomial, trigonometric, etc. The coefficients of this linear combination are the 
components of this approximate solution in the coordinate system represented by 
these basic functions. When the number of components tends to infinity, the 
approximate solution u* tends to the solution u. Among the approximate solutions 
based on this method, many correspond to methods called “projective”, where the 
equation valid in the domain is projected in an auxiliary subspace of functions, 
called support functions, and integrated in the domain, with its boundary conditions, 
using integration by parts. This category of methods includes, among others: 

o The Finite Element Method (FEM), using an integration by parts and, in 
each element, the same functions, both for support and for approximation of 
the variable u, in order to obtain the solution in points of the domain, called 
nodes, and, by interpolation using these functions, the solution at all other 
points in the domain; 

o The Boundary Element Method (BEM), using two integrations by parts and 
using support functions called fundamental solutions, in order to eliminate 
the domain integral, leaving only the boundary integrals (also known as 
boundary integrals). Thus, the solution is initially obtained only at the nodes 
of the discretized contour. Then, by interpolation, the solution is found at the 
other points of the contour. Finally, by post-processing, the solution is 
obtained at any desired point in the domain. 
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For problems of interest in structural integrity, the finite element method can be 
efficiently applied to problems in which the domain is inhomogeneous, where the 
discretization of the elements would already consider this local non-homogeneity. 
On the other hand, problems involving domain singularities, such as stress distribution 
in the vicinity of the crack tip, in fracture mechanics, can be well represented using the 
boundary element method. 
For initial value problems, with variable (in the domain and/or in the frontier) dependent 
on time, it may need a combination of methods that include the finite difference method, 
to model the march in time of the variable of interest. 
Other numerical methods are also available, such as the Meshless / Meshfree Methods, 
in which the global system of equilibrium equations is constructed using a node-by-
node process, performed in the local domain of each node, and thus there is no need to 
define a priori a mesh of finite elements or a mesh of boundary elements. 
For the application of inverse methods in dynamic components, the methodology is 
based on the comparison of vibration data acquired and stored throughout the life of the 
components still undamaged, with the most recent vibration data, for the components 
currently in use, from so that significant changes in the spectrum of acquired signals can 
be used as a starting point for the detection and identification of damage to these 
components. In this case, instead of a numerical code for the direct problem, vibration 
and acoustics data acquisition systems are used, together with structural dynamics, 
vibration analysis, modal testing & modal analysis techniques. 
The direct problem modeling can also include the study of the damage evolution with 
time (such as, for example, the crack propagation rate), in order to estimate the 
remaining useful life (safe life) of the structure. 
The science and technology behind analyzing structures is not yet mature, and further 
advancements and research are unnecessary for the basic understanding of structural 
mechanics phenomena and behavior (design/analysis/test) (Hamm et al., 2021). Some 
remaining challenges in the structures discipline include many areas still in need of 
rigorous research to arrive at physics-based methodologies, including: Fracture 
Mechanics, Composite Materials, New Materials, Manufacturing and Processing 
Methods, New Applications, Lack of Physics-Based Theories, New Test Methods, 
Incorporation of Research Advancements, Computational Advances, Multi-Discipline 
Interactions. 
One final note; in the context of philosophy of science, two fundamental issues were 
pointed out in (Da Costa & French, 2006). One issue concerns the appropriate attitude 
we should take towards scientific theories - whether we should regard them as true or 
merely empirically adequate, for example. The other issue concerns the nature of 
scientific theories and models and how these might best be represented. These two 
issues together lead us to arguing that theories and models should be regarded as 
partially rather than wholly true, with issues in terms of belief, theory acceptance, and 
the realism-antirealism debate. 
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3.2 Chapter topics in Volume II: presentation 

Along Volume II of the Book Series, several topics related to technologies, materials 
and discrete modeling for direct problems are presented in the several book chapters, 
representing the collaborative work from researchers, engineers, scholars, engaged in 
research, development and applications in the related areas, affiliated to several 
institutions, universities, industry, and recognized both nationally and internationally. 

The book chapters in Volume II of the Book Series are distributed as follows: 

• Chapter 1: Introduction to the Direct Problem: Materials, Technologies, and 
Discrete Modeling (Jorge, Anflor, et al., 2022c) 

Part I - Technologies, Structural Integrity & Material Modeling 

• Chapter 2: Technologies and Materials Issues Related to Naval and Ocean 
Engineering (Marques, 2022) 

• Chapter 3: New Advances in Thermoplastic Commingled Composites: Processing 
and Molecular Dynamics (Benedetto et al., 2022) 

• Chapter 4: The Influence of Weaving Patterns on the Effective Mechanical 
Response of Reinforced Composites - A Study Through Homogenization (Rocha et 
al., 2022) 

• Chapter 5: Auxetic Structures: Parametric Optimization, Additive Manufacturing, 
and Applications (Francisco et al., 2022) 

• Chapter 6: Additive Manufacturing of Ti-Alloys for Aerospace, Naval and Offshore 
Applications (Mendoza et al., 2022) 

• Chapter 7: Review of Low Cycle Fatigue: Issues in Naval and Offshore Engineering 
(Delgado-Morales et al., 2022) 

• Chapter 8: Modeling of Damage in Turbine Blades for Large Deformations (Aslan, 
2022) 

• Chapter 9: Stresses on Expansion Joints Used in Penetrations (Suanno & Maneschy, 
2022) 

• Chapter 10: Leak-Before-Break Technology for Piping in Nuclear Industry 
(Maneschy, 2022) 

• Chapter 11: Fatigue Control in Angra Nuclear Power Plants (Cisternas, 2022) 
• Chapter 12: On the use of Modal Test Data in Inverse Problems: Fundamentals and 

Applications (Gomes et al., 2022) 
• Chapter 13: Application of Deep Learning Techniques for the Impedance-based 

SHM to the Oil & Gas Industry (Rezende et al., 2022) 
• Chapter 14: Noise, Vibration, and Health and Usage Monitoring Systems (HUMS) 

of Aircraft Dynamic Components (Cruz et al., 2022) 
• Chapter 15: On Vibration Analysis and Health and Usage Monitoring Systems 

(HUMS) of Dynamic Components of Helicopters (Jorge et al., 2022) 
• Chapter 16: Model-Based Parameter Identification for Helicopter Main Rotor 

Balancing and Tracking Using Once-per-Revolution Vibration Data (Jorge et al., 
2022) 
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Part II - Discrete Modeling: Finite Element, Boundary Element, Meshfree Methods 
 
• Chapter 17: Finite Element Method for Structural Integrity Problems (Sales et al., 

2022) 
• Chapter 18: An Application of Finite Element Method and Sensitivity Analysis in 

Structural Dynamics (Avila & Prado, 2022) 
• Chapter 19: The Boundary Element Method for Potential Problems (Albuquerque, 

Jorge, et al., 2022) 
• Chapter 20: The Boundary Element Method for Structural Problems (Albuquerque, 

Sollero, et al., 2022) 
• Chapter 21: The Boundary Element Method for Damage Modeling (Peixoto & 

Chaves, 2022) 
• Chapter 22: Application of Roving Mass Technique Associated with Wavelet 

Transform to Structural Damage Detection and Localization (Palechor, Santos, et 
al., 2022) 

• Chapter 23: Local Mesh Free Methods in Linear Elasticity and Fracture Mechanics 
(Oliveira et al., 2022) 

• Chapter 24: Meshless smoothed point interpolation methods for damage modeling 
(Gori, 2022) 

• Chapter 25: A New Non-Iterative Reconstruction Method for Solving a Class of 
Inverse Problems (Novotny, 2022) 

 

4 Overview of Volume III 

4.1 Uncertainty Modeling: Fundamental Concepts and Models – context 
The modeling and quantification of uncertainties includes disciplines related to: 

• the stochasticity of the problem variables, which may be modeled as: 
o random variables (univariate or multivariate, Gaussian Mixture Models, 

etc.) with parameters (for example: mean; standard deviation) constant in 
space and time (stationary processes); or 

o stochastic processes (when these parameters are variable over time), 
described by time series;  or 

o random fields (when there is a spatial distribution of the parameters of 
the different random variables along the structure or the mechanical 
component). In stochastic finite element methods (SFEM), the 
discretization of the random fields (related to the distributed material 
properties, or to the distributed loading, for example) may be different 
than the finite element discretization itself (in general, one element of the 
random field may be related to a greater number of finite elements); 

• probabilistic methods in engineering, including techniques such as Design of 
Experiments (DoE), Response Surface Methodology (RSM), Bayesian 
Approaches, Metamodels (Surrogate Models, Reduced Order Models), 
sensitivity analysis, stochastic optimization (robust optimization / multi-
objective optimization) techniques, reliability methods, etc. 
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• the replacement of the real problem with a model to be simulated and / or tested, 
leading to several types of errors, such as: model errors (lack of fidelity of the 
model to the original problem); random errors (improper or incorrect account of 
the randomness of the problem variables); discretization errors (use of coarse 
meshes versus mesh refinement), numerical errors (such as rounding errors, 
etc.). The modeling and quantification of uncertainties may require the use of 
concepts related to Model Validation & Verification. 

 

4.2 Chapter topics in Volume III: presentation 

Along this Volume III of the Book Series, several topics related to uncertainty modeling 
and probabilistic methods for the direct and inverse problems are presented in the 
several book chapters, representing the collaborative work from researchers, engineers, 
scholars, engaged in research, development and applications in the related areas, 
affiliated to several institutions, universities, industry, and recognized both nationally 
and internationally. 

The book chapters in this Volume III of the Book Series are distributed as follows: 

• Chapter 1: Introduction to Probabilistic Methods & Uncertainty Modeling in Direct 
& Inverse Problems 

• Chapter 2: Application of Data Science in the Sustainable Energy Industry 
• Chapter 3: Overview of Classic Surrogates and Metamodeling Strategies in 

Structural Analysis 
• Chapter 4: Uncertainty Quantification in Inverse Kinematics Computation of Space 

Robots by Neural Networks 
• Chapter 5: Metamodel-Based Simulation Optimization: A Systematic Literature 

Review 
• Chapter 6: Principal Component Analysis: An Overview and Applications in 

Multivariate Engineering Problems 
• Chapter 7: Gaussian Mixture Models and Their Applications to Fault Diagnosis in 

Electric Motors 
• Chapter 8: Sensor Placement Optimization of a Helicopter Main Rotor Blade 
• Chapter 9: Challenges for Structural Health Monitoring: Nonlinearities and 

Uncertainties 
• Chapter 10: Applications of Numerical and Statistical Methods for Monitoring and 

Control Engineering Variables in a Concrete Dam 
• Chapter 11: Application of Statistical Processing Techniques to the Impedance-

based SHM for the Oil & Gas Industry 
• Chapter 12: Neuro-Fuzzy Data Normalization Applied for Impedance-based SHM 

to the Oil & Gas Industry 
• Chapter 13: On Kriging Techniques & Impedance-based SHM as Applied to 

Damage Detection in 2D Structures 
• Chapter 14: Time Series Models and Expansion Optimal Linear Estimation for 

Time-Dependent Reliability Analysis 
• Chapter 15: Bayesian Optimal Experimental Design 
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• Chapter 16: Airplane Optimal Robust Design Combined with an Entropy-Statistics 
Unsupervised Learning Classification Algorithm 

• Chapter 17: Random Fatigue Under Uniaxial and Multiaxial Loading Conditions 
• Chapter 18: Random Field Discretization in Stochastic Finite Elements: Element 

Size Effects and Error Indicators in Reliability Structural Analysis 
• Chapter 19: On Error Estimators and Bayesian Approaches in Computational Model 

Validation 
 

5 Final remarks and acknowledgements 
This Chapter presents an overview of the Book Series in Direct Methods, Inverse 
Methods and Uncertainty Modeling, with focus on: 

• The previously published Volume I: Model-Based and Signal-Based Inverse 
Methods (DOI: https://doi.org/10.4322/978-65-86503-71-5), including an 
introduction to the different topics in Optimization and Identification 
Techniques detailed in Volume I of the Book Series; 

• The previously published Volume II: Fundamental Concepts and Models for the 
Direct Problem (DOI: https://doi.org/10.4322/978-65-86503-83-8), including an 
introduction to the topics in Materials, Technologies and Discrete Models, 
detailed in Volume II of the Book Series; 

• The current Volume III: Uncertainty Modeling: Fundamental Concepts and 
Models, including an introduction to the topics in Uncertainty Modeling and 
Probabilistic Methods, presented in this Volume III of the Book Series. 

This Book Series is an initiative of the Graduate Program in Integrity of Engineering 
Materials (PPG-Integridade) at the University of Brasilia (UnB), Brazil 
(www.pgintegridade.unb.br). The editors would like to thank PPG-Integridade and UnB 
for the initiative, incentive and support for this Book Series project. 
The book series is organized as a collaborative work involving researchers, engineers, 
scholars, engaged in research, development and applications in the related areas, 
affiliated to several institutions, universities, industry, and recognized both nationally 
and internationally. The editors are grateful and would like to show their appreciation to 
all the co-authors of the book chapters, for their participation, dedication, and support. 
The book series is published as a digital version, with ISBN provided by UnB, and DOI 
for each chapter, provided by the Latin American Journal of Solids and Structures 
(LAJSS) (www.lajss.org). 
The scope of the Book series is in the broad areas of interest of LAJSS, and also of the 
Brazilian Society of Mechanical Sciences and Engineering (ABCM) 
(www.abcm.org.br) and the Brazilian Association of Computational Methods in 
Engineering (ABMEC) (www.abmec.org.br). For increased visibility, these three 
institutions are encouraging the divulgation of the Book Series project in their websites. 
The editors would like to express their appreciation to LAJSS, ABCM and ABMEC, for 
their incentive, encouragement and support for this Book Series project. 
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Abstract 

 The application of Data Science (DS) in engineering fields is presented from a broad 

approach, taking the basics and historical motivation to apply statistical tools into 

practical needs, from Health Sciences to structural monitoring, the latter linked to the 

sustainable energy context, like solar, wind, geothermal and nuclear. Moreover, brief 

bullets about the DS techniques and models are also covered, most in the Machine 

Learning branch, but with some indications of Artificial Intelligence applications. 

Math techniques like Kringing, Support Vector Machines, Cross-Validation, Data 

Regularization, Surrogate Models, for instance, also make part of the text, where the 

practical issues are evaluated in a brief technical manner. The chapter covers the 

structural reliability and its DS application too. 

Keywords: Data Science, Machine Learning, sustainable energy, uncertainty modeling, 

regularization techniques. 

1 Introduction 

The analysis of data has improved in several dimensions along the evolution of the digital 

systems in the last three decades, with more data volume been processed faster and faster 

every year. The Big Data environment has used tools in the analysis of phenomena and 

scenarios regarding the day routine of people, services, and countries. Data analysis has 

been a key instrument on the evolution of expansion campaigns of enterprises, marketing 

operations, public planning among others [1]. 

One example of how complex a data analysis can be, take the examples from war battles 

or campaigns, where data from different subjects come together, such as logistics and 

systems operational performance, to build up complex scenarios, to ease decision on the 

maximization of the combat capability. For instance, some data have origins from 

different time zones and production rates, and must be integrated into databanks for 

further processing, which normally considers the extraction, treatment and launching 

tasks. Nowadays, the military decision makers have data sources such as satellites, fixed 
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radar stations, mobile communication units, drones and even from cell phones, piling up 

amounts of data with different standards, languages, types, and volume. In the end, the 

analysis of data shall produce a valuable information to support the decision processes 

and culture in a short and long term as well [2, 3] 

Earth environment sciences have been another technical subject with a high profit from 

the application of DS, manipulating data from satellites, fixed and mobile instruments 

aboard of planes, ships and voitures [4]. Equally important, people and animals can also 

provide data to be collected by research centers and universities linked to the environment 

surveys. The digital hardware has increased its reliability and portability with the 

development of electric materials and associated software. The data gathered go to 

databanks, data lakes etc., where can be managed to feed up analytical methods to 

compose data analysis about air pollution, water quality, land contamination over time, 

as few examples. 

This chapter deals with some applications of Data Science (DS) into engineering fields, 

focusing current renewable energies options. The scope covers to show and understand 

the application of DS, throughout some examples, to address technical needs and 

outcomes, centered in data exploration, data classification and prediction, within dynamic 

space and time boundaries [5].  

 

2 Development 

2.1 Data Science: what’s for? 

In a few words, DS can be outlined by the combination of mathematics and computing 

disciplines and tools, including numeric calculus, analytic geometry, statistics, 

probability, to mention some of them, to handle a set of data, or a dataset, to provide some 

understanding, or even a better recognition, of characteristics and behaviors that might be 

inside the dataset. The whole pack of mathematical techniques have been integrated into 

computer schemes, accelerating the outcomes towards a more data centered conclusions. 

Figure 1 shows an overall view of the DS scope [6]. 
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Figure 1: Scope of Data Science and other IT knowledge fields [6]. 

 

Imagine an enterprise received a large amount of data, from different sources, like 

sensors, human observations and so on. The enterprise has some points of interest to 

check and evaluate whether the data collected may present some insights or ideas never 

devised. Thus, the enterprise needs a set of criteria and procedures to go over the data and 

try to grab the outputs foreseen. Nonetheless, the insights may not be present in the way 

earlier planned and the data may require a cleanup or organization not so easy to detect 

throughout a simple visual inspection. That is the scenario where DS applies with 

different approaches. 

Just organizing the data in a certain format can provide conclusions or deeper research 

directions, saving money and work hours from analysis not needed in the end, or more 

wisely to aim the effort into what really matters for the purpose of the enterprise or 

investigation. Take the example of the issues dealing with diseases, by checking the data 

about the occurrences in space and time. Mapping the cases and their characteristics can 

lead to know about a specific pattern and, thus, to preview future events or trends, which 

allow the people involved to get ready to dim the intensity of the consequences or even 

to stop the whole cause or the disease. As a remark, “mapping” means to organize the 

data into matrices, with dimensions related to the problem, which demands a deep 

knowledge of the details. That is the contribution of Florence Nightingale, during the 

Crimea War, which devised a way to organize data, from soldier casualties and deaths, 

using a bidimensional map, linking the data in terms of time [7]. This tool helped to know 

more about on how to decrease the harsh time of patient´s recovery and to avoid worse 

cases as well. Figure 2 shows her drawings, forecasting what it has been known today as 

“Data Analytics”. 
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Figure 2: Florence Nightingale maps over soldier casualties and time [7] 

With the development of the digital systems and the internet, the uses of math algorithms 

have spread to almost all areas of knowledge, improving the power and quality of 

observations, testing, and the accumulated experience [8]. Weather forecast, traffic 

control and disease control are one of the examples, managing large amounts of data, with 

different spectra and range of variables, only possible with digital computers and the 

algorithms tailored tunned. To interpret this huge set of data and build up a conclusion 

from it, the statistical algorithms have been used in large scale and faster, providing 

chances for insights not foreseen before. The higher the computing capability, the larger 

can be the dataset to be handle, and therefore more chances for better information to be 

checked and transmitted, and to allow more focused decisions to be made. 

One fair example of the data handling linking odd parameters like cholera outbreaks and 

geographic locations, comes from medical doctor Snow, in London (1854), he was not a 

cartographer though [9]. In the end, but the association of the disease people data and 

where they used to live and the housing conditions, Dr. Snow was able to take conclusions 

and to control the situation. In fact, he used something closer today what is known as Data 

Analytics, well done. To dive into something closer to DS, the team of Dr. Snow could 

check a math model to classify the people according to the money income, age, water and 

food supply, education level, the intensity of the fever or other symptoms, for how long 

they had survived and others. Thus, the output of the model would be an index or number, 

grading the cholera case in terms of time and position, allowing some guessing how the 

disease would spread to other parts of London.  

This text deals with the DS subject in a broad or horizontal view, with some applications, 

not covering coding examples, nor detailed or specific math procedures, steps, or models, 

by their equations. Rather, straight explanations and references will be used. 

2.1.1 Brief history of DS 

The DS history can be outlined as a progressive crescent timeline, with different 

increasing rates though. Taking the developments centered to handle information, the set 

up to data into tables, graphics and maps may be considered one of the first moves of DS, 

in parallel with description texts about phenomena and human actions. The main reason 
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for that also may come from religion and political issues, as the first motion springs to act 

in the societies. This feature may also be made without the scientific reason known as 

today and, therefore, reviewing historic pieces of plans, rule registers and description texts 

it is possible to identify the application basics of DS, when the use of rational steps to 

make conclusions based on collected data, mainly after the XVII and XVIII centuries in 

Europe.  

It is worth noting the data processing period at that time can be taken as a couple of 

months or weeks. Hour and minutes could not be achieved due to the technology obstacles 

when dealing with the energy processing. The spread of electric hardware changed this 

frame after the middle of the XIX Century. 

A half century ago almost, the paper “A Mathematical Theory of Communications” 

(1948) written by Claude Shannon, presented the term ‘bit, coined by John W. Tukey in 

the prior year, starting the information process path of today, at the time the digital 

computer evolved. Almost 30 year later, the book “Concise Survey of Computer 

Methods” [9], written by Peter Naur, synthetized the data processing methods used in 

several practical subjects, and the definition of DS appeared as: “…the science of dealing 

with data, once they have been established, while the relation of the data to what they 

represent is delegated to other fields and sciences”. In a brief review, it resumes the main 

issues in DS. In 1989, the workshop “Knowledge Discovery in Databases (KDD)” was 

organized by Gregory P-Shapiro and can be seen as definitive move towards a stronger 

link between data analysis and statistics.  

As private companies have handled more data related to marketing campaigns, the notion 

of a more rational use of math, statistics, and computer science to check what messages 

and relations may be present inside a data file, now collected more extensively as the 

communications webs enlarged exponentially. Thus, in 1996 two marks happened to 

clarify the DS scope: the book “From Data Mining to Knowledge Discovery in 

Databases” written by Usama Fayyad, Gregory P-Shapiro and Padhraic Smyth, and the 

conference “Data Science, classification, and related methods”, held by the International 

Federation of Classification Societies (IFCS), both presented the first definitions and 

applications of all practices so far, focusing the classification problems mostly, which can 

be seen as the first natural field of DS. Leon Breiman pushed the envelope in 2001 with 

the book “Statistical Modelling: The Two Cultures”, enhancing the importance of 

statistics application when analyzing data: ‘If our goal as a field is to use data to solve 

problems, then we need to move away from exclusive dependence on data models and 

adopt a more diverse set of tools”. This was said because he realized the use of statistics 

approaches had led to questionable conclusions and that the algorithmic modeling had 

been used outside statistics, dealing with different sizes of datasets [10]. 

The evolution of DS has all to do with the development of the digital technology because, 

now than ever, the capacity to perform hard calculations has been feasible in shorter time 

intervals (order of milliseconds on average, connecting billions of machines. Electronics 

and materials have increased their performance in an exponential scale, making data 

analysis more available to a broader set of researchers, enterprises, and governments. One 

example of this development is the ‘smartphone’, which is no longer only a ‘mobile 

phone’, but also a versatile ‘data source’ and ‘data processor’.  

Looking ahead, Figure 3 presents a distribution of subjects in terms of time and areas, 

regarding potential expansion applications, migrating from ‘things’ to thoughts. DS 
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works among all the sectors taking different signals transformed into binary numbers and 

checking what information can be draw from them. Currently, optical character 

processing has gained focus due to applications related to asset security and document 

automatic processing, saving money and time. A potential field of interest is the natural 

language processing (NLP) and the ‘wearable hardware’, coming closer and closer to 

human ordinary tasks. 

 

Figure 3: A short view of the web expansion and distribution [11] 

In the last twenty years, journals, workshops, and thematic congress have been organized 

and the application of DS has focused the education alternatives and the market need 

fulfillment in many countries. As today, the DS has key presence in our routines, some 

not easy to be detected, and “Data Scientists” belong to the professionals needed for the 

XXI Century and beyond. 

 

2.2 Sustainable & renewable energies: the main types and frameworks 

In the last fifty years, the atmospheric phenomena have taken the world attention, due to 

the higher intensity of the climatic events, such as flooding, forest fires, ocean level 

increase, draughts span and others. One of the causes of this complex scenario is the 

emission of greenhouse gases, where Carbon Dioxide (CO2) and Methane (CH4) 

represents the most important ones for instance [12]. 

Several solutions have been under evaluation to dim the greenhouse gas emission, such 

as to reduce the use of fossil fuels, using less environment aggressive energy sources, like 
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the solar, wind and nuclear options. Each one has a trade-off, and their selection depends 

on economics, geopolitical and logistics issues. The recent evaluations using data grabbed 

from satellites, fixed instrument stations and even from people, lead to conclusions data 

driven, thinking on the balance of the Carbon generation and absorption, in terms of its 

presence in the atmosphere. 

The planning of the ways to go to handle the Greenhouse gases require data management, 

because the wide source of gases sources and sinks, which may vary in different clusters 

of time, say long term (more than 10 years) or short term (less than 1 year), depending on 

the geographic region and human activity present. Among the data sources, the satellites 

deserve a special attention once they are not land intrusive and nor exposed to the 

atmospheric harsh events more frequent so far [13]. As a result, the satellites present data 

in different profiles in time, position, and substance of interest, with the development of 

new materials and data processing techniques. 

With the whole set of data, the evaluation of the gas emission in a specific region can be 

checked against a potential source of sustainable energy, while dealing with the regional 

energy matrix. The consensus goes towards a more diverse matrix, combining manifold 

sources of energy, which may consider the overall Carbon emission reduction within a 

certain time frame. In this more diverse energy matrix, the sustainable options may be 

optimized taking their best outputs and operational profile. For instance, based on the data 

from satellite, the government planners can have elements to plan a smooth energy source 

transition, migrating from the sources burning oil towards options with low carbon 

signature, such as wind and solar units. 

Figure 4 shows the expansion trend of sustainable energy sources, to provide more 

flexibility to the energy matrices. It is an example of Data Analytics, with an extract of 

many energy sources, linking colors to its concept. The first four are represented in grey 

tones, probably related to not renewable explanations. The other sources have colors such 

as light green, yellow and blue, in a psychological approach, which makes sense with the 

message to be sent. It is also clear their increasing rates, mainly after 2025, regardless 

geopolitical boundary conditions, which can vary in a different manner as considered 

when collecting and analyzing the data. The option biomass appears as a natural candidate 

with smaller challenges to be overcome. On the other hand, the option ‘wind-offshore’ 

can increase but the technical burdens will demand more resources than foreseen today, 

which may be checked later [14]. 
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Figure 4: Sustainable energy trends 

 

2.3 The Data Science cycle 

In a DS project or experiment, there are steps that can be seen in Figure 5, in a loop cycle, 

with some internal feedback as well. 

 

Figure 5: The general Data Science cycle [15] 

As seen in other knowledge fields, the definition of the problem is the beginning of the 

cycle, after all it defines the needs to be fulfilled and the results to be reached. Make note 

the problem definition represents the hardest part of the cycle, in most of the cases, due 

to the unknow variables and details not considered initially. This first step has a strong 
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link with the business understanding because the effort will be done to enlarge or sustain 

business boundaries, orbiting the need to improve profit or deal conditions in long terms.  

The second step into the data field is the data acquisition, with ‘ETL’ operations: 

extraction, treatment and launching, which will be explained as follows. Extractions deals 

with to identify the data sources: sensors, collectors, documents, transactions logs and 

others. Each source may have a proper standard to handle the data: word length, number 

format, sampling frequency, time scale and so on. Inside the jungle of details and fashion, 

the data treatment will take care of the standard needed for the data project, cleaning and 

even reshaping the data set: math transformations, null or incoherent data drop, and data 

scale adjustment, to mention some of them. In the end, the data treated will represent the 

useful available set to be worked, and once so, the data can be transmitted or launched to 

the processing area. The documentation of this treated data receives a key attention 

because it has details and definitions, which will be key along the data project. The 

documentation receives the title of ‘Metadata’, combining explanations such as: data 

origins; how they were gathered; references; time span; accuracy; analytical methods used 

to validate them; name of persons involved and how to contact them; among others.  

Figure 6 shows a short view of the ETL process, and almost not further word is needed 

to understand its message. 

 

Figure 6: the ETL process in pictures [16] 

The next step of the DS cycle is the exploratory data analysis, where the overall 

boundaries will be assessed, or in other words: how the data is spread, according to the 

main parameters or variables; which are the maximum and minimum values found; what 

kind of correlation can be detect at a first glance, although there is no guarantee the 

correlation makes physical or practical sense; what kind of initial clusters can be spotted; 

what area the statistics found: mean, standard deviation, mode, median, etc. This 

exploratory data analysis helps to evaluate whether the data gotten will make part of the 

solution of the problem to be solved, or whether the data can provide some initial insights. 

Several tools contribute for this exploratory analysis, and most of them deal with graphics 

and tables, touching what is also called ‘Data Analytics” nowadays. 

Following, the feature engineering will provide an overview of what parameters matter 

most, which saves times and resources in the next steps. Feature engineering also employs 

a set of math tools to understand how significant a certain parameter can be to explain the 
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data related. Equally important, the feature engineering presents the order of priority of 

the parameters in that explanation, which indicates a scaling of value linked to each 

parameter. Sometimes, to save computing resources, taking the feature engineering order 

of priority will ease any further work. For instance, in a certain job, the feature 

engineering check every one of the twenty parameters involved, and issued that only four 

can explain the data with more than 70% of importance. Therefore, the project may 

consider just these four parameters and drop the rest, saving time and money in the end. 

Figure 7 shows some the overall wrap up of the feature engineering, when dealing with a 

set of variables or parameters of a job analysis problem, where the data about the 

candidate matters. 

 

Figure 7: feature engineering relative numbers [17] 

The model creation can be seen at the core of the DS cycle because it is the step where 

most of the math models are choose and set to aid the solution of the initial problem. 

Using the prior steps, the first idea of which methods may apply normally appears easily, 

or the ones not to be considered either. If the available data shows a linear correlation, 

this might be an indication that the Linear Regression approach can make some sense. On 

the other hand, if the exploratory data analysis does not show this kind of alignment, other 

models fit better, such as the Logistic Regression or the methods based on Decision Trees, 

or even a combination of other methos, normally called Ensemble.  

Figure 4 shows the suggestion of nine important models for this step, where SVM stands 

for supported vector machines, KNN for k-nearest neighbors. 
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Figure 8: nine first models to be considered in DS [18] 

These models are the simplest and the first choice in terms of cost and computing time, 

although the accuracy and performance may vary. Surprisingly, in some problems, they 

have a better performance when compared to more complex options as the ensemble ones. 

Here, the text indicates to get into them for those not so familiar with the DS subjects. 

Equally important, data verification and validation can be carried out during this phase, 

and they have methods and strategies that can be seen in Reference [19].  

The term ‘model deployment’ in DS means the use of the developed model (classification, 

prediction etc.) with a new set of data to produce the insights, conclusions and decisions 

foreseen. In synthesis, it is the reason DS is for. A model can be defined as an equation 

and its coefficients, or a set of rules that produce the result with the input data. The 

deployment may consider an interactive process, handling the data pipeline in a 

continuous way, which demands to reshape the model based on the data time variations. 

In a first interaction, the best model could be the Random Forest, but as data is input 

sequentially, in a second round the best model could be then the Adaptative Boos 

(AdaBoost). Thus, the deploy will require a dynamic tunning, which quite frequent in the 

credit card and bank operations. Reference [20] has details of the use of the Predict Model 

Markup Language (PMML), which allows to build up the predict model to be deployed 

to compliant applications, considering ‘cloud’ options as well. 

 

Monitoring makes part of all quality or action control step and deserves a special attention 

to achieve what is planned. After all, the use of real data into the models will pay back 

the investment, if the goals fulfill or overfill the expectancies. The only way to reach this 

conclusion comes from the model monitoring. The classical way of model monitoring is 

the performance metrics surveillance, during the software production phase. In some 

cases, it will be necessary to re-run the model, tunning it again, due to the new input data 

profile. If the performance decays more than a certain tolerance, then a whole process of 

re-training, re-defining and re-tunning will be carried out, and will be sent back to the DS 

cycle.  
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Reference [21] makes a clear resume of the model monitoring, which is near to the end 

of the DS cycle, but it can also be set anywhere in the middle, because it deals with the 

data presentation in two or more dimensions, easing to foresee any relation between data. 

It has a close relation with the prior step, model monitoring, also sharing some of the 

technical features: graph or trend line tools, classification plots etc. It may be part of the 

output package of application with DS.  

The data collection starts the whole work and followed by the data treatment, when most 

of the mishaps and errors present in the dataset can be identified and corrected. 

2.3.1 Uncertainty modeling in DS 

In logistic chains, with several connections, it seems quite hard to predict all the 

parameters with a stunning precision and with no errors along the time. For instance, 

production plans considering a market expansion forecast demand to know or to grab data 

from different stages. This action will provide data to check each logistic step seems 

coherent. For instance, linear production rates do not stay for a long period, because 

outside factors change the logistic parameters in different frequencies and intensities. 

Therefore, the production rate needs to vary in time to avoid material shortage or 

overproduction, affecting the business plan.  

Many sources indicate two benefits while attacking the data uncertainty: room for 

improvement and transparency. The more knowledge about the input data, the better can 

be the entire DS cycle, leaving space to drop data wisely, saving computing resources. 

Thus, treating the uncertainty remains in the field of ‘additional improvement’ way. More 

related to the current corporate practices, transparency is an advantage to the client, who 

will have a clear idea of the boundaries of his data and what may come about from the 

DS cycle and models. The use of DS models in the Health and Medicine applications 

demands transparency to aid doctors and researchers to run into acceptable conclusions. 

Some authors define the uncertainty as the work with incomplete or incorrect data or even 

information. The uncertainty management can be done with math tools, such as 

probability and the Fourier Transforms, catching the time variance more accurately than 

visual observation or linear techniques. The three main sources of uncertainties can be 

nominated as:  

 Imperfect or incomplete models, due to lack of experience or business knowledge. 

 Noise, because the associated data without a reasonable explanation. 

 incomplete data coverage, restricting the work field and bounding it wrongly. 

There are two classical ways to cluster the uncertainty: aleatory or epistemic. The first 

one deals with the inherent noise associated with the data or environment where the data 

is captured. The second one aims the uncertainty of the model parameters, or how unable 

a model can the data relations. As seen in human activities, further training tasks can dim 

this uncertainty, according to the move towards the test phase. In the opposite, no 

additional training will help to reduce the aleatory uncertainty, only better measuring 

clearance will have a chance to reduce it. Suppose a system has cranky sensors but the 

model can explain more than 60% of the data. This situation will have more aleatory 

uncertainty than epistemic, and, by chance, has allowed this 60% score. While changing 

with better sensors, the aleatory branch can be reduced and now, the epistemic will be 

suitable to try the more training tasks, for instance, to reach a fairer result. 
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In a broad view, the application of probability and statistics aid to quantify the expected 

value and its variability, based on the data domain. Although both math fields were not 

devised for data variation strictly, they can be adjusted to detect data variance and its 

implications. Naïve-Bayes models consider the use of probability and account for the 

possible variations in a set of data, learnt from a train-test split. Reference [22] shows 

some of the math techniques bound for this issue, within the scope of Big Data. 

Probability theories take the randomness and generally handle the statistical 

characteristics of the input data. Within this field, the Bayesian theory considers the 

interpretation of the probability, based on prior knowledge, which depends on the user 

background, and taken as an expression of a rational degrees of belief about uncertain 

values. Other tool is the “Belief function theory”, which aggregates imperfect data 

through an information fusion process. In addition, when dealing with classification tasks, 

the Classification entropy measures ambiguity among classes throughout the index of 

confidence, which varies between 0 and 1, and its values closer to 0 point out complete 

classification in only a single class. In the opposite, values closer to one indicate links 

among several classes.  

The concepts related to the Fuzzy theory are also used, to measure uncertainty in classes, 

notably in natural language examples. Fuzzy logic then handles the uncertainty associated 

with human perception by creating a reasoning mechanism, taking a more human or 

subjective approach. Other tool focuses the Shannon’s entropy, which quantifies the 

amount of information in a variable, coming from the application of theory of 

communication and transmission of information. It provides a method of information 

quantification when it is not feasible to quantify weights. To model inaccurate or 

incomplete data, the Probabilistic theory and Shannon’s entropy are often employed. For 

ambiguous data, due its nature, the Fuzzy theory is more recommended.  

Another example is the Monte Carlo dropout technique, which is linked to Artificial 

Intelligence networks. In short words, this method drops some intermediate 

layers/neurons to produce a model away from overfitting, in a model regularization 

fashion. The dropout layers are taken away randomly after the training phase. For the test 

phase, the dropout layers will be available and, to reduce the uncertainty, this procedure 

shall be used more than three times, dropping out the layers randomly at each time, while 

predicting the results. Thus, the prediction will be tunned with less uncertainty as much 

as the process is repeated. 

Now, think other way around, instead repeating the same procedure, even with a 

randomly process in the middle, or aleatory steps, take multiple process in parallel, doing 

the quite same tasks, at the same time. When taking multiple choices, the process has a 

label of ‘ensemble’, but each choice taking some layers randomly. This feature also 

produces different model parameters trying to reduce the uncertainty. As a general 

recommendation, take more than 3 different choices to work in parallel, which is 

equivalent of the dropout of at least 3 different intermediate layers of the Monte Carlo 

method above. 

2.3.2 Regularization techniques 

In many applications of DS, a common trouble has the designation of ‘overfitting’, which 

means the classification or prediction model tries to fit all the data, no matter it is an 

outlier, or a mistake not dropped out after the exploratory data analysis (EDA). The 
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aftermath of the overfitting is a model unable to predict or classify extra intake data, 

showing poor efficiency. This situation happens with a mathematical model that cannot 

capture the underlying data structure, taken more parameters that can be explained by the 

data itself. On the other hand, underfitting means a math model lacking parameters to 

explain all the data. It is quite easy to be detected when using a lower order model trying 

to fit a data distribution with a higher order of complexity, such as a second order model 

(i.e., parabolic) trying to shape a third or higher order data profile (i.e. hyperbolic).  The 

prediction performance with both overfitting or underfitting is poor in the end, and these 

situations need to be skipped. 

It is not advisable to operate with an overfitted model. The Figure 9 presents the 

comparison of the training and validation phases of a prediction model. It comes from the 

development of a neural network where the number of epochs is represented in the 

horizontal axis. The math accuracy is shown in the vertical axel. 

 

Figure 9: Comparison of model accuracy for the training and validation phases - I 

When the accuracy of the training phase is higher than in the validation stage, it indicates 

the overfitting occurrence. The more trained is the model, the higher its accuracy. 

Nonetheless, the validation accuracy does not increase as the number of epochs increase, 

allowing the conclusion the model is not recommended. Depending on the input data and 

the split of training and validation, the suitable prediction model will show a different 

pattern. The best predict model shall have a better validation accuracy than in the training 

phase, because working like that shows to be prepared to produce fair prediction with 

data not known yet or fresh data. The expected shape said above is presented by figure 

10, and regard the upward rate of the validation phase, as the accuracy increases. 

 

Figure 10: comparison of model accuracy for the training and validation phases -- II 
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Regularization is a set of techniques to avoid the overfitting, using a compensation 

function that penalizes the parameters responsible for the fluctuations to fit all the data, 

without any key explanation. Among these techniques, the ‘least absolute shrinkage and 

selection operator’, or Lasso – L1, the Ridge – L2 and a combination of both or Elastic 

net are the most famous used, three options in the end. The Lasso model operates into the 

sum of the module of the parameters and a penalty coefficient to take the sum towards 0. 

The parameters without significance, or which are redundant with others, will receive 

weights equal to 0. In the Ridge approach, it works with the sum of each square of the 

parameters and a penalty coefficient that reduces the sum, but without assigning it to 0. 

The L1 tends to provide a sparse solution mostly, being indicated to select prediction 

models or to carry out the feature importance determination, but it is biased towards the 

non-null parameters. The L1 works well when there many parameters, in comparison to 

the number of data or observations. The L2 approach leads to a quite complete result 

model, although it is not recommended to select models, because some least germane 

parameter will stay in the model. 

2.3.3 Missing data fill in with Bootstrap 

Incomplete data reveals to be more common than expected, in the normal DS life, 

requiring an evaluation and decision on how to handle them. The first shoot could be to 

drop out these data or positions, but it brings burdens not easy to cope with sometimes. 

Thus, a classical way to treat the missing data is to fill in them with reasonable guessing 

or estimation. One at hand is to use the nearest data, or its mean, trying to maintain such 

a coherence, although some anomaly may be present at that point, and it will be missed 

unfortunately. Another quick act is to fill in with the mode, solving some statistics issue 

in advance, but again introducing some external bias by choice. In all of them, it normal 

to consider filling in with a single value, no matter its origin. 

Filling the missing data may consider the following: 

a) Deleting the rows or columns where the missing data is detected, in a tradeoff between 

to have a better algorithm accuracy or performance against to drop other key data; 

b) Imputing values, which may be continuous or categorical, in a tradeoff between to 

make something to work or to input some bias; 

In the first option, which may be seen as the easiest, the burdens remain with the Data 

Scientist, which shall take the overall boundary and initial conditions to solve the stated 

problem. The Exploratory Data Analysis can provide a first assessment about the data 

quality and whether to drop the missing or weird values will represent an odd procedure.  

The second choice to fill in the missing data can choose from some options as below: 

a) the median or mean of the data of the same parameter, which harms the covariance of 

the data. 

b) the last or closest observation, which can also be used the very right next one. Either 

way, some bias will be shown, small though. 

c) the use of other algorithms, as a predictor tool, from Machine Learning or even Deep 

Learning. In a first glance, linear interpolation appears a reasonable candidate method, 

but this decision requires a better assessment. 
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Reference [23] presents another way to consider this data placement, with a combination 

of prediction methods and, in the end, many values will be available to fill in, depending 

on fair judgments, because the missing value may be at random, partially, or even not at 

all.  

For this text, the meaning of bootstrap refers to a method of inferring results, for a 

population, from outcomes taken from a set of smaller random samples of that population, 

with the replacement during the sampling process, to get advantage of the aleatory process 

to enhance the quality of the result, demanding some computer power to carry on. 

Bootstrap is advised for problems with a large data population and tight schedules to reach 

a solution. The overall scheme is presented in Figure 11. Make note the way the sampling 

is carried out in many different combinations, but with the same pattern, say the number 

of original data at each sampling. The order does not matter at all. 

 

Figure 11: an overview of the bootstrap approach [23] 

As a clear picture of the combined technique to fill in the missing value, using more than 

one single attempt, Figure 12 shows how the bootstrap can propose an answer for this 

problem. The simplest and common procedure would be to take out the bootstrap phase 

and proceed in a single line. Nonetheless, the combined sampling technique reveals a 

more complex process, thus demanding more computer resources and the use of a mean 

guessed value in the end. The term ‘multiple imputation’ can be the use of different 

models to predict the value, such as linear regression, decision trees and others. In the 

end, each option will pose a value, and the one to be chosen can come from the mean 

between all multiple imputation trials. The common start is the incomplete raw dataset. 

The ‘decision tree’ following could be any other math model to handle the problem 

definition and son. 
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Figure 12: Bootstrap operations to full in a missing value [23] 

It is recommended to note the ‘average imputation’ phases help to work on the 

uncertainties of the raw data, because it manages the variations randomly, preventing any 

strong bias to prevail. The use of decision trees also represents a pro factor because it can 

explain the reasons for a certain indication, even taking scarce or too diverse fields of data 

distribution. The majority voting stage may introduce some decision criteria based on the 

experience of the researchers or any specialist team. For instance, in the nuclear industry, 

normally the choice of a value will require a voting process 4 to 1, or take 4 options to 

select 1, based on how dissimilar, or not, the choice is shown against the other 3. 

2.3.4 Surrogate models 

The meaning of the word ‘surrogate’ is representative, substitute or equivalent for the 

scope of this text. Taking the physics of fluid aerodynamics, the concept of drag or 

pressure drop is expressed in terms of the quotient between force and area, derived from 

phenomena observation, modelling and the natural simplification, coming from 

dimension analysis, because it is simple and straight. Nonetheless, there is another way 

to comprehend the same fluid dynamics, now accepting a ‘surrogate model’, simpler and 

less accurate either, in other words is an approximation model.  

In DS, for instance, the Machine Learning tools are a kind of surrogate models, because 

they are based on observations & measurements with plentiful of data, normally, 

belonging to complex phenomena, hard to see any correlation or direct explanation of the 

output at the beginning. While using surrogate models, the computing costs can be 

managed more suitably and the whole work can operate with more protective means to 

avoid leakage of germane data or information.  
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The spline of the surrogate models lays on the data input, which can come from natural 

observations or aleatory simulation. The more diverse and numerous the data, the better 

the surrogate model can provide the output needed. The initial Data Exploratory Analysis 

has a key value to decipher any quick correlation inside the input data, allowing a better 

tunning of the surrogate model as expected. After that, the next step is to construct the 

parameter features that will make part of the model, also known as feature engineering. 

Some parameters come with the input data, but other may be lined up to increase the 

chance of a fair result. These featured engineering parameters may be a combination of 

the natural parameters, or an implementation of other parameters based on the study and 

knowledge related to the data, requiring previous skills to carry on wisely. For instance, 

one input data transformation needed sometime is the “log transformation”, to reshape 

the input numbers in a better way to understand the phenomena or natural correlation, 

caring to make the inverse transform when checking the output for the answer of the 

problem. 

The surrogate will be a set of equations or business rules that take the input data and can 

provide an answer, based on the method reasoning to do so. The equations have 

coefficients which after combination with the input features provide the suggested answer 

(prediction or classification). 

As a practical example of surrogate models, reference [24] works with surrogate models 

to predict the net present value from different oil extraction options, using data from oil 

wells already in use. They try to maximize the NPV by choosing the number of oil wells 

and their spatial coordinates according to the maximum oil production. The input data is 

complex because it takes manifold parameters from Geology, Chemistry, Logistics, 

Environmental rules and so on, a situation well suited to apply the Machine Learning 

algorithms. The reference considered the following regression (prediction) methods: 

support vector machine (SVM), gradient tree boosting (GTB), genetic algorithm (GA), 

multi-layer perceptron (MLP), elastic net (EN) which takes care of the order 

regularizations L1 and L2 altogether, and the K nearest neighbor (KNN), which was 

recommend in the end to predict the NPV. 

2.3.5 Lower order models 

As a general approach in any scientific field, it is better to work with models or problems 

with the lowest orders of complexity or magnitude. One benefit is the lower processing 

or computing costs, besides a faster answer and agility in the decision phase. In DS, the 

complexity of a math model deals with the number of parameters, for instance, to be 

handled. Nevertheless, the order reduction shall provide the quite same result as the high 

order models.  

The common procedure is to take the measurements or data and derive the prediction 

models, which will have a high order for instance. Secondly, these models will be 

transformed into the low order models, by math transforms, such as projection, optimal 

Hankel norm approximation, or Krylov methods. More recently, a new suggestion has 

emerged as ‘data driven order reduction’, which does not need to go over a high 

dimension model firstly, as it can be seen with more details in reference [25]. 

Specifically in the DS field, the Principal Component Analysis (PCA) is a key technique 

to evaluate the dimensions that can be scrapped to reduce the order of the problem and 

related math model. The concept is to produce components by a combination of the 
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original parameters, in a manner that the components made will not covary among 

themselves, as they were orthogonal as possible or kind of. In terms of analytical 

geometry, the principal component will be a direction that explains the maximum amount 

of variance of the parameters. Therefore, the new direction or axis takes most of the 

information from the parameters and will be like axels where the difference between 

parameters will be detected easily. After the PCA, the variables or parameters will not 

have the original one, but a wise combination of them. The key trade-off to manage is 

some decrease of accuracy when reducing the problem order.  

PCA requires a set of operations, normally: 

a) Standardization – the initial variables will have their values into a standard range, 

normally between 0 and 1, or -1 and 1, taking care with the diversity of range sets, 

using the standard deviation and the mean value of the variables or parameters.  

b) Matrix of covariance – this step is needed because variables may a high covariance 

and have redundant information as well. The covariance matrix is a numerical 

indication to check this dual condition. 

c) Eigenvectors and eigenvalues of the covariance matrix – these concepts are useful to 

determine the principal components, which will be not correlated among themselves, 

based on the eigenvectors and eigenvalues. The first principal component will retain 

most of the information from the data, and the second the most important information 

also remaining and so on. The principal components shall behave like orthogonal 

ones. The higher the eigenvalue, the more principal the component is. 

d) Determination of the features of the vectors – the dimensions of a matrix made of the 

vectors will be the principal components to be chosen, a decision that depends on the 

order of magnitude to accept. The columns of the matrix will be the vectors. 

e) Redistribution of the original data into the new axis or components – this step is 

needed to shape the data into the new dimension axis or references, with a smaller 

order of magnitude and most of the original information retained. 

In a simple graph explanation, Figure 13 shows the concepts above in a 2D approach. The 

initial variables were draw in black, referring to the original parameters. Searching for 

new orientations axis, following the steps right above, the new dimensions will be the red 

and blue options, where the red has retained more information than the blue, in a way to 

reduce the order of the model. In this example, the order remains the same, but it is easier 

to follow the math steps. 
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Figure 13: 2D example of Principal Component Analysis [26] 

Note that the new variables orientation (red and blue) will be a combination of the black 

ones (x and y), requiring attention when analyzing the final prediction results, for 

instance. It may be needed a recovery transformation to stick to the original problem 

definition. 

2.3.6 Kringing techniques for interpolation 

As an example of a practical use of DS interpolation or data fitting, the term ‘Kriging’ 

refers to a specific math tool related to geostatistical procedure to adjust a surface to a 3D 

pattern: two localization variables (x, y, latitude, longitude etc.) and a third variable 

related to an interest value (z, outcome of function etc.). The technique is also known as 

Wiener-Kolgomorov prediction. It takes a limited set of observed data to make inference 

of a large data space. It condenses complex math operations to fit data into a functional 

pattern, with direct applications in Environmental and Health Sciences, Chemical 

Engineering and others, which deals with spatial distributions, particle dispersion inside 

variant media, among others, demanding a high computer capacity to work with data 

varying in time and space. The original motivation for the development of this technique 

was the gold dispersion prediction in South Africa as an oddity. 

The main concept remains to predict a value based on average-data in the surroundings 

of the region of interest. An interesting way to see this technique is like a subset of the 

Bayesian inference. It commences with a distribution over functions. In geostatistical 

models, data comes from random events, although it may not be in this way really. This 

basic assumption refers to a spatial inference for locations without measured data, 

computing also the uncertainty associated to the prediction. The first task comprises to 

build up a random process capable to describe the measured data.  The solution in the 

geostatistical framework focuses the assumption of diverse degrees of stationarity related 

to the random function, to infer a set of statistic values. 

While comparing to Linear Regression or Gaussian decays, the Kringing technique uses 

spatial correlation between sampled data to predict the values in the completely spatial 

field, considering now the empirical measurements, rather than on a preconceived spatial 

Marques, André L. F. (2022) Application of Data Science in the Sustainable Energy Industry pp. 19-53

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 39



distribution. As a bonus, the Kriging technique produces uncertainty estimates of the 

neighborhoods of each predicted value. The closer the position to the interpolation point, 

the greater the weight for the spatial distribution. The farther positions receive smaller 

weights consequently. To prevent bias in the prediction phase, cluster points also receive 

smaller weights, because they do not add much information as single points. The Kringing 

technique tries to minimize the prediction error for a specific point, making its prediction 

at the measured points equals to the measured values. 

The Kringing technique uses variograms extensively, which are a visual taking of the 

covariance between sample points. For each pair of sample points, the semi-variance, or 

the half mean-squared difference of their values, is associated to the distance between 

them. The actual measured points make part of a variogram labeled as ‘experimental’, or 

the ‘reality’. The ‘model variogram’ is the distributional model that best adjust to the data, 

considering a set of math functions allowed previously, such as linear, spherical or power 

models, which includes the exponential too. Figures 14 and 15 show variograms and the 

concepts above. Note the vertical axel represents the statistical parameter (variance, semi-

variance), as the horizontal axis is the distance between the points. 

 

Figure 14: 2D variogram linked to the Kringing technique [27] 

As shown right above, the experimental variogram deals with the measured points and 

are linked by a straight line, showing a discrete profile, and the theoretical variogram is a 

continuous line, generated by math functions prior selected. The term ‘Nugget’ means the 

initial predicted value for the distance equals to 0 or the ‘small-scale’ variability of the 

data. If the variance is low, the correlation between the points is high, and the opposite is 

true, checked at the upper part of the variogram, where the continuous line becomes 

almost horizontal. The Sill means the maximum variability between pairs of points. 

Conceptually, the Kringing model has the values of the measured points, although it has 

worked with a sample set of these points. 
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As seen below, different math models produce different theoretical models, which tries 

to reproduce the experimental model in the best way. The spherical and circular equations 

tend to occupy the upper left part of the graph, while the linear and exponential stay closer 

to the natural diagonal, or inclination of 45o. The Gaussian model has an odd shape, with 

an inflection point somewhere the middle of the Distance range, depending on the 

problem and data available. 

 

Figure 15: Different math models allowed in the Kriging model [27] 

 

2.3.7 Bayesian techniques for data pipelines 

As already mentioned in along this text, a prediction or classification model may require 

a constant update when dealing with a data pipeline, which is quite common with logistic 

and energy efficiency applications. Data comes from several sources or measuring 

instruments, following the sample strategies, and stored into databanks or data lakes to 

fill in DS tools. This update can be done by several techniques and schemes, depending 

on the experience of the DS team and their prior experiences, recent data recorded, and 

the information derived from them. Thus, the data background has a strong influence on 

the work to carry out, throughout the learning involved from different directions. 

The first natural choice to a data update focuses the frequentist approach, which in a short 

essence deals with the question: Which model, or set of parameter values, are we most 

certain is the true model? Frequentist statistics is based on hypothetically resampling the 

data from an underlying true model, using the concept of likelihood, straightforward [28]. 

Nonetheless, this approach does not consider any previous experience or wise observation 

of hidden details eventually. Thus, another way to update the DS model may take 

concepts from the Bayes Theorem and its aftermaths. In this sense, our belief is taken into 

consideration, which sticks to the most common behavior, although it represents a hard 

technical step, due to the variability involved. For instance, referring to past data, the rate 

of sick people in a town may vary with the local temperature and season, with figures of 

100 sick people for every 5oC decrease in the winter. These numbers may not be so precise 

as stated, requiring a distribution approach to be more consistent. Let take a Gaussian 
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distribution (bell shape) to set the prior knowledge, setting an average and standard 

deviation. It is a straight application of the probability distribution functions or ‘pdf’. 

Using a high mean and small standard deviation means the prior knowledge reflects a 

strong certainty about the data or situation in case. Being humbler, however, knowing that 

recent quick changes in the application of vaccines, let take a smaller average and larger 

standard deviation, reshaping the bell outline of the Gaussian distribution assigned to this 

case or problem. After all, the parameters can be seen as random variables and the pdf 

concept applies. The propose above to use Gaussian distribution on the parameter’s 

estimation represents a way to regularize the input data, taking care of outliers as an 

example. Thus, it is the application of the Bayes technique, setting something based on 

the previous knowledge or evidence of an occurrence related to problem. Equally 

important, it is a iterative process, allowing permanent reviews of guessing and 

conclusions, based on the outcomes, in a closed or feedback loop. 

Hierarchical models are a standard Bayes approach for data updating, using a scheme of 

data clustering following a knowledge path. The advantage of this way is to consider 

different data sources, with high or low data quantities, and dealing wisely with the 

outliers, because the Gaussian distributions shapes will take that math. 

Another type of subject inside the data update is the measurement of the accuracy. 

Sometimes a set of conditions arise [28]: 

a) There is no data enough to carry on the training phase, typical in problems of shortage 

of data. This scenario gets worse with the need to use cross validation. 

b) The time involved in the training phase may be too long. 

c) When using an unsupervised technique, like k-means, in classification for instance, 

the accuracy may not be easy to compute, because there is no labeled data to detect 

the learning improvement. 

As a result, the application of the Bayesian method in the data update will be made to the 

point where the model accuracy does not change significantly. Also, the Bayesian method 

handles the errors linked to the measurement of the data with a probabilistic way, more 

suitable to be treated mathematically.  

The Bayesian parameters are reviewed based on the new data input, changing the model 

set previously, in a continuous way. The update of the model aims to reduce the distance 

between the forecast results and the new measured data, and it is worth noting the model 

update time interval must be shorter than the data input process, otherwise the model will 

be always not fitted to handle the problem. This gap time will require a piece of money 

in the whole DS cycle. 

 

2.4 The application of Data Science in engineering 

Many DS applications have been closer to the common understanding recently, with the 

diffusion of algorithms linked to the prediction of human behavior, sales campaigns, and 

logistic planning. In this chapter, the use of DS will focus the renewable energy field. For 

instance, the application of the math algorithms and digital computing into the analysis 

of materials behavior provide more insights about the interactions between particles, in 

different size scales, which affects the capacity of the material to transfer heat, to conduct 

electricity or to recover from strain loads. 
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The two large application areas of DS in engineering are classification and prediction. 

The first area deals with to recognize in what kind of groups, patterns, or clusters a set of 

data can be assigned. In this task, the group identification comes from the alignment of 

several parameters, as close as possible, of common characteristics among the data 

sampled. 

2.4.1 DS and solar and wind power sources 

In this section, some practical applications of DS covering types of sustainable energy 

will be addressed. With a top-down approach, Reference [29] presents a scheme on how 

DS can be applied to propose or indicate a set of sustainable energy sources can be on the 

radar of energy planners or policy makers. It starts with data from the sources, towards a 

set of parameters, engineered or not, in a big data scale. Then, depending to the class of 

the problem, clustering, classification, or regression, or both at the same time, can be done 

using the vast DS toolbox, providing more than straight presentation from Data Analytics. 

 

 

Figure 16: General scheme for DS application into renewable/sustainable energy field. 

[29] 

As the sustainable energies make more common to our routines nowadays, the combined 

use of different sources makes all the sense to optimize the investment. This is not new 

in the energy market, but the difference calls because the decision process comes closer 

to the users than it used to be, with large generator and distributor groups taking the wheel 

for most of the time. 

Reference [30] worked on a combined model with solar and wind energy generators, quite 

easy to have in most of the houses and buildings near the shorelines. Both exhibits energy 

production transients based on the local and climate boundary conditions, such as 

landscape details, latitude, and others. For instance, solar radiance varies along time and 

latitude, due to astronomical known reasons, but the efficiency of the solar panels depends 

also on the local temperature. Above 40 oC, the photovoltaic efficiency of the current 

solar panels drops drastically, in factors 5:1 or worse than that, depending on installation 
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and maintenance practices. Figure 17 shows the technical hardware involved, where the 

solar option is labeled by salmon color and the wind option by green tone. 

 

Figure 17: Wind and solar power sources and DS [30] 

Both energy inputs are variable, signed by the wave form on the left bottom. The thinking 

core of the proposed system is the Energy Distribution Algorithm (purple box), which 

will compute a set of data to decide how to do with the energy stored, taking at least two 

possible decisions: supply or not the local network, with has equivalent sustainable energy 

sources, or supply or not the city, which is a bigger energy sink than the first one. Data 

comes along the energy to be managed, and that is the key difference from the 

conventional energy grid available in most cities. With DS, it is possible to use its tools 

to bound the decision along different time intervals, to maximize profits or cut 

unreasonable costs, based on the electric efficiency of each option or the combination of 

both [31]. 

2.4.2 DS and geothermal energy 

Geothermal energy has gained the screens more recently, although it is well known for 

centuries, because it uses the natural hear source from the Earth´s core and can be linked 

to the factors bound with the occurrence of earthquakes. This energy source does not 

require sophisticated technology to be used, long pipelines, heat exchangers and industrial 

instrumentation, available from the oil industry mostly. Depending on the use, it can be 

set anywhere, but the economics play a key decision factor as usual. That is the point 

where DS comes in. 

Reference [32] refers to a practical case to identify the best locations to build up 

geothermal stations, based on earth big data, from different sources in time and location. 

The general result of the research is presented in Figure 18. 
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Figure 18: Optimal geothermal distribution for energy management [32] 

The higher the number or reddish, the better potential to establish a geothermal energy 

station. This survey came from the application of DS, taking data from geological sources, 

time and geographic coordinates, as well as data from satellites of CO2 distribution, 

earthquakes density, depth, magnitudes, global heat flow, groundwater sources, surfaced 

air temperatures, distance from land lines, among others. The model used to process the 

data sources, after engineered features, was the Maximum Entropy, which states the best 

way to explain a dataset will be the one with the highest entropy according to constraints 

with a prior knowledge. For instance, the current geothermal plants are a well-known 

constraint, also the new geological anomalies produced by recent volcano eruptions etc.  

Taking the data pipelines from survey installations or instrumented field systems, or even 

mobile, the evaluation models can be updated constantly, refreshing the model parameters 

as discussed in the items above. 

2.4.3 DS and nuclear energy 

In the nuclear industry, the application of safeguards has taken more importance to 

prevent proliferation of nuclear materials and technology. It is necessary to avoid the use 

of weapons of mass destruction, such as thermonuclear or even dirty bombs, which can 

leave long time consequences for people and their generations.  

One of the safeguards instruments is the frontier inspection of goods being transported. 

Some industrial nuclear hardware has its profile very close to ordinary ones, such as 

pumps, valves, or heat exchangers, although constructed under restricted materials and 

refined techniques. Thus, the customs agents must have a special training to be able to 

recognize whether an industrial good may be controlled by the safeguard regimes 

adopted. One way to help those agents considers the developing of an intelligent system, 

trained with certified data, and based on AI, to provide a first guidance whether the good 

should be controlled or not. In brief words, it is the application of NPL, in this case digital 

images. 
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Reference [33] presents a simple option focusing the most important nuclear hardware 

associated both to the fuel cycle and for nuclear power reactors. The more the AI systems 

is trained, the better will be the chances for a fair alarm to the customs agents, paying 

attention for the overfitting indicated the items above. 

Another application of DS in the nuclear field deals with data filling regarding the 

operational performance, as pointed out by Reference [34], helping to detect problems in 

the operation of a nuclear system or plant. The target here are the operational parameters, 

which may have missing values in their records, due to a faulty instrumentation, lack of 

communications connections or even human errors, and all combined, as it was detected 

in the Chernobyl´s accident in 1986. Unfortunately, at that time, the DS was a kind of 

starting and would help to prevent the horrible outcomes. In their studies, the authors 

considered the options of the least squares support vector machines, the K-means 

clustering algorithm based on a noise algorithm. In the end, the reference uses wavelet 

analysis and the Mahalanobis distance, for data work, when dealing with analog sources 

for instance. The algorithm proposed by the authors works better than the mean procedure 

for instance, because it treats the oddities with more detailed scrutiny. 

2.4.4 DS and wind power: structural monitoring application 

The occurrence of winds on Earth comes from the heat transfer in the atmosphere, 

influenced by the incident heat flux from the Sun mostly. Thus, the prediction of wind 

can be based on physical models of heat transfer of large masses of gases, assuming the 

air as a classical gas in most of the situations.  

However, the number of variables and their crossing influences make this problem 

complex to be solved, even with numeric procedures and computers, although feasible 

with some accuracy and many hypotheses. The other way to predict the wind occurrence 

is data driven, based on large quantities of accumulated data from real observations and 

following the DS cycle presented at the beginning of this text.   

One of the applications of the data drive approach aims the structural reliability of wind 

towers used in the wind energy sector. In a few words, the structural tower is a vertical 

beam, with a concentrated load on the top and with a connection on the ground without 

any freedom degree. The dynamic load on the structure comes from the wind itself on the 

propeller blades, on the tower and from the ground to the tower, in a first definition, 

together with the static loads, such as weight and ground reactions. The loads will stress 

the structure material and strain will be detected, providing a data source on how the 

dislocations and other geometry changes occur in the material lattice.  

This strain field is the data input for DS applications. Figure 19 shows the material 

distortion or singularity will be digitally treated to be a set of numbers, as an example of 

NLP application. Particularly, the arrangement has a standard AI framework to produce 

the dataset [35]. 
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Figure 19: digital matrix data treatment for DS applications [35] 

With the structural sensors, checking the strain regime of the tower, mainly at positions 

with stress concentration (distortion or change of geometries etc.), another set of sensors 

work to measure the wind characteristics, such as speed, direction, and variation rates of 

them, among others associated with the electric power production and transmission. 

Combining the data, the tower has a dataset associated to structure behavior, which must 

be within a safety standard envelope, associated to the concept of structural reliability.  

Reference [36] presents an example of the use of AI to handle the situation when a blade 

of a wind turbine turns to be unbalanced, indicating the points with faults, suitable to be 

also useful in predictive maintenance programs. It is the same kind of application found 

in the aerospace industry more recently, improving the quality assurance in most cases. 

Before the WWII, the term ‘reliability’ was associated to any system that had produced 

the same output for a time interval, close to the concept ‘repeatability’. Nowadays, with 

the statistics advances, the concept of reliability has incorporated probability distribution 

functions (pdf) and can be framed as the probability of a system to perform its functions 

during a defined time interval. Connecting DS into this field, the prediction of structural 

status, according to dynamic loads, materials degradation, wind variations, can use 

manifold ML methods, starting with the clustering of the engineering factors and without 

using any specific instructions. ML looks like a surrogate model of the wind tower 

structural response, submitted to load conditions (stochastic or deterministic).  

Classification can be set to indicate whether a set of data will associate to a safe state. On 

the other hand, ML prediction can provide a parameter future value, or index, of a 

structural component under a certain function analysis. Both cases can manage the ML 

techniques to do so, using different definitions of “distance”, as the Manhattan distance 

for clustering. 

As outlined above, a data drive method using ML demands a dataset with input 

parameters and one output at least, and with this arrangement, algorithms can be set to 

make predictions, which can be supervised or non-supervised. Also relevant, DL can also 

be set to perform the same tasks, with perceptrons and learning layers for instance. 

Structurally speaking, the prediction aims to forecast a limit state or boundary, throughout 

the concept of Limit State Functions (LSF), which may consider physical models or not. 

As already known from other structure applications, the use of ML in the wind power 

structures can be challenging, due to the need to have data from reliable measuring 

systems and from lab tests. Summing up, the use of ML may face a rare event, with few 

available data, nearing the situation of high dimensionality, or more parameters than 

occurrences, requiring special math techniques. The selection of the parameters demands 

a closer analysis in the problem definition as well, which will deal with a time-series in 

most of the cases. 
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The ML models used for the application focused here are shown in Figure 20. Noteworthy 

that many can be used together, in different phases of the DS cycle, say in classification 

and prediction, in this order, to provide an insight about the need. References   and   

summarize them for the structural applications highlighted. 

 

Figure 20: ML models aimed for structural monitoring application [36] 

In terms of AI, the feedforward Multi-Layer Perceptron is commonly used in structural 

reliability studies, with four layers initially, which may vary based on the problem of 

interest, but as a matter of fact, the number of layers does not need to be large indeed. 

The Adaptative Sampling Methods can be used with MLP, tackling the data training 

phase, refining the AI model till a specific accuracy is achieved. The selection of the 

training points is based on the training selected previously and the associated performance 

index, leading to a lower computing cost. Reference [37] has a fair literature review of 

the application of AI in the structural reliability.  

Looking into the wind power practical applications, Figures 21 and 22 show the overall 

instrumentation used with DS to monitor the performance of a wind power electric 

generator in an offshore application, that is more complex than on land, and the parallel 

with a structural bridge. Those systems have similarities on providing field data to check 

the structural reliability of their own cases [38]. 
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Figure 21: wind power monitoring system linked to DS [38] 

 

 

Figure 22: Structural bridge monitoring system linked to DS [38] 

In both cases, data is gathered from a set of sensors, with a sampling frequency, into a 

data bus or pipeline, building up a timeline or time series, to be treated with DS 

algorithms. As seen in other engineering applications, this scheme will help other 

assessments and to feed up the industry with feedback from field applications, associated 

to the design, testing and improvement of new advanced materials and construction 

techniques, managing fuzzy phenomena as delamination of carbon fiber structures under 

dynamic loads and solar radiation together. The DS cycle will provide insights for a data 

driven decision on the choice of the resins, for instance, or the way the carbon fiber thread 

will be designed and carried out, nearer to the statistical control and structure health 

monitoring application, as shown in Figure 23. 
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Figure 23: Damage detection fields related to advanced structures [38] 

The DS application will require the data confirmation, data reliability and other data 

quality features, at a high level, because the data driven decision may have impact in the 

cost and performance evaluation of the wind power structure and, moreover, also have 

links with disputes among constructors and operators in case of incidents or even 

accidents and damages. 

 

3 Concluding Remarks 

In this chapter, a general view of the ship design was presented, covering its phases and 

relevant technical issues. The characterization of the ship dimensions and systems, along 

design drawings and materials application, was described in a progressive way. As the 

sections of the chapter were presented, the engineering materials field had been expanded 

in terms of technical figures and details. The focus was to provide a spark to the reader 

about the variety of topics around the ship materials selection and its evolution, without 

the pretense explore all the fields in deep. The data presented came from open sources, 

intending to provide an order of magnitude of the reasoning discussed along the text, and 

they may be seen as mean values. All topics here shown are under continuous 

development, mainly the nuclear examples, and more recently the application of Machine 

Learning and Artificial Intelligence. As a high potential subject for technical 

improvement, the environmental impact reduction with new fuels and propulsion systems 

has its place to catch the general attention. 

 

Acknowledgements 

The author thanks University of São Paulo (USP) and Paulista University (UNIP) for all 

their academic and technical support. 

 

References 

[1] https://www.analyticsinsight.net/top-10-big-data-disruption-coming-in-in-2022/, 

accessed on June, 30th 2022.  

Marques, André L. F. (2022) Application of Data Science in the Sustainable Energy Industry pp. 19-53

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 50

https://www.analyticsinsight.net/top-10-big-data-disruption-coming-in-in-2022/


[2] Desclaux, Gilles. (2018). Big Data & Artificial Intelligence for Military Decision 

Making. 

[3] https://www.iai.it/sites/default/files/978195445000.pdf , accessed on June, 30th 2022. 

[4] Ferster, Colin & Coops, Nicholas. (2015). Integrating volunteered smartphone data 

with multispectral remote sensing to estimate forest fuels. International Journal of 

Digital Earth. 9. 1-26. 10.1080/17538947.2014.100286. 

[5] https://people.smp.uq.edu.au/DirkKroese/DSML/DSML.pdf, accessed on June, 20th 

2022. 

[6] Chen, Jiangping & Ayala,, Brenda & Alsmadi, Duha. (2018). Fundamentals of Data 

Science for Future Data Scientists. 10.1201/9781315209555-6. 

[7] Mcdonald, Lynn. (2013). Florence Nightingale, statistics and the Crimean War. 

Journal of the Royal Statistical Society: Series A (Statistics in Society). 177. 

10.1111/rssa.12026. 

[8]https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachm

ent_data/file/1063041/ddat-playbook-march-2022.pdf, accessed on June 20th, 2022. 

[9] https://doi.org/10.1002/asi.4630270213, accessed on June, 20th 2022. 

[10] http://www2.math.uu.se/~thulin/mm/breiman.pdf, accessed on June, 17th 2022. 

[11] Dineva, Snejana & Nedeva, Veselina. (2018). Expanding Web and Innovation Skills 

for 21st Century. 

[12] Kosse, Pascal & Blomberg, Kati & Mikola, Anna & Heinonen, Mari & Kuokkanen, 

Anna & Lange, Ruben-Laurids & Lübken, Manfred & Wichern, Marc. (2016). Climate 

change and green- house gas emissions within the context of urban waste water 

management. WaterSolutions. 89-94. 

[13]https://www.ipcc.ch/site/assets/uploads/2018/05/ipcc_wg_I_1992_suppl_report_sec

tion_a1.pdf, accessed on June, 16th 2022. 

[14] https://www.eia.gov/todayinenergy/detail.php?id=41533, accessed on June, 17th 

2022. 

[15] https://morioh.com/p/9ba3ed05fad1, accessed on June, 15th 2022. 

[16] https://www.dreamstime.com/illustration/etl-process.html, accessed on June, 15th 

2022. 

[17] Zheng, Huan, and Yanghui Wu. 2019. "A XGBoost Model with Weather Similarity 

Analysis and Feature Engineering for Short-Term Wind Power Forecasting" Applied 

Sciences 9, no. 15: 3019. https://doi.org/10.3390/app9153019. 

[18] https://twitter.com/datasciencedojo/status/1404167692173692931, accessed on 

June, 30th 2022. 

[19] https://www.analyticsvidhya.com/blog/2021/03/data-validation-and-data-

verification-from-dictionary-to-machine-learning/, accessed on June, 15th 2022. 

[20] https://www.ibm.com/docs/en/db2/11.1?topic=analytics-pmml-markup-language-

data-mining, accessed on June, 20th 2022. 

Marques, André L. F. (2022) Application of Data Science in the Sustainable Energy Industry pp. 19-53

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 51

https://www.iai.it/sites/default/files/978195445000.pdf
https://people.smp.uq.edu.au/DirkKroese/DSML/DSML.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1063041/ddat-playbook-march-2022.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1063041/ddat-playbook-march-2022.pdf
https://doi.org/10.1002/asi.4630270213
http://www2.math.uu.se/~thulin/mm/breiman.pdf
https://www.ipcc.ch/site/assets/uploads/2018/05/ipcc_wg_I_1992_suppl_report_section_a1.pdf
https://www.ipcc.ch/site/assets/uploads/2018/05/ipcc_wg_I_1992_suppl_report_section_a1.pdf
https://www.eia.gov/todayinenergy/detail.php?id=41533
https://morioh.com/p/9ba3ed05fad1
https://www.dreamstime.com/illustration/etl-process.html
https://twitter.com/datasciencedojo/status/1404167692173692931
https://www.analyticsvidhya.com/blog/2021/03/data-validation-and-data-verification-from-dictionary-to-machine-learning/
https://www.analyticsvidhya.com/blog/2021/03/data-validation-and-data-verification-from-dictionary-to-machine-learning/
https://www.ibm.com/docs/en/db2/11.1?topic=analytics-pmml-markup-language-data-mining
https://www.ibm.com/docs/en/db2/11.1?topic=analytics-pmml-markup-language-data-mining


[21] https://www.oracle.com/a/ocom/docs/data-science-lifecycle-ebook.pdf, accessed on 

June, 15th 2022. 

[22]https://www.webpages.uidaho.edu/~stevel/517/The%20Data%20Science%20Desig

n%20Manual.pdf, accessed on June 30th 2022. 

[23] Aljuaid, Tahani & Sasi, Sreela. (2016). Proper imputation techniques for missing 

values in data sets. 1-5. 10.1109/ICDSE.2016.7823957. 

[24] Yetunde M. Aladeitan, Akeem O. Arinkoola, Okhiria D. Udebhulu & David O. Ogbe 

| Wenjun Xu (Reviewing editor) (2019) Surrogate modelling approach: A solution to 

oil rim production optimization, Cogent 

Engineering, 6:1, DOI: 10.1080/23311916.2019.1631009 

[25] Brunton, Steven & Kutz, J.. (2020). 7 Data-driven methods for reduced-order 

modeling. 10.1515/9783110671490-007. 

[26]https://www.simplilearn.com/tutorials/machine-learning-tutorial/principal-

component-analysis, accessed on June 30th 2022. 

[27] https://doi.org/10.1016/B978-0-12-410437-2.00008-4, accessed on June, 20th 2022. 

[28] Redman, Thomas. (2005). Measuring data accuracy: A framework and review. 

Information Quality. 21-36. 

[29] https://doi.org/10.1016/j.jclepro.2021.125834, accessed on June, 20th 2022. 

[30] C. F. Camilo, J. M. Rosário, M. M. Jefry and D. Dumur, "Data Science-based Sizing 

Approach for Renewable Energy Systems," 2020 IX International Congress of 

Mechatronics Engineering and Automation (CIIMA), 2020, pp. 1-6, doi: 

10.1109/CIIMA50553.2020.9290303. 

[31] P. Li, R. Dargaville, F. Liu, J. Xia and Y. -D. Song, "Data-Based Statistical Property 

Analyzing and Storage Sizing for Hybrid Renewable Energy Systems," in IEEE 

Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6996-7008, Nov. 2015, doi: 

10.1109/TIE.2015.2438052.  

[32] https://doi.org/10.1016/j.jclepro.2020.121874, accessed on June, 20th 2022. 

 

[33] Marques, André Luis Ferreira (2021). Image captions generation for non-

proliferation control with Artificial Intelligence. Brazil: ABEN. INAC-2021. 

[34] https://www.hindawi.com/journals/stni/2022/4172622/, accessed on June, 30th 

2022. 

[35] Garrett, Joseph & Mei, Hanfei & Giurgiutiu, Victor. (2022). An Artificial 

Intelligence Approach to Fatigue Crack Length Estimation from Acoustic Emission 

Waves in Thin Metallic Plates. Applied Sciences. 12. 1372. 10.3390/app12031372. 

[36] Saraygord Afshari, S., Enayatollahi, F., Xu, X., & Liang, X. (2022). Machine 

learning-based methods in structural reliability analysis: A review. In Reliability 

Engineering &amp; System Safety (Vol. 219, p. 108223). Elsevier 

BV. https://doi.org/10.1016/j.ress.2021.108223. 

 [37] https://doi.org/10.1016/j.ress.2021.108223, accessed on June, 30th 2022. 

Marques, André L. F. (2022) Application of Data Science in the Sustainable Energy Industry pp. 19-53

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 52

https://www.oracle.com/a/ocom/docs/data-science-lifecycle-ebook.pdf
https://www.webpages.uidaho.edu/~stevel/517/The%20Data%20Science%20Design%20Manual.pdf
https://www.webpages.uidaho.edu/~stevel/517/The%20Data%20Science%20Design%20Manual.pdf
https://doi.org/10.1080/23311916.2019.1631009
https://www.simplilearn.com/tutorials/machine-learning-tutorial/principal-component-analysis
https://www.simplilearn.com/tutorials/machine-learning-tutorial/principal-component-analysis
https://doi.org/10.1016/B978-0-12-410437-2.00008-4
https://doi.org/10.1016/j.jclepro.2021.125834
https://doi.org/10.1016/j.jclepro.2020.121874
https://www.hindawi.com/journals/stni/2022/4172622/
https://doi.org/10.1016/j.ress.2021.108223
https://doi.org/10.1016/j.ress.2021.108223


[38] Flah, Majdi & Vargas, Itzel & Ben Chaabene, Wassim & Nehdi, Moncef. (2020). 

Machine Learning Algorithms in Civil Structural Health Monitoring: A Systematic 

Review. Archives of Computational Methods in Engineering. 28. 10.1007/s11831-

020-09471-9. 

 

Suggested Reading 

A - Energies 2022, 15(2), 578; https://doi.org/10.3390/en15020578 

B - https://hdsr.mitpress.mit.edu/pub/d9j96ne4/release/3 

C - https://www.hindawi.com/journals/sp/2020/8616039/ 

D - https://www.sciencedirect.com/science/article/pii/S0925753519308835 

Marques, André L. F. (2022) Application of Data Science in the Sustainable Energy Industry pp. 19-53

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 53

https://doi.org/10.3390/en15020578
https://hdsr.mitpress.mit.edu/pub/d9j96ne4/release/3
https://www.hindawi.com/journals/sp/2020/8616039/
https://www.sciencedirect.com/science/article/pii/S0925753519308835


 

54 
 

 

Chapter 3 
Overview of Classic Surrogates and 

Metamodeling Strategies in Structural 
Analysis 

 
 
 

Chapter details 

Chapter DOI: 
https://doi.org/10.4322/978-65-86503-88-3.c03 
 
Chapter suggested citation / reference style: 

Santos, Rogerio R., et al. (2022). “Overview of Classic Surrogates and Metamodeling 
Strategies in Structural Analysis”. In Jorge, Ariosto B., et al. (Eds.) Uncertainty 
Modeling: Fundamental Concepts and Models, Vol. III, UnB, Brasilia, DF, 
Brazil, pp. 54–88. Book series in Discrete Models, Inverse Methods, & 
Uncertainty Modeling in Structural Integrity. 

P.S.: DOI may be included at the end of citation, for completeness. 

 

 

 

Book details 

Book: Uncertainty Modeling: Fundamental Concepts and Models 
Edited by: Jorge, Ariosto B., Anflor, Carla T. M., Gomes, Guilherme F., & Carneiro, 
Sergio H. S. 

Volume III of Book Series in: 
Discrete Models, Inverse Methods, & Uncertainty Modeling in Structural Integrity 
Published by: UnB City: Brasilia, DF, Brazil Year: 2022 
DOI: https://doi.org/10.4322/978-65-86503-88-3 

https://doi.org/10.4322/978-65-86503-88-3.c03
https://doi.org/10.4322/978-65-86503-88-3


Overview of Classic Surrogates and
Metamodeling Strategies in Structural Analysis

Rogerio R. Santos1∗, Guilherme F. Gomes2,
and Ariosto B. Jorge3

1Division of Mechanical Engineering, Technological Institute of Aeronautics - ITA,
Brazil. E-mail: rsantos9@gmail.com
2Mechanical Engineering Institute, Federal University of Itajuba - UNIFEI, Brazil.
E-mail: guilhermefergom@unifei.edu.br
3Post-Graduate Program - Integrity of Engineering Materials, University of Brasilia,
Brazil. E-mail: ariosto.b.jorge@gmail.com

∗Corresponding author

Abstract

In some situations, the need for multiple evaluations of a computational model
is not feasible due to the large cost in terms of budget or time required. The domi-
nant practice consists in the creation of statistical approximations for the response of
the model and performing additional analysis on the meta-model. The present con-
tribution discusses some classic alternatives for the establishment of experimental
designs. Next, the Least-Squares and Kernel methods are outlined as alternatives to
approximate models. Subsequently, characteristics of the Parallel, Sequential, and
Multi-level ensembling methods are presented. The current work is concluded with
considerations on the goodness-of-fit assessment.

Keywords: Surrogate modeling, Metamodeling, Design of Experiments, Machine Learning.

1 Introduction

Contemporary projects in the field of structural analysis have to deal with a lot of data. The need to
translate raw numbers into intelligence that drives real-world projects requires the ability to clas-
sify and organize information that arises from multiple and sometimes conflicting requirements.

In this context, how to break down and structure complex problems and data sets is of par-
amount importance. Design of Experiments (DoE) is concerned with designing tasks capable of
describing and explaining the variation of information under specific hypothesized conditions. It
is associated with experiments in which the design introduces conditions that directly affect the
variation/response.

Inferring the system’s behavior from a reduced set of data can contribute to reducing the
computational budget of a project and increase the probability of identifying unforeseen scenar-
ios. In the present contribution, classical and contemporary techniques are presented and their
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suitability for structural analysis is discussed. It starts with the concepts of Design of Experi-
ments, Metamodeling and Surrogate alternatives for the establishment of experimental designs.
Next, the Least-Squares and Kernel methods are outlined as alternatives of approximate models.
Subsequently, characteristics of the Parallel, Sequential and Multi-level ensembling methods are
presented. Considerations on the goodness-of-fit appraisal will concludes the present contribution.

2 Design of Experiments, Metamodeling and Surrogates

In certain circumstances, it is not feasible or practical to calculate exact values for the func-
tions F ({X}), Gj({X}) and Hk({X}) pertaining to the optimization problem formulation seen
in chapters “An overview of Linear and Non-linear Programming methods for Structural Opti-
mization” (Choze et al. [2022b]) and “Overview of Traditional and Recent Heuristic Optimization
Methods” (Choze et al. [2022a]). One such possibility is whenever the computational cost is too
burdensome, and even the specialized structural synthesis approximations (Choze et al. [2022b])
cannot provide an adequate solution. Another situation, in itself or combined with excessive com-
putational cost, is when the calculation engines responsible for providing the values of the many
quantities involved belong to computational domains that are disparate enough to jeopardize a
direct integration, and hence a common frame of reference has to be obtained to reconcile them.

In either case, it is mainstream practice to create statistical approximations of these quantities,
henceforth denoted as F̂ ({X}), Ĝj({X}) and Ĥk({X}), with the “ˆ ” notation used to highlight
their non-exact nature. As approximated entities, there are mechanisms to drive the computational
burden down and, both as closed-form equations or represented through standardized database
functions, their computational compatibility can be assured to the extent that they are operated
together within the same optimization procedure. The overall procedure for obtaining these ap-
proximations is explained after its introduction in Table 1 (Chihara and Hesterberg [2018]).

From left to right, the first step consists of observing enough values of decision variables
combinations ({X}) and the corresponding objective/constraint values that they yield. Explicitly,
the yielded values, which are collectively denoted as {Y }, are dependent upon {X} which, in
statistical nomenclature, are the independent variables (within reason, freely chosen to map the
decision space). Depending on the specific purposes of each study, one or more suitable design
of experiments (first column in Table 1) will determine specifically which setups of independent
variables are observed to form a matrix where, in a given layout, each row corresponds to an ob-
servation (as determined by the applicable/available experimental design) and each column maps
into the corresponding element of the vector of decision variables {X}. A statistical surrogate will
map an approximation to describe the underlying relationship between independent and dependent
variables, pairing each row in [X] (now in plain matrix notation) with the corresponding one in
{Y } (still in vector notation, focusing on a single response at a time). One or more such methods
are chosen from the second column in Table 1. Although the number of choice possibilities is
potentially high, reflecting a myriad of different approaches, the fundamental operating principles
underpinning all of them are common, relating to the optimization of a goodness-of-fit metric. Fi-
nally, and most importantly, even though a suitable goodness of fit may be reached once executing
of steps 2 and 3 within Table 1 (with strictly training data, as more usual, or with a mix of training
and validation data), additional appraisal, corresponding to step 4, is strongly advised for a final
and complete performance assessment of the surrogate’s capabilities.

Specific techniques and additional comments relative to the steps outlined above are presented
in the subsequent sections. Several of these instances are supplemented with their corresponding
computer codes implemented with the R statistical programming platform (R Core Team [2020]),
indicated as “Code”. For this purpose, the command install.packages is the main tool to
add new packages to the R software. It takes a vector of names and a destination library, downloads
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Table 1: Standardized steps sequence for building statistical approximations, also
known as meta-models or surrogates.

Experimental
Design

Model Choice Model Fitting Quality
Verification

(Fractional)
Factorial

Polynomial Least Squares
Regression

Response
Surface

Analysis of
Residuals

Central
Composite

Weighted
Least Squares
Regression

ANOVA

Box-Behnken
...

Alphabet-
Optimal

Splines Best Linear
Unbiased Pre-
dictor

Bayesian
Models

Orthogonal Frequency Do-
main

Best Linear
Predictor

Plackett-
Burman

Kernel
Smooth-
ing

Hexagon Radial Basis
Functions

Hybrid

Latin
Hypercube

Enumerative Neural
Networks

Back-
Propagation

Neural
Networks

Residual Error

Rule based or
Decision Tree

Entropy Inductive
Learning

Random

the packages from the repositories (from a local folder or remote web server) and installs them in
the R environment. To install the packages needed to run the codes in this chapter, for example,
enter the following:
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install.packages(’FrF2’,’rsm’,’lhs’,’glmnet’,’DiceKriging’,
’RSNNS’,’randomForest’)

Help is available at the command prompt via ?install.packages command.

3 Experimental Design

From a statistical theory perspective, a more exhaustive list of possible experimental design ap-
proaches is richly documented in the literature, such as in references Myers et al. [2016], Box
et al. [2005], and Khuri and Cornell [2019]. The following sections are extracts of this broader
picture that more closely correspond to the state-of-the-art and practice for computer analysis
and optimization of structural systems. Nevertheless, active research is ongoing in the direction
of broadening the scope and possibilities within the field, and the interested reader is referred to
Garud and Kraft [2017a], Garud and Kraft [2017b], Bhosekar and Ierapetritou [2018], Boukouvala
and Floudas [2017], and Pronzato and Müller [2012].

3.1 Full and fractional factorial designs

Initial exploration and understanding of decision spaces in m variables tends to be undertaken
by screening experimental designs, whose purpose is to filter out variables that do not influence
the outcome(s). Among the various options for screening designs, the simplest ones are factorial
designs at two levels, which serve to identify linear relationships between inputs and outputs. For
m = 5 and variable ranges codified between −1 for lower bound and +1 for upper bound, the
resulting combination would be as appears on Table 2.

The 32 total combinations arise from 2m, for two levels (at the lower and upper bounds for
each variable) over m = 5 variables, and define an hypercube (each edge corresponding to one
dimension or variable) with the experimental points at the vertices. The exponential growth with
respect to m indicates that, in practice, this may even be a simple approach, but is only feasible
for screening purposes with moderate values of m and/or low cost for performing each individual
run. This limitation may be better perceived if one considers m = 10 variables yielding 1024 total
runs just for screening on a linear relationship basis. For completeness of this discussion, consider
also the inclusion of simple curvature with base 3 would result in 310 = 59049 runs, proving
the point that straight factorial combination may only work in very particular cases and may lead
to experimental inefficiencies in exchange for its simplicity. For the purposes of computational
coverage, creation of full factorial designs in R (R Core Team [2020]) is illustrated in Code 1 for
3 factors (A, B and C).

As an initial step to trade-off complexity and efficiency, the introduction of fractional factorial
designs leverages the idea of incurring into the partial cost of factorial designs while reducing the
clarity of the conclusions to be obtained. The multiple trade-off points within this balancing act
are measured by different resolutions, which become an attribute of the experimental design sim-
ilarly to its base and number of variables. In formal terms, resolution is defined as the minimum
word length in the defining relation, excluding 1. Whereas Myers et al. [2016] and Box et al.
[2005] present complete theoretical discussions about the defining relations of different experi-
mental designs and, consequently, their resolutions, the practical aspect to be emphasized is that
higher resolutions are desired, with the following recommendations: a minimum of 3 (typically
noted as III) for variable screening, a minimum of 4 (typically noted as IV) for model fitting and,
finally, a minimum of 5 (typically noted as V) for optimization.

To illustrate these concepts, consider alternatives for fractional designs that can be derived
from Table 2, utilizing only part of the 5 total factors and confounding the remaining k ones, that
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Table 2: Full factorial experimental design at two-levels with m = 5 independent /
input variables, whose ranges are codified between−1 (lower bound) and +1 (upper
bound).

Run Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
1 -1 -1 -1 -1 -1
2 -1 -1 -1 -1 1
3 -1 -1 -1 1 -1
4 -1 -1 -1 1 1
5 -1 -1 1 -1 -1
6 -1 -1 1 -1 1
7 -1 -1 1 1 -1
8 -1 -1 1 1 1
9 -1 1 -1 -1 -1

10 -1 1 -1 -1 1
11 -1 1 -1 1 -1
12 -1 1 -1 1 1
13 -1 1 1 -1 -1
14 -1 1 1 -1 1
15 -1 1 1 1 -1
16 -1 1 1 1 1
17 1 -1 -1 -1 -1
18 1 -1 -1 -1 1
19 1 -1 -1 1 -1
20 1 -1 -1 1 1
21 1 -1 1 -1 -1
22 1 -1 1 -1 1
23 1 -1 1 1 -1
24 1 -1 1 1 1
25 1 1 -1 -1 -1
26 1 1 -1 -1 1
27 1 1 -1 1 -1
28 1 1 -1 1 1
29 1 1 1 -1 -1
30 1 1 1 -1 1
31 1 1 1 1 -1
32 1 1 1 1 1

is, 25−k. The resulting possibilities are detailed in Table 3, which is generalized for a large number
of variables/fractions/resolutions of practical applicability in NIS.
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Code 1: Full Factorial Design for 3 factors (A B and C)

expand.grid(A = c("-1", "+1"), B = c("-1", "+1"),
C = c("-1", "+1"))
A B C
1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1

Code 2 brings the R counterpart of the k = 1, 25−1R=V design also listed in Table 3. Please
note the difference in notation, where the factors are alluded to as capital letters A, B, C, D and E
instead of numbers, both versions being prevalent (and conceptually equivalent) in the literature.

Code 2: Regular Fractional Factorial 2-level design

FrF2(16,5, generators=’ABCD’)
A B C D E

1 1 -1 1 -1 1
2 -1 1 -1 -1 -1
3 -1 -1 1 1 1
4 1 1 1 -1 -1
5 1 -1 1 1 -1
6 1 1 1 1 1
7 1 -1 -1 1 1
8 1 1 -1 -1 1
9 -1 1 1 1 -1
10 1 1 -1 1 -1
11 -1 1 -1 1 1
12 -1 -1 -1 1 -1
13 -1 -1 1 -1 -1
14 -1 1 1 -1 1
15 -1 -1 -1 -1 1
16 1 -1 -1 -1 -1
class=design, type= FrF2.generators

Even with the introduction of the fractional strategies and the consequent reduction in the
number of runs, some situations result in non-affordable experimental effort. This is often the
case when non-linearity prevail and/or the experimental investigation actually targets some level
of prediction, beyond pure screening.

Such situations require alternative approaches, and the most popular ones for computational
experiments, especially when dealing with structural mechanics, are described in the next two
subsections.
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Table 3: Fractional factorial experimental design options with various resolutions
out of the m = 5 independent/input variables listed in Table 2. ∗ confounded vari-
able/Factor.

Fraction
(k) and
naming

Runs Reso-
lution

Confounding Structure

k = 1,
25−1R=V

Run F1 F2 F3 F4 F5∗

1 -1 -1 -1 -1 1
2 -1 -1 -1 1 -1
3 -1 -1 1 -1 -1
4 -1 -1 1 1 1
5 -1 1 -1 -1 -1
6 -1 1 -1 1 1
7 -1 1 1 -1 1
8 -1 1 1 1 -1
9 1 -1 -1 -1 -1

10 1 -1 -1 1 1
11 1 -1 1 -1 1
12 1 -1 1 1 -1
13 1 1 -1 -1 1
14 1 1 -1 1 -1
15 1 1 1 -1 -1
16 1 1 1 1 1

V

DEFINING RELATION:
I = 12345

CONFOUNDED
VARIABLE(S):
F5 = F1× F2× F3× F4

CONFOUNDING
STRUCTURE:
F1 = F1 + F2345
F2 = F2 + F1345
F3 = F3 + F1245
F4 = F4 + F1235
F5 = F5 + F1234

Note: each variable/Factor con-
founded with interactions of or-
der 4, which are negligible.

k = 2,
25−2R=III

Run F1 F2 F3 F4∗ F5∗

1 -1 -1 -1 1 1
2 -1 -1 1 1 1
3 -1 1 -1 -1 1
4 -1 1 1 -1 -1
5 1 -1 -1 -1 -1
6 1 -1 1 -1 1
7 1 1 -1 1 -1
8 1 1 1 1 1

III

DEFINING RELATION:
I = 124 = 135 = 2345

CONFOUNDED
VARIABLE(S):
F4 = F1× F2
F5 = F1× F3

CONFOUNDING
STRUCTURE:
F1 = F1+F24+F35+F12345
F2 = F2+F14+F345+F1235
F3 = F3+F15+F245+F1234
F4 = F4+F12+F235+F1345
F5 = F5+F13+F234+F1245

Note: each variable/Factor con-
founded with interactions of or-
der 4, which are negligible.
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3.2 Central composite designs

Central Composite designs are suitable for situations of moderate dimensionality (when some
form of fractional or even full factorial design fits the experimental budget) but it is important to
consider non-linear effects that will certainly not be captured via two-level combinations. In this
context, consider the initial scenario with 3 independent variables and the fractional form 23−1

resulting in 4 total linear experimental runs, in the portion denoted as “cube” (signifying edges
with equal lengths). Adding a total of 5 additional runs (one at the “center”, and the remaining at
the far edges of a “star”) would cover the non-linear effects as represented schematically in Figure
1, which is mirrored in Table 4.

Figure 1: Diagram of a Central Composite Design with linear and non-linear por-
tions represented in two-dimensions.

Table 4: Central Composite Design corresponding to Figure 1, with 2 factors covered
at 5 total levels.

Run # F1 F2
1 (“cube”) -1 -1
2 (“cube”) -1 1
3 (“cube”) 1 -1
4 (“cube”) 1 1

5 (“center”) 0 0
6 (“star”) −α 0
7 (“star”) +α 0
8 (“star”) 0 −α
9 (“star”) 0 +α

The square vertices are the factorial points spanning the range between the linear lower bound
(-1) and the linear upper bound (+1), and the qualifier “linear” is deliberate to indicate that the
overall ranges have to be examined and equalized so that no experimental points are configured
outside of any feasible experimental range. The reason, which also appears on Figure 1, is that the
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non-linear effects are captured by the rhombuses α units afar from the center (square icon), which
usually assume absolute values larger than unity. Determination of the values of α depend upon a
number of factors, both formal/mathematical and also practical:

• α for rotation: ensures that the resulting design yields predictive variances (i.e., uncertain-
ties) that, at any point x, depend only on the distance of x from the design center point. A
design with this desirable property can be rotated around its center point without changing
the prediction variance at x, hence its nomenclature;

• α for orthogonality: guarantees that the effect of one factor or interaction can be estimated
separately from the effect of any other factor or interaction in the model, which counters
the factor confusion arising from fractional factorial designs and their associated (lower)
resolution;

• Special cases and arbitrary values of α: practical constraints may limit the choice of values
for α in such a way that neither rotation or orthogonality is obtained, requiring additional
and more careful assessment of goodness-of-fit prior to utilizing the model resulting from
the experiment. One possibility is that, due to lack of experimental bandwidth, the values or
α are not allowed to go beyond the linear range [-1, +1], in which case the resulting designs
are called face centered composite designs.

Once again, the R code counterpart is offered in Code 3, highlighting configuration parameters
necessary for the creation of a Central Composite Design.
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Code 3: Central Composite Design example

library(rsm)
n_var = 3
n_center_points_cube = 4
n_center_points_star = 6
ccd(n_var, n0 = c(n_center_points_cube,
n_center_points_star),
alpha = "orthogonal")

run.order std.order x1.as.is x2.as.is x3.as.is Block
1 1 5 -1 -1 1 1
2 2 9 0 0 0 1
3 3 2 1 -1 -1 1
4 4 3 -1 1 -1 1
5 5 11 0 0 0 1
6 6 4 1 1 -1 1
7 7 8 1 1 1 1
8 8 1 -1 -1 -1 1
9 9 6 1 -1 1 1
10 10 12 0 0 0 1
11 11 10 0 0 0 1
12 12 7 -1 1 1 1
13 1 10 0 0 0 2
14 2 7 0 0 0 2
15 3 9 0 0 0 2
16 4 2 2 0 0 2
17 5 8 0 0 0 2
18 6 3 0 -2 0 2
19 7 4 0 2 0 2
20 8 5 0 0 -2 2
21 9 1 -2 0 0 2
22 10 12 0 0 0 2
23 11 11 0 0 0 2
24 12 6 0 0 2 2

3.3 Latin Hypercube (computational) designs

Since their inception in the seminal paper by Sacks et al, 1989, computer experimental designs
have gained popularity due to their inherent suitability regarding phenomena that are immune to
experimental variation. In this sense, any of the experimental setups discussed in sections 3.1
and 3.2 above would in principle require replications at each point whenever feasible, if they are
undertaken in the actual physical world. In computers however, barring minor differences due to
platforms (chipset, operating systems, etc.), such replicates would yield the same results at any
given experimental run.

At any measure, with or without replications, application scenarios with relatively high di-
mensionality and any degree of non-linearity may push beyond experimental budget feasibility
even for Central Composite Designs. In such scenarios, the ideal combination of attributes for the
experimental design would encompass:
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1. Low, and ideally fixed/predetermined experimental cost (total number of runs);

2. Ability to explore various levels and capture non-linearity;

3. Ability to execute item 2 minimizing redundancy of information aggregated by each indi-
vidual experimental run.

Whereas a random sample with N points over m dimensions would comply with these 3 require-
ments, it would offer low to no control over coverage of the space, with the enduring possibility
that some areas are over-sampled at the expense of voids in other locations (Figure 2a). On the
other hand, a true space filling experimental design would look like Figure 2b and, as implied by
the name, experimental samples would be distributed as to satisfy the uniform filling of the avail-
able space, such as minimizing the maximum distance or, conversely, maximizing the minimum
distance between any 2 given points in m dimensional space.

(a) Random. (b) Optimal Latin Hyper Cube.

Figure 2: Random vs. Space filling Design with 60 points over 2 dimensions between
0 and 1. Generated in R with random seed = 1 for Figure (2a) and function opti-
mumLHS for Figure (2b).

Code 4 contains the necessary R syntax to create designs such as that of Figure 2b.
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Code 4: Optimum Latin Hypercube sample

library(lhs)
n_var = 3
n_samples = 16
optimumLHS(n = n_samples, k = n_var)

[,1] [,2] [,3]
[1,] 0.77986305 0.25962784 0.98113240
[2,] 0.73374286 0.89983958 0.65652518
[3,] 0.08106826 0.38917024 0.80616234
[4,] 0.67524880 0.03049537 0.36286886
[5,] 0.34750631 0.78054941 0.84859144
[6,] 0.12511944 0.17081607 0.10528484
[7,] 0.52469292 0.60694614 0.04280036
[8,] 0.41165871 0.54098857 0.50797994
[9,] 0.98482138 0.36344077 0.73544520
[10,] 0.84308190 0.18906118 0.20958842
[11,] 0.02456373 0.64927328 0.25217138
[12,] 0.61763298 0.46786939 0.89379079
[13,] 0.47930504 0.98500063 0.15556912
[14,] 0.22676730 0.86768002 0.48733852
[15,] 0.26289577 0.06276729 0.58312047
[16,] 0.92962543 0.69242589 0.43707276

The ability to cover multidimensional spaces more uniformly than pure random numbers and
the amount of control relative to overall experimental cost have converted Latin Hypercube Sam-
pling (LHS) designs into the de facto standard of computational design and analysis of experi-
ments.

4 Choice and Fitting of Approximate Models

4.1 Least-Square based regression methods

The most fundamental method of empirical surrogates building is the Ordinary Least Squares
(OLS for brevity) regression, an average filter that creates an approximation linear in the coeffi-
cients that assumes a form along the lines of the one depicted in Equation 1:

ŷ = a0 + a1x1 + a2x2 + · · ·+ anxn

+b1x
2
1 + b2x

2
2 + · · ·+ bnx

2
n (1)

c1x1x2 + · · ·+ cmxn−1xn

which can also be represented through the compact linear combination/dot product form in Equa-
tion 2, of coefficients β over t model terms x, each one bearing its respective degree of non-
linearity at the exponent:

ŷ =

t∑
i=1

βixi (2)

Specific for the historically usual case of a quadratic response surface with interactions (Barthelemy
and Haftka [1993], Kaufman et al. [1996], Sobieszczanski-Sobieski and Haftka [1997]), the true
response y (the function that yields all of the observations {Y }) is approximated by ŷ accounting
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for all of the independent variables belonging to the n-dimensional vector {X} in their pure linear
forms (weighted by the coefficients ai, i = 1, . . . , n), their quadratic forms, as the simplest possi-
ble representation of potential curvature/non-linearity (pondered by bi, i = 1, . . . , n) and also the
interactions, in which all pairwise multiplications of the terms in {X} are exhausted and pondered
by ci, i = 1, . . . ,m with m = Cn,2 (combination of the n terms within {X}, two at-a-time).
Optionally, the model also contains a free term or intercept, which approximates the average of
the data generating process responsible for creating all possible values of y.

Collecting all the 2n+m+1 coefficients into the vector of coefficients {β}, the OLS regression
method applies the deterministic linear algebra set of operations described in Equation 3, which
satisfy the least-squares criterion in Equation 4, in which the sum of residuals (between true and
estimated response values) squared is minimized:

{β} = ([X]T · [X])−1 · [X]T · {Y } (3)

{β} = argminL({β}) = argmin
1

2N

∑
N

({β} · [X]− {Y })2 (4)

Noticing that the OLS criterion is indeed an optimization problem in itself (minimizing the
loss function L({β}), with the objective function being a slightly modified version of the sum of
squares of residuals, exhibiting the following convenient features:

• Its quadratic nature is amenable to optimization methods;

• Once derived, as part of the optimization procedure, the number 2 in both the exponent and
the denominator are mutually canceled;

• The whole expression is normalized by the number of available samples N , avoiding artifi-
cial inflation of the sum of squares of residuals for larger sample sizes.

The computational counterpart of Equations 3 and 4 in the R environment is shown in Code 5.

Code 5: Least-square regression

library(stats)

x = data.frame(matrix(rnorm(200), nrow=100, ncol=2))
colnames(x) = c(’x1’, ’x2’)
noise = rnorm(100)
y = 2*x[,1] + (0.01*x[,2])ˆ2 + 0.5*noise

model1 = lm(y ˜ x1 + x2, data = data.frame(x,y))

z = data.frame(matrix(c(1,1), nrow=1, ncol=2))
colnames(z) = c(’x1’, ’x2’)
fc1 = predict(model1, z)

cat(’R2: ’, summary(model1)\$r.squared,
’\nPrediction: ’, fc1)

R2: 0.942392
Prediction: 1.896089
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Equation 4, which makes the underlying optimization procedure explicit, offers important
levers for improving the quality of the model, specifically with respect to model/term selection.
Based on the principle of parsimony, the effective number of terms in the model will be nar-
rowed down to only the most significance, which improve the bias-variance trade-off in the fashion
schematically represented in Figure 3.

Figure 3: Schematic representation of the bias-variance trade-off for model selec-
tion.

Mathematically, the optimal trade-off illustrated in Figure 3 comes out of an extension of
Equation 4, also known as regularized regression

min{L(β) + λ [α‖{β}‖1 + (1− α)‖{β}‖2]} (5)

where the minimization of the loss-funtion in {β} becomes a constrained procedure via penaliza-
tion, which is mediated by the regularization parameter λ and, in its most general form, is applied
onto two components, the first || · ||1 and second || · ||2 norms of the vector of coefficients.

Both || · ||1 and || · ||2 are minimized when the coefficients with smaller values vanish, which
inherently leads to model/term selection. When α equals 1, the penalization is maximized, since
the first norm summing up all the terms of {β} (both the significant ones and those tending to zero)
is added to the objective function. When α equals 0, on the other hand, the penalization is not as
severe, with the overall summation of coefficients yielding a smaller number, since those with
values tending to zero become even smaller once they are squared. These two particular cases of
Equation 5 correspond to LASSO and Ridge Regression, respectively, with the acronym LASSO
(Least Absolute Shrinkage and Selection Operator) reflecting the most severe penalization case. In
practice, it is most usual that 0 ≤ α ≤ 1, and the flexibility to pick the best possible value within
the unit interval is reflected by the model taking the name of “Elastic Net”. The presence λ and
α introduce the possibility of regularization (i.e., inherent model selection by dropping the less
significant terms) at the expense of increased complexity for the loss function to be minimized,
now dependent on these two additional parameters.

Reflecting the enhancement/generalization of Equation 6 over the formulation in Equations
3-4, Code 6 contains the R implementation of the regularized regression approach, with the family
of Generalized Linear Models.
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Code 6: Generalized linear model with “elasticnet” regularization

library(glmnet)

x = matrix(rnorm(200), nrow=100, ncol=2)
noise = rnorm(100)
y = 2*x[,1] + (0.01*x[,2])ˆ2 + 0.5*noise

model2 = glmnet(x, y, beta=’elnet’)

z = matrix(c(1,1), nrow=1, ncol=2)
fc2 = predict(model2, z)
cat(’R2: ’, tail(model2\$dev.ratio, 1),

’\nPrediction: ’, tail(fc2[1,], 1))

R2: 0.9405139
Prediction: 1.989429

Up to this point, improvements in the model performance is sought quantitatively, that is, de-
ciding how many terms remain in the model. For models of polynomial form, such as those con-
sidered far, each term is then a monomial, whose limited flexibility resides mostly on its degree of
non-linearity (i.e., exponent) and, even so, typically at the expense of demanding significant ad-
ditional data. The fundamental limitations of monomials, however, is their stiffness, as illustrated
by the Runge phenomenon in Figure 4.

Figure 4: Illustration of the Runge phenomenon, whereby monomial stiffness leads
to oscillations when model order is increased in an attempt to capture underlying
non-linearity driven by the outlier at 0.

The Runge phenomenon is illustrated by the Runge function described in Equation 6, with the
outlier in 0 causing local inflation of the sum of squares of residuals and peripheral oscillations,
hence severely limiting the accuracy of a monomial based model which operates as an average
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filter (recall that the outlier strongly deviates from that average), not prone to be improved by
regularization or, at least, by regularization alone.

R(x) =
1

1 + 25x2
(6)

Several efforts of applied and theoretical nature have been implemented to circumvent these
limitations associated with monomial stiffness within the realm of fundamental regression, and the
interested reader is encouraged to pursue non-linear regression (Frank [1995]), robust regression
(in the sense of immunity to outliers, as detailed in Andersen [2008]) and Generalized Additive
models (Hastie [2017]).

However, setting the stage of methods that would become collectively known (and quite suc-
cessful) as Machine Learning approximations (Hastie et al. [2009]), there is an operating principle
that replaces monomials by kernels. Therefore, they are also known as kernel methods, which
display the following salient features:

• Parametrization, which result in flexibility (through configuration/optimization of the pa-
rameters values) that counters the monomial’s inherent stiffness;

• Combination of linear approach (dot product) and non-linear representation (the kernel
function);

• In the extreme case, monomials are the simplest possible configuration, where the kernels
are just the variables themselves.

4.2 Kernel methods

In its simplest, yet widely used forms, the kernels belong to the family of Radial Basis functions,
and is applied for modeling purposes as follows:

1. Collect a sample of sizeN , comprised of independent variables [X] and dependent variables
{Y }, using the same notation applied for regression methods in Equations 1 to 6;

2. As in Equation 7, calculate the D, which is symmetric and square of order N , containing
the Euclidean distances (second norms) between all possible pairwise combinations of in-
dependent variables within the sample matrix [X] collected in Step 1. It is important to
highlight that the terms in the main diagonal all default to 0 (distances between each point
in the sample and themselves) and that, by way of this step, the term-based logic for the
model is replaced by a location-based logic, with locations mapped in terms of the distances
and, moreover, the distances themselves default to simple scalars irrespective of the original
dimensionality of the problem (number of input or independent variables);

D =


‖[x]1,N , [X]1,N‖ ‖[x]2,N , [X]1,N‖ · · · ‖[x]N,1, [X]1,N‖
‖[x]1,N , [X]2,N‖ ‖[x]2,N , [X]2,N‖ · · · ‖[x]N,2, [X]2,N‖

...
...

. . .
...

‖[x]1,N , [X]N,N‖ ‖[x]2,N , [X]N,N‖ · · · ‖[x]N,N , [X]N,N‖

 (7)

3. Transform the distances matrix D by calculating the radial-basis function value for each
of its terms Di,j . These radial-basis functions, as suggested by their name, assign weight-
s/penalizations to each distance as they depart radially from the points where samples are
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available. A number of usual radial-basis functions is listed in Equations 8-13:

frb(Di,j) = Di,j (8)

frb(Di,j) = (Di,j)
3 (9)

frb(Di,j) = (Di,j)
2 · ln(Di,j) (10)

frb(σ,Di,j) = exp

[
−(Di,j)

2

2σ2

]
(11)

frb(σ,Di,j) =
√
r2 + σ2 (12)

frb(σ,Di,j) = 1/
√
r2 + σ2 (13)

In the order in which they are listed, the radial basis functions in Equations 8 to 13 are the
kernels with linear, cubic, spline, gaussian, multi-quadric and inverse multi-quadric shapes,
corresponding to different penalization strategies as a function of location distance. For
nomenclature purposes, this step is also known as the “kernelization” of the distances in the
input space;

4. This step is involved with estimation of the response value at a new point {Xnew} not
belonging to the sample [X] collected in Step 1. Since the method is distance based, a
total of N Euclidean distances are to be calculated, each of them turned into a scalar that
captures a distance which is represented within a space with the same dimensionality of
the functional relationship between inputs and output. Equation 14 represents this idea
mathematically:

DXnew =


‖{X}1, {X}new‖
‖{X}2, {X}new‖

...
‖{X}N , {X}new‖

 (14)

5. “Kernelize” the distances vector determined in Equation 14, analogously to the application
of Step 2 over the matrix in Equation 7;

6. Pre-multiply the “kernelized” distances matrix emerging out of Step 2 by the vector of sam-
pled outputs (dependent variable) {Y }, observing that they both possess the same number
of rows N . This operation yields the so-called weights of the model;

7. Perform the dot product (or linear combination) between the vector of weights obtained
in Step 6 and the “kernelized” vector of distances between the inference and the sample
points, obtained in Step 5. At this point, because of the linear combination operator applied
over “kernelized” entities (in this case, distances within the input space), the philosophies of
linear combination (proper of the regression methods discussed between Equations 1 and 6
and kernels are merged together, resulting in a model with a general form that is still linear
in its parameters, but flexible to any arbitrary non-linear kernel within each component, as
opposed to the stiff nature of the monomials. This combination of advantages has resulted
in wide and successful adoption of these models within the realm of Machine Learning, and
is summarized by Equation 15 below:

Y =
∑
N

wi · frb(D) (15)

Please note that despite Equation 15 representing an inference (i.e., an estimated value), the
notation Y is used instead of Ŷ to indicate that, in its original form, the family of radial basis
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function methods is interpolative, with perfect recall of the response values Y at theN points used
training (a condition to be relaxed at advanced variations of the approach to be discussed in the
sequence).

Specifically, Equations 12 to 13 correspond to functional forms that depend on additional pa-
rameters (namely, σ), whose value(s) are determined either by deterministic linear algebra type
of operations (Steps 1 to 7 detailed above), or through an optimization method aimed at minimiz-
ing a loss function associated with model accuracy. The latter is the logic underpinning the two
methods to be discussed next (Kriging and Gaussian Processes), that derive as enhancements of
the fundamental kernel idea.

Hence, introducing a more sophisticated version of the gaussian kernel of Equation 12, a full
covariance map is established as a function of a “nugget” (or “jitter”) C0, a “sill” C0 + C1 and
a “range” a. The terms between double quotes reflect the nomenclature of the Variogram based
Kriging (also known as Variographic method), in which the smoothness of the input space is
mapped according to:

• A discontinuity around each known point (C0), to account for the possibility of noisy data
records. Even in the case of computer experiments, which are deterministic by nature, the
introduction of a minor noise level may be beneficial (and in extreme cases, necessary) to
reduce the stiffness of matrix inversion operations to be introduced in the sequence;

• A limit for the variance at infinity (C0 + C1), whereby prediction bounds that measure
estimate uncertainties will not grow indefinitely even in the case of extrapolation beyond
the input ranges used to train the model. This is a fundamental difference with respect to
least-squares based regression and, whereas extrapolation should always be practiced with
caution, there is a level of robustness inherent to Kriging;

• A distance (a) beyond which the variance stabilizes as described in the item above

C(D) =

{
C0 + C1 if |D| = 0

C1 · exp
(−3D

a

)
if |D| > 0

(16)

Procedurally, the Variographic Kriging method applies as follows:

1. The variographic kernel of Equation 16 is applied over the distance matrix D, generating
its “kernelized” version analogously to Step 2 of the Radial Basis approach discussed ear-
lier. The “kernelized” distance matrix is the covariance matrix itself, in which geometrical
distances are converted into statistical distances, speaking for the smoothness of the input
space. Smoothness is an important consideration because, among the fundamental assump-
tions of the method, it is considered that points that are statistically close in the input space
give rise to points that will also be statistically close in the output space;

2. Involving prediction, this step requires calculation of the input space distance vector be-
tween a point whose output is to be predicted, with respect to all known points (the sample
used to train the model). This is equivalent to Step 4 of the Radial Basis procedure;

3. Analogously to Step 5 in the Radial Basis discussion, “kernelize” the distance vector ob-
tained in the previous step, converting it into the covariance vector between training and
prediction points;

4. Invert the covariance matrix obtained in Step 1. Numerical difficulties in this inversion step
may be circumvented by adding a small random noise, which is the “nugget” or “jitter”
term of the variographic kernel introduced in Equation 16;
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5. Calculate a weights vector by pre-multiplying the inverse covariance matrix obtained in
Step 4 by the covariance vector between training and prediction points, calculated in Step
3;

6. Obtain the mean (in the average sense) predictions by multiplying the weights vector by the
vector of known outputs from the training sample and summing over the components. This
means that the mean predicted value is some form of a linear combination (dot product) of
the known outputs, mediated by their respective covariance-driven weights;

7. Repeat Step 6, replacing the vector of known outputs by the covariance vector between
training and prediction points obtained in Step 3, to obtain the predictive variance. This is a
distinctive feature of the Kriging method in terms of uncertainty quantification. Uncertainty
will be higher in regions of the input space with sparse sampling, but will be bounded to a
finite value as per the discussion of the “sill” and “range” terms in Equation 16.

Application of Steps 1 to 7 as described indicates two distinctive features that are worth high-
lighting:

a) while the final estimation step (for both predictive mean and predictive variance) is a linear
combination, the kernel is flexible enough to capture a wide gamut of non-linear behaviors,
similarly to the discussed via Equation 14 for the Radial Basis approach;

b) a linear algebra based procedure but, given the additional parameters C0, C1 and a, their
values should be simultaneously optimized to satisfy criteria pertinent to the context, as for
example (and very usually) reducing predictive variance.

As far as the optimization of aspect “b” above goes, re-framing the Kriging formulation in
terms of its counterpart method known as Gaussian Process (GP) offers additional options in terms
of flexibility and performance. Regardless, given the similarity between Kriging and GP, they are
often used and named interchangeably, and the following formulation may allude to both:

C(D) = σ2f · exp

(
− D

2l̇2

)
+ σ2n · δ(D) (17)

where the covariance structure depends on a functional variance σ2f and a noise term σ2n, the
variance parameters of two multi-variate gaussian distributions (hence the name of the method)
that represent the estimates and the error, respectively. The additional parameter l is the length
scale and, overall, the presence of the negative exponent that defaults to 1.0 for distances equal
to zero carries over from Equation 12. Lastly, the δ operator introduces the noise term σ2n only
outside of the main diagonal of the resulting covariance matrix, obtained with the use of Equation
17 to “kernelize” the geometric distance matrix D, indicating that the method interpolates exactly
over the points known from the training sample.

With the above considerations, the task of fitting the model (i.e., identifying the values of
the parameters σ2f , σ

2
n and l) morphs into finding the multivariate gaussian distributions whose

variances should be equal to σ2f and σ2n. In classical statistical practice, the determination of
probability distributions that best fit to data is known as Maximum Likelihood Estimation (MLE
for short), expressing the procedure of finding the probability distribution(s) that most likely give
rise to the observed data (Millar [2011]). For this purpose, a new procedural combination of matrix
algebra and parameter optimization ensues as follows:

1. Calculate the covariance matrix by “kernelizing” the geometrical distance matrixD accord-
ing to Equation 17;
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2. Invert the covariance matrix obtained in Step 1;

3. Again involving prediction, use Equation 17 to “kernelize” the vector(s) of distances be-
tween known training points and unknown one(s), converting it into the covariance vector
between training and prediction points;

4. To obtain the weights, pre-multiply the covariance vector between training and prediction
points (obtained in Step 3) by the inverse covariance matrix from Step 2;

5. To obtain the predictive mean, perform the dot product between the weights arising from
Step 4 and the output training vector;

6. Multiply the covariance vector between training and prediction points obtained in Step 3
by its transpose (equivalent to the dot product of this vector by itself, hence resulting in a
scalar);

7. Subtract the value obtained in Step 6 from any of the equal values that belong to the main
diagonal of the covariance matrix obtained in Step 1. The variances go along this main
diagonal, and this subtraction is an adjustment that leads into the predictive variance at the
inference point.

Once again, matrix algebra operations provide both the predictive mean and variance, that is,
an estimate and the associated uncertainty. However, since the entire procedure is influenced by
the values of σ2f , σ

2
n and l, they need to be estimated in the MLE sense via Equation 18:

max (log (P (y|x, {θ}))) = −1

2
{y}T [C]−1{y} − 1

2
log(|C|)− N

2
log(2π) (18)

which indicates that the negative log-likelihood of observing outputs y given inputs x and model
parameters θ = {σ2f , σ2n, l2} is maximum for values within θ that influence the 3 terms in the
right-hand side of the equation, which depend only on the known training outputs y, the covariance
matrix C (where the parameters θ = {σ2f , σ2n, l2} matter) and the sample size N .

Code 7 implements the rather equivalent Kriging/Gaussian Process approaches in R.

Code 7: Kriging model

library(’DiceKriging’)

x = data.frame(matrix(rnorm(200), nrow=100, ncol=2))
colnames(x) = c(’x1’, ’x2’)
noise = rnorm(100)
y = 2*x[,1] + (0.01*x[,2])ˆ2 + 0.5*noise

model3 = km(design = x, response = y)

z = data.frame(matrix(c(1,1), nrow=1, ncol=2))
colnames(z) = c(’x1’, ’x2’)
fc = predict.km(object = model3, newdata = z, type = ’SK’)
cat(’Prediction: ’, fc\$mean)

Prediction: 1.118517
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Further exploration of the idea of kernels, with model fitting procedures that combine linear
algebra matrix manipulations with parameter optimization, allows the opportunity to consider
yet another method: neural networks. Although there are numerous variations of the fundamental
concept, and significant recent expansion within the specialized application field of Deep Learning
(Goodfellow et al. [2016]), the focus on the aforementioned operating principles pivots towards
many, and typically simpler kernels, combined with minimization of the predictive error via a
mechanism known as back-propagation. Providing materiality to these concepts, consider the
(shallow) neural network topology in Figure 5.

Figure 5: Shallow neural network topology, with input and output layers surround-
ing one, and only one hidden layer (hence, shallow), all of them containing 2 neurons
(kernels) each.

The two input kernels/neurons I1 and I2 receive the values from the input variables, so that
there are as many neurons in the input variables as the dimensionality of the predictive problem
itself. The inputs are then transmitted into the hidden layer(s), whereas a single one is capable to
map relationships between inputs and outputs at any arbitrary degree of non-linearity.

This transmission step occurs over weighted channels w1, w2, w3 and w4 such that, in the
general case, the actual number of channels corresponds to the number of neurons in the input
layer (i.e., the number of input variables) multiplied by the number of neurons in the hidden layer
(arbitrarily chosen by the modeler, aiming at balancing bias and variance type of errors).

Over the course of this transmission, an optional bias term b1 can be added to offset the linear
combination of the input values and the transmission weights, as indicated in Equation 19:

H1input = w1I1 + w3I2 + b1 (19)

H2input = w2I1 + w4I2 + b1

Differently than in the input layer, the neurons/kernels in the hidden layer process their inputs
before transmitting them forward, utilizing some non-linear activation function mostly intended
to saturate a potentially wide range of variation of the input values into a narrow and normalized
(between 0 and 1, or -1 and 1) band. A prevalent choice for this role is the sigmoid function re-
called by Equation 20. At this point, the kernel principle whereby a linear combination undergoes
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a non-linear transformation is repeated.

H1output = K(H1input) =
1

1 + exp(−H1input)
(20)

H2output = K(H2input) =
1

1 + exp(−H2input)

After this non-linear transformation via the kernel K, the same process taking place between
the input and the hidden layer takes place between the hidden layer and the output one, with gen-
eration of the corresponding input via Equation 19, but utilizing weights and bias w5, w6, w7, w8

and bias b2 as indicated in Figure 5, and output via Equation 20.
The final output thus produced is compared to the true output values y1 and y2 at the 2 arbi-

trarily chosen neurons/kernels at the output layer, generating an error signal that triggers the core
of the neural networks model building: the backpropagation method. The naming is owed to the
fact that the error is back-propagated into the previous layers, in reverse order, and their respec-
tive weights and biases are re-adjusted so that in the next forward pass (again involving Equations
19 and 20 across all layers, as described above), the final error is reduced. The process repeats
until convergence, and the following detailed backpropagation steps apply for a network with the
topology as in Figure 5 and a neuron/kernel activation function as in Equation 20:

1. Calculate the total error in the differentiable form of the quadratic loss function in Equation
21, accumulating over the i neurons in the output layer:

Etotal =
1

2

∑
i

(yi −Ooutput,i)
2 (21)

2. Express the sensitivity of the total error calculated in Equation 21 with respect to the weights
of the output layer, applying the chain rule of derivation as in Equation 22,

∂Etotal

∂w
=

∂Etotal

∂Ooutput
· ∂Ooutput

∂K
· ∂K
∂w

(22)

where, in this specific sequence: the total error depends on the outcome of the output layer,
which depends on the kernel transformation at the same layer, which depends on the input
it received based on the application of the weights from the previous (hidden) layer.

3. Calculate the 3 derivative terms of the chain rule in Equation 22 which, for a sigmoid
activation/kernel function as in Equation 20, results in Equations 23-25 below:

∂Etotal

∂Ooutput
= −(yi −Ooutput,i) (23)

∂Ooutput

∂K
= Ooutput,i · (1−Ooutput,i) (24)

∂K

∂w
= Houtput,i (25)

4. Multiply the 3 terms of the chain derivative expressed in Equations 23-25 to calculate the
expression stated in Step 1;

5. Update the weights by using any of the optimization methods discussed in chapter “An
overview of Linear and Non-linear Programming methods for Structural Optimization”
(Choze et al. [2022b]), given the availability of its total amount (Equation 21, as calcu-
lated in Step 1) and its sensitivities in analytical form (Equations 23-25, corresponding to
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Step 3). Although any optimization method can be used, the simplest line search in the
direction of the gradient with step size/learning rate α, as expressed in Equation 26,

∆w = −α∂Etotal

∂w
(26)

is the most usual, given the convenience of the derivatives availability (some implementa-
tions will make the value of α adaptive for efficient convergence). On the other end of the
spectrum, Boltzmann Machines is the usual nomenclature for neural network models fitted
when genetic algorithms are used to perform this step.

6. Run the backpropagation of errors one further layer backwards, that is, repeat the procedure
between Equations 21 and 26 for the connection between the input and the hidden layer.
Because the total error actually carries over from the output layer, an extra implicit deriva-
tive must be accounted for, and the term corresponding to Equation 23 is further unpacked
as shown in Equation 27, for every neuron j in the hidden layer and i in the output layer:

∂Etotal

∂Houtput,j
=
∑
j

∂Eoutput,i

∂Houtput,j
(27)

and each term in the summation is a repetition of Equation 20, implicit within its first term
(Equation 23). The two remaining terms are calculated as before, per Equations 24 and 25,
giving rise to the sensitivity of the total error with respect to the weights;

7. Repeat Step 5 with the sensitivity of error versus weights obtained in Step 6, finalizing the
backward pass and getting ready to initiate the next forward pass (Equations 19 and 20) if
the method is to proceed for an additional iteration.

Requirements for the amount of training data and number of iterations until successful con-
vergence vary on a case-dependent basis, but tend to be high as compared to other methods. Nev-
ertheless, the wall clock time for training neural networks is reduced due to the simplicity of each
of the individual operations.

As a concluding comment about neural networks, the arbitrary number of neurons in the hid-
den layer is equivalent to the number of terms in polynomial least-squares regression models
(Equations 1 to 5), and hence should be chosen to balance between over-fitting (excessive num-
ber of terms leading to increased variance driven predictive errors) and under-fitting (insufficient
number of terms leading to bias driven predictive errors). The practitioner is especially cautioned
relative to a natural tendency for over-fitting, barring extreme low number of hidden neurons, and
appropriate metrics to gauge this phenomenon are offered in the next section about goodness-of-fit.
Many variations of the basic Neural Network method are available in the R statistical computing
platform, with one of them illustrated in Code 8.
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Code 8: Radial Basis Function (RBF) network

library(RSNNS)

x = matrix(rnorm(200), nrow=100, ncol=2)
noise = rnorm(100)
y = 2*x[,1] + (0.01*x[,2])ˆ2 + 0.5*noise

model4 = rbf(x, y, size=40, maxit=1000)

z = matrix(c(1,1), nrow=1, ncol=2)
predict(model4, z)

1.864962

5 Ensemble Methods

Whereas each one of the modeling approaches described in section 4.1-4.2 individually possess
their benefits and drawbacks, the practice of building model ensembles assumes that any individual
models are “weak predictors”, which can be enhanced by some combination strategy capable of
collectively downplay the shortcomings and amplify the strengths.

Operationalization of models ensembling strongly relies upon the theory of statistical resam-
pling (Chihara and Hesterberg [2018]) whose primary techniques, the jackknife (deterministic sub
setting, performed without replacement) and the bootstrap (random sub setting, performed with
replacement) both leverage the most fundamental topic of sampling distributions (Devire [2015]).
In particular, bootstrapping is the preferred method for mainstream model ensembling due to its
ability to balance sample size (recalling that shortage of data is more likely than not), introduc-
tion of variability for model diversity (otherwise the very purpose of ensembling is defeated) and,
depending upon specific circumstances, independence of the sub-samples. Within this construct,
ensemble modeling techniques fall within the following categories.

5.1 Parallel ensembling

The main steps are:

1. Perform the bootstrapping, extracting S sub-samples out of N total available points;

2. Fit S independent (weak) learners, utilizing each of the individual subsets obtained in Step
1;

3. Summarize the S independent (weak) learners into a combination, which is typically and
average for predictive models whose output is a continuous random variable and either an
average (soft combination) or a majority vote (hard combination) if the output is categorical.

When performing Step 1, the goal is to generate as many subsets as possible, provided that
each one is still large enough to allow for reasonable individual models to be produced, and at the
same time minimizing the correlation (i.e., repetition of data that gets resampled with replacement)
across samples. Certainly, satisfactory fulfillment of all these conflicting requirements depends
upon a large enough N to start with.
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For Step 2, it is usual to choose each independent learner to be of the same type before they are
“bootstrap aggregated” or “bagged” in Step 3. This homogeneity does not mean that the intended
diversity of the ensembling is compromised, not only because each individual learner arises from
a different (and ideally independent) data set, but also due to parameter choices that can add to
achievement of this goal. For example, it is common to balance individual learners that overfit
(residing at the right hand end of the spectrum in Figure 3) and underfit (residing at the left hand
end of the spectrum in Figure 3) so that the resulting ensemble best balances the bias-variance
trade-off. Moreover, it is also common practice to fit the individual weak learners with different
feature sets (i.e., different versions of the matrix of independent variables [X]) so that additional
diversity is obtained.

Last but not least, the most important aspect of Step 3 is finding the optimal weighting strategy
for each individual weak learner, which is possible by applying variations of Equations 4 and 5
when regularization is or is not considered, respectively. In either case, the weights are decision
variables for minimizing a suitable loss function, ideally out of an independent data set used ex-
clusively for testing purposes (additional details on candidate metrics presented in section 6 about
goodness-of-fit appraisal).

5.2 Sequential ensembling

Steps 1 and 2 for sequential ensembling occur as in the parallel methods, and the fundamental
difference in Step 3 is that, instead of solving a single instance of weights optimization, many of
them are resolved in sequence as in Equation 28:

EMi = EMi−1 + wi ·WMi (28)

where the ensemble model EM at the i-th iteration is updated from the previous one by adding
a weighted contribution of one of the possible weak learners WM , such that the loss function is
minimized. Because the addition of each further learner “boosts” the previous one(s), and this
is done adaptively at each iteration, this approach is often referred to as “adaptive boosting” or
“adaboost” for short, and can be generalized as in Equation 29 for a loss function L:

argminw,WM

(
N∑
i=1

L
[
Ŷ , EMi−1(X)

]
+ wi ·WMi

)
(29)

When the steepest descent (Vanderplaats [1998]) optimization method is applied to solving
Equation 29, relying solely on information about the gradient of the loss function from any it-
eration to the next, the so-called gradient boosting method (GBM, for short) is configured, and
Equation 30 represents it accordingly:

EMi = EMi−1 − wi · ∇Ei−1 (30)

where the weights wi function as the steps to be taken along the line search following the direction
of the gradient of the error E in the previous ensemble configuration. It is assumed that the loss
function is continuously differentiable and, when it incorporates regularization terms, along the
lines of Equation 5, the nomenclature xgboost (for “extreme” gradient boosting) is applied.

5.3 Multi-level ensembling

A common thread between parallel and sequential ensembling strategies is that 1) both processes
are guided through minimization of a loss function and 2) it is typical, although not mandatory,
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that models of the same type are combined together. Conversely, multi-level ensembling tech-
niques will 1) fit a meta-model, at another level (hence the nomenclature), combining all existing
learners to match given response values and 2) typically, although not mandatory, combine mod-
els of different types in the process. Equation 31 represents the idea in matrix notation, with the
solution of the system of k simultaneous equations yields the coefficients/weights w that combine
alternative weak learners to best match the ground truth {Y }.

w1 · Ŷ WM1
1 w2 · Ŷ WM2

1 · · · wk · Ŷ WMk
k

w1 · Ŷ WM1
2 w2 · Ŷ WM2

2 · · · wk · Ŷ WMk
k

...
...

. . .
...

w1 · Ŷ WM1
k w2 · Ŷ WM2

k · · · wk · Ŷ WMk
k

 =


Y1
Y2
...
Yk

 (31)

Reflecting the increased popularity of ensemble surrogates, the R statistical platform incorpo-
rates many of the methods, with Code 9 containing the Random Forest in particular:

Code 9: Random Forest algorithm

library(randomForest)

x = matrix(rnorm(200), nrow=100, ncol=2)
noise = rnorm(100)
y = 2*x[,1] + (0.01*x[,2])ˆ2 + 0.5*noise

model5 = randomForest(x, y, ntree = 500)

z = matrix(c(1,1), nrow=1, ncol=2)
predict(model5, z)

1.905261

6 Goodness-of-Fit Appraisal

Complete appraisal of goodness-of-fit depends on two complementary angles: model recall (its
ability to accurately estimate the outputs in training data) and generalization (its ability to accu-
rately estimate the outputs in independent test data, not utilized during training). Whereas general-
ization is evidently more important for a final determination of the model qualities, recall analysis
should be also considered as a tool for building understanding, helpful to improve the model over-
all. For this purpose, the foremost recall metric is the coefficient of multiple determination, shown
in Equation 32:

R2 =
SSR
SSY

= 1− SSE
SSY

(32)

It defines the percent ratio between the explained variance (by the model) and the total vari-
ance, and is calculated as follows:

1. Extract the difference between all known training output Y and their average. Square these
differences and add them together to obtain SSY ;

2. Repeat Step 1, but for the differences between actual and estimated (by the model) Y . These
model errors (E) are the residuals, and this step obtains their sum of squares;
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3. Using the principle of variance additivity, obtain the sum of squares of regression (R) by
subtracting the term in Step 2 from that in Step 1;

4. Possessing all terms in Equation 32, apply it to calculate the coefficient of multiple deter-
mination.

The adjusted coefficient of multiple determination, on its hand, places effort on recognizing the
principle of parsimony, and penalizes the metric in Equation 32 as the model acquires additional
terms (i.e., operates on higher dimension input space). Denoting the number of model terms as p,
it is possible to use this adjusted form of the coefficient of multiple determination to understand
how it balances with respect to the available number of training samples N :

R2
a = 1−

(
N − 1

N − p

)
·
(
1−R2

)
(33)

The structure of Equation 33 is such that the need to fit additional parameters from a fixed training
sample size is penalized, and the effect is similar to that from Equation 5 which regularizes the
regression by eliminating less or non-essential terms.

Supplementing Equations 32 and 33, the Analysis of Variance (ANOVA for short) offers an
additional way into the sources of error from random variation and also terms in the model/dimen-
sionality of input space, as shown in Table 5.

Table 5: Analysis of Variance (ANOVA) for measuring goodness-of-fit.

Source of
Variability

Statistical
degrees-of-
freedom (dof)

Sums of Squares (SS) Mean
Squares
(MS)

F-Statistic

Model p− 1 Step 3, R2 calculation
Residuals N − p Step 1, R2 calculation SS

dof
MSmodel

MSresidual

Total N − 1 Step 2, R2 calculation

It should be noted that Mean Squares are actually variances, and the F-Statistic, as a ratio
between variances, follows the Snedecor probability distribution and, in this context, measures the
probability that the model is only able to explain an amount of the total variance which is statisti-
cally equivalent to the residuals variance. In other words, the F-Statistic measures the probability
that the model can only explain as much of the data as the error itself, and is hence useless. With
this interpretation, adequate goodness-of-fit requires this number to be as low as possible, contrary
to the coefficient of multiple determination and its adjusted form.

The possibility of calculating model generalization metrics assumes that there are independent
observations, not consumed for the purposes of model training, that can be spared. This tends to
be a strong assumption, considering the considerations made in section 3 on experimental design
and the challenges of balancing data availability and model quality. For this reason, traditional
partitions such as sparing some percentage (typically 20% - 30%) of the overall data for testing
will only perform when there is abundance of data, usually not the case with high fidelity simula-
tions of structures. The solution then resides in Cross-validation, which operates according to the
following algorithm:

1. Create a fold, by sparing a small percentage of the available data for testing, the rest being
dedicated to training;

2. Train the model with the training data portion (majority) of the fold determined in Step 1;
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3. Test the model with the testing data portion (minority) of the fold determined in Step 1 and
calculate performance metrics;

4. Repeat Steps 2 and 3 until all possible folds are exhausted;

5. Analyze the distribution of the performance metrics calculated in Step 3 over the many
folds.

This approach assumes that there will be no replacement of the data across the folds and, at
the limit, the LOOCV (Leave-One-Out-Cross-Validation) will happen when only one data point
is retained for testing within each fold. This is the most time-consuming option, but the one that
yields the most complete possible version for the distribution of whatever performance metric is
chosen in Step 3. As for the metrics themselves, the RMSE (Root Mean Squared Error) is a typical
choice, and it is defined in Equation 34 as the square-root of the average quadratic error between
true values (Y ) and their model estimates (Ŷ ):

RMSE =

√√√√∑N

(
Ŷ − Y

)2
N

(34)

It should be noted that RMSE is not the only metric applicable to appraise model general-
ization, albeit it is by and large the most used one, more so in the context of cross-validation
described herein. Other alternatives consist of calculating variance explained type of metrics, sim-
ilar to those in Equations 32 and 33, but using data that was not directly used to build the model
in the first place. Hence, it is conceivable to calculate the sum of squares of test residuals (i.e.,
those arising from independent data) as inputs to such equations for estimating the portion of the
overall variance not explained by the model. Caution should be exercised though with the basis
for comparison, which should remain standardized so that such metrics are meaningful. One of
the approaches to address this concern is to use the “out-of-sample” (OOS) version of Equation
35, which is defined as follows:

R2
OOS = 1− RMSEm

RMSEb
(35)

and depends upon RMSEm, calculated for the model using Equation 34, and an ideal (possibly
arbitrarily set) benchmark RMSEb for a real or hypothetical model. It should be noted that,
contrary to the RMSE defined in Equation 34, −∞ ≤ R2

OOS ≤ 1 and a value of 0 represents a
tie between the model being appraised and the benchmark. Conversely, positive/negative values
signify that the model outperforms/underperforms the benchmark.

A totally different perspective, which is more solid but difficult to automate, counts on on
understanding the error structure of the models in detail rather than relying solely upon summary
metrics such as any of those offered in Equations 32 to 35 and Table 5. Models that have exhausted
all possible information contained in the data yield errors that behave as random numbers, ideally
centered around zero (indicating absence of bias) and with small spread (indicating absence of
variance). These two features allude to the error components depicted in Figure 3 and it expected
that one can only be improved at the expense of the other, forcing a trade-off. Nevertheless, the
two characteristics can be combined to some extent when the errors are Normally distributed (i.e.,
behave as random numbers that follow the Normal probability distribution with mean 0 and some
variance), and then the exercise of appraising goodness of fit defaults to measuring deviation/ad-
herence of the modeling errors with respect to the Normal reference.

Following this rationale, specific techniques may be more visual, such as those illustrated in
Figures 6, 7 and 8, or rather parametric (and easier to automate), such as the tests of Normality
summarized in Table 6.
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Figure 6 shows distinct scenarios in which the residuals distributions vary from closely ad-
hering to random (Figure 6a) to exhibiting multiple symptoms of Normality violation (Figure 6b).
In the former, uniformly scattered points representing the residuals spread symmetrically around
zero, without revealing any relevant pattern indicative of non-randomness. In the latter, on the
contrary, multiple patterns arise by way of repeated ascending/descending patterns, as well as lack
of symmetry and outliers, indicating that multiple processes are manifesting themselves in tan-
dem, rather than a single random distribution representative of a good model fit. The particular
case explored in Figure 6c represent the case in which the model lacks complexity to represent
a linear trend, and is hence under-fitted. Generalizations of this concept could show very visible
and identifiable patterns such as parabolas or other shapes, which would be associated with even
more severe under-fitting other than just missing a linear trend. Finally, the scenario depicted in
Figure 6d is the most subtle and potentially damaging one, because an apparently random resid-
ual distribution is actually strongly biased towards positive. Realistic applications will pose the
additional challenging of combining all these types of archetypal behaviors into a single residual
distribution, making it very complex to issue an appraisal about goodness of fit.

(a) (b)

(c) (d)

Figure 6: Different patterns of residuals for goodness of fit analysis.

Panels (6a) and (6b) in Figure 6 are in opposite ends of the spectrum with respect to residuals
that closely adhere to adequate versus poor goodness of fit, respectively. Since such verdicts are
seldom this binary, Figure 7 offers an additional appraisal instrument by plotting the residuals
versus lagged versions of themselves. With lag = 1 in these particular plots, it is possible to
confirm the absence of randomness in panel (7b), which corresponds to the same panel in Figure 6
and, at the same time, certain patterns arise in panel (7a), again homologous to the same in Figure
6. For Figure 7, the lagged plot is powerful enough to reveal that the data from Figure 7a is actually
a random draw from a Normal distribution with mean 0 and variance 1 (N(0, 1)) distribution with
only 50 points, which are still not sufficient to display full blown randomness as it would have
been the case with a much larger sample size, but still satisfactorily random/Normal on a relative
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scale.

(a) (b)

Figure 7: Plot of lagged residuals for goodness of fit analysis.

On a related note, the lagging period can be generalized to other values and, at the limit, their
collection at several values gives rise to auto-correlation and partial auto-correlation plots, which
are paramount in time-series analysis (Shumway and Stoffer [2017]) and, in the current context,
would reveal additional details about the residuals structure for the purposes of model appraisal.

Figure 8 again looks at the comparison between panels (a) and (b) from Figures 6 and 7,
however analyzing the very same data through a different instrument: the (Normal) probability
plot, which are generated as follows:

1. Sort the residuals in ascending order;

2. Estimate the probability of each residual value based on its rank order by dividing the
position in the sorted sequence by the total number of residuals N . Per this method, the
estimated rank order probability for the n-th residual in the sequence is n/N , and the last
value in the series results in 1 (100% of the residuals covered, producing an empirical
cumulative probability distribution);

3. Calculate the z-scores (distances from the mean normalized by the standard deviation) using
the probabilities obtained in Step 2 and the inverse cumulative version of the distribution of
reference. If the inverse Normal cumulative is chosen, the empirical Normal z-scores are
obtained;

4. Calculate the adherence of the cloud of z-scores obtained in Step 3 to the theoretical distri-
bution (Normal, in the current context) by fitting a straight line and measuring the goodness
of fit through the R2 (as in Equation 32).

Specifically, in Figure 8, panel (a) confirms a highly satisfactory adherence to normality (R2 near-
ing 100%), whereas the various violations of Normality observed in panel (b) in Figures 6 and 7
are confirmed by a very low R2.

The way of measuring adherence to Normality through a metric, like the R2 in Figure 8, is
extending the concept through formal Hypothesis testing, whereby a statistic is calculated and
compared to a critical value to determine if the “null hypothesis” (residual data follows the ref-
erence distribution, to be assumed as Normal) can be accepted and at which confidence level.
Several versions of this principle are summarized in Table 6, which lists the most commonly used
tests of Normality, applicable to the specific purpose of measuring goodness-of-fit through the
i = 1, . . . , N available values of residuals denoted as ε.
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(a) (b)

Figure 8: Normal Probability Plot, also known as quantiles plot, for goodness of fit
analysis.

In every case, F and C are the reference (i.e., standard Normal with zero mean and unit vari-
ance) and empirical (i.e., from the residual data itself) cumulative probability distribution functions
(again, their comparison relates to the procedure used to produce Figure 8).

To conclude this section on goodness-of-fit, residuals analysis is presented as the ultimate
ground truth in appraising if a model is or is not suited for a particular application. Even for model
types such as Kriging and Gaussian Processes, which possess inherent uncertainty quantification
features as displayed at their respective descriptions (Equations 16 to 18 and associated content),
the application of the metrics shown in this section, and more emphatically cross-validation and
residual analysis, are thoroughly recommended to the practitioner.
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Table 6: Collection of usual tests of hypothesis to assess goodness of fit through
Normality.

Anderson-Darling Can be specified to reference distributions other than Normal by
generalizing F :

A2 = −N − S

S =
N∑
i=1

(2i− 1)

N
· [lnF (εi) + ln (1− F (εN + 1− i))]

Liliefors Utilizes the supremum (sup) operator, which finds the lowest upper bound of
a set of values:

L = sup
ε
|F (ε)− C(ε)|

Kolmogorov-Smirnov Can be specified to reference distributions other than Normal by
generalizing F :

D = max
1≤i≤N

(
F (εi)−

i− 1

N
,
i

N
− F (εi)

)
Kulbach-Leibler Divergence In this formula, already particularized for the Normal
case, but also possible to be generalized depending on the density function chosen for
pre-multiplying the natural logarithm and appearing in its argument’s denominator. The
lower case c(ε) in the natural logarithm argument’s numerator is the empirical density:

Dk(P |N) =
∫ ∞
−∞

1

σ
√
2π
· e−

1
2(

ε−µ
σ )

2

· ln

[
c(ε) ·

{
1

σ
√
2π
· e−

1
2(

ε−µ
σ )

2
}−1]

dε

Jarque-Bera Strictly for Normality test, does not depend on a reference distribution,
but rather on the residuals skewness S and kurtosis k:

JB =
n

6

[
S2 +

1

4
(k − 3)2

]
Chi-Squared The observed (Oi) and expected (Ei) terms correspond to the number of
residuals counted within a certain bin or range i (expected are per the Normal distribution
for using residuals to appraise goodness of fit, but may also be generalized to other distri-
butions). The χ2 itself is a random variable arising from the sums of squares of Normals,
as implied by the formula:

χ2 =
N∑
i=1

(Oi − Ei)
2

Ei
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Abstract

Service satellite are used in a variety of applications, justified by scientific, eco-
nomic, strategic and social benefits. The perspective of working with space equip-
ment is largely based on the assumption that there are robotic mechanisms capable
of handling multiple payloads. Normally, robot path planning involves determining
the inverse kinematics configuration, since the workspace is expressed in Cartesian
coordinates and the robot control is performed through joint angles. The present
study discusses strategies for calculating the inverse kinematics of a space serial
manipulator. The results of a classical industrial kinematics model and a multibody
dynamics formulation are compared in the context of space operation. A Neural
Network model is considered to quantify the uncertainty about the end-effector po-
sitioning and joint angle values. It was found that the Neural Network is a robust
predictor that, together with a Nonlinear Programming strategy, represents an ef-
fective methodology for inverse kinematics calculations. This result contributes to
the establishment of algorithms that will increase the operational autonomy of space
equipment in different scenarios of orbital operation.

Keywords: Robot Path Planning, Berthing, Satellite Dynamics, Machine Learning, Py-
Torch, OpenModelica
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1 Introduction

The movement autonomy of space robots is a contemporary challenge of great relevance.
It consists in the ability of fulfilling goals without the need of external control operators.
There is a wide range of applications for service satellites, and its relevance is justified by
scientific, economic and strategic benefits.

Long-distance space travel requires the existence of space deposits along the way.
The service satellites are enabling agents of such infrastructure. Another activity destined
for the service satellite is the manipulation of objects in orbit, enabling the removal of
space debris and maintenance of space vehicles in orbit. Additionally, as the positioning
of satellites in the Geostationary Earth Orbit (GEO) depends on the availability of a free
and viable position in orbit, there is commercial and security interest in removing failed
or unused satellites for reuse from its orbital position. Additionally, the maintenance of
geostationary satellites increases their lifespan and leads to better use of space.

The repair of space equipment is another important application of service satellites,
for example, the Hubble Space Telescope’s maintenance service mission (1993). The
lifespan of valuable resources can be extended through maintenance and upgrade actions.
From this perspective, we see the need to develop the equivalent of a “technical assistance
network” in orbit to solve problems of critical failures in space equipment, leading to the
interruption or complete loss of the space mission.

For the activities of providing services in orbit, in addition to the strategic importance
regarding the domain of space exploration technology, it also involves the economic as-
pect of great relevance already identified by companies around the world. We live in a new
phase of the space race characterized by the participation of private companies, focused
on the economic exploitation of space resources.

NASA’s Artemis program (Smith et al. [2020]) will send astronauts to the Moon
through a global initiative in the engineering, technology development, and process im-
provement necessary to safely conduct human exploration to the Moon. This initiative
includes the contribution of companies and international partners to the exploration and
development of the Moon.

Companies such as SpaceX (Mróz et al. [2022]) and Blue Origin have been involved
in the development of space transport equipment, focusing on economic viability through
the reuse of launch vehicles. Boeing provides a series of resources oriented towards space
exploration. Among the resources offered, there is the provision of a global positioning
system infrastructure (Global Positioning System IIF) (Kuang et al. [2017]) composed of
a large number of satellites. Boeing Commercial Satellites designs and markets commu-
nication and cargo satellites for commercial purposes, such as telecommunication infras-
tructure, broadband, and scientific applications (Skinner et al. [2013]).

Airbus presents on its website the possibility of space equipment maintenance services
to be offered in the coming years. The “Airbus O. CUBED Services” will be operated by
a category of space vehicle called “SpaceTug”. The SpaceTug family of service satellites
contains advanced technologies for robotics, electric propulsion, computer vision-based
navigation, as well as approaching and intercepting strategies. On-orbit services (OOS)
will be offered in three main categories:

• Inspection and maintenance service for telecommunications satellites;

• On-orbit servicing for geostationary orbit (GEO) and low-Earth orbit (LEO);
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• Debris Removal Service from the Space vehicles orbits.

On-orbit vehicle maintenance and orbital debris removal services should operate au-
tonomously (Aglietti et al. [2020]) based on intelligent strategies for moving and manip-
ulating objects. The feasibility of this vision is largely based on the existence of robotic
mechanisms that are able to act effectively in the manipulation of different objects. The
view on the commercial importance of space exploration is confirmed by the large num-
ber of satellites in operation today. According to ESPI [2020a], the number of satellites
operating in Earth orbit in March 2019 was 2062, distributed as follows:

• Communication: 773;

• Earth observation: 768;

• Scientific research: 105;

• Navigation: 138;

• Technology: 265;

• Other missions: 13.

In ESPI [2020b] the policies of different European countries for the development of
space programs are presented, together with justifications on the strategic importance of
such an initiative. According to the information in the report, two concerns common to
the countries involved are:

• Development of technologies that lead to the autonomy of space operations, in or-
der to establish situational awareness for action at the international level, that is,
the ability to recognize any possible issues once you arrive at the scene and act
proactively to avoid a negative impact;

• Expansion of knowledge and training of people involved in space activities as well
as maintenance of the competence of specialists in the area of space security.

In this context, from a strategic point of view, the development of space exploration
technologies is fundamental, in order to contribute to the maintenance of national sover-
eignty, as well as to contribute to the development of cutting-edge technologies with great
industrial and commercial impact.

The paper is organized as follows. The Section 2 presents the main characteristics
for robot kinematics representation. Inverse kinematics of space robots is discussed in
Section 3. The Section 4 presents a popular interpolation scheme for path planning. The
Section 5 outlines the principles involved in torque calculation, while the feature-rich
approach of multibody dynamics is discussed in Section 6. Numerical experiments that
quantify uncertainty are detailed in Section 7. The Section 8 summarizes the conclusions
of the present study.
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Figure 1: Space robot composed by a satellite and a serial manipulator.

2 Space Robots

The concept of space robot considered in the present paper consists of a space satellite
with a serial manipulator attached to it. The schematic representation of the spaceship is
given in Figure 1.

The kinematic model of the industrial serial manipulator describes the influence of
joint angles in the placement of the end-effector. Usually, an n−link manipulator is
mathematically represented by a set of homogeneous transformations Ai, i = 1, . . . , n
that describe the Cartesian positioning from the base Pbase(x, y, z) to the end-effector
Pend(x, y, z). Following this convention, A1 = T 1

0 , A2 = T 2
1 , . . . , An = T nn−1 and the

serial manipulator can be represented by the matrix

T n0 (q) = T 1
0 (q1)T

2
1 (q2) . . . T

n
n−1(qn) (1)

where qi is the i−th joint coordinate, that is, qi = θi for rotational joint or qi = di for
translation joint (Craig [2005]).

In the context of applications, the paper by da Fonseca [2021] presents an overview
of the space age and the first robotic probes preceding the landing of the astronauts on the
Moon. It discusses space robotics fundamental concepts, classification, and safety-critical
aspects for space robotics applications. The space robotics state of the art presented fo-
cuses on the International Space Station (ISS) Extravehicular Activities (EVA), the plan-
etary explorations (like the current Mars exploration), JAXA’s Hayabusa mission that
rendezvoused and landed on the 25143 Itokawa asteroid, and in the ESA/DLR’s Rosetta
spacecraft carrying its Philae robotic module which landed on the 67P / Churyumov-Gera-
simenko comet. The article includes a discussion of on-orbit servicing and rendezvous &
docking/berthing (RVD/B).

2.1 Robot Kinematics

To determine the inverse kinematics of a serial robot manipulator involves the computa-
tion of the joint angles from a given Cartesian position and orientation of the end-effector.

This computation is of primary importance in the programming and control of robot
manipulators. The corresponding procedure has to do with nonlinear algebraic equations,

Santos, Rogerio R., et al. (2022) UQ in Inverse Kinematics Space Robots by Neural Networks pp. 89-118

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 93



considering that there is no analytical closed-form solution for a general robot structure.
Consequently, it is necessary to establish a way to compute the inverse kinematics for a
wide class of robots and related tasks that are assigned to them.

When the end-effector moves along a continuous trajectory, it is not possible to switch
from one kind of solution to another, arbitrarily. Uchiyama [1979] pointed out that the
trajectories of multiple solutions intersect at singular points and solutions can be switched
only at those points. The singular points of a robotic mechanism are defined as the singu-
lar points of the implicit function, namely, the joint angles that make the Jacobian matrix
not to have full rank. Besides, singular points can bring control difficulties and poor
positioning accuracy.

Moreover, when working into complex environment, the manipulator can be subjected
to work into restricted workspaces, both for sided constraints (like walls and floor), and
for internal constraints (as the geometry of manipulated object). Effective optimization
strategies to overcome such difficulties are proposed by dos Santos et al. [2008b], dos
Santos et al. [2010], and Santos et al. [2022], among others.

Adopting the Denavit-Hartenberg convention (Spong and Vidyasagar [1989], Craig
[2005]) to define Ai, any serial robot can be represented by Equation(1). Hence, given
the base Pbase and joint qi(d, θ) values, the Cartesian position of the end-effector Pend is
given by

Pend = T n0 (q).Pbase. (2)

2.2 Inverse Kinematics

Adopting the Denavit-Hartenberg convention (Craig [2005], Spong and Vidyasagar [1989])
to define Ai, any serial robot can be represented by Equation 1. Hence, given the base
Pbase and joint qi(d, θ) values , it is possible to determine the end-effector cartesian posi-
tion Pend through the equality

Pend = T n0 (q).Pbase. (3)

To solve the inverse kinematics problem means to solve the inverse problem, i.e., given
Pbase and Pend find qi(d, θ) for which Equation 3 holds.

One approach to solve the inverse kinematics problem is to find a closed-form solu-
tion by using algebra and geometry. Although this approach is generally more desirable
in applying the solution to real-time control of robots, it is not always possible to obtain
closed-form solutions for manipulators with an arbitrary mechanism due to the complex-
ity of Equation 3.

Rather, the class of manipulators mechanisms for which the closed-form solutions are
guaranteed is very limited. The algebraic approach to closed-form solutions is related to
finding q through various algebraic transformations of Equation 3; the geometric approach
means finding q by using geometrical heuristics to take advantage of the special structure
of the manipulator.

The paper by da Fonseca et al. [2019] considers the forward and inverse kinematics
for a space robot. The main focus is to compute the position and orientation of manip-
ulators’ end-effectors relative to their platform. The set of coordinate frames follows
the convention for frames that appears in the literature for ground robot manipulators.
The kinematics related to the spacecraft attitude is added in the formulation, providing
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an overview of the kinematics equations for spacecraft-type manipulators. The inertial,
orbital, and body-fixed coordinate frames are included in the kinematics study.

2.3 Inverse kinematics as an optimization problem

Considering the manipulator kinematics described by Equation 3 and an end-effector
point defined as Pend, then it is desired to get q(d, θ) values that obey Equation 3. How-
ever,

T n0 (q).Pbase = Pend ⇒ T n0 (q).Pbase − Pend = ~0 ⇒

|T n0 (q).Pbase − Pend| = 0 (4)

Therefore, the optimal solution q∗ (i.e. minimal) of the objective function given by

f1(d, θ) = |T n0 (q(d, θ)).Pbase − Pend|2 = 0 (5)

is also solution of Equation 3, because q(d, θ) satisfies Equation 5 if, and only if, it satisfies
Equation 3. It is an expression for the misalignment between the base and tool frames,
that is, the transformation matrix align both systems of coordinates, the symbol |.| is a
vector norm, and the squared refers to the quadratic error (dos Santos et al. [2005], dos
Santos et al. [2010]). Then, the inverse kinematics parameter q(d, θ) can be achieved
through an optimization procedure by using Equation 5 as the objective function.

This approach has the main advantage of representing a generic procedure that can
be developed for different architectures of serial robot manipulators. As will be shown,
this approach leads to efficient computation of the inverse kinematics (positioning and
orientation) by using global and local optimization methods.

Along the investigation of the optimization problem, there are two kinds of solution
points (Luenberger and Ye [2008]): local minimum points, and global minimum points.
The definitions below are related to these solution points.

Definition A point q∗ ∈ Ω is said to be a relative minimum point or a local minimum
point of f over Ω if there is an ε > 0 such that f(q) ≥ f(q∗) for all q ∈ Ω and |q−q∗| < ε.
If f(q) > f(q∗) for all q ∈ Ω, q 6= q∗, |q − q∗| < ε, then q∗ is said to be a strict relative
minimum point of f over Ω.

Definition A point q∗ ∈ Ω is said to be a global minimum point of f over Ω if f(q) ≥
f(q∗) for all q ∈ Ω. If f(q) > f(q∗) for all q ∈ Ω, q 6= q∗, then q∗ is said to be a strict
global minimum point of f over Ω.

As the inverse kinematics solution q(d, θ) of Equation 5 is also a global minimum, it
is possible to obtain the inverse kinematics by means of a global optimization procedure.

The local minimum of Equation 5 can be easily obtained by classical nonlinear opti-
mization methods, such as the Gradient method, the Conjugate Gradient method, and the
Quasi-Newton based methods, among others. However, it can result a minimum which
does not satisfy f1(q) = 0. Then, Equation 5 does not hold. To avoid this situation, the
initial point is changed and the optimization is performed until the global minimum is
achieved.
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To improve the robustness of the process, it is possible to use a global minimizer.
There are many methods devoted to find a global minimum of a nonlinear objective func-
tion, despite that to find a global minimum is not an easy task. Well known methods
such as genetic algorithms (Le Grand and Merz Jr. [1993]), differential evolution algo-
rithm (Storn and Price [1997]), simulated annealing (Romeijn and Smith [1994]), or other
heuristic (Choze et al. [2022a]) could be used in this case. The main characteristic of these
methods is that the global (or near global) optimum is obtained through a high number of
functional evaluations.

3 Inverse Kinematics of Space Robots

To solve the inverse kinematics problem means to solve the inverse problem, i.e., given
Pbase and Pend, find qi(d, θ) for which Equation 2 holds. It will require the solution of the
inverse problem

min
θi
|T n0 (q(θi))Pbase − Pend| (6)

The Denavit-Hartenberg parameters of the manipulator, as seen in Figure 1, is shown
in Table 1. The parameter a refers to a fixed translation while α represents a fixed rotation

Table 1: Denavit-Hartenberg parameters.

Joint a (m) α (rad) d (m) θ (rad)
1 0 1.57 0 θ1
2 1 0 0 θ2
3 1 0 0 θ3
4 1 0 0 θ4

of the coordinate system. The joint value d express a translation joint while θ represents
the angle of a rotational joint (Craig [2005], Spong and Vidyasagar [1989]).

The classical formulation of the industrial device, Equation 2, contains the hypothesis
that the base of the manipulator is fixed. Since the satellite is traveling in orbit and may
floats under the reaction forces and torque arising from the joints’ motion control, the
system dynamics (satellite plus the attached manipulator) is more complex than that of
manipulators dynamics on ground. Therefore, to contemplate the dynamic effects along
the movement, a higher fidelity model is considered.

The high fidelity model is build using the OpenModelica software (Fritzson et al.
[2005]), which provides a multibody dynamics library and will compute the coupled ef-
fects between the robot and the satellite while floating in the space. The parameters are
shown in Table 2.

Given the displacement ∆ of the satellite, the position Peffector of the end-effector and
the position Ptarget of the target, the inverse problem for obtaining the inverse kinematics
is given by

min
θi
|{Peffector(θi) + δ(θi)} − Ptarget| (7)

which minimum value corresponds to the Euclidean distance between the end-effector
and the target. The disturbance due to multiple dynamic effects and coupling between
satellite and robot is accounted for by the δ parameter (Fonseca et al. [2021]).
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Table 2: Satellite and robot parameters for dynamics computation.

Device Dimensionx,y,z (m) Mass (kg)
Satellite 1× 1× 1 90
Link 1 1× 0.05× 0.05 0.3
Link 2 1× 0.05× 0.05 0.3
Link 3 1× 0.05× 0.05 0.3

4 Path Planning

An important aspect of the robotic device is the ability to compute a trajectory that de-
scribes the desired motion of a manipulator in multidimensional space. It consists in
a time history of position, velocity, and acceleration for each degree of freedom of the
manipulator.

Multiple strategies are available and in the simplest case the mission will specify the
desired goal position and orientation of the end-effector and the exact shape of the path
to get there, the duration, the velocity profile, and other details will be automatically
established by an algorithm.

The desired outcome of a plan will be represented in terms of the state and actions
that are executed. The main goals of a trajectory planning system are:

1. Feasibility: find a plan that causes arrival at a final state, regardless of its efficiency;

2. Optimality: find a feasible plan that optimizes performance following one or more
performance indices, in addition to arriving in a goal state.

Furthermore, in order to guarantee smooth paths, some sort of constraints may be
included on the spatial and temporal aspects of the path through the usage of via points,
which consists in the establishment of intermediate points between the initial and the final
configurations.

The initial position of the manipulator is known according to a Cartesian reference and
also in the form of a set of joint angles. A planning strategy shall provide a set of joint
angles whose value at t0 is the initial position of the joint and the set of joint angles at tf is
the desired goal position of that joint. In making a smooth motion through a polynomial
function, at least four constraints will arise. Two constraints are due to the selection of
initial and final values:

θ(0) = θ0

θ(tf ) = θf

Two additional constraints are due to the continuity in velocity, which in this case
means that the initial and final velocities are zero:

θ̇(0) = 0

θ̇(tf ) = 0

These four constraints can be satisfied by a polynomial of third degree. Satisfying
such constraints uniquely specify a particular cubic polynomial. A cubic has the form

θ(t) = a0 + a1t+ a2t
2 + a3t

3
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and the joint velocity and acceleration are:

θ̇(t) = a1 + 2a2t+ 3a3t
2

θ̈(t) = 2a2 + 6a3t

Combining the equations of velocity and acceleration with the four desired constraints
yields four equations in four unknowns:

θ0 = a0

θf = a0 + a1tf + a2t
2
f + a3t

3
f

0 = a1

0 = a1 + 2a2tf + 3a3t
2
f

Solving the equations for ai, it follows that the explicit values of constants are

a0 = θ0

a1 = 0

a2 =
3

t2f
(θf − θ0)

a3 = − 2

t3f
(θf − θ0)

and uniquely defines a cubic polynomial.
In the case t0 = 0 s, tf = 30 s, θ0 = 0 rad and θf = π

2
rad, the ai parameters are

a0 = 0, a1 = 0, a2 = 0.0052 and a3 = −0.0001. The polynomial θ(t) is shown in Figure
2.

This concept can be generalized through an interpolation scheme. For this, the inter-
mediate reference r1 and the final reference point r2 are added to the analysis. By moving
the position of the reference points, a spline interpolation scheme is applied to the refer-
ences r0, r1 and r2. The concept is shown in Figure 3. Different interpolation data will
lead to a different physical movement.

5 Torque and mechanical power

The Lagrangian L = K − P is defined by the difference between the kinetic energy K
and the potential energy P of the system. The dynamics of the system can be described
by the Lagrange equation as given by:

ui =
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
(8)

where, qi are the generalized coordinates (θi for rotational joints and di for prismatic
joints); q̇i are the generalized velocities (angular velocity θ̇i for rotational joints and q̇i for
prismatic joints); and ui are the generalized forces.

By using Equation 8, the generalized forces ui can be written as:

ui =
n∑
j=1

Dij q̈j + Iaiq̈i +
n∑
i=1

j∑
k=1

Cijkq̇j q̇k +Gi (9)
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Figure 2: Cubic interpolation of joint coordinates.

where, Dij is the inertia matrix of the system; Cijk is the matrix that takes into account
Coriolis and centrifugal effects; Iai represent the inertia of the actuators, and Gi is the
vector of gravitational forces.

Due to the relationship that exists between energy and force, the minimal energy can
be estimated from the generalized force ui(t) that is associated to each joint i at the time
instant t. The mechanical power can be used for design purposes, as defined by:

f =

∫ tf

t0

n∑
i=1

(
uTi (t)q̇i(t)

)2
dt (10)

This expression is representative of the phenomenon under study because it considers
both the kinematic and dynamical aspects of the trajectory, simultaneously (Steffen Jr.
and Saramago [1997], Saramago and Steffen Jr. [1998]).

Should be pointed out that by using a discrete set with limited number of intermediate
reference points, the interpolation schema provides a trajectory with relevant information
in terms of mechanical energy (dos Santos et al. [2008a]).

In the scenario of space missions, the joint forces and torques may incur in disturbance
over the satellite and end-effector movements. The paper by da Fonseca et al. [2018] deals
with the dynamic analysis of the close approach phase of a space robot to a target space-
craft. The computer simulations of the equations of the dynamics (relative orbital and
attitude equations of motion) yields the grasping conditions and the results are compared
with the inverse kinematics grasping operation implemented in a lab experiment.

An alternative to describe the spacecraft dynamics is to use software that requires only
a geometric description of the system, as described in the next section.
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Figure 3: Spline interpolation of joint coordinates through reference points r1 and
r2.

6 Multibody modeling approach with OpenModelica software package

The paper Pulecchi and Lovera [2006] discusses the suitability of Modelica language
for modeling Attitude and Orbit Control Systems (AOCS). The ability to use multiple
coordinate frames through visual connectors, the existence of rich MultiBody Library to
describe spacecraft dynamics, and the ability to describe multi-physics domains are some
key aspect cited by the authors.

The Modelica language allows defining models in a declarative way, in hierarchical
modules, combining several formalisms: ordinary differential equations (ODE), differential-
algebraic equations (DAE), bond graphs, and finite state automata.

The multiple-domain capability of the language allows combining electrical, mechan-
ical, hydraulic, and thermodynamic model components on the same application Fritzson
et al. [2005]. By default, OpenModelica transforms a Modelica model into an ODE rep-
resentation to perform a simulation by using numerical integration methods. DASSL is
the default solver in OpenModelica. It is an implicit, high-order, multi-step solver with a
step-size control (Petzold [1982]).

Elementary objects such as mass, spring, damper, and joints can be represented by
visual elements, and do not require any explicit knowledge of the mathematical equations.
An example of a 4-joint, 3-link robotic manipulator is shown in Figure 4.

As a result, the satellite body, joints, links and other mechanical and electrical ele-
ments are represented by building blocks. In this context, there is no need to write the
dynamics equations explicitly. Code 1 shows a fragment of the automatically generated
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Figure 4: Fragment of a Space Robot model in OpenModelica.

equations. The corresponding Denavit-Hartenberg parameters are given in Table 1.
The satellite and robotic arm of the present work rely on a computational model

built in OpenModelica software. A more in-depth discussion of software features and
aerospace applications can be found in the works of Fritzson et al. [2006], Elmqvist et al.
[1998], Lovera and Pulecchi [2006], Looye [2008], Briese et al. [2017], Moorman and
Looye [2002], and Chen et al. [2017].

Some commercial front-ends for Modelica include AMESim (Siemens Software), Dy-
mola (Dassault Systemes), Wolfram SystemModeler (Wolfram Research), SimulationX
(ESI ITI GmbH), MapleSim (Maplesoft) and CATIA Systems Dynamic Behavior (Das-
sault Systemes).
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Code 1: Code fragment of a Space Robot model in OpenModelica.
model SpaceRobot
inner Modelica.Mechanics.MultiBody.World world(axisLength =

↪→ 1, gravityType = Modelica.Mechanics.MultiBody.Types.
↪→ GravityTypes.UniformGravity, n = {0, 0, -1});

Modelica.Mechanics.MultiBody.Joints.Revolute revolute1(n =
↪→ {0, 1, 0},phi(displayUnit = "rad", fixed = false,
↪→ start = 0), useAxisFlange = true);

Modelica.Mechanics.MultiBody.Joints.Revolute revolute2(n =
↪→ {0, 1, 0},phi(displayUnit = "rad"), useAxisFlange =
↪→ true);

(...)
Modelica.Mechanics.MultiBody.Parts.BodyShape Link1(m = 0.3,

↪→ r = {1, 0, 0}, r_CM = {0.5, 0, 0}, shapeType = "box
↪→ ", sphereDiameter = 0.01);

Modelica.Mechanics.MultiBody.Parts.BodyShape Link2(color =
↪→ {135, 206, 235},m = 0.3, r = {1, 0, 0}, r_CM = {0.5,
↪→ 0, 0}, shapeType = "box", sphereDiameter = 0.01);

Modelica.Mechanics.MultiBody.Sensors.AbsolutePosition
↪→ effectorPosition(resolveInFrame = Modelica.Mechanics.
↪→ MultiBody.Types.ResolveInFrameA.world);

Modelica.Mechanics.MultiBody.Parts.BodyShape Satellite(
↪→ color = {200, 200, 200},height = 0.99, length = 0.99,
↪→ m = 90, r = {1, 0, 0}, r_CM = {0.5, 0, 0}, shapeType
↪→ = "box", sphereDiameter = 0.1, width = 0.99,
↪→ widthDirection = {0, 0,1});

(...)
equation
connect(world.frame_b, traZ.frame_a);
connect(Satellite.frame_b, satAngles.frame_a);
connect(Satellite.frame_b, satPosition.frame_a);
connect(revolute3.frame_b, link3.frame_a)
(...)
connect(Link1.frame_b, revolute2.frame_a);
connect(Link2.frame_b, revolute3.frame_a);
connect(revolute0.frame_b, revolute1.frame_a);
connect(Satellite.frame_b, fixedTranslation.frame_a);
annotation(uses(Modelica(version = "3.2.2")),Diagram);
end SpaceRobot;
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7 Uncertainty Quantification

The satellite and the robotic serial manipulator are coupled as shown in Figure 5. Four
joint coordinates and tree links are considered. The Denavit-Hartenberg parameters (Table
1) that describe this robot are associated with eight reference points r1, . . . , r8, as shown
in Table 3.

θ2

θ3

θ4
θ1

y

x

z

Figure 5: Space robot manipulator.

Table 3: Joint coordinate nomenclature.

Joint Design variables Joint coordinate
1 r1, r2 θ1(r1, r2, t)
2 r3, r4 θ2(r3, r4, t)
3 r5, r6 θ3(r5, r6, t)
4 r7, r8 θ4(r7, r8, t)

The berthing operation involves rendezvous between two orbiting space vehicles fol-
lowed by berthing (grasping our capture operation). The relative attitude implies synchro-
nizing the attitude motion of both spacecraft so that the relative attitude is zero. The same
is valid fort the relative position. When the relative velocity is zero, the position of the
center of mass of both spacecraft stays at the same distance from each other.

In the present work, the berthing box (Fehse [2003]) is centered at the position (x, y, z) =
(2.50, 0.00, 0.70) m in relation to the satellite origin and encompasses the uncertainty of
(∆x,∆y,∆z) = (±0.21,±0.21,±0.21) m.

The numerical computations where performed using the R software (R Core Team
[2020]) and considered the following step:
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• Nonlinear programming algorithm (Johnson [2020]) solving the inverse problem
(Equation 6);

• Nonlinear programming algorithm solving the inverse problem (Equation 7);

• Neural Network algorithm (Paszke et al. [2019]) learning the inverse kinematics
solution from historical data.

These steps are evaluated as detailed in Algorithm 1.

Algorithm 1: Inverse kinematics computation.
t0 ← 0
tf ← final time
Pend ← Cartesian coordinates of target
(θ1, θ2, θ3, θ4)0 = (0, 0, 0, 0)
/* Generate estimate from low fidelity model */

θ̃i ← minθi |T n0 (q(θi))Pbase − Pend| , i = 1, . . . , 4
/* Optimize high fidelity model */

Initial guess← θ̃i
~θf ← minθi |T n0 (q(θi)) {Pbase(θi) + ∆(θi)} − Pend| , i = 1, . . . , 4
/* Save historical designs */
n← number of optimization iterations
~θhist = (~θf )k, k = 1, . . . n
~Phist = (~Pend)k, k = 1, . . . n
~∆hist = (~∆(θf ))k, k = 1, . . . n
/* Neural network training */

RNN ← training from historical data {~θhist, ~Phist, ~∆hist}.

In the following, 36 cases with distinct target points Pend were analyzed. The results
provided by the DH algorithm are summarized in Table 4. The error corresponds to the
distance between the end-effector and the target, computed through the high fidelity model
(Equation 7). The measurement of the distance between the end-effector and the target
confirmed that the stationary point was an optimal design.

The error dispersion, summarizing the distance between the end-effector and the target
for all cases, is shown in Figure 6. After the optimization process, the final result (Figure
6, on the right side) was below the threshold ε = 0.004 m. The choice of a Nonlinear
Programming strategy has a direct influence on the convergence rate and on the accuracy
of the result. A comprehensive exposition of techniques and features can be found in
the chapter “An overview of Linear and Non-linear Programming methods for Structural
Optimization” (Choze et al. [2022b]) of this book series.
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Table 4: Number of iterations and final error obtained from DH strategy.

Case Target (m) DH Iter. DH Error (m)
1 ( 2.500, 0.000, 0.700) 141 0.004
2 ( 2.710, 0.210, 0.910) 121 0.003
3 ( 2.710, 0.210, 0.490) 174 0.003
4 ( 2.710, -0.210, 0.910) 111 0.003
5 ( 2.710, -0.210, 0.490) 153 0.003
6 ( 2.290, 0.210, 0.910) 117 0.003
7 ( 2.290, 0.210, 0.490) 151 0.002
8 ( 2.290, -0.210, 0.910) 127 0.003
9 ( 2.290, -0.210, 0.490) 139 0.003

10 ( 2.471, 0.050, 0.600) 145 0.003
11 ( 2.600, -0.023, 0.708) 136 0.003
12 ( 2.576, -0.051, 0.607) 150 0.003
13 ( 2.486, 0.103, 0.688) 144 0.003
14 ( 2.428, 0.007, 0.653) 137 0.003
15 ( 2.478, -0.102, 0.616) 139 0.003
16 ( 2.559, -0.011, 0.670) 145 0.003
17 ( 2.568, 0.090, 0.675) 136 0.004
18 ( 2.583, 0.056, 0.721) 137 0.003
19 ( 2.405, 0.075, 0.741) 166 0.003
20 ( 2.535, -0.078, 0.777) 134 0.004
21 ( 2.501, -0.061, 0.635) 148 0.002
22 ( 2.596, 0.035, 0.803) 117 0.002
23 ( 2.518, 0.023, 0.658) 141 0.003
24 ( 2.417, -0.070, 0.757) 141 0.003
25 ( 2.461, -0.088, 0.693) 139 0.002
26 ( 2.398, -0.037, 0.623) 148 0.003
27 ( 2.456, 0.070, 0.745) 132 0.003
28 ( 2.493, -0.015, 0.731) 130 0.002
29 ( 2.525, -0.096, 0.700) 150 0.003
30 ( 2.507, 0.013, 0.783) 136 0.003
31 ( 2.545, 0.040, 0.630) 137 0.002
32 ( 2.442, -0.031, 0.767) 137 0.003
33 ( 2.423, -0.003, 0.714) 141 0.003
34 ( 2.552, -0.050, 0.760) 141 0.002
35 ( 2.443, 0.087, 0.644) 126 0.002
36 ( 2.531, 0.066, 0.796) 132 0.003
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Figure 6: Error dispersion before and after the optimization process.
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Code 2: Code of a Neural Network architecture to estimate the Cartesian position
error.
class Net(T.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hid1 = T.nn.Linear(8, 2400)
self.outp = T.nn.Linear(2400, 1)

def forward(self, x):
x = T.relu(self.hid1(x))
x = self.outp(x)
return x

7.1 Error due to model simplification

Once the satellite is traveling in space, it may present oscillations influenced by the robotic
movement, and is subject to the influence of external forces from the environment. As a
result, the hypothesis of fixed robotic base (Equation 1) is not feasible in some situations.
The Neural Network model, as shown in Code 2, is considered to estimate the discrepancy
between the model with a fixed base and the model with a floating base.

The uncertainty that arises from this approach is evaluated by the computation of the
same joint design ~θ(r, t) by using the high fidelity model (Figure 4), and the difference
between results of Equations 6 and 7 is shown in Figure 7. There is a similar pattern in
terms of error dispersion along x, y and z dimensions, as shown in Figure 8.

The error is negligible in some situations but relevant in another. As a result, the
optimization problem 6 given an useful estimate of joint angles at the expense of low
computational power requirements. Notice that the median of the error (horizontal heavy
line on the plot) is similar in all tree dimensions.

The most important reference points are those representing the final joint angles. Joint
angles at the final time θi(tf ) corresponds to a Cartesian position of the end-effector. The
cumulative error between the target and the end-effector is shown in Figure 9.

The z-axis has large deviation than other dimensions. According to the present con-
vention (Figure 5) there is a higher displacement in the vertical axis while evaluating the
target set (Table 4). The procedure is further detailed in Algorithm 2.

Algorithm 2: Inverse kinematics computation through the mathematical model.
t0 ← 0
tf ← final time
Pend ← Cartesian coordinates of target
(θ1, θ2, θ3, θ4)0 = (0, 0, 0, 0)
/* Generate estimate from low fidelity model */
~θf ← minθi |T n0 (q(θi))Pbase − Pend| , i = 1, . . . , 4

The main advantage of this procedure is the low computational cost of the CPU, which
allows the evaluation of a multitude of scenarios under a low computational budget.
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Figure 7: Historical error histogram along the x, y and z axes.
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Figure 9: Cumulative error along the x, y and z axes.
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Code 3: Code of a Neural Network architecture to estimate the joint angle value.
class Net(T.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hid1 = T.nn.Linear(10, 2700)
self.hid2 = T.nn.Linear(2700, 1031)
self.hid3 = T.nn.Linear(1031, 394)
self.hid4 = T.nn.Linear(394, 150)
self.hid5 = T.nn.Linear(150, 57)
self.hid6 = T.nn.Linear(57, 22)
self.outp = T.nn.Linear(22, 1)

def forward(self, x):
x = T.relu(self.hid1(x))
x = T.relu(self.hid2(x))
x = T.relu(self.hid3(x))
x = T.relu(self.hid4(x))
x = T.relu(self.hid5(x))
x = T.relu(self.hid6(x))
x = self.outp(x)
return x

7.2 Error on meta-modeling estimate

The calculation of the inverse kinematics though Equation 7 generated a history of 4949
joint coordinates θ and positions of end-effector Pend.

This section will discuss the existence of a meta-model that can learn from this data
and predict the inverse kinematics configuration of other target points. The training data
will be based exclusively on the historical data set acquired from the optimization proce-
dure done in the previous section.

The values used to train a Neural Network consist of a subset of 3959 sample points,
which corresponds to 80% of the data available. The meta-model will predict the optimal
value of each reference point ~r = (r1, . . . , r8). These points are used to calculate the
value of the joint coordinates θ(~r, t) in the time interval t ∈ [t0, tf ]. The model is tested
against a subset of 990 points not used in the training phase, which corresponds to 20%
of the data. The general architecture of the Neural Network is presented in the Code 3,
following the syntax of PyTorch.

The difference between reference points ~e = ~ropt − ~rrnn computed through optimiza-
tion and the Neural Network is summarized in Figure 10. The majority of the results are
near zero. The mean value and standard deviation are (ē1, σ1) = (0.0000, 0.0421) and
(ē2, σ2) = (−0.0007, 0.0050) for r1 and r2, respectively.

Continuing with the analysis of the second joint, the mean value and the standard
deviation are (ē3, σ3) = (−0.0152, 0.1937) and (ē4, σ4) = (−0.0039, 0.0085) for r3 and
r4, respectively. The histogram is shown in Figure 11.

The analysis of the third joint led to the mean value and standard deviation of (ē5, σ5) =
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Figure 10: Historical error histogram of joint 1.
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Figure 11: Historical error histogram of joint 2.

(0.0126, 0.2007) and (ē6, σ6) = (−0.0011, 0.0102) for the r5 and r6 reference points, re-
spectively. The histogram is shown in Figure 12.

Finally, the analysis of the fourth joint resulted in a mean value and standard deviation
of (ē7, σ7) = (−0.0106, 0.1944) and (ē8, σ8) = (0.0046, 0.0132) for the reference points
r7 and r8, respectively. The histogram is shown in Figure 13.

The standard deviations at the end times σ2, σ4, σ6 and σ8 are smaller than their inter-
mediate time counterparts (σ1, σ3, σ5 and σ7). It means that the calculation of the reference
point at the final time (r2, r4, r6 and r8) is more accurate than the estimated value at the
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Figure 12: Historical error histogram of joint 3.
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Figure 13: Historical error histogram of joint 4.

intermediate time. It is important from a practical point of view because the joint angle at
the end time is critical to the accuracy of the end-effector towards the target.

A comparison of the error dispersion between all reference points is presented in Fig-
ure 14. Note that the median and quartiles follow a similar trend as discussed in the
previous paragraph.

The accumulated error of the final time reference points (r2, r4, r6 and r8) are shown
in Figure 15. The biggest error was found in the last reference point r8. A valid approach
to mitigating this problem is to investigate the existence of a custom neural network archi-
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tecture that improves the quality of results. In the present study, the same neural network
architecture was used as a meta-model for all reference points. Although an independent
training procedure was performed to estimate the weights of the network used in the cal-
culations of each reference ri, it was found that the quality of the model is different in
each case.

As a final observation, the results of a neural network proved to be useful to estimate
the value of reference points that will meet the inverse kinematics criteria. Despite the fact
that in specific circumstances a large error can occur, this methodology is really efficient in
providing a good estimate for the optimization procedure. As a result, the combined use of
a Neural Network (for a robust estimation) and the technique of Nonlinear Programming
(for an accurate solution) is recommended as a powerful tool in the path planning of space
robots.

8 Conclusion

The present study analyzed the uncertainty that arises in the movement of a space robot
composed of a satellite and a serial manipulator. The first model described the robot
kinematics using rotation and translation matrices. No force effects are considered.

The second model used a multibody formulation written in OpenModelica software.
In this case, forces and torques are transmitted between the robot and the satellite. The
end-effector positioning error in both cases was compared.

A Neural Network was trained on the PyTorch platform to identify disparities be-
tween models and learn from historical data. The trained model was found to be a robust
predictor of joint angle values. In most cases, it gives a result with sufficient accuracy.

The Nonlinear Programming methodology benefited from this estimate as initial guess
for the optimization process. The procedure is efficient in providing accurate calculations
for inverse kinematics computation.

It was confirmed that the combined use of Neural Network and Nonlinear Program-
ming strategies is an efficient approach for the calculations of inverse kinematics, which
increases robustness and speeds up the process.

Acknowledgments

D.A. Rade acknowledges the Brazilian research agencies Fundação de Amparo à Pesquisa
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The OpenModelica Modeling, Simulation, and Software Development Environment.
Simulation News Europe, 15(44/45):8–16, Dec. 2005.

P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nystrom, L. Saldamli, D. Broman,
and A. Sandholm. Openmodelica - a free open-source environment for system model-
ing, simulation, and teaching. In 2006 IEEE Conference on Computer Aided Control
System Design, 2006 IEEE International Conference on Control Applications, 2006
IEEE International Symposium on Intelligent Control, pages 1588–1595, 2006. doi:
10.1109/CACSD-CCA-ISIC.2006.4776878.

S. G. Johnson. The NLopt nonlinear-optimization package. 2020. URL https://
cran.r-project.org/package=nloptr.

D. Kuang, S. Desai, and A. Sibois. Observed features of gps block iif satellite yaw
maneuvers and corresponding modeling. GPS solutions, 21(2):739–745, 2017.

S. M. Le Grand and K. M. Merz Jr. The application of the genetic algorithm to the
minimization of potential energy functions. Journal of Global Optimization, 3(1):49 –
66, 1993.

G. Looye. The new dlr flight dynamics library. In Proceedings of the 6th International
Modelica Conference, volume 1, pages 193–202, 2008.

M. Lovera and T. Pulecchi. Object-oriented modelling for spacecraft dynamics: A
case study. In 2006 IEEE Conference on Computer Aided Control System Design,

Santos, Rogerio R., et al. (2022) UQ in Inverse Kinematics Space Robots by Neural Networks pp. 89-118

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 116



2006 IEEE International Conference on Control Applications, 2006 IEEE Interna-
tional Symposium on Intelligent Control, pages 1898–1903, 2006. doi: 10.1109/
CACSD-CCA-ISIC.2006.4776930.

D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 3rd edition,
2008.

D. Moorman and G. Looye. The modelica flight dynamics library. In Proceedings of the
2nd International Modelica Conference, Oberpfaffenhofen, Germany, 2002.
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Abstract 

Over the past few decades, metamodeling tools have received attention for their ability 

to represent and improve complex systems. The use of metamodeling techniques in 

optimization problems via simulation has grown considerably in recent years to 

promote more robust and agile decision-making, determining the best scenario among 

the solution space to the problem. In this sense, this Chapter discusses the state of the 

art of metamodeling-based simulation optimization, presenting the gaps, opportunities, 

and future perspectives found in literature. 
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In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 120

mailto:joao.amaral@unifei.edu.br
mailto:montevechi@unifei.com.br
mailto:rafael.miranda@unifei.edu.br


1. Introduction 

 

 Production systems need to include increasingly effective decision-making 

tools to ensure organizational competitiveness, customer satisfaction, and cost reductions 

(Salam and Khan, 2016). According to Law (2013), analytical solutions are effective 

when systems are relatively simple. However, the author states that most real systems are 

too complex for analytical analyses. Simulations were developed to predict and evaluate 

complex, stochastic, and often analytically intractable system performance (Xu et al., 

2016). 

 One advantage of using simulations is reduced decision-making risk, since 

simulations allow different scenarios to be evaluated without physically interfering in 

production systems (Helleno et al., 2015). Since not all possible scenarios can be 

practically evaluated, Simulation Optimization (SO) is used to achieve these goals 

(Barton, 2009). 

 The SO field has progressed significantly over the past decade with newly 

developed algorithms, implementations, and applications. There have been significant 

contributions to this field of research given the work of researchers and practitioners, 

mainly in the fields of engineering, industrial operations, mathematical programming, 

statistics, machine learning, and computer science (Amaran et al., 2016). 

 SO finds the input values of a simulation model that gives the best outputs 

(Belgin, 2019). According to Fu (2002), SO can be divided into two phases: 1) generating 

possible candidates for solving the problem; and 2) evaluating solutions using simulation 

model estimates. Figure 1 shows this process. 

  

 
Figure 1: General SO process. 

Source: Adapted from Fu (2002). 

 

 According to Miranda et al. (2017), several SO techniques have been developed 

in recent years, e.g., heuristics and metaheuristics, that have still been little explored by 

scientific literature. 

 SO methods can be classified into two categories, model-based and metamodel-

based methods. Moghaddam and Mahlooji (2017), explain that the optimization and 

simulation modules are directly integrated with each other in model-based methods, 

where optimization occurs according to the solutions that need to be evaluated, then the 

simulation evaluates them. A third component, called a metamodel, exists in metamodel-

based approaches, which identifies and estimates the relationship between simulation 

model inputs and outputs as a deterministic mathematical function that is used to evaluate 

possible simulation and optimization solutions (Barton and Meckesheimer, 2006; 

Moghaddam and Mahlooji, 2017; Parnianifard et al., 2020a). 
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 The model-based approach is the most popular and widespread method according 

to literature. However, when a simulation model is very complex, and when a problem 

solution space is large, a SO process using these techniques is too slow, and may require 

hours or months to converge to an acceptable local optimum value, making use unfeasible 

for several applications (Cai et al., 2019; Miranda et al., 2014). On the other hand, 

metamodeling techniques have been increasingly used over the last decade to reduce 

computational optimization times (Parnianifard et al., 2019). 

 Metamodeling techniques have been applied in several engineering and 

management branches, e.g., optimally allocating operators and equipment on factory 

floors (Amaral et al., 2022), planning and controlling traffic to minimize travel times 

(Xiao Chen, Osorio, and Santos, 2019), structurally designing vehicles to reduce weight 

(Fu and Sahin, 2004), finding optimal sizes for concrete barrier designs (Yin et al., 2016), 

and geometrically optimizing laminated composite wind turbine blades to reduce weight 

(Albanesi et al., 2018), etc. 

 Currently, several algorithms are used to build metamodels. Some examples 

include Response Surface Methodology (RSM) (Hassrnaayebi et al., 2019; Shirazi; 

Mahdavi; Amiri, 2011), the Kriging algorithm (Baquela and Olivera, 2019; Pedrielli et 

al., 2020), the Radial Basis Function (RBF) (Christelis and Mantoglou, 2016; Yin et al., 

2016), and Artificial Neural Networks (ANN) (Raei et al., 2019; Storti et al., 2019). 

 Given these various methods, and the growing importance of metamodeling for 

complex engineering problems, this study seeks to provide readers with a review of the 

main metamodeling concepts as applied to SO problems. Furthermore, this chapter will 

conduct a Systematic Literature Review (SLR), to provide a holistic view of how this 

topic is addressed in literature. 

 

2. Background 

  

 According to Lin and Chen (2015), optimization via simulation is a powerful 

decision-making tool, since this technique can understand various relationships in 

complex real-world systems, to identify the best solution to a given problem. According 

to Souza Junior et al. (2019), SO helps decision-makers invest or allocate resources in 

new or existing production systems. 

 Amaran et al. (2016), define SO as an optimized Objective Function (OF), that is 

subject to constraints, which is then evaluated using stochastic simulations. Carson and 

Maria (1997), state that SO is a process of identifying the best input values for simulated 

system variables, and evaluating solutions using a loop created between the optimization 

algorithm and the simulation model. 

 The SO field of study has evolved significantly over the last decade, in light of 

newly developed algorithms, software programs, and applications. Amaran et al. (2016), 

state that the general formulation of an SO problem can be expressed as in Eq. (1). 

 

    Min 𝔼𝜔[𝑓(𝑥, 𝑦, 𝜔)] 

𝑠. 𝑎.  𝔼𝜔[𝑔(𝑥, 𝑦, 𝜔)] ≤ 0

     ℎ(𝑥, 𝑦) ≤ 0
      𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢

        𝑥 ∈  ℝ𝑛, 𝑦 ∈  𝔻𝑚

 
(1) 
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 Where 𝔼𝜔 is the expected value of function f, which is evaluated by simulating 

continuous x inputs, or discrete y inputs, subjected to a random number vector ω. 

Likewise, restrictions are defined by function g values that are evaluated in each 

simulation. Problems may also contain other constraints (represented by h) that do not 

involve random variables, or contain constraints linked to decision variables. 

 By contrast, Miranda et al. (2017), states that long computational times are 

required for the optimization algorithm to converge to a good result for SO problems 

addressing complex systems with very large solution spaces. Barton (2009), states that 

this has led researchers to develop specialized SO methods, which include:  

 

• ranking and selection;  

• heuristics and metaheuristics;  

• random searches; and  

• metamodeling. 

 

 According to De La Fuente and Smith (2017), the more complex the studied 

system, the more time required for performing optimizations. According to the authors, 

to obtain good results in a timely manner, one would need to elevate problems to another 

level of abstraction, i.e., a metamodel. 

 Metamodeling is commonly used for developing representations of simulation 

models (De La Fuente et al., 2019). A metamodel can understand relationships between 

decision variable values and simulation outputs, providing OF approximations faster than 

the original simulation model (Jalali and Nieuwenhuyse, 2015). In layman's terms, a 

simulation model is an abstraction of a real system, and similarly, a metamodel is an 

abstraction of a simulation model (a model of another model), making evaluations simpler 

and faster, albeit while less accurately representing real systems. Figure 2 shows this 

relationship. 

 Once a metamodel has been trained and validated it can replace the original 

simulation model in SO processes, thereby considerably reducing computational times 

for optimization convergence, as shown in Figure 3. This process is called Metamodel 

Based Simulation Optimization (MBSO). 

 Several metamodeling methods and applications have emerged in literature in 

recent years to create more reliable metamodels. Barton (2009), stands out, especially for 

comparing the main methods used for these applications, i.e., RSM, RBF, Kriging, RNA, 

and spline. Hannah, Powell, and Dunson (2014), proposed an MBSO method based on a 

semi-convex regression. Yousefi et al. (2018), used ensemble methods in an agent-based 

simulation model to reduce average wait times in the healthcare sector, 
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Figure 2: Relationship between real-world scenarios, simulation models, and metamodels. 

Source: (Li et al., 2010). 

  

 

 
Figure 3: SO process (a) and MBSO process (b). 

 

 Souza Junior et al. (2019), studied the integrations between metamodeling, 

parallel processing and metaheuristics appltied to production engineering problems, and 

Woldemariam and Lemu (2019), used ANN and Genetic Algorithm (GA) metamodeling 

to optimize fluid dynamics analysis models. Hullen et al. (2020), proposed strategies for 

dealing with SO uncertainty by combining ML with stochastic programming, robust 

optimizations, and discrepancy modeling. 

 Sections 2.1 – 2.3 address the concepts involved in the main machine learning 

algorithms used to build metamodels, performance metrics, hyperparameter optimization 

techniques used in these algorithms, and a brief explanation of one of the most widely-

used MBSO designs, the Latin Hypercube Design (LHD), all to aid in better 

understanding the algorithms and techniques common to metamodeling studies. 
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2.1 Machine Learning Algorithms 

 

2.1.1 Gaussian Process 

 

 Also known as the Kriging algorithm, the Gaussian Process (GP) is a non-

parametric Bayesian approach using variables following Gaussian distribution (Kleijnen, 

2014). The main goal is to define a probability for infinite functions, by adding finite 

points that result in a function passing directly over these points (Ostergard et al., 2018). 

Nguyen-Tuong et al. (2009), state that given a set of n training data {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛 , the 

function f(xi) seeks to learn from input data (xi) transformed into response variables (yi), 

converging according to Eq. (2), where 𝜖𝑖 is the Gaussian noise function, with zero mean, 

and variance 𝜎𝑛
2. 

 

 𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖 (2) 

 

 The GP is a stochastic process, whereby any finite group of model entry points 

are incorporated into Gaussian distribution, expressed as 𝑓(𝑥) ~𝐺𝑃[𝜇(𝑥), 𝐾(𝑋, 𝑋))], 
where 𝜇(𝑥) and 𝐾(𝑋, 𝑋) are the mean and the covariance functions, respectively (Wan 

and Ren, 2015). Here, the covariance functions are normally given via a Gaussian kernel, 

as per Eq. (3) (Nguyen-Tuong et al., 2009). 

 
𝑘(𝑥𝑝, 𝑥𝑞) = 𝜎𝑠

2 exp (−
1

2
(𝑥𝑝 − 𝑥𝑞)

𝑇
𝑊(𝑥𝑝 − 𝑥𝑞)) (3) 

 

 Where 𝜎𝑠
2and W are the variance and amplitude of the Gaussian kernel. 

Furthermore, Eq. (4) shows the joint distribution for the estimated (𝑓(𝑥∗)) and observed 

(y) values, given a given input 𝑥∗. By conditioning the joint distribution, one can extract 

the predicted mean value (𝑓(𝑥∗)), and the associated variance (𝑉(𝑥∗)), as per Eq. (5) and 

Eq. (6) (Nguyen-Tuong et al., 2009). 

 

 
[

𝑦
𝑓(𝑥∗)] ~𝒩 (0, [

𝐾(𝑋, 𝑋) + 𝜎∗
2 𝑘(𝑋, 𝑥∗)

𝑘(𝑥∗, 𝑋) 𝑘(𝑥∗, 𝑥∗)
]) (4) 

 𝑓(𝑥∗) = 𝑘∗
𝑇(𝐾 + 𝜎∗

2𝐼)−1𝑦 = 𝑘∗
𝑇𝛼 

𝑉(𝑥∗) = 𝑘(𝑥∗, 𝑥∗) − 𝑘∗
𝑇(𝐾 + 𝜎∗

2𝐼)−1𝑘∗ 

(5) 

(6) 

 

Where 𝑘∗ = 𝑘(𝑋, 𝑥∗), 𝐾 = 𝐾(𝑋, 𝑋), and 𝛼 are the SO prediction vectors.  

 

2.1.2 Polynomial Regression 

 

 PR is a collection of statistical and mathematical techniques that can be applied 

to develop, improve, and optimize processes. It has been successfully used in recent 

decades to represent stochastic systems (Parnianifard et al., 2020a). PR was developed 

over 50 years ago for exploration and extrapolation applications (Barton and 

Meckesheimer, 2006), and according to Parnianifard et al. (2019), literature cites PR as 

being used to: 
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1. approximate relationships between dependent and independent variables;  

2. investigate and determine the best process operating conditions; and  

3. implement more robust responses. 

 

 According to Myers, Montgomery, and Anderson-Cook (2016), PR for a given 

response is based on Taylor series expansion theory to a data set. The general formulation 

for linear regression (first-order PR) is given by Eq. (7) (Parnianifard et al., 2019). 

 

𝑦 = 𝑓(𝑋) = �̂�0 + ∑ �̂�𝑖𝑥𝑖

𝑘

𝑖=1

+ 𝜀 (7) 

 

 Where k is the number of independent variables. If more complex response 

surfaces cannot be represented by linear PR, quadratic (second-order) PR can be used. Its 

general formulation is given in Eq. (8) (Dengiz and Belgin, 2015; Osorio and Bierlaire, 

2013; Parnianifard et al., 2019; Parnianifard et al., 2020a). 

 

 

𝑦 = 𝑓(𝑋) = �̂�0 + ∑ �̂�𝑖𝑥𝑖

𝑘

𝑖=1

+ ∑ �̂�𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+ ∑ ∑ �̂�𝑖𝑖′𝑥𝑖𝑥𝑖′

𝑘

𝑖<𝑖′=2

𝑘

𝑖=1

+ 𝜀 (8) 

 

 Where �̂�0, �̂�𝑖, �̂�𝑖𝑖 and �̂�𝑖𝑖′  are the unknown coefficients, and ε is the model noise. 

The number of expressions p is 𝑝 = 𝑘 + 1 for linear regression, 𝑝 =
1

2
(𝑘 + 1)(𝑘 + 2) 

for quadratic regression, and 𝑝 =
1

6
(𝑘 + 1)(𝑘 + 2)(𝑘 + 3) for cubic regression 

(Parnianifard et al., 2019). One of the main advantages of PR is the model interpretability 

and adaptability to different data types. However, Ostergard et al. (2018), state that these 

can be computationally inefficient compared to more sophisticated high dimension 

expansions, e.g., GP and SVM. 

 

2.1.3 Artificial Neural Networks 

 

 ANNs have been widely applied to classification, regression, and time-series 

problems. They consist of an input layer, one or more hidden layers, and an output layer. 

(Hassoun, 1995). The general ANN and neuron structures are shown in Figures 4 and 5, 

respectively. 
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Figure 4 - Structure of an Artificial Neural network 

Source: Adapted from Storti et al. (2019) 

 

 
Figure 5 - General structure of a Neuron 

Source: Adapted from Storti et al. (2019) 

 

 According to Li et al. (2010), information transmission occurs via neuron 

connections through layers. Also according to the authors, a typical ANN can be 

represented with three layers and one neuron in the output layer, as per the following 

formula: 

 

�̂� = 𝑓(𝑋) = ∑ 𝑤𝑗𝑓

𝑗

𝑗=1

(∑ 𝑣𝑖𝑗𝑓(𝑥𝑖) + 𝑎𝑗

𝑘

𝑖=1

) + 𝛽 + 𝜀 (9) 

 

 Where:  

• X is a k dimension vector;  

• f(.) is the transfer function;  

• ε the random error with mean 0;  

• 𝑣𝑖𝑗  represents the connection weights between the i neurons in the input layer and 

the j neurons in the hidden layer;  

• aj is the bias of the jth hidden layer neuron;  

• wj is the weight of connections between the jth hidden neuron and the output 

neuron;  

• j is the total number of neurons in the hidden layer; and  

• β is the output neuron bias (Li et al., 2010). 
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 According to Oliveira et al. (2010), weights and biases are adjusted using 

supervised training algorithms. The back-propagation algorithm is most widely used, 

where the model is fed with standard inputs, and the signal is propagated to the output 

layer to generate predictions. This error then adjusts the output neuron, hidden neuron, 

and input neuron connection weights. 

 

2.1.4 Random Forest 

 

 Breiman (2001), introduced the Random Forest (RF) method, which combines 

many randomly uncorrelated decision trees to obtain predictions based on average votes 

among all individuals (Li et al., 2020). RF is one of the most efficient ML algorithms in 

terms of accuracy and execution speed for large databases. It is also a simple method, and 

its variables and results can be easily interpreted (Crisci et al., 2012). 

 Dai et al. (2018), state that RF is a combination of decision trees 
{ℎ(𝑥, 𝛩𝑘), 𝑘 = 1, 2, … }, where each tree receives a random vector {𝛩𝑘}. Outputs are 

numerical, and training data are independently and identically distributed in regression 

problems (Breiman, 2001). The root mean square error associated with each tree h(x) is 

defined by Eq. (10), for the X vector and Y output (Dai et al., 2018). 

 

𝐸𝑋,𝑌(𝑌 − ℎ(𝑿))2 (10) 

 

 The procedure for adjusting the RF is simple. The first step involves adjusting all 

m independent trees. Then a sample size N is obtained at each interaction, and k attributes 

are randomly selected to generate new uncorrelated trees (De La Fuente and Smith, 2017). 

The individual predictions of each mth tree are guided by a set of if-then-else rules, 

characterized by Θ (Hastie et al., 2008). According to Breiman (2001), an FR forecast is 

calculated using the average from the k trees h(x), belonging to the forest, as per Eq. (11). 

 

𝑓(𝑋) =
1

𝑀
∑ 𝑇(𝑿: 𝛩𝑚)

𝑀

𝑚=1

 (11) 

 

 Where M is the number of trees, T(X:Θm) is the model for a single tree, X is the 

training data vector, and Θm is the set of rules for the trees. 

 

2.1.5 Gradient Boosted Trees 

 

 The Boosting method was initially proposed by Schapire (1990), to build highly 

accurate models based on low learning converging algorithms, or decision trees for 

Gradient Boosted Trees (GBT). Friedman (2002), proposed a variation of this method 

called Stochastic Gradient Boosting, introducing randomness to the procedure proposed 

by Schapire (1990). Friedman (2002), states that the trees are trained using a random 

sample Ñ of the training data at each iteration of the algorithm without replacements, so 

Ñ < N, where N is the size of the training data. The GBT algorithm differs from bagging 

methods, since the first seeks to sequentially build models (trees), while the second is 

adjusted based on models built in parallel (Xia et al., 2017). 

 This algorithm is based on sets of decision trees. A new tree is generated at each 

interaction based on the residues of previous trees (De La Fuente and Smith, 2017). Given 
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a dataset {xi; yi} size N, input attributes are represented by xi, while yi is the response 

variable. The objective of the algorithm is to determine the function F*(x) that expresses 

the relationship between x and y to minimize the loss function as per Eq. (12). This 

relationship is additively approximated in Eq. (13) (Xia et al., 2017). 

 

𝐹∗(𝑥) = arg 𝑚𝑖𝑛𝑓 Ψ (𝑦, 𝐹(𝑥)) (12) 

𝐹𝑚
∗ (𝑥) = ∑ 𝛽𝑚ℎ(𝑥; 𝛩𝑚)

𝑀

𝑚=0

 (13) 

 

 The ideal base learners (h(x;Θm)) are represented by βmh(x;Θm), where βm and Θm 

are optimal coefficients and parameters for the base learner, respectively. Frieman (2002), 

presents a pseudocode for GBT as described in Algorithm 1. 

 

Algorithm 1: Stochastic Gradient Boosted Trees 

1 𝐹0(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝛾 𝛹 (𝑦𝑖, 𝛾) 

2   𝐹𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜: 
3           {𝜋(𝑖)}1

𝑁 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚 {𝑖}1
𝑁 

4           �̃�𝜋(𝑖)𝑚 = − [
𝜕𝛹((𝑦𝜋(𝑖),𝐹(𝑥𝜋(𝑖) ))

𝜕𝐹(𝑥𝜋(𝑖))
]

𝐹(𝑥)=𝐹𝑚−1 (𝑥)

  , 𝑖 = 1, �̃� 

5          {𝑅𝑙𝑚} 1
𝑁 = 𝐿 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒 𝑡𝑟𝑒𝑒({�̃�𝜋(𝑖)𝑚, 𝑥𝜋(𝑖)}1

�̃�) 

6          𝛾𝑙𝑚 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝛾  ∑ 𝛹𝑥𝜋(𝑖)∈𝑅𝑙𝑚
(𝑦𝜋(𝑖), 𝐹𝑚−1(𝑥𝜋(𝑖)) + 𝛾) 

7          𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈 . 𝛾𝑙𝑚 𝑙(𝑥 ∈ 𝑅𝑙𝑚) 

8    End For. 

Source: Friedman (2002). 

 

Where Ψ (yi,γ) represents the loss function, Rlm represents each region formed by 

the l nodes of the mth trees, and 𝜋(𝑖)}1
𝑁represents integer (1, .... N) permutations for 

training data  {𝑦𝑖, 𝑥𝑖}1
𝑁.  

Line (4) in the algorithm gives the gradient of the loss function, or the pseudo-

residues of the last iteration, and 𝛾𝑙𝑚 is the set of optimal expansion coefficients 

corresponding to each tree node in the mth iteration.  

 

2.1.6 Support Vector Machine 

 

A Support Vector Machine (SVM) from Vapnik (1999), is one of the most popular 

ML methods proposed in recent years (Cao et al., 2020). It was initially built to classify 

problems but has been widely used for regression problems (Cao et al., 2020, Hastie et 

al., 2008). 

 For classification problems, the method seeks boundaries to separate training data 

into respective classes with the least amount of error. A hyperplane is defined based on 

vectors built from observations located at boundaries, so data on different sides of the 

hyperplane are allocated in different classes (Ostergard et al., 2018). 

Jeng (2006), explains that SVM tries to find a maximum margin between two 

classes using linear vector combinations for these types of problems, and this is solved 
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using quadratic programming with linear constraints. According to the authors, this 

algorithm can be extended to solve nonlinear regression problems by introducing the ℰ 

parameter, which represents the loss function. Li et al. (2010), gave a mathematical 

formulation of SVM as per Eq. (14): 

 

 �̂� =  𝑓(𝑋) = 𝑤𝜙(𝑋) + 𝑏 (14) 

  

 Where X ∈ ℜ𝑘 is the k-dimensional input, ϕ is a nonlinear transformation from 

ℜ𝑘 to ℜℎ, with h > k, and  𝑓(𝑋) describes the hyperplane in ℜℎ. The authors emphasize 

that coefficients w and b can be obtained by minimizing the risk function, as per Eq. (15). 

 

 
𝑅𝑠𝑣𝑚(𝐶) = 𝐶 ∑ 𝐶(𝑓(𝑋𝑖), 𝑦𝑖) +  

1

2
‖𝑤‖2

𝑛

𝑖=1

 (15) 

 

Where: 

 

𝐶(𝑓(𝑋𝑖), 𝑦𝑖) = { 
|𝑓(𝑋) − 𝑦| − ℰ   𝑠𝑒 |𝑓(𝑋) − 𝑦| ≥ ℰ

 
     0                                   𝐶𝑜𝑛𝑡𝑟𝑎𝑟𝑦 𝐶𝑎𝑠𝑒

 (16) 

 

 

 The final SVM method prediction function is obtained after solving the 

minimization problem via Eq. (17) (Vapnik, 1999). 

 

𝑓(𝑋, 𝑎𝑖, 𝑎𝑖
∗) = ∑(𝑎𝑖 − 𝑎𝑖

∗)𝐾(𝑋, 𝑋𝑖) + 𝑏

𝑛

𝑖=1

 (17) 

 

 Where X is the new model input, K(X, Xi) is the Kernian function representing the 

distance between X and Xi, and 𝑎𝑖, 𝑎𝑖
∗ and b are coefficients obtained by minimizing the 

risk function (Li et al., 2010). 

 Oliveira et al. (2010), state that SVM efficiency depends on correctly choosing 

the hyper-parameters C, epsilon (ℰ) and Kernel (K). According to Cherkassky and Ma 

(2004), the ideal C value of can be calculate via Eq. (18): 

 

 𝐶 = max(|�̅� + 3𝜎𝑦|, |�̅� − 3𝜎𝑦|) (18) 

 

 Where �̅� and 𝜎𝑦 are the mean and standard deviations of the y values in the 

training data. To calculate ℰ, the authors recommend making a first pass with the 

algorithm using the default parameters to calculate the prediction error δ associated with 

the database, where δ = �̂� − 𝑦𝑖 , (𝑖 = 1, … , 𝑛). 

ℰ = 3𝜎√
ln 𝑛

𝑛
 (19) 
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 Where σ is the standard deviation of error δ, and n is the number of database 

examples. 

 

2.2 Performance Metrics 

 

 An important step in building metamodels is evaluating them to choose the model 

that best fits the data, and aid in selecting and/or optimizing the parameters. Bergmeir and 

Benítez (2012), stated that the Mean Square Error (MSE) or Root MSE (RMSE), the 

Mean Absolute Error (MAE), and the Mean Absolute Percentage Error (MAPE), were 

the main error metrics cited in literature. According to Hu et al. (2006), the coefficient of 

correlation (R2) was another important regression metric. 

 Taking 𝑦
𝑖
 as the observed (actual) value at point i, �̂�

𝑖
 as the predicted value, and n 

as the size of the test data, RMSE, MAE and MAPE can be calculated as per Eq. (20), 

Eq. (21), and Eq. (22), respectively (Bergmeir and Benitez, 2012; Chai and Draxler, 

2014). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 (20) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 (21) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |100 

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1

 (22) 

 

 There is no consensus as to the model accuracy values for metamodel evaluation 

metrics. However, one could state that a metamodel with R2 > 0.90 is reasonable, R2 > 

0.95 is accurate, and R2 > 0.99 is almost perfect (Ostergard et al., 2018). 

 R2 is an accuracy metric with an amplitude that varies from 0 to 1. As shown in 

Eq. (23), it is calculated by dividing the sum of the squares of the residuals (𝑦
𝑖

− �̂�
𝑖)

2
 by 

the total sum of the squared residuals (𝑦
𝑖

− �̅�
𝑖)

2
. High R2 values correspond to good 

model and training data fits, but do not guarantee reduced errors (Hu et al., 2006). 

 

 
𝑅2 = 1 −

∑ (𝑦𝑖 − �̂�𝑖
𝑛
𝑖=1 )2

∑ (𝑦𝑖 − �̅�𝑖
𝑛
𝑖=1 )2

 (23) 

Where: 

 
𝑦�̅� =

1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 (24) 

 

2.3 Hyper-Parameter Optimization 
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 Choosing adequate hyper-parameters for ML algorithms is a fundamental step for 

increasing the learning capacity of these algorithms. Given that these parameters cannot 

be manually defined, one must use optimization techniques to find the best performing 

configuration extraction from the algorithm (Xia et al., 2017). 

 Currently, there are several optimization methods for selecting hyper-parameters, 

like AG, ant colony, grid search, Bayesian optimization, etc. (Hullen et al., 2020; Kim; 

Boukouvala, 2020; Li et al., 2019). In our study, we chose to use GA given its execution 

speed, its ability to adapt to different variable types, and given that the initial values do 

not need to be defined to perform optimization. Table 1 gives a brief comparison of the 

main hyper-parameter optimization methods. 

 
Table 1 - Comparison of common methods for hyper-parameter optimization. 

Optimization 

Methods 
Strengths Weaknesses Complexity (time) 

Grid Search 

Simple Takes a lot of time and 

is efficient only for 

categorical variables 

nk 

Randon Search 

Is more efficient than 

the Grid Search 

Does not consider 

previous results and is 

not efficient with 

conditional variables 

n 

Gradient-based 

Allows for parallelism Supports only 

continuous variables 

and detects only large 

locations 

nk 

Bayesian GP 

Has fast convergence 

for continuous 

variables 

Low capacity for 

parallelism and is not 

efficient for conditional 

variables 

n3 

Bayesian TPE 

Has fast convergence 

for continuous 

variables 

Low capacity for 

parallelism nlogn 

Sequential model-

based algorithm 

configuration 

Is efficient for all 

variable types 

Low capacity for 

parallelism nlogn 

Hyperband 

Maintains conditional 

dependencies 

Not efficient for 

conditional variables 

and requires small 

subsets to be relevant  

nlogn 

Bayesian hyperBand 
Is efficient for all 

variable types 

Requires small subsets 

to be representative 
nlogn 

Genetic algorithm 
Allows for parallelism Low capacity for 

parallelism 
n2 

Particle swarm 

Is efficient for all 

variables types 

Requires proper start up 

nlong 

Allows for parallelism 

k is the number of hyperparameters, and n is the number of hyperparameter values. 

Source: Adapted from Yang and Shami (2020). 

 

 A Genetic Algorithm (GA) is a heuristic technique that was inspired by the theory 

of natural selection. It was initially proposed by De Jong (1975), and Holland (1975), and 

is based on Darwin's theory of the survival of the fittest. It can be successfully applied to 

linear and nonlinear programming problems (Bashiri and Geranmayeh 2011; Lessmann 

et al., 2006). The search space in GA comprises candidate solutions, each represented by 

a chromosome (Alabas et al., 2002). Each chromosome comprises genes, representing 
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encoded parameters for a candidate solution, and aptitude, or OF, to reach the best 

solution for the problem. The objective of GA is to combine genes to obtain new 

chromosomes with better OF values (Li et al., 2010). 

 The GA comprises three basic operators, i.e., reproduction, crossover, and 

mutation. Reproduction is a process by which individual parameters, or genes, are copied 

based on their OF values. Individuals with higher OF values are more likely to generate 

one or more offspring in the next generation. When a parameter is reproduced it creates 

an exact replica of itself. Then, the crossover operator randomly combines newly 

produced parameters. Finally, mutations generate changes to parameter values, playing a 

secondary role, because mutation rates are generally low (Alabas et al., 2002; Storti et al., 

2019). 

 GA applied to hyper-parameter optimization was studied by Hou et al. (2019), 

and Hullen et al. (2020). This method evaluates several possible parameter combinations 

{a1, ..., ai} of the ML algorithm. The cross-validation technique is used to calculate the 

error associated with each combination. k-fold cross-validation is one of the most 

important techniques for evaluating regression and classification methods. It divides 

training data both equally and randomly into k parts, using k-1 parts for training the 

algorithm, and the remainder for testing. The error of each array is calculated k times, and 

a different part 𝑘𝑖
′
 is selected for testing at each iteration, with i = {1, ..., k}. Then, 

performance is measured based on averaged errors in k validation interactions, which is 

a more robust metric than if it were measured using just one observation (Bergmeir and 

Benítez, 2012). Roy and Datta (2019), suggested using 10-fold cross-validation. 

 

2.4 Design of Experiments 

 

 According to Montevechi et al. (2012), experiments are a series of tests with 

purposeful changes made to input variables to identify and analyze the effects of these 

changes to response variables within the system. According to the authors, the Design of 

Experiments (DOE), is a set of methods for designing and conducting experiments. 

Several DOE techniques have been cited in literature, e.g., orthogonal arrays (Miranda et 

al., 2017), Central Composite Designs (CCD), (Villarreal-Marroquín et al., 2013), 

factorial designs (Dengiz et al., 2006), etc. 

 According to the Structured Literature Review (SLR) in Section 4, the most 

common DOE method for metamodeling projects is the Latin Hypercube Design (LHD). 

According to Parnianifard et al. (2020), LHD is a computational DOE technique based 

on space-filling. For n input variables, m sample points are randomly obtained within m 

equally probable intervals. Figure 6 gives an example of an LHD array with n=2 decision 

variables, and a m=7 sample size. 

 

 
Figure 6: Examples of LHD arrays with 2 input variables and 7 sample points Source: Adapted 

from Luo, Ji and Lu (2019) 
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 According to Parnianifard et al. (2020), the LHD procedures are: 

 

• The value ranges for each variable are divided into m subranges of equally 

probable magnitudes. The number of sampling points m is defined by the 

researcher. In general, it should be greater than the total points produced by the 

CCD. 

• The second step is allocating the m points between each lower and upper interval 

limit, with each point (1, 2, ..., m) in one row and column of the sample space. 

 

3. Systematic Literature Review 

 

 As shown in the previous section, there is a wide range of methodologies and 

applications surrounding MBSO. Sections 3 and 4 provide a Systematic Literature 

Review on the topic to provide the reader with an overview of how metamodeling has 

been approached both in academia and in practice. 

 

3.1 Literature Reviews on Metamodeling Simulation Optimization 

 

 We conducted a search in the Scopus and Web of Science scientific databases  in 

July 2020 to look for studies including Literature Reviews (LR) on MBSO, or other 

related topics. In this step we searched for terms related to metamodeling (metamodel, 

metamodeling, meta-model, or machine learning), optimization via simulation 

(Simulation optimization, simulation-based optimization, or optimization via simulation) 

using Boolean logic (AND/OR), and Literature Reviews (literature reviews, the state-of-

the-arts, overviews, or surveys), with a filter for documents in English. 

 12 LRs on topics related to MBSO were returned, however, these focused on a 

certain stages of metamodeling projects, one or a few metamodeling algorithms or types 

of simulations, and none contained complete discussions on MBSO knowledge that 

should be used by academics and practitioners for developing projects. This section 

contributes by offering a comprehensive view of MBSO using the scientific rigor of SLR 

(Y. Xiao and Watson 2019), and CIMO (Context, Interventions, Mechanisms, Outcomes) 

(Denyer et al., 2008). 

 The first study returned was published from the Winter Simulation Conference in 

1986, addressing the frequency domain experimentation technique and RSM for dealing 

with discrete variable problems (Schruben, 1986). At the same conference, twenty-three 

years after the publication of the study by Schruben (1986), Barton (2009) gave an 

overview of SED metamodeling techniques, describing the main algorithms used in 

metamodeling according to literature i.e., RSM, RNA, Kriging, spline, RBF, and 

provided a framework for conducting metamodeling projects using local or global 

searches. That same year, Kleijnen (2009), published a review of Kriging metamodeling 

and its association with techniques like bootstrapping, DOE, sensitivity analysis, and 

optimization. 

 In 2010, a study systematically compared five SO metamodeling algorithms (i.e., 

RNA, RBF, Kriging, SVM, and multivariate regression splines) for decision support 

systems (LI et al., 2010). In 2014, a study was carried out on Kriging metamodeling with 

parametric and distribution-free bootstrapping applied to optimization problems via 
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deterministic and/or stochastic simulations (Kleijnen 2014). That same year, Figueira and 

Almada-Lobo (2014), studied hybrid SO method classifications and taxonomies, 

explaining questions on procedures and methods related to metamodeling. 

 In 2015, Dellino et al. (2015), described robust optimization concepts using 

Kriging metamodeling in a chapter of their book, applying these to an economic order 

quantity inventory model. A survey was carried out again in 2015 on the practical use of 

search experimentation techniques, i.e., SO, DOE, and metamodeling applied in SED 

(Hoad et al., 2015). Two years later, an LR was conducted presenting a general review of 

several metamodeling algorithms (i.e., polynomial regression, Kriging, RBF, SVM, and 

mixed metamodels), DOE techniques (i.e., geometrical, statistical, and optimal designs), 

and mechanisms (i.e., expected improvements, efficient global optimizations, bumpiness, 

etc.), for problems containing continuous variables (Vu et al. 2017). That same year, two 

other LRs addressed metamodeling using Kriging and polynomial regression (Kleijnen 

2017a, 2017b). 

 Finally, only one study used a SLR to study metamodeling for robust black-box 

SO subjected to uncertainties (Parnianifard et al. 2019). These studies served as the basis 

for conducting our SLR on MBSO. We should mention that our SLR did not seek to 

conduct an exhaustive review of literature on MBSO, but rather to provide academics and 

practitioners in the area with a broad view of the subject by consolidating and explaining 

existing MBSO projects, while also defining the frontier for knowledge in this area, by 

identifying and presenting current opportunities and challenges related to this topic. 

 

3.2 The Systematic Literature Review Method 

 

 A SLR is a methodology for outlining the theoretical-scientific basis necessary 

for understanding a topic. This is done by collecting, understanding, synthesizing, and 

evaluating a set of scientific studies (Levy and Ellis, 2006; Xiao and Watson, 2019). 

According to Sousa Junior et al. (2019), SLRs assist researchers in performing 

methodological steps, e.g., defining problems, selecting methods, collecting data, and 

performing analysis, to mitigate flaws in the conclusions of studies, thereby offering 

greater clarity on employed research procedures. 

 SLR is not the same as a traditional LR, but rather seeks to clearly explore a 

specific issue by consulting existing literature. An SLR differs from other LR 

methodologies given its exact principle, whereby researchers must pre-specify and clarify 

their inclusion/exclusion criteria to readers (Denyer and Tranfield, 2009). Oliveira et al. 

(2016), point out that one of the advantages of SLR relative to traditional RL methods, is 

that SLRs avoid data bias and distortions. A SLR mainly seeks to promote advancements 

and to develop new studies, given the fact that a new frontier of knowledge can only be 

established after defining the current frontier. 

 

3.3 Employing the Systematic Literature Review Method 

 

 Our SLR adopted the same procedures as Oliveira et al. (2016), and Sousa Junior 

et al. (2019), to systematically investigate MBSO knowledge, by identifying borders and 

gaps in existing literature, thereby providing new guidelines for future studies. This was 

done in four main stages, i.e., planning, researching/sorting, analyzing/synthesizing, and 

presenting the results. 
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3.3.1 Planning 

 

 This step was developed by a panel of experts in the area to better investigate this 

field of research. The panel included 3 Ph.Ds with academic and practical experience in 

MBSO projects, in addition to a Ph.D. and M.Sc. researching the same topic. 

 The study was inspired given the expressive growth in MBSO publications, the 

differing applications to knowledge areas, and given the lack of studies comprehensively 

and systematically synthesizing and discussing knowledge on this subject. We expect that 

our results can aid all project stages within this area, and present the state-of-the-arts for 

MBSO by compiling existing studies, and mainly proposing future opportunities for 

additional research. 

The main SLR objectives are: 

 

• identify and explore the main MBSO aspects in studies; 

• analyze and summarize the results; 

• discuss the results, define the state-of-the-arts, and any research gaps and trends 

that could be further explored. 

  

 To do this, Research Questions (RQ) need to be defined to extract and analyze 

intrinsic knowledge on the topic. Several frameworks and methods for structuring RQs 

have been addressed in literature e.g., PICO, PICOS or PICOC (Population, 

Interventions, Comparisons, Outcomes, and Context) (Kloda et al. 2020), SPICE 

(Settings, Perspectives, Interventions, Comparisons, and Evaluations) (Booth, 2006), 

SPIDER (Samples, Phenomenon of Interest, Designs, Evaluations, and Research Type) 

(Methley et al. 2014), ECLIPSE (Expectations, Clients, Location, Impacts, Professionals, 

and Services) (Wildridge and Bell 2002), etc. 

 We used the CIMO-logic framework as proposed by Denyer et al. (2008), which 

combines problem Contexts requiring Interventions, generated using a Mechanism, in 

order to produce Outcomes. This approach has been used by several authors to study 

engineering problems (Aouadni et al., 2019; Balan, 2018; Makhashen et al., 2020; Costa 

et al., 2020; Ilk et al., 2020; Kochan and Nowicki, 2018; Tanila et al., 2020). The RQs in 

our study were divided into the four elements outlined in the CIMO-logic method: 

 

• context: real or theoretical problems... 

• interventions: ... using metamodeling... 

• mechanisms: ...combined with optimization techniques via simulations... 

• outcomes: ...to find the best performing solution within the project scope and 

constraints. 

 

 The RQs were formulated in compliance with these objectives, within the scope 

of this study, and to identify existing gaps in literature. The RQs are: 

 

• RQ1)  What is the role of metamodeling in SO projects, and what are its main 

applications? (Context) 

• RQ2)  What are the main simulation and optimization techniques used with 

metamodeling? (Mechanisms) 

• RQ3)  What are the most widely-used metamodeling algorithms in MBSO? 

(Interventions) 
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• RQ4)  What sampling strategies are normally used? (Interventions) 

• RQ5)  How are results measured/validated? (Outcomes) 

 

 The information extracted from the articles was divided into two categories to 

answer the RQs, as shown in Figure 7. 

 

 
Figure 7: Research pillars and article extracted data 

 

 The first category investigates the nature of the work relative to the area of 

industry that the studies focus on, what types of problems are addressed, whether the 

problem is real or theoretical (based on data from literature), and how decision variables 

and problem objectives are framed. The second category deals with method-related issues 

e.g., simulation type, the metamodeling algorithms used, the search engines used in the 

optimizations, sampling strategies, software programs, and how results were measured. 

Finally, the main MBSO frameworks from literature will be presented, along with two 

new frameworks that complement the main points found in the SLR. 

 

3.3.2 Researching and Sorting the Articles 

 

 We conducted exploratory research in the Scopus and Web of Science (WoS) 

scientific databases on the topic, since these databases are the main data citation sources 

(Mongeon and Paul-Hus 2016), and are representative of publications on the subject 

(AGHAEI et al., 2013). Thus, terms related to metamodeling (metamodel, metamodeling, 

meta-model, and machine learning), and SO (Simulation optimization, simulation-based 

optimization, optimization via simulation, and SO) were searched for in both databases 

using Boolean Logic (AND/OR) in the process. The meta-search returned 188 articles 

from the WoS and 293 articles from Scopus, resulting in 481 studies. 

 The initial article selection phase for downloading was made by reading the 

titles/abstracts of the articles that met the following inclusion criteria:  

 

a) contained SO metamodeling search terms in titles/abstracts/keywords;  

b) published in peer-reviewed journals;  

c) written in English; and  

d) had full versions available for download.  

Amaral, João V. S., et al. (2022) Metamodel-Based Simulation Optimization: Literature Review pp. 119-171

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 137



 209 studies were excluded from the search after applying the inclusion criteria for 

failing to meet at least one of the previously defined criteria. 3 (0.6%) did not have the 

search terms in the titles, abstracts, or keywords, 203 (42, 2%) were not published in peer-

reviewed journals, 5 (0.8%) were not written in English, and 1 was not available for 

download. 269 articles were downloaded in total for quality assessment, 144 from 

Scopus, and 125 from the WoS. Then 104 articles were removed due to duplications. 

 Quality assessments consist of reading the titles, abstracts, objectives, methods, 

results, and discussions. 21 articles were excluded from analysis at this stage for the 

following reasons, 11 (52.3%) mentioned “machine learning” but did not use ML or 

metamodeling, 8 (38.1%) used metamodeling/ML for purposes other than SO, and 2 

(9.5%) did not use simulations. 143 articles were selected for full reading after the quality 

assessment for information extraction and data analysis. Figure 8 shows the 

search/screening procedures. 

 

 
Figure 8: Searching/Sorting 

 Figure 8 shows the results of the search/sort phase. 293 articles were downloaded 

from Scopus, and 188 from WoS after the search phase. 144 articles from Scopus and 21 

from WoS were included for screening. 104 eligible articles from WoS were excluded 

because they were duplicates with Scopus. Finally, 126 studies from Scopus and 17 from 

WoS were selected for analysis and data extraction in the quality assessment phase. 

 

3.3.3 Analysis and Synthesis 

 

The articles were evaluated in 9 items to answer the RQs, as shown in Figure 7, 

corresponding to:  

 

1. define the problem;  

2. industrial sector;  

3. data source;  

4. variables and objective types;  

5. metamodeling algorithms;  

6. sampling strategies;  

7. simulation and optimization methods;  

8. software used;  

9. performance indicators and validation methods.  

 

 Similar nomenclature standardizations were performed after data extraction, e.g., 

the gaussian process and Kriging were understood as being the same algorithm, and the 

Latin Hypercube Design and Latin Hypercube Sampling refer to the same DOE 

technique. 
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  Descriptive data, table, and graph statistics were made after the synthesis using 

the Software R program. The results were analyzed in line with the RQs related to the 

three aforementioned categories, serving as a basis for the results and conclusions that 

aided us in developing a body of evidence on the main MBSO perspectives discussed in 

this SLR. 

 

3.3.4 Results Presentation 

 

 The results were summarized in graphs and tables to discuss the topic, revealing 

compelling SLR insights. We reflected on and identified the gaps and perceptions on the 

development of this theme within the scientific community based on the analysis of the 

interactions between SO and metamodeling. 

 The main results are summarized in Tables 2 - 6 below following the analyses and 

syntheses, wherein all RQs will be answered, and where we discuss the state-of-the-arts 

for MBSO, presenting practices observed in literature, and possibilities for future research 

on this topic. The 143 articles were divided into two categories according to the problem 

origin, e.g., real or theoretical, to elucidate the relationship between academia and 

practical problems facing industry/service providers. 

 

4. Results and SLR Discussion 

 

 This section presents the data obtained from the articles and answers the RQs, in 

the order following the pillar arrangements, i.e., nature of research, methods, and state-

of-the-arts. 

 

4.1 Nature of research 

 

 This section discusses the “nature of research” pillar, which is directly linked to 

RQ1 (“What is the role of MBSO, and what are its main applications?”). The main 

problem-related aspects and industrial sectors, economic sectors, and problem 

specificities like objectives and sizes studied in literature are presented. Table 2 shows 

the problem type, and industrial and economic sectors. 

 The objects of study in the articles were classified and grouped into more than 18 

problem classes. Given the wide variety of problems, only the six most frequent classes 

are shown in Table 2 i.e., Process Control, Stock Control, Product Design, Resource 

Allocation, Mathematical Models, Traffic Models, together constituting more than 65% 

of the problems found. The most studied issue was using MBSO for control processes to 

optimize production parameters for certain goods. Most works (74.1%), addressed this 

problem type relative to managing water resources to find well-water injection and 

extraction pumping rates for supplying demand while reducing energy costs, wear and 

tear, and watershed contamination e.g., (Ataie-Ashtiani et al. 2014; Candelieri et al., 

2018; Hussain et al., 2015; Roy and Datta 2019a; Timani and Peralta 2017). Other 

applications were determining optimal parameters for plastic injection processes (Dang 

2014; Villarreal-Marroquín et al., 2011, 2013), cutting parameters for semiconductor 

wires (Monostori and Viharos 2001), and sheet metal pressing (WANG et al., 2018). 
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Table 2 - Nature of the research. 

Problem Type Real Theoretical Total Cum. % 

Process Control 16 (10.4%) 10 (07.2%) 26 (17.2%) 17.2 

Stock Control 01 (00.6%) 20 (13.1%) 21 (13.7%) 31.2 

Product Design 08 (05.2%) 08 (05.2%) 16 (10.5%) 41.6 

Resource Allocations 11 (07.2%) 05 (03.3%) 16 (10.5%) 52.1 

Mathematical Models 00 (00.0%) 11 (07.2%) 11 (07.2%) 59.3 

Traffic Models 08 (05.2%) 01 (00.6%) 09 (5.88%) 65.1 

 

Industrial Sector     

Not Specified 03 (02.3%) 36 (27.9%) 39 (30.2%) 30.2 

Water Management  19 (14.7%) 10 (07.7%) 29 (22.5%) 52.7 

Urban Traffic 18 (13.9%) 02 (01.5%) 20 (15.5%) 68.2 

Energy Generations / Distribution 06 (04.6%) 01 (00.8%) 07 (05.4%) 73.6 

Health care 06 (04.6%) 00 (00.0%) 06 (03.9%) 78.3 

Pharmaceutical / Chemical Industry 03 (02.3%) 02 (1.5%) 05 (03.9%) 82.2 

 

Economic Sector     

Not Specified 03 (02.3%) 36 (27.9%) 39 (30.2%) 30.2 

Primary 19 (14.7%) 10 (07.7%) 29 (22.4%) 52.7 

Secondary 15 (11.6%) 07 (05.4%) 22 (17.0%) 69.8 

Terciary 33 (25.5%) 06 (04.6%) 39 (30.2%) 100.0 

 

 

 The second problem class was related to inventory controls and management 

activities, e.g., sizing the number of kanbans for shop floors e.g., (Alabas et al., 2002; 

Dengiz; Alabas-Uslu and Dengiz, 2009; Hurrion, 1997; Huyet and Paris, 2001), and lot 

size (Sousa Junior et al., 2019; Greenwood et al., 1998; Hachicha, 2011; Horng and Lin, 

2017; Jackson et al., 2019; Moghaddam and Mahlooji, 2016, 2017; Nezhad and Mahlooji, 

2014; Parnianifard et al., 2020b; Zakerifar et al., 2011). Both dealt with theoretical cases, 

where data sources came from other articles, or from classic problems in specialized 

literature. In our SLR, only one article addressed the stock control problem by studying a 

real case using metamodeling via Kriging in discrete SO to optimize emergency fuel 

stocks in ships (Quan et al. 2013). 

 Many authors have also studied MBSO techniques to optimize product designs. 

Examples include applications related to the automotive (Fu and Sahin, 2004; Ivanova 

and Kuhnt, 2014; Stork et al., 2008), energy (Sharif and Hammad 2019; Storti et al., 

2019), hydropower (Bananmah et al., 2020; Mooselu et al., 2019), and transit 

infrastructure (Yin et al., 2016) sectors. Many authors have also studied MBSO applied 

to resource allocation problems (e.g., (Coelho and Pinto 2018; Song et al., 2005; Yousefi 

and Yousefi 2019; Zeinali et al., 2015), to synthetic mathematical functions (e.g., Baquela 

and Olivera, 2019; Kim and Boukouvala, 2020; Gonzalez et al., 2020; Wang et al., 2020), 

and to urban traffic issues (Chen et al., 2019; Chong and Osorio 2018; Osorio and 

Bierlaire 2013; Osorio and Chong 2015). 

 Another important factor is that theoretical studies and real cases are balanced in 

both of these problem classes, and in most of other classes found in the SLR, indicating 

the interest and development in the area, in academia, and in practice. However, it is 

worth mentioning that studies focused on theoretical cases for some problem classes, e.g., 

inventory controls, and we recommend exploring this problem more in real contexts, 

since inventory management is a strategic activity for most organizations. 
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 The second aspect studied was the industrial sector of focus in the studies. 52.0% 

of the articles focused on water resource management, energy generation/distribution, 

urban traffic planning, healthcare, and the chemical/pharmaceutical industry. This shows 

that most MBSO efforts are focused on essential goods and services production, 

providing cost reductions and improvements that benefit the greatest number of people. 

About 30.2% of all studies did not specify the industrial sector. It is noteworthy that 

among the real cases, only 4.3% did not specify the industrial sector.  

 This is positive because more precise problem indications help future researchers 

and practitioners select the methodologies that best fit their industrial sector. Regarding 

the economic sector of the studies, primary, secondary, and tertiary sectors were equally 

represented, characterizing the breadth and versatility of MBSO techniques.  

Table 3 shows the variables and objectives of the studies. 
 

Table 3 - Problem variables and objectives. 

Variables Real Theoretical Total Cum. % 

Nº of Variables (median) 10 5 6 - 

Continuous 34 (26.7%) 37 (29.1%) 71 (55.9%) 55.9 

Discreet 12 (09.4%) 23 (19.1%) 35 (27.6%) 83.5 

Hybrid 07 (05.5%) 07 (05.5%) 14 (11.0%) 94.5 

Binary 02 (01.6%) 01 (00.8%) 03 (02.4%) 96.9 

Not Specified 00 (00.0%) 03 (02.4%) 03 (02.4%) 99.2 

Categorical 01 (00.8%) 00 (00.0%) 01 (00.8%) 100.0 

 

Optimization Objectives     

Single Objective 53 (35.6%) 54 (36.2%) 107 (71.8%) 71.8 

Multi Objective 18 (12.1%) 22 (14.8%) 40 (25.8%) 98.7 

Not Specified 01 (00.7%) 01 (00.7%) 02 (01.3%) 100.0 

 

 

 Regarding the problem sizes studied, real case applications had a median of 10 

variables, compared to 5 variables for theoretical cases, as shown in Table 3. Furthermore, 

many authors have studied problems with more than 100 variables (e.g., (Chen et al., 

2019; Chong and Osorio 2018; Jackson et al., 2019; Osorio 2019b; Osorio and Punzo 

2019; Timani and Peralta 2017), extending up to 16,200 variables for a mesoscopic 

simulation model calibration problem for controlling traffic (Osorio 2019a). Regarding 

the type of variable, 83.5% of the problems had continuous or discrete variables. The first 

type had infinite solution spaces, and the second had delimited solution spaces, with an 

average of 203,963 possible scenarios, ranging from 36 to 1x1062 scenarios, with a 90% 

percentile at 2.5x1020. 

 Although most studies addressed single-objective problems, 25.8% studied 

metamodeling for multi-objective optimization problems, mainly dealing with identifying 

Pareto Frontiers. We can observe the importance of using metamodeling, since recursive 

SO methods are practically unfeasible for dimensionality and solution space problems 

found in this SLR, in addition to proving to be good choices for multi objective 

optimizations, which are a class of NP-hard problems (Baquela and Olivera 2019). 

 We also analyzed metamodeling use versus model-based techniques. Although 

61.3% of all studies did not specify the reason for choosing metamodeling over other 

methods, 33.9% of all articles used metamodeling to reduce project optimization times, 

while other methods could not converge with adequate computation time given restricted 

simulation budgets (e.g., Parnianifard et al., 2018; Song et al., 2005; Villarreal-Marroquín 
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et al., 2013). Furthermore, 3.0% used metamodeling to provide quick answers to 

operational problems requiring short-term decision-making time frames (e.g., Dunke and 

Nickel, 2020; Calahorrano et al., 2016). Metamodeling was also used to perform joint 

optimizations taking data from several models (e.g., Bartz-Beielstein et al., 2018), to 

quickly generate entire solution spaces (e.g., Stork et al., 2008), and better understand 

optimization processes (e.g., Huyet and Paris, 2001). 

 We can answer RQ1 (“What is the role of metamodeling in SO projects, and what 

are its main applications?”), according to the information in Tables 2 and 3, and in the 

discussion. Metamodeling is used to reduce computational times for problems where 

solution spaces and model complexity make more traditional recursive methods too 

expensive or unfeasible. Furthermore, recursive methods are unfeasible depending on the 

decision-making time frame, in light of the advent of industry 4.0, and the use of 

simulations as decision support tools in real or near real time, meaning that metamodels 

need to be used. Once trained and validated, they can generate good results in mere 

seconds. 

 Several authors have used this strategy for operational support systems (e.g., 

Dunke and Nickel, 2020; Calahorrano et al., 2016; Pedrielli et al., 2020; Shirazi et al., 

2011; Steer et al., 2012). Regarding the main MBSO applications in real cases, process 

control problems, resource allocation and sizing, urban traffic controls, and product 

designs are particularly worth mentioning. Furthermore, there was fair distribution among 

different economic sectors, allowing us to infer that MBSO is a broad method that can 

generate good results when facing various problems, including NP-hard problems. 

 

4.2 Methods used 

 

 This section presents the most widely-used methods, according to literature, for 

metamodeling algorithms, search methods (optimization), simulation types, sampling 

strategies, software programs, and programming languages. Tables 4 and 5 summarize 

the results, showing the six most frequent technologies/methods for each studied topic. 

 We noticed that the number of occurrences exceeds the total number of articles 

analyzed for certain topics due to the fact that some studies used more than one method, 

either by comparing or combining them. For example, Li et al. (2010), compared 

metamodels using RNA, RBF, SVM, Kriging, and MARS for a resource allocation 

problem, and Bartz-Beielstein et al. (2018), combined metamodels using linear 

regression, RF, and Kriging via an ensemble model, etc. (e.g., Lal and Datta, 2020; 

Parnianifard et al., 2020a; Ranjbar et al., 2020). 

The first aspect in Table 4 was the type of simulation used by the researchers. 25% 

of the studies did not state the type of simulation used, and this only appeared as a 

recommendation for future studies so researchers can identify the type of simulation 

applicable to their specific problems in literature, and identify which tools can be used 

and associated with it. Of all the articles, 26.3% used SED. According to Law (2013), 

SED is defined as a system modeling and simulation technique that evolves over time, 

where events change state at discrete points in time. 

 Several authors have used SED for problems related to the secondary and tertiary 

economic sectors, like inventory controls (e.g., Dengiz et al., 2009; Quan et al., 2015), 

shop floor planning (e.g., Dunke and Nickel, 2020; Greinacher et al., 2020), allocating 

and sizing resources (Aydin et al., 2018; Coelho and Pinto 2018; Cuckler et al., 2017), 

and production scheduling (Chang, 2016; Hassannayebi et al., 2019). No SED 
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metamodeling application was conducted for the primary economic sector, perhaps 

because this type of simulation is commonly taught in specific engineering courses, 

limiting this tool’s dissemination. We can therefore state that there is a possible literature 

gap that future researchers could explore, i.e., using metamodeling and SED to optimize 

processes in the primary sector. 

 

Table 4 - Method used. 

Type of Simulation Real Theoretical Total Cum. % 

SED 14 (09.7%) 24 (16.6%) 38 (26.3%) 26.4 

Not Specified 12 (08.3%) 24 (16.6%) 36 (25.0%) 51.4 

Finite Element Method 13 (09.0%) 13 (09.0%) 26 (18.0%) 69.4 

Simulating Traffic 16 (11.1%) 1 (00.7%) 17 (11.8%) 81.3 

Monte Carlo Simulations 01 (00.7%) 5 (03.5%) 06 (04.2%) 85.4 

Finite Volume Method 04 (02.8%) 00 (00.0%) 04 (02.8%) 88.2 

 

Optimization Method     

Genetic Algorithm 12 (13.1%) 10 (10.9%) 22 (24.1%) 24.2 

Trust Region 11 (12.0%) 01 (01.1%) 12 (13.1%) 37.4 

NSGAII 08 (08.8%) 02 (02.2%) 10 (10.9%) 48.4 

Particle swarm 06 (06.6%) 03 (03.3%) 09 (09.9%) 58.2 

Simulated annealing 03 (03.3%) 02 (02.2%) 05 (05.5%) 63.7 

 

Metamodeling Algorithm      

Kriging  22 (09.0%) 31 (12.7%) 53 (21.7%) 21.7 

Polynomial Regression 20 (08.2%) 19 (07.8%) 39 (16.0%) 37.7 

RNA 26 (10.7%) 13 (05.3%) 39 (16.0%) 53.7 

Ensembles 06 (02.5%) 15 (05.1%) 21 (08.6%) 62.3 

RBF 06 (02.5%) 09 (03.7%) 15 (06.1%) 68.4 

SVM 02 (00.8%) 08 (03.3%) 10 (04.1%) 71.5 

 

Sample Strategy     

Latin hypercube design 23 (15.2%) 38 (25.1%) 61 (40.3%) 40.4 

Random 10 (06.6%) 10 (06.6%) 20 (13.2%) 53.6 

Not Specified 10 (06.6%) 03 (02.0%) 13 (08.6%) 62.3 

Factorial design 04 (02.6%) 06 (04.0%) 10 (06.6%) 68.9 

Central composite design 03 (02.0%) 03 (02.0%) 06 (04.0%) 72.8 

Orthogonal array 01 (00.7%) 04 (02.6%) 05 (03.3%) 76.2 

 

 

 By contrast, the second most widely-used simulation type was numerical 

simulation using the finite element method (18.0%), and most applications were focused 

on the primary economic sector (50.0%), for optimizing pumping rates for water 

extractions (e.g., Dhar and Datta, 2009; Hussain et al., 2015; Roy and Datta, 2018a, 

2019b). Traffic simulations were conducted for 11.8% of all articles, corresponding to 

microscopic models (Guo and Zhang 2014; Osorio and Bierlaire, 2013; Osorio and 

Nanduri, 2015), mesoscopic models (Chen et al., 2019; Chen et al., 2016; Osorio, 2019a), 

and macroscopic models (Chen et al., 2014; Zhang et al., 2017). Metamodeling acts as a 

means for minimizing transit model error in this type of simulation by optimizing the 

model's input parameters (e.g., origin-destination matrix), minimizing the average travel 

time by optimizing traffic signal cycle times, defining public transportation and/or toll 

fees, etc.  
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 Several other types of simulations were also identified, but were less-popular than 

those mentioned before. These include Monte Carlo simulations (e.g., Song et al., 2005; 

Wade, 2019), the finite volume method (e.g., Mooselu et al., 2019; Storti et al., 2019), 

the differential elements method (e.g., Alizadeh et al., 2017; Li et al., 2020), and agent-

based simulations (e.g., Yousefi and Yousefi, 2019; Zeinali et al., 2015), etc. 

 The second item shown in Table 4 was the optimization method used in the 

studies. It is worth mentioning that metamodels are not optimization methods, but rather 

simplified models of original simulations. Researchers need to apply appropriate search 

methods to metamodels to perform optimizations. Many optimization algorithms were 

found in the studies. Genetic Algorithms were most-commonly used, especially for 

single-objective network planning problems (Shariatinasab et al., 2008; Vahidi et al., 

2008; Ye and You, 2015), for resource allocation (Sousa Junior et al., 2020; Yousefi et 

al., 2018), process control (Ali et al., 2018; Luo et al., 2019; Ouyang et al., 2017), and 

product designs (Albanesi et al., 2018; Storti et al., 2019). 

 The second most frequently used search method was the trust region method, 

which is mostly used with quadratic polynomial metamodels for urban traffic control 

problems (Chen et al., 2019; Chong and Osorio, 2018; Osorio and Bierlaire, 2013; Osorio 

and Chong, 2015; Osorio and Nanduri, 2015), traffic model calibrations (Li et al., 2017; 

Osorio 2019b), emergency evacuations (Lv et al. 2015), and network planning (Ye and 

You 2015). The third most commonly applied search method was the Non-dominated 

Sorting Genetic Algorithm II (NSGA-II), an evolutionary multi-objective optimization 

algorithm, which was used mostly for optimizations, especially optimizations for process 

control problems. (Alizadeh et al., 2017; Dhar and Datta, 2009; Hussain et al., 2015; 

Ranjbar et al., 2020; Sreekanth and Datta 2011), and for product designs (Mooselu et al., 

2019; Sharif and Hammad 2019) 

 Other commonly used methods in literature were particle swarm optimizations 

(e.g., Li et al., 2020; Yadav et al., 2016), and simulated annealing (e.g., Christelis and 

Mantoglou, 2016; Ciuffo and Punzo, 2014). By stratifying the main types of simulations, 

we see that Genetic Algorithms were used most in SED, the finite element method, and 

the finite volume method. The trust-region was most used for traffic simulations, and 

Monte Carlo simulations used mostly Gold Region, Ranking, and Selection methods. 

 With respect to RQ2 ("What are the main simulation and optimization techniques 

used in conjunction with metamodeling?"), we can conclude that SED is the most popular 

simulation technique considering the total number of publications, and the most popular 

technique for secondary economic sector applications, given that most industrial 

processes have independent and identically distributed variables, and can be modeled as 

discrete systems. The finite element method was most common for the primary economic 

sector, led by studies on process controls for water extraction activities. Traffic 

simulations, in particular microscopic simulations, for urban traffic planning and 

management, were most frequently used as simulation techniques in the tertiary economic 

sector. Furthermore, researchers used Genetic Algorithms as a search engine in single-

objective optimization processes more frequently, and the NSGA II algorithm more 

frequently for multi-objective optimizations. 

 The third analyzed item was the type of metamodeling algorithm used. Table 4 

shows that the most frequent algorithm was Kriging, appearing in 53 articles (21.7%). 

Kriging was initially proposed by Daniel G. Krige (1951), for geostatistical applications. 

It is a highly flexible interpolation method, given its ability to employ a wide variety of 

correlation functions (Parnianifard et al., 2018). Kriging has been applied to a wide 
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variety of problems because of this flexibility, e.g., for controlling inventories (Azizi, 

Seifi, and Moghadam 2019; Quan et al., 2013; Smew, Young, and Geraghty 2013), 

product designs (Bartz-Beielstein et al., 2018; Ivanova and Kuhnt, 2014; Yaohui 2017), 

process controls (Boukouvala and Ierapetritou, 2013; Candelieri et al., 2018; Roy and 

Datta 2018b), etc. 

 PR is another class of classic algorithms found in literature (16%). PR is an 

explicit mathematical expression, that is either linear or nonlinear, that aims to 

approximate relationships between independent and dependent variables (Parnianifard et 

al., 2019). PR is commonly found in literature as RSM (Aydin et al., 2018; Cuckler et al. 

2017; Hassannayebi et al., 2019), as quadratic polynomials (Xiao et al., 2015; Zlatinov 

and Laskowski, 2015), and as first-orders (Hong et al., 2013; Villarreal-Marroquin et al., 

2013). Many authors have also used polynomials to approximate true functions in local 

searches via the trust region method (e.g., Chen et al., 2019; Chen et al., 2014; Chong and 

Osorio, 2018; Osorio and Chong, 2015; Osorio and Nanduri, 2015). 

 ANNs were the third most frequently used algorithm. These algorithms are some 

of the most important artificial intelligence techniques, given their ability in solving 

extremely difficult problems that do not have any known analytical solutions. ANNs 

comprise both interconnected and adaptive elements, which respond to stimuli, similar to 

the human nervous system (Hachicha, 2011). Choosing the appropriate architecture is a 

crucial success factor for ANN applications, however, standard formula cannot be 

determined, and each case must be analyzed individually. 

 Hyperparameter selection techniques used in metamodels are important for these 

types of problems, and trial and error methods (Ataie-Ashtiani et al., 2014; Sreekanth and 

Datta, 2011), or more efficient optimization methods, like Genetic Algorithms for 

selecting hyper-parameters, can be used (Hullen et al., 2020; Kim et al., 2016). 

 Several authors (4th position) also used ensemble methods, or algorithms that 

combined several metamodels, be them similar or not, to formulate metamodels with 

greater learning capacities, like bagging (Chen et al., 2017; Yousefi et al., 2018), stacking 

(Bartz-Beielstein et al., 2018), AdaBoost (Yousefi et al., 2018; Yousefi and Yousefi, 

2019), etc. 

 Algorithms using decision tree-based ensembles were the most frequent, and RF 

use was common (e.g., Bartz-Beielstein et al., 2018; Candelieri et al., 2018; Sousa Junior 

et al., 2019; Sousa Junior et al., 2020; Steer et al., 2012), along with GBT (e.g., (Sousa 

Junior et al., 2019; Sousa Junior et al., 2020). Many applications deal with using RBF 

algorithms (Sousa Junior et al., 2019; Sousa Junior et al., 2020). e.g., Ali et al., 2018; 

Christelis and Mantoglou, 2016; Horng and Lin, 2018; Krityakierne et al., 2016; Stork et 

al., 2008), and SVM (e.g., Hou et al., 2019; Lal and Datta, 2020; Li et al., 2019; 

Mirenderesgi and Mousavi, 2016). 

 Based on the above data, we can answer RQ3 (“What are the most commonly 

used metamodeling algorithms in MBSO?”). The main algorithms are Kriging, 

Polynomial Regression (especially RSM), ANNs, ensemble methods (in special RF and 

GBT), RBF, and SVM. The most common algorithms stratified by type of simulation in 

SED are Polynomial Regressions, Kriging, ANNs, and decision trees. For the finite 

element method, they were Kriging, ANNs, Polynomial Regressions, MARS. and RBF. 

80% of all traffic simulations used either Polynomial Regressions or Kriging. Monte 

Carlo simulations and the finite volume method mostly used ANNs. Table 5 shows the 

main hyper-parameters of these algorithms and their frequencies . 
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 The last item in Table 4 was the sampling strategy used by the researchers to build 

the metamodel, addressing RQ4 (“Which sampling strategies were used?”). One of the 

critical success factors in metamodel use is the training database. So researchers must 

choose the correct sampling method that can reduce the number of simulations needed 

for modeling, while also representing the search space well (Vu et al. 2017). 61 articles 

(40.3%) used the DOE technique, known as LHD, followed by random sampling (13.2%), 

Factorial Design (6.6%), CCD (4.0%), the Orthogonal Array (3.1%), etc., in addition to 

another 13 articles (8.6%), that either did not use, or did not specify, the sampling 

technique. 

 LHD was first proposed by McKay et al. (1979),  and is a very popular stratified 

sampling method for metamodeling studies. Given n samples and s variables, LHD 

divides each variable’s region of into n disjointed intervals of equal probability. Then the 

sample space is selected by building a n x s matrix. The columns are randomly selected 

from a permutation of [1, ..., n], and each row corresponds to a hyper-rectangle cell. After 

building the matrix, a point from each cell is sampled (Luo et al., 2019). 

 In addition to good representative samples in the solution space, the sample size 

in LHD can be defined by the user. This can lead to success in building metamodels that, 

unlike techniques like the orthogonal array or CCD, have greater decision-making power, 

in function of trade-offs between experimental performance time and metamodel 

accuracy. Although the sample size can be defined by the user, the academic consensus 

is that it should be at least 10 times greater than the number of problem variables (Kim 

and Boukouvala, 2020; Parnianifard et al., 2018; Parnianifard and Azfanizam, 2020; 

Smew et al., 2013). We should note that LHD was the most used simulation type, except 

for in traffic simulations, which used random sampling more frequently. 

 Furthermore, 80 articles (61.5% of the studies using some sampling technique) 

used the fixed sampling strategy, i.e., only a set of samples size w is taken at the beginning 

of the project, and the metamodel is trained with this set alone. For the incremental 

strategy (38.5%), an initial data sample size ξ is taken, and the metamodel is trained and 

optimized with the precision and region direction results containing the optimum level, 

adding a new sample set size δi to the database. Then the metamodel is retrained with 

base size 𝜉𝑖+1 = 𝜉𝑖 + 𝛿𝑖, where 𝑖 ∈ ℤ is the number of algorithm iterations. 

 This algorithm, which is responsible for recursive and adaptive learning, is 

referred to as Efficient Global Optimization (EGO) in most studies. The choice for the 

point(s) that should be added to each interaction is usually made using the Expected 

Improvement (EI) algorithm (Coelho and Pinto 2018; Pedrielli et al., 2020; Quan et al., 

2013; Rojas-Gonzalez et al., 2020; Wang et al. 2018). Table 6 shows the main software 

programs used, and performance metrics found in literature. 

 Regarding the type of technology used in the studies, we observed from the first 

topic in Table 6 that most authors (19.7%), did not specify the modeling and simulation 

software they used, while 14.9% used programming languages like C++ (e.g., Song et al., 

2011), Python (e.g., (Sousa Junior et al., 2019; Kim and Boukouvala, 2020), or Matlab 

(e.g., Parnianifard and Azfanizam, 2020; Rojas-Gonzalez et al., 2020). Regarding 

proprietary software used for simulations, we can cite the use of Arena®, one of the first 

software programs developed with 2D animation for modeling discrete systems. 

FEMWATER and MoldFlow were the most common software programs for the finite 

element method, along with Aimsun for traffic simulations. 
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Table 5 – The main metamodeling algorithm hyper-parameters. 

Algorithm Amplitude Most Frequent 

Kriging   

Correlation Function {Gaussian, polynomial, exponential} Gaussian 

Lenghscale (θ) [10-10; 1010] 10 

Epsilon1 [10-6; 10-5] - 

Geometric Tolerance1 [0; 0.3] - 

Max Nº. of vectors1 [38; 47] - 

   

RP   

Degree {1º, 2º, 3º, 4º, 5º} 2º 

 

RNA   

Transfer function 
{linear, sigmoid, quadratic error, hyperbolic tangent, 

rectified linear unit, RBF} 
Linear 

Training function {backpropagation, levenberg-marquardt, feedforward} Backpropagation 

Learning rate [0.01; 0.4] 0.1 

Epochs [200; 1500] 1500 

Nº of layers [1; 4] 1 

Nº of neurons [1; 66] 4 

Momentum 0.1 0.1 

 

RF   

Nº of trees [10; 50] 10 

Maximum Depth 2 2 

Nº of variables per node3 int(p/3) – 1, int(p/3), int(p/3) + 1 - 

 

GBT   

Nº of trees [1; 100] 100 

Learning rate2 [0.05; 0.30] - 

Min. Obs. per leaf2 [0.12; 0.50] - 

 

RBF   

Function {gaussian, splines, multiquadratics, cubic} Gaussian 

Scale (sigma) [1; 20] 1 

Regularization [10-10; 1010] - 

 

SVM   

C4 [|y̅ − 3σ|;  |y̅ + 3σ|] 20.73 

Epsilon4 [0; 3σ√ln n n⁄ ] 0.0779 

Kernel {RBF, Gaussian} Gaussian 

Gama [0.0224; 0.1294] 0.0673 

 
1Hyper-parameter cited but not quantified in the SLR, so the hyper-parameter as suggested by Rostami, 

Khaksar, and Manshad (2014) was used. 
2Hyper-parameter cited but not quantified in the SLR, therefore, the hyper-parameter as suggested by 

Ganjisaffar, Caruana, and Lopes (2011) was used. 
3Hyper-parameter cited but not quantified in SLR articles, however, this was soon adopted as suggested by 

Dai et al. (2018), where p is the number of decision variables in the problem. 
4The C and epsilon values should be calculated from an algorithm first run using the default parameters, 

where �̅� and 𝜎𝑦 are the mean and standard deviations of the y values in the training data, n is the sample 

size, and σ is the variance of the difference between the estimated and observed values. For further details 

see Oliveira et al. (2010). 
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Table 6 - Software and metrics. 

Simulation Software Real Theoretical Total Cum. % 

Not Specified 05 (03.4%) 24 (16.3%) 29 (19.7%) 19.7 

Programming Language 07 (04.7%) 15 (10.2%) 22 (15.0%) 34.7 

Arena 04 (02.7%) 08 (05.4%) 12 (08.1%) 42.9 

FEMWATER 04 (02.7%) 04 (02.7%) 08 (05.4%) 48.3 

Aimsun 07 (04.7%) 00 (00.0%) 07 (04.7%) 53.1 

MoldFlow 02 (01.3%) 02 (01.4%) 04 (02.7%) 55.8 

     

Metamodeling Software     

Matlab 26 (18.5%) 26 (18.5%) 52 (37.1%) 37.1 

Not Specified 24 (17.1%) 24 (17.1%) 48 (34.2%) 71.4 

Python 03 (02.1%) 03 (02.1%) 06 (04.2%) 75.7 

R 03 (02.1%) 03 (02.1%) 06 (04.2%) 80.0 

GAMS 03 (02.1%) 03 (02.1%) 06 (04.2%) 84.3 

Minitab 02 (01.4%) 02 (01.4%) 04 (02.8%) 87.1 

     

Performance Metrics     

Mean square error (MSE)/Root MSE 32 (12.6%) 36 (14.1%) 68 (26.8%) 26.8 

Coefficient of Correlation (R, R2, Radj) 24 (09.4%) 26 (10.2%) 50 (19.7%) 46.5 

Not Specified 24 (09.4%) 13 (05.1%) 37 (14.6%) 61.0 

Mean absolute percentage error (MAPE) 14 (05.5%) 12 (04.7%) 26 (10.2%) 71.3 

Mean absolute error (MAE) 05 (01.9%) 07 (02.7%) 12 (04.7%) 76.0 

Standardized residuals error (SRE) 02 (00.7%) 05 (02.0%) 07 (02.7%) 78.7 

     

Validation Technique      

Not Specified 28 (22.6%) 20 (16.1%) 48 (38.7%) 38.7 

Train/test split  17 (13.7%) 11 (08.9%) 28 (22.6%) 61.3 

Leave one out cross-validation 09 (07.3%) 11 (08.9%) 20 (16.1%) 77.4 

k-fold cross-validation 06 (04.8%) 11 (08.9%) 17 (13.7%) 91.1 

Does not use validation 00 (00.0%) 04 (03.2%) 04 (03.2%) 94.4 

New test data 02 (01.6%) 02 (01.6%) 04 (03.2%) 97.6 

     

 

 Regarding the software or programming language used in developing the 

metamodels and the optimization structure, Matlab was used by 37.1% of all researchers. 

However, Python and R, which are open-source languages ,were widely used in the field 

of Data Science, and have gained traciton in recent years. All 6 works (4.3%), using R 

were published from 2014 onwards, and studies using Python were published between 

2019 and 2020. Therefore, we can conclude that Matlab is widely used and popular for 

MBSO projects. However, the recent and successful use of R and Python makes them 

good alternatives, mainly given the growth in communities focused on ML studies 

(Pedregosa et al., 2011), and newly created and improved algorithms, that may increase 

metamodel efficiency and fit. 

 The last item analyzed in this section was the performance metrics used to 

evaluate the metamodels, to answer RQ5 (“How are the results measured/validated?”). 

The three most widely used metrics were MSE (or root MSE), the coefficient of 

determination 𝑅, 𝑅2, 𝑅𝑎𝑑𝑗
2 , MAPE, and MAE. More details on these metrics are given in 

Section 2.2. 

 The metamodel validation process is a fundamental step, since researchers can 

evaluate and compare the effectiveness of different metamodels based on simulated 

system representativeness. Of all the articles analyzed, 38.3% did not specify the type of 
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validation process used, and we recommend that future research pay more attention to 

this stage, since validation is an important part of the MBSO methodological process, and 

provides support and reliability to metamodels. 22.9% of all articles (e.g., Sousa Junior 

et al., 2019; Hussain et al., 2015; Luo et al., 2019; Raei et al., 2019), used the database 

division strategy in two parts, the first for training the metamodel (around 70%-80% of 

the data), and the second for testing/validating (20%-30% of data). 

 However, cross-validation techniques were used in most studies, and 20 (16.4%), 

of all authors used leave-one-out cross-validation (e.g., Azizi et al., 2019; Xiqun et al., 

2019), and 15 (12.3%), used k-fold cross-validation, (e.g., Coelho and Pinto, 2018; Hou 

et al., 2019; Wade, 2019). For a more detailed explanation of cross-validation techniques 

see Bergmeir and Benitez (2012). 

 

4.3 MBSO Frameworks 

 

 Given the relevance and complexity of this topic, and the wide variety of joint 

techniques and applications for metamodeling, some MBSO frameworks have emerged 

to help researchers and practitioners with their projects. Existing frameworks, as proposed 

in literature, must be analyzed to propose a MBSO in SED framework to obtain insights 

that result in better assertiveness when designing suggested steps. Thus, the same 

keywords and search criteria/article screening used in this SLR were again applied to 

journal articles alone. 

 Osorio and Bierlaire (2013), proposed a framework optimizing urban traffic 

simulations, integrating metamodeling with quadratic polynomials and the derivative-free 

trust region optimization algorithm. Pedrielli et al. (2020), proposed a framework for real-

time route optimization for ship collision detection systems. The method used 

metamodeling and agent-based simulations to generate contingency plans for possible 

collisions, minimizing risks and negative effects from route changes. 

 Other frameworks have also addressed specific engineering problems, e.g., Dang 

(2014), who used metamodeling, DOE, and Computer Aided Engineering to optimize 

plastic injection processes. Ranjbar et al. (2020), developed a multi-objective 

optimization procedure with metamodeling and NSGA II to manage water intrusion into 

coastal aquifers. 

 Parnianifard et al. (2020b), proposed a robust optimization framework to optimize 

OF while minimizing response variance using metamodeling, Taguchi orthogonal arrays, 

Pareto frontiers, and Bootstrapping sensitivity analysis. 

 Barton (2009) proposed a general optimization framework using metamodeling in 

SED models. The SO process was bifurcated into two possible strategies, as either local 

or global metamodeling, as shown in Figure 4.8. The global metamodeling strategy, 

which is the focus of this paper, adjusts the metamodel to represent the entire search 

space, and this global approximation is used in iterative optimization processes. The local 

strategy alternates the metamodeling and optimization steps, since as optimization moves 

in the search space, new local regions of θ space are explored, and new metamodel 

approximations are adjusted. 

 The global metamodeling strategy proposed by Barton (2009), was designed with 

seven main steps. In the first step, the search space region must be identified by defining 

the problem constraints. The type of metamodel is chosen in the second step. The author 

suggests using RNA, RBF, splines, or Kriging to do this. The following three steps deal 
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with choosing the type of experiment - which can be performed via fractional or complete 

factorial arrangements, CCD, LHD, etc. - conducting the experiments in the simulation 

model, and adjusting the metamodel to the experimental arrangement. If the error metrics 

are unacceptable, one should go back to the third step and change the metamodel type or 

experimental design. The last two steps address the optimization phase, where the 

optimization algorithm must be applied, and the optimal simulation model response must 

be evaluated. 

 It is worth mentioning that there are several methodologies for metamodeling, 

however, there are two main identifiable aspects, i.e., fixed sampling and incremental 

sampling. In fixed sampling, a sample set with N experiments is generated at the 

beginning of the project and the metamodel is trained using this set. Figure 9 shows a 

fixed sampling metamodeling framework. 

 

 
Figure 9: Fixed sampling metamodeling framework 

 

The framework steps are as follows: 

 

1. Determine the decision variables (xi, ..., xn), and their variation amplitudes, along 

with the OF that will be optimized (y); 

2. Define the experimental arrangement and select a sample of m scenarios that will 

comprise the metamodel training base. The LHD array is usually suggested for 

this step; 

3. Run experiments on the simulation model, and store the simulated data; 

4. Select the ML algorithms and the hyper-parameters that will be optimized, along 

with the variation range; 

5. Build the metamodel structure in the software or programming language; 

6. Perform hyperparameter optimization by validating and testing using the cross-

validation technique. The GA is usually suggested as an optimization method; 

7. Evaluate whether the error and adjustment metrics are acceptable according to the 

decision-maker criteria. If yes, then go to step 8. If no, then go back to step 4; 
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8. Run the metamodel optimization to find the decision variable values that optimize 

the predicted OF value defined in Step 1. The decision-maker can use any 

optimization techniques they see fit, e.g., AG, Ranking and Selection, NSGA II, 

etc.; 

9. Identify the solution that optimizes the OF predicted by the metamodel; 

10. Evaluate the solution from the simulation model. 

 

 By contrast, the incremental sampling approach is adaptive, and performs 

experiments preferably in more promising solution space regions. A small sample set is 

used to train the metamodels, and these are used to find new promising trial points in the 

simulation. These new points are added to the first set, and the loop continues until 

meeting the stop criterion. Figure 10 shows the incremental sampling framework. 

 

 
Figure 10: Incremental sampling metamodeling framework 

 

The framework steps are as follows: 

 

1) Determine the decision variables (xi, ..., xn), and their variation amplitudes, along 

with the OF that will be optimized (y); 

2) Define the experimental setup and select a sample of m scenarios that will 

comprise the initial metamodels training base. The LHD array is usually suggested 

for this step; 

3) Run experiments on the simulation model, and store the simulated data; 
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4) Optimize the hyper-parameters via validations and testing using the cross-

validation technique on the selected metamodel and the initial generated 

experiment base. The GA is usually suggested as an optimization method; 

5) Train the metamodel using available experiments; 

6) Use the metamodel to predict the point that optimizes the acquisition function to 

find the point (or points) that should be tested in the simulation. The acquisition 

function can be used from simpler functions, e.g., the highest/smallest 𝑓(𝑥) value, 

or more complex functions, e.g., Expected Improvement or Probability of 

improvement, which seek the point that best meets trade-offs between regions 

with higher global optimum(𝑓(𝑥)high)probabilities, and regions with high 

uncertainty (�̂�(𝑥)high); 

7) Evaluate this new point (or set of points) in the original simulation model; 

8) Check if the stop criteria have been met. If yes, return the optimal point. If no, 

proceed to step 9. The maximum number of iterations or simulations, the 

metamodel reaching certain precision, or the maximum number of iterations 

without improving the optimal response, can all be used as stop criteria; 

9) Add the new test point to the current test base; 

10) Evaluate whether the metamodel's hyper-parameters need to be adjusted. 

Comparing the metamodel error of the current iteration with the previous one can 

be used as a criterion. If further hyper-parameter adjustments are needed, proceed 

to step 4. If not, proceed to step 5. 

 

These frameworks were developed based on analyzing good practices observed in 

the articles from the SLR. 

 

4.4 Future directions for MBSO research 

 

 Based on the articles studied in this SLR, we identified that trends and gaps in 

literature can constitute opportunities involving adopted MBSO contexts and methods. 

Regarding the methods used, growing development in the area of computational science 

has greatly contributed to improved learning algorithms, which can consequently be 

studied by creating more accurate metamodels. One algorithm that has been gaining 

traction in the ML field, given its flexibility and learning ability, is Deep Learning 

(Higham and Higham, 2019; Xu et al., 2020). However, it has not been used to create SO 

metamodels, meaning that future studies could explore this research opportunity. 

 Beyond Deep Learning, there are still many opportunities for using ML 

algorithms already addressed in literature, but which are still being developed. Classical 

algorithms like Kriging and ANNs have shown considerable growth in recent years, 

especially when varying how these algorithms are used, e.g., (Rojas Gonzalez, Jalali, and 

Van Nieuwenhuyse 2020; Yousefi et al., 2018), or by using them with other techniques 

to build innovative solutions, e.g., (Ranjbar et al., 2020; Yaohui, 2017). Extreme learning 

machines e.g., (Li et al., 2020), SVM (Li et al., 2019), and ensemble methods, e.g., (Lal 

and Datta 2020), are other algorithms that have gained recent attention in MBSO, have 

high learning capabilities, and are under active development in the field of artificial 

intelligence.  

 Hyper-parameter optimization techniques increase metamodel effectiveness in 

correctly representing simulation models. Optimization methods like AG, particle 

swarms, Bayesian optimizations, and search grids for hyper-parameter optimization have 
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led to positive results in several studies, e.g. (Amiri et al., 2019; Hou et al., 2019; Hullen 

et al., 2020; Kim and Boukouvala, 2020; Li et al., 2019), but research is still incipient. 

 The global optimization method is another technique that has shown good results 

for building metamodels, which uses EGO and EI techniques to build adaptive and 

interactive metamodels. Kriging was mostly used as a metamodeling algorithm for 

applications involving this strategy, e.g., (Coelho and Pinto, 2018; Ivanova and Kuhnt, 

2014; Wang et al., 2020). We recommend that future research explore this adaptive 

strategy for building metamodels based on other algorithms, like ANNs, SVM, Extreme 

Learning Machines, decision trees, etc. 

 Metamodeling has been used to address more complex and large-scale problems 

over the years. Feature selection techniques have been used more and more to deal with 

increasingly large databases in the ML and data mining communities. Feature selection 

can be interpreted as a set of techniques used to reduce problem size, removing irrelevant 

or redundant variables from the database (Bommert et al. 2020). However, these 

techniques were only addressed by Kim and Boukouvala (2020), and Sharif and Hammad 

(2019), and we suggest that future research address these techniques, like Principal 

Component Analysis, Wrappers, Filters, etc., to treat data in the MBSO process. 

 Regarding the context in which the studies were conducted, the highest growth 

trend was observed in the tertiary economic sector, driven mainly by metamodeling use 

in logistical problems, like cargo transportation and storage, and calibrating and 

optimizing of urban traffic models. However, it is worth mentioning that no MBSO 

application-optimized operations at distribution centers, a potential field for application, 

especially given e-commerce expansion and reverse logistics challenges. Furthermore, 

the COVID-19 pandemic intensified the pre-existing trends of using modeling and 

simulation techniques in healthcare (Currie et al., 2020), giving metamodeling an 

opportunity to reduce inherent healthcare model complexity and provide faster more 

consistent decision making. 

 Finally, with advancements in industry & service 4.0, many organizations from 

different sectors have demanded Digital Twin studies and applications. According to 

Mueller et al. (2017), Digital Twins are physical and virtual system junctions 

(simulators), connected in full or in partial autonomy, with real-time controls, which can 

work with human decision-making interfaces. This limits model-based SO technique use, 

since decision making is done in real time, or in short time intervals, leading to 

metamodeling replacing optimization simulation models via Digital Twin simulations. 

Dunke and Nickel (2020), Calahorrano et al. (2016), Pedrielli et al. (2020), Shirazi et al. 

(2011), and Steer et al. (2012), addressed operationally applying metamodels for decision 

making in near real time. 

 

5 Final Considerations 

 

 This paper sought to (a) carry out an SLR on MBSO to (b) identify and explore 

the main aspects related to the topic, (c) analyze and summarize the results to answer the 

RQs, and (d) define the state-of-the arts, gaps, and trends that could be explored in future 

research. 

 SLR proved to be satisfactory in exploring and analyzing existing scientific 

literature. The guidelines proposed by Denyer and Tranfield (2009), and Denyer et al. 

(2008), greatly aided in better conducting this study, preventing possible distortions and 

author partialities in the results, thereby allowing us to meet our first objective. It is worth 
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mentioning that this study did not seek to exhaustively analyze all articles on the subject, 

but to systematically analyze a representative sample that would allow us to consistently 

answer the RQs, generating insights into MBSO practices, to assist future researchers and 

practitioners in understanding and identifying the frontier of existing knowledge in the 

area. 

 According to our second and third objectives, Sections 4.1 and 4.2 presented the 

main aspects related to the MBSO contexts of the studies, along with the simulation, 

optimization, sampling, and metamodeling methods adopted in the studies. Finally, 

Section 4.3 addressed the main frameworks and best MBSO project practices. Section 4.4 

discussed the gaps and trends identified in this study, thereby responding to our final 

proposed objective. 

 Regarding the RQs, we can start by concluding that metamodeling has reduced 

computational time spent on SO problems, where recursive models would be expensive, 

or unfeasible. Metamodeling has been applied to many problems, with emphasis on 

MBSO optimizations for process control parameters, sizing, resource allocation, urban 

traffic controls, and product designs. 

 MBSO studies were initiated predominantly by industry. However, they have 

tended to expand into primary sectors, especially for water extraction and treatment, and 

into the tertiary economic sector, focusing on smart city concepts and better healthcare 

management. 

 Our second conclusion deals with the adopted methods. We were unable to reach 

a global consensus on which method or technique is most suitable for each problem, since 

this decision is often made based on available resources and the prior knowledge of 

researchers. The most frequently used simulation techniques were SED, the finite element 

method, and microscopic simulations of urban traffic. Regarding the most frequently used 

optimization methods, Genetic Algorithms were used for dealing with single-objective 

problems, the NSGA II algorithm was used for multi-objective problems in SED models, 

the finite elements, finite volumes, and trust-region methods were used for traffic 

simulations. 

 Lastly, the most used algorithms for building metamodels were Kriging, PR, 

RNAs, RBF, and SVM, along with ensemble methods (Bagging, AdaBoost, etc.), which 

combine one or more metamodeling algorithm to formulate a metamodel that can learn 

better, e.g., RF and GBT. Also, LHD and Random design were the main sampling 

strategies for search spaces. 
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Abstract 

 This chapter presents an overview of principal component analysis (PCA), 

introducing and presenting the steps for using this powerful technique for data 

processing. In addition, three different examples are described, applying PCA to 

different multivariate engineering problems: in the manufacturing process using 

laser beam machining; power quality indices and in turbofan engine degradation 

data. 

Keywords: principal component analysis; multivariate statistics; laser beam machining; 

power quality indices; turbofan engine degradation. 

1 Contextualization 

Most datasets usually have datas with  multiple characteristics that can be analyzed. For 

example, in a standard machining process, which features characteristics such as 

average roughness (Ra), cutting tool wear and material removal rate (MRR). Such 

characteristics present a relationship with each other, which can be statistically verified 

through their variance-covariance structure. The need to understand the relationships 
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between several variables of a correlated nature makes multivariate analysis an 

intrinsically complex subject (Johnson, R.A., Wichern, 2007). 

When analyzing a set of characteristics, using univariate strategies (which deal with 

only one variable at a time) can bring unsatisfactory or even inadequate results. This can 

happen, because the multicollinearity existing in the set would be neglected (Almeida et 

al., 2020). Thus, it must be necessary to verify the relationship between the 

characteristics (which usually present correlation between them), requiring the use of 

multivariate strategies, promoting more informative and robust evaluations (Ferreira, 

2018). 

Among the commonly used strategies, principal component analysis (PCA) stands out, 

which was introduced by Pearson (Pearson, 1901) and later attributed differently by 

Hotelling (Hotelling, 1933). PCA is characterized as an exploratory multivariate 

technique that models correlated data from the variance-covariance structure (Ferreira, 

2018). In addition, this technique allows the reduction of the dimensionality of the 

dataset (Gaudêncio et al., 2019; Jolliffe, 2010), finding a linear combination of 

uncorrelated variables that adequately explains the original variables, with the least 

possible loss of information (Mardia et al., 1995). In this way, the principal components 

can be obtained through a diagonalization, specifically, of defined semipositive 

symmetric matrices (Ferreira, 2018). The use of this technique can be found in many 

studies with different applications, such as: (Bounoua & Bakdi, 2021; Mahmoudi et al., 

2021; Nhu et al., 2020; Song & Li, 2021; Yu et al., 2020). 

Based on the previous discussion, this chapter will present an overview of the PCA 

strategy, indicating how the application should be carried out and interpreted, from the 

previous analysis of the data (before the application of the PCA). In addition, the steps 

to be considered by using this technique in the applied in datasets with multiple 

characteristics will be discussed. Finally, three different examples will be explored 

using problems in several areas of engineering, such as the manufacturing process, 

power quality indices and heath monitoring of aeronautical engine. 

2 Principal Component Analysis 

As previously inferred, PCA is characterized by being a multivariate technique widely 

used to interpret and reduce extensive and correlated data (Wang & Chien, 2010). Thus, 

the first step to consider before using the PCA is to verify the significance of the data 

correlation structure. This analysis can be done through correlation tests such as 

Pearson's, in which it is possible to verify (through the p-value of the test) if the data 

present a significant correlation. In addition, it is possible to verify whether the 

characteristics are directly or inversely correlated. Correlation between the 

characteristics can be verified according to Equation (1): 

1, 2, ..., ; 1, 2, ...,
i j

i j

i j

y y

y y

y y

CoVar
Cor i q j q

Var Var
     (1) 
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Where: 

iy
Var   and   

jyVar  are ith and jth variance; 

i jy yCoVar  represents the covariance between the characteristics. 

Datasets with a significant level of correlation usually present an ellipsoidal geometric 

structure, while variables without correlation, that is, independent, present a spherical 

structure. Figure 1 illustrates both behaviors: no significant correlation and significant 

correlation level. 

 

 

(a) (b) 

Figure 1: Data behavior with correlation: (a) r = +0.705; (b) r = 0 (Almeida, 2021). 

 

If the data set does not show significant correlation, there is no need to use a 

multivariate strategy. However, when dealing with variables from the same source, 

there is usually a significant correlation between the analyzed characteristics. In this 

way, one can proceed with the application of the PCA strategy.  

It is known that PCA minimizes the dimensionality of the original variables, in order to 

absorb significant elements in the principal axis, while maintaining the error variation in 

the secondary axes. Consequently, PCA stands out for being very widespread in the 

literature to reduce the computational effort in analyzes involving large and correlated 

data sets. This strategy makes use of an orthogonal conversion to transform the 

observations into a set of variables that are not correlated with each other (Almeida, 

2021). Thus, one of the necessary parameterizations for the application of the PCA is to 

define the ideal number of principal components (PCi) that will be considered in the 

model. This choice is not arbitrary and can be defined through specific criteria. 

One of the guidelines used when defining the amount of PCi is the Kaiser criterion 

(Johnson, R.A., Wichern, 2007). This criterion indicates that: the more correlation there 

is between the variables, the smaller the number of components needed to represent the 

observations. Thus, the components need to explain at least 80% of the accumulated 
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variance. For example, on a suitable dataset with seven correlated characteristics: if the 

first principal component (PC1) has an explanation of 63.4% and the second principal 

component (PC2) has a 19.9% explanation, it is known that two components are enough 

to adequately explain the original data set. Thus, there is a dimensionality reduction of 

71.43% of the original dataset. 

In addition to the percentage of explanation, another criterion commonly used to define 

the number of principal components is based on their eigenvalue. Thus, if the 

eigenvalue associated with the component is greater than or equal to 1 (λ ≥ 1), this 

principal component will be associated in the model. Figure 2 shows the “Scree Plot” 

graph, which exemplifies the behavior of the eigenvalue in data from a welding process 

(adapted from (Almeida, 2017). 

 

Figure 2: Scree plot 

An alternative way to represent the behavior of both criteria (to choose the number of 

principal components) is through the Pareto chart (Figure 3). This graph illustrates the 

study's eigenvalue along with the explanation percentage of each component. In 

addition, the percentage of cumulative explanation is also presented, favoring decision 

making. 

 

 

 

(Intentionally left blank) 
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Figure 3: Pareto chart with eigenvalues and percentage of explanation 

Since PCA is the combination of a linear set for q random variables  qYYY ,,, 21  , it can 

be inferred that the coordinate system represents a new set of coordinates before its 

original rotation, where the new axes hold the greatest data variability (Johnson, R.A., 

Wichern, 2007). Figure 4 shows the geometric interpretation of the axes. 

 

 

Figure 4. Constant density ellipsoid (Almeida et al., 2020). 

PCA aims to find a combination of uncorrelated variables that adequately explains the 

original variables (Velasco et al., 2020). For this, we consider the random vector XT= 

[X1, X2, …, Xp] which has the covariance matrix Σ with eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ … ≥ 

λp ≥ 0. Then, the linear combinations can be described as in Equation (2). 
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Considering that Yi for the ith principal component, then, in Equation (3) and Equation 

(4): 

  pieeaaYVar i
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Thus, the principal components represent the uncorrelated linear combinations Y1, Y2, 

…, Yp, in which the variances described in Equation (3) are the largest possible. That is, 

the ith component can be defined from Equation (5), which was previously obtained 

through the formulation written in Equation (6) (Almeida, 2017). 
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 (6) 

Therefore, the original variables can be replaced by an uncorrelated linear set, i.e., the 

scores of the principal components. According to Johnson, R.A., Wichern, (2007), in 

possession of the standardized data matrix Z and the eigenvectors matrix E (from a 

multivariate set), the scores of the principal components can be obtained by Equation 

(7). 
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Principal component scores are dimensionless, independent representations of an entire 

original dataset. These scores can be used in the most varied applications: from 

techniques such as artificial neural networks, cluster analysis to optimization 

techniques. 

In the following topics, three real examples will be detailed using PCA on data from 

different multivariate processes in engineering. In such manner, applications of PCA 

will be addressed in data from a laser machining process (Belinato et al., 2019); in 

power quality sector (Almeida et al., 2021) and on data from NASA's Turbofan engine 

degradation analysis (Saxena & Goebel, 2008).  

3 On the Use of PCA in Engineering Applications  

3.1 PCA-based LBM process 

The first example to be addressed will be based on the article by Belinato et al., (2019). 

In this study, the authors used the PCA technique with other statistical methods for 

experimentation and optimization in the machining process through laser beam 

machining (LBM). In general, this machining process has multiple objectives due to its 

quality characteristics. The authors performed a design of experiments (DOE) using the 

Response Surface Methodology (RSM) for the parameters of laser frequency (f), cut 

speed (S), laser power (I). The quality characteristics investigated were: material 

removal rate (MRR) and different roughness metrics (Ra, Rq, Rz, Rp and Rt). Table 1 and 

Table 2 present the parameter levels and the experimental matrix with the multiple 

quality characteristics analyzed, respectively. 

The experiments were performed on a Deckel Maho Lasertec® machine model 

DML40SI (Figure 5a) and data collection used a Mahr® rugosimeter model M300 with 

an RD18 measuring device (Figure 5b). The workpieces used can be seen in Figure 6. 

All planning, experiment and data collection were carried out at Instituto Superior 

Técnico, University of Lisbon. 

 

 

Figure 5: (a) DML40SI LBM machine and (b) Mahr® M300 rugosimeter (Belinato et al., 2019). 
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Table 1: Input parameters and levels (Belinato et al., 2019). 

Input parameters 
Level 

-1.682 -1 0 +1 +1.682 

f [kHz] 11.2 15 20.5 26 29.7 

S [mm/min] 29.5 200 450 700 870.4 

I [%] 26.3 40 60 80 93.6 

Table 2: Experimental matrix (Belinato et al., 2019). 

N 

Setup Responses 

f S I Ra Rq Rz Rp Rt MRR 

[kHz] [mm/min] [%] [µm] [µm] [µm] [µm] [µm] [cm3/s] 

1 15.0 200.0 40.0 4.54 5.85 31.30 14.46 39.58 5.95 x10-4 

2 26.0 200.0 40.0 2.12 2.65 12.77 6.70 14.00 4.20 x10-4 

3 15.0 700.0 40.0 7.27 9.03 42.06 22.59 47.90 7.81 x10-4 

4 26.0 700.0 40.0 3.68 4.53 17.47 8.82 18.86 4.21 x10-4 

5 15.0 200.0 80.0 12.38 15.07 66.30 33.68 78.49 1.84 x10-3 

6 26.0 200.0 80.0 5.28 6.91 35.33 20.30 45.70 6.57 x10-4 

7 15.0 700.0 80.0 11.82 14.66 63.70 31.40 79.66 2.05 x10-3 

8 26.0 700.0 80.0 6.08 7.25 36.26 17.15 52.88 2.33 x10-3 

9 11.2 450.0 60.0 11.93 14.93 61.52 33.55 80.09 1.77 x10-3 

10 29.7 450.0 60.0 3.14 4.71 14.96 8.04 17.93 1.21 x10-3 

11 20.5 29.55 60.0 11.91 15.91 69.30 33.67 95.14 2.24 x10-4 

12 20.5 870.45 60.0 3.07 4.14 26.24 12.64 30.49 1.24 x10-3 

13 20.5 450.0 26.36 3.64 4.36 17.57 8.68 22.42 3.07 x10-4 

14 20.5 450.0 93.64 10.73 12.92 71.64 32.47 89.21 2.70 x10-3 

15 20.5 450.0 60.0 6.22 7.62 36.61 17.18 47.00 1.54 x10-3 

16 20.5 450.0 60.0 5.90 7.38 36.71 17.81 42.50 1.57 x10-3 

17 20.5 450.0 60.0 6.17 7.51 36.35 16.91 38.37 1.56 x10-3 

18 20.5 450.0 60.0 6.23 7.71 36.14 18.10 41.29 1.56 x10-3 

19 20.5 450.0 60.0 5.88 7.55 36.52 17.95 44.76 1.58 x10-3 

20 20.5 450.0 60.0 6.17 7.60 35.60 17.33 38.25 1.60 x10-3 

 

   

   

   
Figure 6: Machined surface workpieces (Belinato et al., 2019). 
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To emphasize principal components analysis, initially a correlation analysis is 

performed to verify the behavior of the quality characteristics. From Table 3, it appears 

that there is a significant correlation between the characteristics. This analysis can be 

verified using Pearson's correlation test and the relationship between the quality 

characteristics can also be verified through the correlation matrix illustrated in Figure 7. 

Then, information on eigenvalue and percentage of explanation is showed to define the 

number of components to be used in the analysis. Figure 8 presents the Pareto chart for 

the eigenvalues and cumulative percentage of explanation of the components. Through 

this analysis, it can be seen that the first component (PC1) is the only one to present an 

eigenvalue greater than 1, in addition to explaining 86% of the original data. Thus, only 

1 component is sufficient to represent all the quality characteristics analyzed. 

Knowing the number of components needed (only 1), in this case, it is enough to extract 

the component scores, which represent the original dataset in a dimensionless way. 

From this result, it is possible to verify that the multivariate PCA technique provides a 

data dimensionality reduction by 83.33%. This result favors a less complex analysis 

with less computational effort for the next steps (such as optimization, forecasting etc). 

For more details about the process and the approach performed by the authors, see the 

study by Belinato et al., (2019). 

 

Table 3: Correlation analysis for the LBM process characteristics (Belinato et al., 2019). 

  Ra     

Rq 
0.996(1) 

Rq  
      

0.000(2)       

Rz  
0.973(1) 0.969(1) 

Rz  
    

0.000(2) 0.000(2)     

Rp  
0.979(1) 0.979(1) 0.989(1) 

Rp  
  

0.000(2) 0.000(2) 0.000(2)   

Rt  
0.960(1) 0.962(1) 0.987(1) 0.976(1) 

 Rt 
0.000(2) 0.000(2) 0.000(2) 0.000(2) 

MRR  
0.460(1) 0.415(1) 0.500(1) 0.454(1) 0.462(1) 

0.041(2) 0.069(2) 0.025(2) 0.044(2) 0.040(2) 

      (1) Pearson correlation 

      (2) P-Value 
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Figure 7: Correlation matrix from LBM process. 

3.2 On the use of PCA in electric power substation quality indices 

The second example to be addressed is derived from an analysis of power quality 

indices of electric power substations addressed by Almeida et al., (2021). In this study, 

the authors used data from 17 substations with 31 power quality characteristics. The 

substations are located in southeastern Brazil, corresponding to a total area of 41,241 

km2, about 90% of the state of Espírito Santo. Figure 9 illustrates, geographically, the 

location of the analyzed substations. 
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Figure 8: Pareto chart with eigenvalues and percentage of explanation (Belinato et al., 2019). 

 

 

Figure 9: Location of the investigated substations in the State of Espírito Santo (Almeida et al., 

2022). 
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Power quality measurements were collected over a year, in order to cover different 

seasonalities that influence the performance of the electricity distribution network (such 

as rain, winds, among other phenomena). In addition, 30 power quality monitors from 

Schweitzer Engineering Laboratories, model SEL 734, were used to acquire this data. 

The behavior of the dataset towards the substations is illustrated in Figure 10. The set 

were applied in a method to find the best clustering technique for this set and, 

consequently, classify the substations based on the power quality. Due to the correlated 

structure of the data (originally available in Miranda et al., (2016), the use of 

exploratory techniques such as PCA is recommended. 

 

Figure 10: Relationship between power quality indices and substations (Almeida, 2021). 

After test and confirm that data structure presents a significant correlation, the 

eigenvalues and the percentage of explanation of each component are calculated. This 

procedure is intended to determine the number of principal components needed for the 

study. As an alternative view of the first example (applied to the process by LBM), the 

behavior of the eigenvalues can also be visualized through the Scree plot (Figure 11). In 

this graph it is possible to verify that the first six components present eigenvalues 

greater than 1 (λ ≥ 1). Figure 12 illustrates the behavior of eigenvalues 1 and 2 of their 

respective principal components. 

 

 

 

(Intentionally left blank) 
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Figure 11: Scree plot of eigenvalues from power quality indices (adapted from Almeida, 2021). 

 

 

Figure 12: Plot of eigenvectors 1 and 2 (Miranda et al., 2016). 
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Complementarily, the Pareto chart (Figure 13) also provides information on the 

explanation percentage of each principal component. In this graph it is possible to verify 

that the fourth component presents a cumulative percentage of 80%. In this case, it is 

advisable to use the number of components necessary to respect the eigenvalue 

criterion. By using 6 components instead of 4, there data explanation contribution 

increases from 9.53%, in addition to properly respecting the Kaiser criterion discussed 

above. 

 

Figure 13: PCA Pareto chart for substation data. 

There is a discussion in literature about the number of components to be used in 

exploratory analysis studies, both for principal components and factor analysis (another 

widely used exploratory technique). Some of these discussions can be verified in studies 

such as Visinescu & Evangelopoulos (2014) and Almeida (2021). 

Considering the six principal components, the extraction of scores can be performed, 

thus generating 6 vectors of dimensionless and independent scores. These values 

adequately represent and explain the 31 original variables of the study. From this 

application, there is an 80.5% reduction in the data dimensionality. This result favors 

further analyzes that involve computational effort, as in the application of cluster 

algorithms used in the aforementioned power quality studies. The following studies 

bring more details and information about the object of study: (Almeida et al., 2022); 

(Almeida et al., 2021) and (Miranda et al., 2016). 

3.3 On the use of PCA in Turbofan engine degradation data 

The analysis and investigation of aeronautical engine data is widely investigated by 

industries and researchers (Chatterjee & Litt, 2003; Deng et al., 2020; Goebel et al., 
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2007; Kurosaki et al., 2004; Listou Ellefsen et al., 2019; Saxena et al., 2008; Xu et al., 

2020), comprising the collection of numerous information generated by several different 

sensors in specific positions. The diagnosis of this magnitude generates a large amount 

of data that usually present a multivariate characteristic. Thus, the PCA strategy can 

also be explored in this context. Data referring to turbofan engine degradation 

predictions will be analyzed. This set can be found in the public archives of the National 

Aeronautics and Space Administration (NASA), referring to the study by Saxena et al., 

(2008) and available at Saxena and Goebel, (2008). The data were generated using C-

MAPSS – Commercial Modular AeroPropulsion System Simulation software, based on 

the behavior of turbofan engines, shown in the diagram of Figure 14. 

 

Figure 14: Diagram of engine simulated (Saxena et al., 2008). 

For this example, a set will be selected that describes the simulation of 218 motors in 

constant execution until the moment of failure (between 127 and 356 cycles). The set 

presents information for analysis, using 21 C-MAPSS outputs with 33,991 collections 

for each characteristic (totaling 713,811 data). Table 4 describes the characteristics of 

the C-MAPSS outputs. Figure 15 illustrates the behavior of the sensors as a function of 

the engine's remaining useful life (RUL). The complete dataset and more details about 

the collection are available in the articles and database mentioned above. 

Through correlation analysis it is possible to assume that there is a significant variance-

covariance structure for the whole set, considering a confidence interval of 95%. Given 

the large amount of data, the correlation analysis will not be presented here, but it can 

be easily replicated with the help of any statistical software.  

From the correlation level, the data are able to be used in the PCA strategy. Thus, the 

eigenvalues and contribution percentage of each component are initially verified to 

estimate the ideal amount for this data set. Through this initial analysis, it is possible to 

verify that only two principal components present λ ≥ 1 (16,908 and 3,578, 

respectively). The behavior of the eigenvalues can be verified through Figure 16. In 

addition, the second component presents an accumulated explanation percentage of 

97.55% of the data. Such results infer that only two components are sufficient to 

adequately represent all 21 quality characteristics collected through the sensors. The 
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Pareto chart illustrates the behavior of both results mentioned above, as shown in Figure 

17. 

Table 4: C-MAPSS outputs (Adapted from (Saxena et al., 2008). 

Symbol Description Units 

T2 Total temperature at fan inlet °R 

T24 Total temperature at LPC outlet °R 

T30 Total temperature at HPC outlet °R 

T50 Total temperature at LPT outlet °R 

P2 Pressure at fan inlet psia 

P15 Total pressure in bypass-duct psia 

P30 Total pressure at HPC outlet psia 

Nf Physical fan speed rpm 

Nc Physical core speed rpm 

epr Engine pressure ratio (P50/P2) -- 

Ps30 Static pressure at HPC outlet psia 

phi Ratio of fuel flow to Ps30 pps/psi 

NRf Corrected fan speed rpm 

NRc Corrected core speed rpm 

BPR Bypass Ratio -- 

farB Burner fuel-air ratio -- 

htBleed Bleed Enthalpy -- 

Nf_dmd Demanded fan speed rpm 

PCNfR_dmd Demanded corrected fan speed rpm 

W31 HPT coolant bleed lbm/s 

W32 LPT coolant bleed lbm/s lbm/s 

 

 

 

 

 

 

 

(Intentionally left blank) 
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Figure 15: Sensors signal (#1 to #21) in function of the engine's RUL. 
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Figure 16: Scree plot of eigenvalues from C-MAPSS outputs. 

 

Figure 17: PCA Pareto chart for C-MAPSS outputs. 

In a complementary way, it is possible to verify which variables have the greatest effect 

on these components. This relationship can be seen through a loading plot, as described 

in Figure 18. In this graph, the variables closer to 0 have a weak influence and, 

antagonistically, those close to 1 or -1 have a strong influence on the component.  
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From the ideal number of components (in this case, only 2), it is possible to extract the 

scores that will represent all the original variables through independent and 

dimensionless vectors. From the application of the analysis, it is possible to reach a 

reduction of the data dimensionality of 95.25%, i.e., the original set that had 713,811 

data points can be properly represented by 67,822 data points. This significant reduction 

favors the computational and analytical performance of the data, reducing the time and 

helping for more accurate evaluations, since the PCA considers the correlated structure 

of the data. The following studies bring more details and information about the object of 

study: Saxena et al., (2008); Saxena and Goebel, (2008). 

 

Figure 18: Loading plot from the C-MAPSS outputs 

4 Conclusion 

In this chapter we present a general and brief overview of the principal component 

analysis technique. This technique is characterized as a powerful tool to reduce the data 

dimensionality and create uncorrelated response vectors, being widely used in several 

segments. In addition to an explanation of this strategy, this chapter described 3 

examples that cover different areas of engineering, showing the possibilities of using 

PCA. Finally, it is hoped that this chapter will help readers understand PCA, as well as 

how to apply this strategy to other multivariate data sets. 
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Abstract 

 This chapter presents the theoretical and practical aspects of Gaussian mixture models 
method. The introduction section describes the motivation for using the Gaussian mixture 
model. Next, the historical development, concepts, parameters and equations about Gaussian 
mixture model are presented. Following, a case study on fault classification in electric 
motors using Gaussian mixture model is described. Finally, the conclusion section ends the 
chapter. 

Keywords: Gaussian mixture model; fault; electric motors; artificial intelligence; vibration; 
structural health monitoring. 

 

1 Introduction 

Clustering is a useful technique for finding structure in a dataset. From the statistical point of 
view, clustering methods may be divided into probability model-based approaches and 
nonparametric approaches. The probability model-based approach assumes that the data set 
follows a mixture model of probability (Yang et al., 2012). 

So, any model that represents a dataset with a mix of two or more probability distributions is 
known as a mixture model. Mixture models aid in cluster identification by fitting a finite 
number of probability distributions to the data and repeatedly adjusting the parameters of those 
distributions until they best match the underlying data. Mixture models also aid in describing 
the presence of subpopulations within an aggregate population that do not require an observed 
data set to identify the subpopulation to which an individual observation belongs (known as 
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unsupervised learning in machine learning). In SHM, mixture models help to identify whether 
there is more than one failure mode in the data. 

In real applications, many datasets may be described by Gaussian distributions. As a result, it 
is reasonable and straightforward to infer that the clusters are derived from various Gaussian 
distributions. In other words, the dataset is attempted to be modeled as a blend of various 
Gaussian distributions. Therefore, Gaussian mixture modeling, which fits Gaussian (or normal) 
distributions to data, is the most frequent type of mixture modeling. 

By the end of this chapter, we hope you’ll have an understanding of how the Gaussian mixture 
model works. We will also present an example of how to apply the GMM to a real case to help 
the reader to understand how to use mixture model for clustering problems. 

2 Gaussian Mixture Model 

Gaussian mixture models (GMMs) are statistical models that fit data to a set of stochastic 
models. These models, as GMMs, fit Gaussian distributions to a collection of data in order to 
split the data into discrete clusters. One of the benefits of mixed model clustering is that it is a 
soft clustering strategy (Rhys, 2020). Because it is a soft method, the likelihood of each 
example belonging to a cluster may be quantified. As a result, more information may be 
obtained to make better judgments. For example, if certain data has 49 percent of belonging to 
cluster A and 51 percent of belonging to cluster B, how confident can we declare that it belongs 
to cluster A or B? As a result, each Gaussian in the mixture model represents a possible cluster. 
Once our Gaussian mixture best matches the data, we can compute the likelihood of each case 
belonging to each cluster and allocate instances to the most likely cluster. 

2.1 Historical Development 

The first instance of Gaussian mixture models being used is usually attributed to Karl Pearson 
(1894). Pearson noted non-normal patterns of forehead to body length ratios in female shore 
crab populations. Therefore, the author used not only one normal to model the data, but two. 
This decision was motivated by the suspicion that asymmetries in the histograms of these length 
ratio could indicate an evolutionary divergence. By adjusting the mixture’s parameters, Pearson 
could make a model that is able to identify two distinct species of shore crab. Despite being 
successful, the mathematical formulation for the period was an extremely difficult challenge, 
making the method not widely used. 

Subsequently, Wolfe (1963,1965,1970) put a lot of effort into developing Gaussian mixture 
models for clustering. In his work, Wolfe developed an interactive scheme to estimate the 
parameters of Gaussians, something innovative for the period. As the main challenge of mixing 
models is to estimate the parameters of the Gaussians, this step was extremely important for 
the development of the method. 

Finally, the mixture model methods were popularized by Duda and Hard (1973). The authors 
in their work introduced the maximum likelihood estimation (MLE) technique. The MLE uses 
an observed data to estimate the parameters of a probability distribution (Myung, 2003). With 
this technique allied to the beginning of modern computing, it was possible to develop the 
mixture models. 
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2.2 Parameters of Gaussian Mixture Models 

To define a one-dimensional Gaussian distribution, two parameters (mean and variance) are 
required. Before beginning the process, it is required to define the number of clusters that are 
expected to be identified within the dataset; if this number is unknown, it is feasible to 
approximate it using various approaches that will be detailed in section 2.5. 

For now, let's suppose the dataset contains only two distinct clusters (k and j). The GMM begins 
by picking random values for the mean and variance of the two Gaussian distributions. The 
likelihood of belonging to one of the two clusters is then estimated. The Bayes' theorem is the 
most often used method for performing this computation (Rhys, 2020). Using Bayes' theorem, 
we get (Kolmogorov & Bharucha-Reid, 2018): 

 
(1) 

 

In this case, p(k|x) represents the probability of case x belonging to Gaussian k; p(x|k) represents 
the probability of observing case x if you sampled from Gaussian k; p(k) represents the 
probability of a randomly selected case belonging to Gaussian k; and p(x) represents the 
probability of drawing case x if you sampled from the entire mixture model as a whole. The 
evidence, p(x), is thus the probability of pulling case x from either Gaussian distribution. 

However, in the case study we need to calculate the probability of belonging to either cluster. 
therefore, we need to add to the formula the probability of each event occurring independently. 
thus, Equation 1 can be rewritten for the case of two cluster (k and j), as shown in Equation 2 
and 3 (Rhys, 2020): 

 
(2) 

 

 
(3) 

 

All that remains now is to compute the likelihood and prior. The Likelihood function of the 
Gaussian distribution shows us the relative likelihood of drawing a case with a certain value 
from a Gaussian distribution with a specific mean and variance combination. Equation 4 
depicts the probability density function for the Gaussian distribution k: 

 

(4) 

 

Where, 𝜇 and are the man and variance of the k Gaussian. 

At the start of the process, the prior probabilities, like the Gaussian means and variances, are 
generated at random. However, for subsequent calculations, the iterative procedure of this 
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method must be followed. Expectation Maximization is used for this. Figure 1 shows the 
convergence process of a one-dimensional GMM. 

 

 

Figure 1 – Convergence process of a one-dimensional Gaussian mixture model  
(adapted from Rhys, 2020).  

2.3 Expectation-maximization 

Maximum likelihood estimation is a method of estimating a dataset’s density by exploring 
across probability distributions and their parameters. When there are variables that interact with 
those in the dataset but are hidden or not observed, maximum likelihood becomes intractable 
(Murphy, 2012). These variables are also called latent variables. 

The expectation-maximization algorithm is a method for calculating maximum likelihood 
when latent variables are present. This is accomplished by first estimating the values of the 
latent variables (E-step), then optimizing the model (M-step), and finally repeating these two 
stages until convergence is achieved. It is a powerful and versatile method that is often used in 
density estimation with missing data, such as clustering algorithms like the Gaussian mixture 
model (Hastie et al., 2009). 

The EM method may be characterized by the following equations given a set of observable 
data (U), a set of latent data (J), and a vector of unknown parameters (θ), along with likelihood 
function L(θ, U, J) = p(U, J | θ) (Moon, 1996; Dellaert, 2002). 

Expectation step (E step) 

 
(5) 
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Maximization step (M step) 

 
(6) 

 

The algorithm's iterative procedure begins with a random value of θ. The probability of each 
potential value of J is then computed, given θ. The new θ parameters are estimated using these 
values. The procedure is repeated until the algorithm achieves convergence. A maximum 
number of iterations or a stopping condition is typically employed to determine an algorithm's 
convergence. There are various alternatives for the halting criterion. The most common is to 
halt the algorithm due to a lack of progress in the likelihood function (Mc Nicholas, 2016), 
which means to stop the process when: 

 (7) 
 

Where l is the likelihood function value, and k denotes the number of the iteration. The value 
of ε is defined for the sake of the problem under consideration. 

2.4 Multivariate clustering problems 

All the development in the previous sections has been with a one-dimensional GMM in mind. 
However, most of the time, we will come across datasets with multiple variables. Therefore, 
there is a version of GMM for multiple variables. One-dimensional GMMs are defined by two 
parameters: mean and variance. Multivariate GMM is defined by two new parameters: the 
centroid and the covariance matrix. 

In a nutshell, the centroid is a vector of means that represents an average for each dimension 
in the dataset. The covariance matrix is a square matrix whose elements are the covariance 
between the dataset's variables. The covariance matrix is often a non-standardized number. 
However, you may normalize this matrix by dividing the value by the product of the standard 
deviations of the variables. 

Therefore, the equations change to the multivariate case. In general, what happens is a 
generalization of the one-dimensional case to more dimensions. Equations 8 to 10 describe the 
calculation of the centroid, covariance matrix and likelihood for the multivariate case (Rhys, 
2020). Figure 2 shows the GMM algorithm for a bivariate case. 

 

(8) 

 

 

(9) 

 

 
(10) 
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Figure 2 – Gaussian mixture model algorithm for a bivariate case (adapted from Rhys, 2020). 

2.5 Number of components in Gaussian Mixture Model 

Choosing the number of components simply selects the number of Gaussians for your model. 
However, when you have no prior knowledge of your dataset, it is necessary to use techniques 
to assist in this choice, i.e., model selection. In short, a fitting process is performed with several 
models on a given dataset, and one is chosen among all the others. It is worth mentioning that 
this is an alternative when there is no information about the dataset. If you know that there are 
three different types of clusters and the model selection indicates a different number, it is 
recommended that you use the three and not the one given by the model. There are several 
ways to choose the number of components in a GMM; even the trial-and-error method can be 
used. However, there are more optimized methods for this task. In this section, the main 
methods used for model selection will be discussed. 

2.5.1 Akaike Information Criterion  

Hirotugu Akaike created the Akaike information criterion (AIC) in 1971 (Akaike, 1974). AIC 
is a statistical estimator that helps in the selection of the optimal model for a given dataset. The 
lower the AIC score for a dataset, the better the fit for the data (Profillidis & Botzoris, 2018). 
Because it is a comparative method, it can only compare the score value for the same dataset. 
The AIC formula is defined by Equation 11 (Hastie et al., 2009). 
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(11) 

 

Where N is the number of examples in the training dataset, LL is the log-likelihood of the 
model on the training dataset, and k is the number of parameters in the model. 

2.5.2 Bayesian Information Criterion 
The Bayesian information criterion (BIC) was developed by Gideon Schwarz in 1978 
(Schwarz, 1978). Like the AIC, the BIC is a statistical estimator for selecting a model that best 
fits the dataset. The main difference between BIC and AIC is that BIC penalizes more complex 
models more sharply. This makes simpler models tend to have a lower score, making them 
more likely to be chosen. BIC is mathematically defined by Equation 12 (Hastie et al., 2009). 

 

 
(12) 

 

Where log( ) has the base-e called the natural logarithm, LL is the log-likelihood of the model, 
N is the number of examples in the training dataset, and k is the number of parameters in the 
model. 

2.5.3 Minimum description length 
The Minimum description length (MDL) concept is a strong inductive inference approach that 
serves as the foundation for statistical modeling, pattern recognition, and machine learning. 
The MDL idea was first suggested in 1978 by Rissanen (Rissanen, 1978). The notion is that 
with the assistance of a model, every data set can be suitably encoded, and that the more we 
compress the data by eliminating redundancy from it, the more we find underlying regularities 
in the data. As a result, code length is directly connected to the model's generalization 
capabilities, and the model that gives the shortest description of the data should be chosen 
(Myung, 2001). Like the other two models, the lowest score is chosen. MDL is calculated as 
Equation 13 (Hastie et al., 2009). 

 

 (13) 
 

Where log( ) has the base-e called the natural logarithm, θ is the model parameters, y is the 
target values. 

  

2.5.4 Silhouette Coefficient 
Silhouette coefficient is a method to estimate distance between cluster, proposed by Peter 
Rousseeuw in 1987 (Rousseeuw, 1987). The silhouette coefficient compares the similarity of 
an object to its own cluster (cohesion) to other clusters (separation). The silhouette has a value 
between -1 and +1, with a high value indicating that the object is well fitted to its own cluster 
and a low value indicating that the object is poorly adapted to surrounding clusters. The 
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clustering setup is useful if the majority of the items have a high value. If a large number of 
points have a low or negative value, the clustering configuration may have too many or too few 
clusters. The coefficient is defined for each sample and is defined by Equation 14. 

 

 
(14) 

 

where a is the mean distance between a sample and all other points in the same class and b is 
the mean distance between a sample and all other points in the next nearest cluster. 

3 Case study: Motor Fault Classification 

In this section we will present a practical case where the Gaussian mixture model was used to 
cluster, identify, and diagnose six different failures in electric motor. We hope that this example 
will help to better understand the usefulness of the GMM. 

3.1 Experimental Setup 

All tests were carried out at PS Soluções in Itajuba (Brazil). The test bench (Figure 1) employed 
a 0.5 HP induction motor that was directly linked to the SpectraQuest machine failure simulator 
(Ribeiro Junior et al., 2020). Accelerometer 1 detects vibration in the y direction, whereas 
accelerometer 2 detects vibration in the x direction. Table 1 also illustrates the motor's basic 
characteristics at 60 and 50 Hz. 

 

Figure 3. Experimental setup (adapted from Ribeiro Junior et al., 2022). 
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Table 1. Marathon motor nameplate (adapted from Ribeiro Junior et al., 2022). 

Parameter 60 Hz 50 Hz 

Power (HP) 0.50 0.33 

Rotation (RPM) 3450 2850 

Voltage (V) 208-230/460 190/380 

Amperage (A) 2.1-2.2/1.1 2.0/1.0 

Service Factor 1.15 1.15 

 

The experimental bench is made up of five electric motors that may test up to seven operational 
conditions. These conditions include normal, bent shaft, broken bar, misalignment, mechanical 
looseness, bearing problem, and imbalanced (Figure 4). 

 Normal condition is the electric motor in a healthy state, without any fault. 
 Bent shaft refers to the motor whose shaft is slightly bent (approximately 4 mm), 

inducing a scratch between the rotor and the stator as shown in Figure 4(a). This fault 
mainly occurs due to overloads and coupling conditions. 

 Broken bar refers to the motor whose squirrel cage rotor bar is broken. This fault is 
more common on bigger electric motors. As shown in Figure 4(b) this fault is simulated 
by drilling 6 holes with 2 mm diameter in the rotor.  

 Misalignment refers to the motor whose shaft is misaligned. This fault occurs due to 
bad installation or overloads. Figure 4(c) shows how this defect is induced. On the 
bench, it is possible to generate up to 3 mm of misalignment 

 Mechanical looseness refers to the motor whose screws are loosening. This fault 
commonly occurs due to bad installation but high vibration may cause this fault. Figure 
4(d) shows which screws are loosened. 

 Bearing fault refers to the motor whose bearing is damaged. This is the most common 
fault in electric motors. Figure 4(e) shows the bearing fault in the outer race. The 
bearing used is SKF-6203. 

 Unbalanced refers to the motor whose load is unbalanced. This fault is very common 
in electric motors, being the reason for other faults. Figure 4(f) shows how this fault is 
induced. 

These conditions cover the most frequent electric motor failures. Several investigations 
confirm that the selected failures are the most frequently defects in electric motors (Randal, 
2011; Plante et al., 2016; Zarei et al, 2014; Choudhary et al., 2019; ABRAMAN, 2011).  

In all, four rounds of tests with all operational conditions were done, gathering 28 signals from 
each accelerometer. To properly analyze the faults, the defects were removed and installed in 
different motors for each run. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Fault types: (a) Bent shaft, (b) Broken bar, (c) Misalignment, (d) Mechanical looseness, (e) 

Bearing fault, (f) Unbalanced (adapted from Ribeiro Junior et al., 2022). 

3.2 Vibration signal acquisition 

The IMI uniaxial accelerometer records the two vibration signals. The accelerometer has a 
frequency range of ±3 dB, a measuring range of ±50 g, a sensitivity of 100 mV/g, and resonance 
at a frequency of 25 kHz. Because the frequency of the recorded signals is low and the engine 
mass is significantly more than the mass of the accelerometer, these facts make the sensor 
suitable for vibration measurement. A threaded base links the first accelerometer to the motor. 
The second is also kept in place by a threaded base that is put into the bearing housing. Araldite 
was used to bind all threaded bases. The acquisition system (Preditor®) gathers 262144 sample 
points at a sampling frequency of 11718.5 Hz and an acquisition window of 22.37 seconds. 
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3.3 Procedures of the Proposed Method 

The primary step is to gather all vibration signals from various operational circumstances. For 
each operational state, we gathered four signals, 75 percent for training and 25 percent for 
testing. Following that, the signals are divided into smaller sizes, each with 512 sample points. 
Finally, we employ RMS and Skewness statistics to extract features from vibration signals in 
order to improve classification results. The RSM and Skewness measures were chosen because 
of their significance and capacity to aggregate information, as proved by Ribeiro Junior et al 
(2020). Other statistics employed were Kurtosis, SRA, Peak-to-Peak, Crest factor, and Shape 
factor. However, none of them performed as well as the duo of RMS and Skewness. The main 
parameter of GMM is the covariance matrix, being possible to choose 4 different types: 

● Full: each component has its own general covariance matrix 
● Tied: all components share the same general covariance matrix 
● Diag: each component has its own diagonal covariance matrix 
● Spherical: each component has its own single variance 

Because each data set can have a best-fitting parameter, the optimal form of covariance will be 
picked. The average of two random variables' degrees of dependency or linear numerical 
interrelationship is their covariance or variance. Choosing the best covariance type for your 
dataset can help the GMM model perform better. 

Another method is to begin the process supervised, that is, with the mean of each distribution 
as the initial weight. This reduces the number of iterations required for optimizers to converge 
while also avoiding incorrect convergence. Because the model was begun supervised, the 
number of mixing components will be limited to two (healthy and a faulty motor). The number 
of iterations was limited to 10,000 with a10–6 convergence criterion. 

The Mahalanobis distance is then computed. The Mahalanobis distance is the distance between 
two points in multivariate space. Variables in a normal Euclidean space are represented by axes 
drawn at right angles to each other. To measure the distance between two points, use a ruler. 
For uncorrelated data, the Euclidean distance equals the Mahalanobis distance. When two or 
more variables are connected, the axes are no longer at right angles, prohibiting ruler 
measurements. Figure 5 shows a comparison between the Mahalanobis distance and the 
Euclidian distance in a two-dimensional space. The elongated cluster's Euclidean distance to 
its centroid is greater than that of the round cluster. The Mahalanobis distance to the centroid 
of an elongated cluster, on the other hand, is lower than that of a spherical one. Furthermore, if 
you have more than three variables, you will be unable to plot them at all in normal 3D space. 
The Mahalanobis distance, which quantifies distances between points, including correlated 
points, solves this measurement difficulty. The Mahalanobis distance is a measure of distance 
relative to the centroid, which may be thought of as the overall mean for the Mahalanobis 
distance is a measure of distance relative to the centroid, which is the general mean for 
multivariate data. The centroid in multivariate space is the point at which all meanings from all 
variables coincide. The bigger the Mahalanobis distance, the greater the distance between the 
data point and the centroid. The formula version utilized is described by Equation 15 (Hamil 
et.al, 2016): 
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 (15) 

Where 𝒙𝒊 is the observation point, 𝒙ഥ is the mean of the reference cluster (normal condition) and 

𝑪ି𝟏 is the inverse covarian matrix of independent variables. 

 

Figure 5. Comparison between Mahalanobis distance and Euclidian distance (adapted from Woźniak et 

al., 2019). 

All of the features in the proposed method were created in Python using the Scikit-learn library. 

Figure 6 depicts the overall flowchart of the approach followed in this study. 

 

 

 

(Intentionally left blank) 
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Figure 6. General flowchart of the motor operation condition clustering using GMM (adapted from 

Ribeiro Junior, 2022). 

3.4 Results and Discussion 

In this section, we will discuss and exhibit the primary and most important findings from the 
vibration signal analysis in seven distinct operating conditions (six faults) in electric motors. 
Figure 7 compares the time domain vibration signals for the six fault scenarios to the 
accelerometer 1 normal signal. Figure 8 shows the same findings when accelerometer 2 is used. 
In certain ways, it is obvious that the signal varies under fault circumstances, each with its own 
distinct pattern. This is especially true for accelerometer 1 and operating circumstances 
characterized by bearing failure and a lack of mechanical looseness. As a result, only 
accelerometer signal 1 will be used as a GMM input. Figure 9 also provides the scatter plot 
data for the accelerometer signal. Except for the mechanical loss working state (Figure 9(d)), 
when probable nonlinearities are present, a dot pattern is found in all conditions. 
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Figure 7. Vibrations signal for the six different fault conditions considering the vibration accelerometer 

#1 (adapted from Ribeiro Junior, 2022). 
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Figure 8. Vibrations signal for the six different fault conditions considering the vibration accelerometer 

#2 (adapted from Ribeiro Junior, 2022). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 9. Scatter vibration signal for the six different fault conditions considering the vibration 

considering both the accelerometers #1 and #2 (adapted from Ribeiro Junior, 2022). 
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The second step of machine learning was carried out after an exploration phase of vibration 
data in various operating situations (caused failures). An unsupervised learning method was 
required during this step. Because it is a flexible approach characterized as "soft clustering," a 
Gaussian mixing model (GMM) was employed. In other terms, a GMM is a probabilistic model 
in which all data points are created by a finite number of Gaussian distributions with unknown 
parameters. 

Figures 10–15 illustrate the training results for the GMM algorithm under all operational 
circumstances. All covariance matrix parameters are displayed in the findings (full, tied, diag, 
and spherical). For all figures, the ∙ represents training data and the X represents test data. 

Some clustering results are more segregated (distant) than others. The clusters are closer 
together in the case of misalignment. The groups of bent and broken bars are far enough apart 
yet share a border. In the other cases, the generated groupings are more separated. Because 
GMM is a soft algorithm, its usage is justified at this stage. When the various forms of 
covariance matrix are analyzed, the full or diagonal covariance matrix settings are the best for 
the dataset, with the full option slightly better. This setup has an accuracy of more than 90% 
for all defects assessed. The findings are comparable to earlier researches (Wang et al., 2009; 
Yan et al., 2017; Hong et al., 2019; Pani et al., 2020). 

 

Figure 10. Gaussian mixture model results (RSM vs. Skewness) for the Bent and Normal conditions 

(adapted from Ribeiro Junior, 2022). 
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Figure 11. Gaussian mixture model results (RSM vs. Skewness) for the Broken bar and Normal 

conditions (adapted from Ribeiro Junior, 2022). 

 

Figure 12. Gaussian mixture model results (RSM vs. Skewness) for the Misalignment and Normal 

conditions (adapted from Ribeiro Junior, 2022). 

Ribeiro Junior, Ronny F., et al. (2022) GMM Applications Fault Diagnosis Electric Motors pp. 195-220

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 213



 

 

Figure 13. Gaussian mixture model results (RSM vs. Skewness) for the Mechanical looseness and Normal 

conditions (adapted from Ribeiro Junior, 2022). 

 

 

Figure 14. Gaussian mixture model results (RSM vs. Skewness) for the Bearing and Normal conditions 

(adapted from Ribeiro Junior, 2022). 
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Figure 15. Gaussian mixture model results (RSM vs. Skewness) for the Unbalanced and Normal 

conditions (adapted from Ribeiro Junior, 2022). 

The Mahalanobis distance measure was used to determine how far apart the clusters are. The 
Mahalanobis distances of the Gaussian distributions adapted to the usual operating state are 
shown in Figure 16. It was discovered that the mechanical looseness situation produced a 
certain pattern of distances. Figure 17 organizes all of the distances. It should be noted that 
mechanical looseness and bearing faults are the most extreme operation condition. This 
suggests that these are the most easily identified defects. Furthermore, the Mahalanobis 
distance pattern may be used to distinguish one fault from another, i.e., identify which fault it 
is. This is not achievable with GMM alone since it simply detects the presence of a fault. Figure 
17 shows that each defect has a pattern and various distance value ranges. As a result of 
integrating the GMM with the Mahalanobis distance, it is able to not only identify but also 
discriminate between faults. 
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(c) misalignment (d) mechanical looseness 

  

(e) bearing fault (f) unbalanced 

 

Figure 16. Mahalanobis distance for the different induced operational conditions (adapted from Ribeiro 

Junior, 2022). 
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Figure 17. Mahalanobis distance for all the evaluated and induced operational condition (adapted from Ribeiro Junior, 2022).
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4 Chapter Conclusion 

In this chapter we present the theory of the Gaussian mixture model as well as its 
effectiveness in clustering and classifying data. In addition, the GMM theory was applied 
to a real problem. By applying the GMM to a real case, it was possible to demonstrate 
and discuss the strength of the applied method, as well as the challenges in using it. Also, 
as it is an unsupervised learning algorithm, this method does not need human support to 
carry out the identification of faults. Finally, we believe that with this chapter the readers 
have understood how the GMM works as well as ways to apply the method to other 
engineering problems. 
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Abstract 

 This chapter describes the importance of one of the major areas within Structural Health 
Monitoring and Health and Usage Monitoring Systems: Sensor Placement Optimization 
(SPO). In this sense, the most important SPO metrics are presented and discussed with the 
reader. The methodological procedure of the optimization problem statement is also 
considered and discussed. he significance of rotary-wing aircraft, damages that can occur in 
the blade, works related to damage identification, modern methods and algorithms that have 
been used in this context, and a comprehensive SPO study for a helicopter main rotor blade 
will be presented. Finally, a new technique that considers the number of sensors as an 
objective associated with some of the main metrics used in SPO. The technique uses the Multi-
objective Lichtenberg Algorithm and Feature Selection, an important area used in Data 
Mining. 

Keywords: Structural Health Monitoring, Sensor Placement Optimization, Helicopter 
rotor blade. 
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1 Introduction 

Helicopters have great importance due to its capabilities of travel speed (200-300 km/h) 
and maneuverability, which promotes movement along the shortest track and vertical 
takeoff (Khabarov & Komshin [2021]). These unique qualities make this aircraft 
efficient for urban transport of people, rescue in hard places, use on offshore oil rigs and 
military forces, among other applications. 
Being a rotary-wing aircraft, or rotorcraft, its most important element is the main rotor 
blade (MRB), which is usually made of composite material. Due to the intense in-
service conditions of aerodynamics, temperature variation, and accelerations, damage 
can be induced in these structures (Ahmad et al. [2020]). Some examples are: fracture 
of matrix, delamination (most important), fiber breakage, fiber waviness, creep 
deformation, etc. (VOICU et al. [2020]).  
As a matter of fact, composite structures don´t give any clue till the collapse. It is 
necessary to have methodologies for the assessment, identification and prediction of 
damages in order to avoid catastrophic failures. Efficient systems, such as Structural 
Health Monitoring (SHM) or Health and Usage Monitoring Systems (HUMS), allow 
early identification of damage through non-destructive inspection and integrated sensors 
exploring vibration/modal measures. The method is based on the principle that a 
damaged in a structure changes natural frequencies, mode shapes, modal strain energy 
and damping ratios (Gomes et al. [2020]; Pereira et al.  [2021]). 
Then, it is possible to identify the damage using inverse modeling and computational 
intelligence analyzing the output vibration parameters of the system. The main data 
processing techniques used, nowadays, are meta-heuristics, neural networks, non-
probabilistic methodologies, and time-series analyses. However, there is no 
methodology that is very effective for all problems. New technologies have been 
proposed and there is space for new ones (Burgos [2020]). There are not many works in 
the literature that have been dedicated to studying damage in MRB and most modeled 
the study using some direct method, that is, the problem is elaborated and their answers 
are directly analyzed.  
In case of experimental studies, Cattarius & Inman [2000] induced punctual increase 
and decrease of mass and observed significant variations of natural frequencies in a real 
MRB. A fact also proved by Santos et al. [2013]. Ghoshal et al. [2001] tested different 
types of sensors and concludes that those linked to modal properties are the most 
reliable in damage identification. Kiddy & Pines [2001] used an experimental 
methodology to conclude that localized damage in low modal energy locations is 
difficult to detect. Santos et al. [2016] compared coordinate modal assurance criterion 
and modal strain energy method to detect damage on a full-size composite MRB. The 
authors concluded that the last method was more sensitive to the presence of damage. 
Equally important, other authors used numerical modeling to carry out their related 
studies. Pawar & Ganguli [2005] studied the effect of matrix cracks in composite MRB 
using strain measurement and concludes that is possible to find the localization and 
density of a matrix cracks using this metric. The same authors extend the study to 
delaminations and fiber breakage, analyzing stiffness, natural frequencies, deflections, 
root forces, root moments and strains in forward flights (Pawar & Gangulli, [2007c]). 
The authors also concluded that modal data are appropriate for damage identification. In 
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like manner, Ahmad et al. [2020] created a faithful MRB with contour conditions and 
forces identical to a flight situation to study the progressive failure. The authors found 
that failure starts from the root chord and tend toward the tip chord. Shahani & 
Mohammadi [2015] analyzed the fatigue life of a numerical blade using safe-life and 
damage tolerance approaches and concludes that the skin is the component that has the 
shortest lifetime. 
The first works using SHM and inverse methods associated with finite element method 
(FEM) updating on MRB appeared at the beginning of the century. Pawar & Ganguli 
[2003] created a genetic fuzzy system to find the damage location and extent: a fuzzy 
system qualifies the changes in natural frequencies in four damage levels and the 
Genetic Algorithm (GA) optimizes its rule-base and membership functions. Despite 
being a qualitative damage identification and the authors have used a composite beam 
as a MRB, the methodology proved to be efficient. The same authors used the same 
strategy in two other studies: i) using displacements instead natural frequencies and 
residual life classes instead damage levels (Pawar & Gangulli, [2007]) and ii) changing 
the genetic fuzzy system by the Support Vector Machine (SVM) classifier, still using 
natural frequencies to find damage levels, having success even in noisy situations 
(Pawar & Gangulli, [2007b]). Reddy & Ganguli [2003] used artificial neural networks 
(ANN) with modal data generated by the FEM to identify MRB damage. The authors 
have success and concluded that is enough use the first 5 mode shapes. 
Up to the present time, Gomes et al. [2020b] was the first to propose a methodology for 
identifying MRB damage that locate and quantify the damage severity. The authors 
proposed an inverse method using the FEM updating associated with the Bat 
Optimization Algorithm (BA) and uniformly distributed 10 sensors on the blade to 
measure displacements due to mode shapes. 
As can be seen, none of them proposed a MRB Sensor Placement Optimization (SPO) 
methodology. Just like none of them either proposed a methodology using multi-
objective meta-heuristics. At the same time, modern methodologies have been proposed 
for damage identification in other structures using: i) FEM updating, ii) frequency 
response function, iii) ground excitation, iv) signal processing, v) new machine learning 
algorithms, among others. The FEM updating is the most precise and have two ways: i) 
direct problem modeling, where a structural numerical model is made, and ii) inverse 
problem modeling, where the model is constantly evaluated by an optimization 
algorithm that minimizes an objective function composed by structural characteristics 
(Milad et al. [2019]; Assis & Gomes [2021]). 
The SPO problem in structures can be complex, multi-modal, with multiple variables 
and even multiple objective functions. The complexity becomes even greater if there is 
interest in sensors number reduction. Therefore, the efficiency of the methodology and 
the quality of the answers strongly depend on the optimization algorithm used and meta-
heuristics have proven to be the best. 
Some important works using mono-objective meta-heuristics in SPO are: i) Genetic 
Algorithm (GA) (Gomes et al. [2019]), ii) Ant Colony Optimization (ACO) (Braun et 
al. [2015]; Mishra et al. [2019]), iii) Particle Swarm Optimization (PSO) (Chen & Yu 
[2018]; Kaveh & Maniat [2015]), iv) Firefly Algorithm (FA) (Pan et al. [2016]), v) 
Sunflower Optimization (SFO) (Gomes et al. [2019]), vi) BA (Zenzen et al. [2018]; 
Gomes et al. [2020b]), among others.  
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However, recent studies indicate that the use of multi-objective meta-heuristics, given 
their ability to evaluate several metrics at the same time, has found better results both in 
SPO and in damage identification (Alkayem et al. [2017]; Gomes et al. [2018], Zhou et 
al. [2021]). Furthermore, the fundamental principle of SHM is select the smallest 
number possible of measurement locations from a structure and represent the system 
with the highest possible accuracy, which are obviously conflicting objectives 
(Barthorpe & Worden [2009]; Pereira et al.  [2021b]).  
Even so, the studies found in SPO aims cost or energy minimization while the 
efficiency of data reading is improved: i) Ferentinos & Tsiligiridis [2007]: wireless 
sensors, ii) Lin et al. [2018]: three-dimensional truss structure, iii) Gomes et al. [2018]: 
The first using FIM and MSI at the same time, finding excellent results, iv)  Cao et al. 
[2020]: proposed a method named distance coefficient-multi-objective information 
fusion algorithm (D-MOIF) and two objective functions based on other metrics. The 
author was the first to study SPO in a more complex structure, v) Zhou et al. [2021]: 
showed that the Multi-objective FA obtained better results than the NSGA-II, and vi) 
Colombo et al. [2022]: proposed a statistical methodology that evaluated the positioning 
of sensors together with the damage identification.  
To the best author’s knowledge, no works are found that consider the number of sensors 
as one of the objectives. In larger and more complex structures, as in a MRB, the need 
to develop multi-objective methodologies that select the smallest number of sensors that 
bring the maximum information about the structure is essential. The first study to do so 
was recently published and is the result of the Research Group in Computational 
Mechanics (GEMEC) at UNIFEI (Pereira et al. [2022b]). The technique uses the Multi-
objective Lichtenberg Algorithm and techniques employed in Feature Selection, an 
important area in Data Mining. The methodology applied as well as unpublished 
information will be presented in this chapter.  
So, in this chapter will be introduced the importance of studying SPO in an MRB, 
discussing in detail the appearance of damage in it, how these damages influence its 
mechanical properties, how the problem of SPO is treated, including your main metrics 
and makes a case study of SPO considering a single objective, maximizing one of the 
main metrics, and considering these same metrics, but having the number of sensors as 
an objective in a multi-objective SPO.  

2 Backgrounds 
The concepts necessary for the development of this chapter are: i) types and 
characteristics of damages in MRB, ii) how modal data can help identify damage, iii) 
the main metrics used to interpret and analyze modal data, and iv) what is the 
Lichtenberg Algorithm meta-heuristic and its multi-objective version, not yet shown in 
this book series. 

2.1 Damage in main helicopter rotor blade 
Composite materials have distinctive qualities, such as low weight, high strength, 
remarkable stiffness related to its specific mass, and high capacity to withstand fatigue 
and corrosion. These reasons justify using them in the manufacture of MRB, which 
have in their constructions multiple constituents and a pronounced anisotropic behavior. 
However, they may have failure mechanisms. In addition to possible manufacturing 
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defects, the helicopter in flight can present severe conditions of aerodynamics, 
temperature variation, and accelerations loads that contribute to emergence of damage 
(Ahmad et al. [2020]).  
Small defects in blade fabrication, such as autoclave molding, resin transfer mold or 
resin film infusion, can progress severely when in operation. The main damages 
resulting from this are: non-uniformly positioned laminae, uneven distributed resin, 
missing or cut fibers, incomplete resin maturation, porosity or trapped air bubbles, signs 
of wear or scratches on the material, and fiber or weave undulation (Huo & Zhang 
[2012]). 
In operation, overloads, environmental factors or impact with foreign objects can 
aggravate previous manufacturing defects or give rise to new damages. Some examples 
are: fracture of matrix, fiber breakage, debonding, delamination, fiber waviness, and 
creep deformation (Voicu et al. [2020]). A matrix crack develops between two or more 
parallel laminae and can propagate beyond them. Despite being a type of damage that 
does not present an immediate risk, it can be a starting mechanism for more serious 
ones. However, fiber breakage considerably reduces the Young´s modulus and the load 
bearing capacity of the material, what makes it a damage that requires more attention 
(Amafabia et al. [2017]). 
Debonding occurs when the adhesive cannot bonds the surfaces which it is applied, 
which happens when external or environmental loads breakage chemical, physical, or 
mechanical links between the surface and adhesive. According to Voicu et al. [2020], 
material ageing, low speed impact or flaws in the development process can lead to this 
damage. Another damage that considerably reduces the strength of a composite material 
is the fiber waviness. This damage appears due to the local buckling of prepreg or wet 
hoop-wound filaments strand (Vinet & Gamby [2008]).  
The most critical and important damage is delamination, which appears as the result of 
impact of foreign objects. This damage can lead the entire structure to failure, as the 
material strength is proportional with the degree of delamination (Latifi et al. [2015]). 
This damage is the loss of stiffness in the material due to spaces formed between the 
adjacent layers of a laminate and is the main source of cracks in composite structures 
(Pantano [2019]). 

2.2 Damage monitoring using modal data 
These damages cause structural degradation and change natural frequencies, mode 
shapes, modal strain energy and damping ratios in very particular ways. Then, it is 
possible to identify the damage using inverse modeling and computational intelligence 
analyzing the output modal parameters of the system.  
The most used modal properties in damage identification are natural frequencies and 
mode shapes (Gomes et al., [2020]). Both have their advantages and drawbacks. 
According to Gopalakrishnan et al. [2011], natural frequencies have low sensitivity in 
determining damage location when compared to mode shapes. However, according to 
Worden & Friswell [2009], natural frequencies can be estimated very accurately (1% 
error) without a complete modal test. A single random excitation test can determine it 
through a basic spectral analysis. Still, according to Guan et al. [2017], it can be 
obtained using a single and random structural point. 
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According to Hearn & Testa [1991], the change of the i-th natural frequency after a 
change in the global stiffness matrix ∆KN in a damaged structure is represented by 
Equation (1). 
 ( ( )) ( ( ))²

T
N i N N i

i T
i i

K
M

ω ∈ Φ ∆ ∈ Φ
∆ =

Φ Φ
 (1) 

where Φi defines the i-th mode shape, M is the mass matrix, and ∈N(Φi) is the strain 
vector calculated by the mode shape.  
However, while the natural frequency is a property that considers the entire structure, 
mode shapes are able to provide local modal properties. For this reason, it has been the 
most used to identify localized damage. It has greater sensitivity to structural damage 
and provides detailed information about the extent and location of it (Pereira et al., 
[2021]; Gomes et al. [2018]). 
The mode shapes are the eigenvectors Φ and natural frequencies are the eigenvalues λ of 
the problem expressed in Equation (2). Both can be obtained solving this Equation.  
 [ ] 0i iK Mλ− Φ =  (2) 

where Φi is the eigenvector associated with the i-th mode shape, λi is the eigenvalue, M 
is the mass matrix, and K is the stiffness matrix, which is the most affected matrix when 
damage comes. 
In delamination case, for example, the stiffness matrix is the only one affected and 
according to Pereira et al. [2021], the variation in the i-th mode shape is in Equation (3): 
 

1,

Tp
r i

i
r r i r i

K
λ λ= ≠

−Φ ∆ Φ
∆Φ =

−∑  (3) 

where Φi is the eigenvector and λi the eigenvalue associated with the i-th mode shape, 
∆K is the variation stiffness matrix, and λr the eigenvalue and Φr the eigenvector 
associated with the damaged structure.  
Solving these equations for complex structures is not an easy task. However, advances 
in computing and FEM make it possible to obtain, both natural frequencies and mode 
shapes, for any type of structure and for any given excitation range in fast numerical 
simulations. Therefore, it is possible through the mode shapes to calculate the 
displacement of any point of this structure for each of the natural frequencies, due to the 
particular ways that each structure vibrates when excited near its natural frequencies. 
Figure 1 shows the mode shapes of a helicopter main rotor blade (MRB). 
Using FEM, the variation of the global stiffness matrix is simplified as shown Equation 
(4). Many authors have used this equation to represent delaminations (PEREIRA et al. 
[2021]; GOMES et al., [2020b]). 
 

1

N

K K
k

K Kα
=

∆ =∑  (4) 

where α is a scalar multiplier (between 0 and 1) that modifies the original K stiffness in 
the k element.  
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FEM is a powerful tool that allows finding the displacement at each node in each mode 
shape, however, it is unable to answer the following question: where and how many 
sensors should I place on a specific structure to obtain as much information as possible 
about how it vibrates? Note that the answer to this question not only allows identifying 
the sensing that provides the highest level of information about the structure, but also 
allows for a more accurate and efficient damage identification. 

   
  

a) 1.1 Hz b)5.5 Hz c)6.7 Hz d)17.8 Hz e)32.5 Hz 

Figure 1: First five MRB natural frequencies (adapted from Pereira et al. [2022b]) 

It is intuitive for the reader to imagine that the more sensors, the more information will 
be acquired and that is one of the biggest challenges of sensor positioning: a greater 
number of sensors means more weight, cost, processed data size, and changes to the 
modal properties of the structure as more mass, wiring, and other items are added to it. 
Therefore, it is shown that the acquisition of information and the number of sensors are 
conflicting objectives and from here arises an area within SHM called Sensor Placement 
Optimization (SPO). 
Knowing that each point of a structure in a given mode shape is a point where a 
displacement can be measured and therefore a sensor can be installed, it is intended to 
identify which combinations of these sensors provide the greatest displacements and 
still use as few sensors as possible. To answer this question, several SPO metrics have 
been proposed, which although they approach these displacement measures in different 
ways, they all aim for the same answer. 
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2.3 Modal metrics in Structural Health Monitoring 
This section presents the main SPO metrics used in recent years. From them, an 
objective function can be proposed so that, when optimized by an optimization 
algorithm, the set of sensors that delivers the most information is obtained. Some best 
known metrics are: Kinetic Energy (KE) (Heo et al. [1997]), Effective Independence 
(EfI) (Yang & Lu [2017]), Average Driving-Point Residue (ADPR) (Barthorpe & 
Worden [2009]), Eigenvalue Vector Product (EVP) (Barthorpe & Worden [2009]), 
Information Entropy (IE) (Yuen & Kuok [2015]), Fisher Information Matrix (FIM) 
(Benner et al. [2017]), and Modal Assurance Criterion (MAC) (Jin et al. [2015]). 

The main component of all these metrics is the mode shape matrix (Φ). To understand 
it, see Figure 1 again. It is possible to see that the blade is separated into small squares 
that are finite elements. Each vertex of each element is a node and it is at this point that 
FEM calculates the displacement due to the mode shape. As can be seen, there are many 
nodes for the blade and each node can present different displacements for different 
mode shapes. The mode shape matrix is the matrix whose number of rows i is equal to 
the number of selected sensors and the number of columns j is equal to the number of 
mode shapes to be considered. Therefore, element aij is the displacement of node i in 
mode shape j. 
Therefore, one of the main metrics is the KE. It gives a measure of the dynamic 
contribution of each element of FEM to each of the mode shapes and can be calculated 
through Equation (5).  

 2
ij ij ij ij j

j
KE M ω= Φ Φ∑  (5) 

where Φ is the mode shape matrix, M is the mass matrix, i and j refers to the degrees of 
freedom and n, the n-th mode (Heo et al. [1997]). Note that the calculated kinetic 
energy grows with the square of the natural frequency of the considered mode shape, so 
the method tends to value higher frequency nodal displacements. 
Efi is one of the most used metric in large structures, which is an efficient unbiased 
estimator. Its objective is to select positions of measurements linearly independent 
providing high information. The covariance matrix of the estimated error can be 
expressed in Equation (6). Note that unlike KE, mass and natural frequency are not 
considered. 
 1

( ) ( )T T TEfI diag diag QQ
−

 = Φ Φ Φ Φ =   (6) 

where Q is an orthonormal matrix and Φ is the mode shape matrix. This metric has a 
few drawbacks: i) it might choose sensor locations with less energy content, just like 
KE, what can leave sensing incomplete and bring vulnerability in noisy conditions (Cao 
et al. [2020]), ii) it presented poor results under conditions of uncertainty (Kammer 
[1992]). 
The ADPR provides a measure of the contribution of any point to the global response. 
For all N mode shapes, the ADPR in the i-th node can be calculated using Equation (7). 
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where ωj is the j-th natural frequency and Φ is the mode shape matrix. 
The EVP calculates the product of the mode shapes for its locations for N modes to be 
measured: a maximum for this product is a point with optimum measurement candidate. 
In the i-th, it can be calculated by Equation (8): 
 

1

N

i ij
j

EVP
=

= Φ∏  (8) 

IE is an efficient metric to finding the best combination of structural tests that can 
minimize the negative consequence of uncertainty. The metric is based on a Bayesian 
statistical method, where a probability density function p(ϴ|D) (Equation 9) is used to 
quantify the uncertainties in the parameters ϴ. The calculation is defined in Equation 
(10). 
 [ ] 0( 1)/2( | ) ( ; ) ( )NNp D c J D θθ θ π θ− −=  (9) 

 [ ]( ) ln ( | ) ( | ) ln ( | )H D E p D p D p D dθ θ θ θ θ= − = −∫
 

(10) 

where Eϴ is the mathematical expectation to ϴ, D is the dynamic test data, J(ϴ|D) is the 
fit measure between the measured and the response time histories, N0 is the number of 
DOF of the structure and N is the number of sampled data. Note that, while EfI gives 
the relative importance of the chosen DOF, IE is related to the total maximum limit of 
entropy. 
The FIM is the main metric used in SPO, where the optimal sensor configuration is 
taken as the one that maximizes the norm of the FIM and minimizes the expected 
Bayesian loss function involving the trace of the inverse of the FIM (Gomes et al. 
[2018]). The array of sensors can be given in the form of an estimation problem with a 
corresponding FIM given in Equation (11) (Kammer [1991]). The modal response is 
estimated based on the data measured by the sensors. 
 T

S SQ W= Φ Φ  (11) 

where W is a weighting matrix and Q, when maximized, results in the minimization 
covariance matrix error. This results in the maximization of the signal intensity and the 
independence of the main directions (Rao et al. [2015]). This metric showed good 
performance in noise and multi-axial data (Kammer [1992]; Kammer & Tinker [2004]).  
MAC is a metric proposed by Carne and Dohrmann [1994] that aims to find sensor 
locations to ensure that all inner products between distinguishable shape vectors have 
relatively small cosines. It allows comparison of the different mode shapes and is 
defined by Equation (12). 
 2( )

( )( )

T
i J

T T
i i j J

MAC Φ Φ
=

Φ Φ Φ Φ
 (12) 
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where Φi and Φj are the i-th and j-th column vectors in matrix Φ. The matrix MAC 
values range between 0 and 1, where 1 indicates a high similarity between the modal 
vectors. In an ideal condition, the MAC matrix has is null and all elements of main 
diagonal are 1. So whether it's an OSP or damage identification problem, it is desired to 
maximize the sum of diagonal values. Note that EfI is MAC-1 (Tan & Zhang [2019]). 
Many studies show significant correlation and statistical equality between: i) EfI, KE, 
and FIM, and ii) MAC and IE (Li et al. [2007]; Yi & Li [2012]). Gomes et al. [2018b] 
also found a strong correlation between the metrics FIM, KE, EI, EVP and ADPR when 
studying them for OSP in a laminate composite plate. The authors also conclude that EfI 
presented the worst result among the metrics compared. Table 1 summarizes and shows 
the objective functions derived from these metrics to be used in SPO or Damage 
Identification.  

Table 1: Sensor placement objective functions used in Structural Health Monitoring 
Metric Objective function 
KE J = max(KE) 
EfI J = max(diag(QQT)) 
ADPR J = max(ADPR) 
EVP J = max(EVP) 
IE J = min(H(D)) 
FIM J = max|det(Q)| 
MAC J = max(diag(MAC)) 

 

2.4 Lichtenberg and Multi-objective Lichtenberg algorithms 

With the objective function defined, meta-heuristics such as GA, PSO, DE, FA, or SFO 
can be applied. As shown, they are the best and most used optimization algorithms for 
complex problems. In the MRB SPO problem of this chapter, the Lichtenberg 
Algorithm (LA) (Pereira et al. [2021a]) will be applied, when mono-objective. The LA 
is a powerful meta-heuristic inspired by the physical phenomenon of intra-cloud 
lightning and Lichtenberg figures and is the first hybrid algorithm in the literature that 
combines population and trajectory optimization routines at the same time. 

The meta-heuristic, also developed at GEMEC, has been successful in identifying 
cracks (Pereira et al. [2020]) and delaminations (Pereira et al. [2021]), isogrid tube 
optimization (Francisco et al. [2020]; Pereira et al. [2022a]), hydrogen production 
optimization (Souza et al. [2022]), wind forecast optimization (Tian & Wang [2022]), 
parameter optimization in manufacturing processes (Challan et al. [2022]; Mohanty et 
al. [2022]), and multi-objective optimization (Pereira et al. [2022]), among other 
applications. The LA algorithm in the mono-objective version has already been well 
explained in previous chapters. In this chapter, the Multi-objective Lichtenberg 
Algorithm (MOLA) will be presented and used in the multi-objective SPO. It is the first 
multi-objective meta-heuristic created and registered in Brazil. 

The algorithm optimizes by creating Lichtenberg Figures (LF) that are thrown into the 
search space (of design variables) with random sizes and rotations at each iteration. In 
the mono-objective version, the LF was always centered on the best point of the 

Pereira, João L. J., et al. (2022) Sensor Placement Optimization Helicopter Main Rotor Blade pp. 221-257

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 231



previous iteration, or on the best point of all iterations so far. In the multi-objective 
version, these figures are triggered from some point of the variables that make up the 
current Pareto front. As the LF is made up of many points, only a Pop (population) 
number is randomly selected in this structure to be evaluated in the objective functions. 

As the LF has different sizes in each iteration, sometimes it is small and favors 
exploitation, sometimes it is large and favors exploration. At each iteration, the new and 
old solutions are compared using the Pareto dominance relationship, thus constituting 
the current Pareto front. The algorithm stops when all Niter iterations are complete. See 
Figure 2. Figure two shows the relationship between the search space (of variables) and 
the objective space (where the Pareto front is). Different colors show the LF in different 
iterations. 

  
(a) Search Space (b) Objective Space 

Figure 2: MOLA in a problem of two design variables and two objectives (PEREIRA et al., 
2022) 

This is the general functioning of MOLA, however, it has other parameters besides Pop 
and Niter. Three parameters control the LF creation: creation radius (Rc), number of 
particles (Np), and sickness coefficient (S). The first two are associated with the size ta 
LF, which grows in a matrix space whose number of rows and columns is equal to twice 
Rc. Np defines the number of particles or unitary elements that can be in this matrix 
space, remembering that it can be less than the set if the cluster of unitary values 
reaches Rc. S controls the density of the LF, being close to zero very dense (reminiscent 
of a cloud) or not, when close to 1, causing a faster cluster growining. 

The LF creation process can take about 2 minutes, which would make the optimization 
process slow. Then another parameter called M was created that controls the creation of 
the LF and brings three options: i) The LF can be created only once and used in all 
iterations (M = 1), ii) an LF can be created at each iteration, which is not recommended 
(M = 2), or  iii) an LF with optimized Rc, Np and S values can be loaded and in this case 
the entire optimization process can take less than 1s (M = 0). Another additional 
parameter is the Ref, which creates a local LF at a ref size of the global one, always 
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having half of all Pop, which favors exploitation. See Figure 3 of the actual LF in the 
search space. 

Finally, it has two last parameters of MOLA related to the control of the algorithm in 
the construction of the Pareto front and they greatly increases its execution: the number 
of grids (Ngrid) and the number of admissible solutions in the Pareto front (Ns). The first 
parameter divides the objective space into Ngrid hyper cubes, decreasing the regions of 
comparison and analysis of the Pareto dominance relationship (Coello et al., 2004). Ns 
limits the number of solutions in the PF excluding those that are close. Therefore, 
MOLA has 8 parameters: Pop, Niter, Rc, Np, S, ref, Ngrid, and Ns. Figure 4 summarizes 
MOLA. 

 
Figure 3: Lichtenberg Figures at one random iteration (pop = 15 and ref = 0.4) (PEREIRA et al., 

2022a) 
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Figure 4: MOLA flowchart (PEREIRA et al., 2022a) 
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3 Helicopter Main Rotor Blade Case Studies 

The metrics discussed in Section 2.3 associated with meta-heuristics in the form of 
objective functions have been the most accurate and efficient approach used in SPO. As 
discussed in the introduction to this chapter, the vast majority of workers use a mono-
objective meta-heuristic to solve one of the objective functions in Table 1 for any type 
of structure. However, a new technique was developed by GEMEC using feature 
selection for multi-objective SPO in which the number of sensors is placed as one of the 
objectives. In this section, studies will be carried out using both approaches, mono and 
multi-objective SPO, in a helicopter MRB. For this, a blade identical to an AS-350 
MRB was created using FEM. See the real model in Figure 5.  

 
Figure 5: AS-350 MRB (Pereira et al. [2022b]) 

For this, a blade identical to an AS-350 MRB was created using FEM. The model was 
created in the ANSYS® APDL software and has a total length of 4665mm, being 
3880mm with a NACA0012 aerodynamic profile. The element used was the SHELL281 
with 8 nodes and 6 degree of freedom per node. Figure 6 shows the solid and all 
elements and nodes, being each node a candidate position for sensor positioning. Figure 
1 showed the first 5 blade mode shapes for this numerical model. 

 
a) Surface Model 

 
b) 746 Elements 

 
c) 2266 Nodes 

Figure 6: Numerical AS-350 MRB (adapted from Pereira et al. [2022b]) 
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3.1 Mono-objective sensor placement optimization 

The problem of mono-objective optimization using meta-heuristics consists of some 
basic steps: i) definition of the meta-heuristic to be used and configure its parameters, 
mainly population and number of iterations; ii) definition of the objective function that 
will guide the optimizer in the search for optimal solutions, iii) definition of upper and 
lower bounds (LB and UB), which define the search space in which the meta-heuristic 
will look for the best solutions. In this way, each variable in the problem will have a 
search range; and iv) definition of the constraints of the problem, if any.  

In SPO, the objective function F can be any of those in Table 1, the variables are the 
number of sensors n to be allocated, 𝑿��⃑  = { S1 , S2 , … , Sn }. The lower and upper 
bounds are all the numbers of nodes available in the structure, in the MRB case (Figure 
2c), from 1 to 2266. Then each of the variables will have an LB of 1 and a UB of 2266, 
whose vector length is equal n to be positioned. In this case, it is also convenient to add 
a constraint g1 that prevents sensors from overlapping, that is, so that two sensors are 
not positioned in the same place.  

Another decision that the SPO problem operator must address is how many mode 
shapes he will consider. It could be just the first, it could be a multi-objective 
optimization considering more than one if they are conflicting, or composing an 
objective function that is the sum of the m mode shapes to be considered, as will be 
adopted here. The criterion adopted to consider the 5 modes of Figure 1 is that an MRB 
in the field has excitations ranging from 0 to 25 Hz (Tamer et al. [2021]). The SPO 
problem considering mono-objective optimization and KE metric is expressed in 
Equation 13. 

 
 
 

max F(X)=∑ 𝐾𝐸𝑖𝑚
𝑖=1  

subject to: 
1≤ Sn ≤ 2266, for n = 1, 2, …, n 

g1(𝑿��⃑ ) = Sn - Sn+1 >1 

(13) 

The LA parameters used in this chapter are those in Table 2, they are optimal 
parameters found by the authors. Table 1 consists of 7 objective functions. Equation 10 
brings the SPO problem to the first one (KE). Note that the number of sensors that will 
be allocated must be defined before starting the optimization process. In this chapter, 5 
sensors will be considered, as it is equal to the mode shapes number being used, a 
minimum recommendation in the literature (Gomes et al. [2018]). Applying the LA 
with the Parameters in Table 2 for each of these metrics and considering 5 sensors, we 
have after seven simulations the results in Figure 3. The reader is invited to compare the 
mode shapes of Figure 1 with the results of Figure 7, remembering that all metrics seek 
to measure displacements in their own way. 

Table 2: Tuned LA parameters 
Rc Np S ref Pop Niter 

200 106 1 0.4 200 200 
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a) KE 

 
b) EfI 

 
c) ADPR 

 
d) EVP 

 
e) IE 

 
f) FIM 

 
g) MAC 

Figure 7: Sensor configurations considering 5 sensors after SPO for each metric 

Since the blade is divided into three sections: root, center and tip, with the root located 
to the left of the images in Figure 3, it can be seen in Figure 1 that the largest nodal 
displacements for all mode shapes are at its tip. Then comes the central section. 
Considering only 5 sensors to be distributed, it can be seen that all metrics have at least 
one sensor at the tip, being the EVP with the highest number exactly at it. Also, all 
metrics selected the blade tip node that is furthest from the root support, that is, the node 
with the most movement flexibility of the entire MRB. All metrics have most sensors 
between the central region and the tip, being that only ADPR and FIM that placed a 
single sensor in the root section. EfI and FIM neglected the center section in relation to 
the other metrics. Also, as already observed in other studies in the literature, it is 
possible to see a sensor distribution relationship between the MAC and IE metrics and 
between EfI and KE, although in this case KE has considered the central section. 

3.2 Multi-objective sensor placement optimization 

Most of the works found in the literature perform the SPO as shown in Section 3.1. 
Note that for each metric or objective function, the algorithm had to be run once and the 
number of sensors was fixed. However, it is known that the basic principle and biggest 
challenge in SHM in relation to SPO is to maximize the level of information acquired 
from the structure by minimizing the number of sensors, which are clearly conflicting 
objectives.  

Developing a multi-objective optimization method capable of finding a Pareto front 
(PF) that associates each of these metrics with the number of sensors not only allows 
finding a larger number of sensor configurations, since for each sensor number there 
will be a sensor configuration and the respective metric value, as well as allowing the 
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problem operator to evaluate how the information level of that structure varies with the 
addition of sensors for that metric.  

Based on this, it is possible for the problem operator for a given structure to know, for 
example, if the increase in the number of sensors causes the information level to grow 
linearly, exponentially, or parabolically. This would imply linear, convex or concave 
Pareto fronts. It also allows determining whether the addition of sensors allows the level 
of information to increase significantly up to a certain point and, from then on, it 
changes insignificantly. Unlike the single-objective approach, with just one execution of 
the SPO problem, a PF will be found that will have the best possible metric value for 
each integer number of sensors and each one of these solutions will have the sensors 
positions. 
Despite being a very innovative methodology, this has not yet been done not only due to 
the greater programming difficulty, but also to the lack of methods. However, new 
techniques have been developed for data mining and filtering before machine learning 
algorithms training and prediction. This large area, named Feature Selection (FS), aims 
to minimize the number of features and maximize a model accuracy, having as its most 
important approach the wrapper-based method, which using meta-heuristics, it selects 
different subsets within the dataset and seeks to select those that present the best 
accuracy values (Sharma & Kaur [2021]). 
In the FS problem, there is a vector of length equal to the number of original problem 
features, whose the selected feature worth one and the rejected, zero. Or, in this case, 
the sensor will be selected with a value of one and excluded with a value of zero. 
Therefore is a binary (and discrete) optimization problem. Here begins the first 
challenges, since basically all meta-heuristics are programmed to deal with continuous 
problems. The reader may fall into the error of thinking that a simple round could solve 
the problem, but this simple strategy leads to poor results. 
In literature there are two main groups that can convert a optimization algorithm in 
binary: i) general approach, where the algorithm operators are not modified, such as 
transfer function and angle modulation, and ii) specific approaches, were the algorithm 
structure is modified, such as Boolean or quantum binary techniques (Crawford et al., 
[2017]). The easiest and most effective is to adopt a transfer function and there are two 
families: s-shaped and v-shaped. See Figure 8. There are many studies comparing both 
and most agree that v-shaped transfer function is better for FS. The two main reasons 
for this are that this transfer function does not force continuous values to assume the 
values of 0 or 1 and that using it, there is a greater chance that a given feature will not 
be selected (Mirjalili & Lewis [2013] ; Ghosh et al. [2020]). 
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Figure 8: main groups of transfer functions  

Thus, MOLA will be equipped with the v-shaped transfer function. The binarization 
process uses Equations 14 and 15 (Mirjalili & Lewis [2013]). Equation 1 represents one 
of the forms of this transfer function. In it, each continuous element of the vector of 
decision variables generated by the LA is an input.  

 
( )

2 1

x
T x

x

∆
∆ =

∆ +
 (14) 

Then, the T(∆x)  value is used in Equation 15 to calculate the probability of changing 
each element to 0 or 1. The rand is a randomly generated number between 0 and 1. 
When T(∆x)  has a small value, the chance of inverting the element's value is also small. 
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 (15) 

Implementing the v-shaped transfer function, MOLA becomes appropriate for the SPO 
problem. The node position in FEM has a integer number assigned to it, which 
generates a candidate sensors vector equal to the nodes number n, i.e., 𝑆𝑐���⃑ = {1, … ,𝑛}. In 
the same way, MOLA generates a binary vector of the same length (𝐵 ���⃑ ). Through 
Equation 16 can be found the selected sensors vector (𝑆𝑠���⃑ ) (Pereira et al., [2022b]): 

 𝑆𝑆���⃑ = 𝑆𝐶����⃑ ∗ 𝐵𝑇�����⃑  (16) 
For each vector 𝑆𝑠���⃑  generated are calculated the number of sensors the metric M value, 
which can be any one of Table 1. The solutions generated in the objective space are 
compared through the Pareto dominance relationship and dominated solutions are 
excluded. That is, for a fixed number of sensors, any solution generated with worse 
metric values is excluded. Likewise, considering a fixed metric value, any generated 
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solution that has a greater number of sensors for the same metric value is eliminated. 
The optimization problem is expressed in Equation 17 (Pereira et al., [2022b]). Note 
that there is no way for sensors to overlap. The ai  is obtained using Equations 14 and 15 
through the continuous x values between 0 and 1 delivered by MOLA.  
 
 
 
 

F(𝑆𝑠���⃑  )=�min (𝑙𝑒𝑛𝑔𝑡ℎ�𝑆𝑠���⃑ � ; max �𝑀�𝑆𝑠���⃑ ��� 
where: 

𝑆𝑆���⃑ = 𝑆𝐶����⃑ ∗ 𝐵𝑇�����⃑

 
𝑆𝐶����⃑ = {1, . . . ,𝑛}

 
𝐵�⃑ = {𝑎1, . . . ,𝑎𝑛} 

(17) 

With the optimization problem defined in Equation 17, the binary MOLA could already 
be applied. However, if all 2266 nodes were considered, the problem would has an 
optimization problem with 2266 variables. The greater the dimensionality, regardless of 
the meta-heuristic to be used, more complex is the optimization problem. Looking at 
Figure 6c, it is possible to notice the number of extremely close nodes and obviously, 
not all of them need to be evaluated. Therefore, some simplifications can be made to 
improve the optimization process. 34 well-spaced and distributed sensors will be 
considered. They composed the vector of candidate sensors 𝑆𝐶����⃑  and are represented in 
Figure 9. 

 
Figure 9: Candidate nodes for sensor allocation (Pereira et al., [2022b]) 

Another important consideration and simplification of this work is that, as can be seen 
in Figure 1, the MRB has vibration modes with spatial displacements, that is, in all 
directions. Knowing that the FEM delivers the nodal displacements in the x, y and z 
directions, the total displacement will be considered in the optimization problem, 
calculated using Euclidian distance. 
Having defined the optimization problem of Equation 17 and adopted some 
simplifications strategies, the binary MOLA can be applied with the parameters of 
Table 3 for all the objective functions of Table 1, considering the first five mode shapes 
of the MRB, resulting in 7 multi-objective optimization problems. In Pereira et al. 
[2022b] was considered the first six mode shapes and this methodology was called 
Multi-objective Sensor Selection and Placement Optimization based on Lichtenberg 
Algorithm (MOSSPOLA). Just for the reader to have an idea, for each of these 
problems, MOSSPOLA tested 200 x 200 = 40000 sensor configurations in an average 
time of 18s. And just in this single run it will try to find at least one sensor configuration 
for each number of sensors, unlike the traditional SPO methodology that the number of 
sensors is fixed and therefore each program run is limited to only this number of 
sensors. The Pareto fronts found are shown in Figure 10. 

Table 3: Tuned MOLA parameters 
Rc Np S ref Pop Niter Ngrid Ns 

200 106 1 0.4 200 200 30 100 
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a) Kinetic Energy b) Effective Independence 

  
c) Average Driving-Point Residue d) Eigenvalue Vector Product 

  
e) Information Entropy f) Fisher Information Matrix 

 
g) Modal Assurance Criterion 

Figure 10: Answering how MRB information varies with the number of sensors using Pareto front 
for seven SPO metrics and the first five mode shapes 
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Interesting discussions can be made from Figure 10, remembering that these Pareto 
fronts refer exclusively to the MRB and its first 5 mode shapes. The first is that the 
applied methodology was able to successfully find at least one sensor configuration for 
each number of sensors in all metrics. It was also noticed that for all metrics, the 
increase in the number of sensors will always lead to an increase in the level of 
information acquired from the MRB. 
For the KE, EfI, and FIM metrics, the MRB information level grows linearly with the 
increase in the number of sensors up to the number 34, the interval used in this study. 
Already the ADPR, IE, and MAC metrics have a smoothly convex behavior and in both 
the information level does not significantly improves from 25 sensors. The EVP metric 
was the one that showed the most information gain for the first 4 sensors, and from this 
the information level does not grow significantly anymore too. Still, it is possible to 
confirm with this methodology the relationship between some metrics, already found in 
other studies: i) EfI, KE, and FIM (Gomes et al. [2018b]; Li et al. [2007]), and ii) MAC 
and IE (Yi & Li [2012]). 
Each solution of these Pareto fronts has a sensor configuration with its number and 
positions. It would be exhausting and tiring to present every sensor configuration found 
for every metric. Considering that the number of mode shapes used is 5 and it is 
recommended that the number of sensors used is at least equal to this number, Figure 11 
shows all solutions for 5 sensors. Figures 12 and 13 bring the solutions for 7 and 9 
sensors respectively. Remembering that good damage identification (delamination) 
results have already been found using only 10 well-distributed sensors without any SPO 
study (Gomes et al [2020b]). The scale that shows the distances of the sensors on the 
blade is in meters. 
It is possible to see that in Figures 11, 12 and 13 that again all metrics allocate at least 
one sensor at the end of the MRB, with the IE for five sensors (Figure 11e) being the 
only one that not selected the node at the lower tip, furthest from the root base and point 
of greater flexibility. Can be also seen that the metrics still prefer to select nodes in the 
central and tip regions, with the ADPR metric being the only one to select at least one 
point in the root section in all cases. And this pattern remains even increasing the 
number of sensors (from 5 to 7 and 9). 
Figure 11 represents the multi-objective SPO solutions for 5 sensors, which can be 
compared with the 5-sensor solutions of the single-objective SPO of Figure 7. Can be 
seen that the sensor configurations for the metrics KE, EfI, ADPR, EVP, and IE are 
very similar, though not identical. As for the FIM metric, although both allocated more 
than 40% of the sensors in the tip, in the multi-objective version it is clear that the 
metric allocated more sensors in the central region. The opposite happened with the 
MAC, which in the multi-objective version allocated even more sensors in the tip than 
in the central section. These are not significant differences, but they did happen. 
Therefore, still discussing Figure 11, KE, ADPR, EVP, and FIM were the only metrics 
that had better sensor distribution, as they divided the available sensors well in the most 
energetic regions of the blade, at the extreme tip and exactly in the middle. Therefore, 
still discussing Figure 11, KE, EVP and FIM were the only metrics to distribute the 
sensors well in the regions of greater displacement, center and tip. Again, the APR 
metric was the only one to allocate sensors at the root and the MAC metric was the one 
that put the most sensors at the tip. 
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a) KE 

 
b) EfI 

 
c) ADPR 

 
d) EVP 

 
e) IE 

 
f) FIM 

 
g) MAC 

Figure 11: Best sensor configuration for five sensors in different SPO metrics. 
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Figure 12: Best sensor configuration for seven sensors in different SPO metrics. 
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Figure 13: Best sensor configuration for nine sensors in different SPO metrics. 
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Increasing the number of sensors to 7 (Figure 12), all metrics maintain the same sensor 
distribution pattern, with the exception of MAC and EfI, which better distributes sensors 
between the central and root sections. Note that as shown in the Pareto fronts of Figure 
10, these metrics have increased sensing in the central region, raising the information 
level of the entire blade. So, these join the metrics KE, EVP and FIM, which continue to 
have the best sensor distributions. IE continues to place all sensors in the tip section and 
ADPR still has two sensors at the tip and the majority between the root and beginning 
of the central section. The EVP metric now has sensors closer to the root. Considering 9 
sensors, the offer of sensors is considerable and all metrics are distributed more evenly 
between the higher displacement sections of the blade. However, the IE and FIM 
metrics continue to allocate most of the sensors between the exact middle of the blade 
and the tip, smoothly accompanied by the MAC.  

Being damage identification the main purpose of sensing, it is known that in general, the 
closer the damage is to the sensor, the easier it is to diagnose. Therefore, a good 
distribution of sensors implies in a more efficient HUMS for all blade sections. The 
only metrics that had a good sensors distribution for the number of sensors analyzed and 
at the same time always had a greater allocation of sensors in regions with greater 
displacements due to mode shapes were KE and EVP.  

Figure 14 shows how the sensor distribution is modified for different numbers of 
sensors for these two metrics, starting from 1 to 30 sensors. As discussed before, the 
node with the greatest flexibility and therefore the greatest range of motion is at the tip, 
at the vertex opposite to the blade attachment by the root, and both metrics consider this 
point as the point of maximum information for a single sensor. From then on, the EVP 
metric allocates more sensors exactly at the tip and at the same time it is the one that has 
sensors closer to the root. Therefore, because it is more distributed, the EVP metric has 
the lowest sensor density. However, both highly value the tip and center sections. 

The EVP and KE metrics seem to be the most suitable for the MRB. The sensor 
configurations for 5 sensors considering mono and multi-objective optimization and for 
7 and 9 sensors considering multi-objective optimization were presented for these 
metrics and for others 5 important metrics in literature.  
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KE EVP KE EVP KE EVP KE EVP 

a) 1 sensor b) 4 sensors c) 8 sensors d) 12 sensors 
 

        
KE EVP KE EVP KE EVP KE EVP 

e) 16 sensors f) 20 sensors g) 25 sensors h) 30 sensors 

Figure 14: Sensor distribution variation as increases the sensors number 

4 Concluding Remarks 
This chapter showed the relevance of using rotary-wing aircraft and focused on the 
study of damage to its main component: the main rotor blade. A discussion of the types 
of damage that ranged from blade manufacture to damage that can arise in use was 
made. It also detailed how modal data can help engineers analyze the presence of 
damage in structures and showed how the study of sensor positioning is crucial for a 
good Health and Usage Monitoring System. This chapter presented the main sensor 
placement optimization metrics most used in the literature, this chapter used mono and 
multi-objective optimizations to find the best sensor configurations for the blade. The 
techniques used were developed in the Research Group in Computational Mechanics 
(GEMEC) at UNIFEI.  

0 0 0 0
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5 Perspectives for Future Research Work 

The future research suggestions in this chapter relate mainly to two fronts: continuation 
of the SPO theme and adjustment of the numerical model in the FEM to better fit the 
reality of the MRB. 

5.1 Sensor placement optimization continuation 
The study of SPO in MRB carried out in this chapter follows the line of more recent 
works for different structures in the literature. A meta-heuristic is employed and the 
objective is to find the sensor positions that have the largest displacements for the mode 
shapes to be considered. Obviously, these positions will also represent the most 
significant changes in a possible damage presence. Furthermore, in the optimization 
process, only the mode shapes and natural frequencies of a single FEM simulation are 
considered: the healthy and intact blade. This brings one of the main advantages of this 
methodology: finding sensor configurations in complete optimization simulations in less 
than 3 minutes. 
However, this methodology is unable to answer, for example, which of all sensor 
configurations in Figures 7, 11, 12, and 13 is more accurate in finding damage in any 
blade section. Could the accuracy of a specific sensor configuration change for damage 
in different regions? Could sensor configurations that are more present in the tip section 
be better at diagnosing damage anywhere on the blade? The answers to these questions 
can only be confirmed after damage identification studies using the sensor 
configurations found. 
In this case, meta-heuristics have also been widely applied, but the objective functions 
may be different from those in Table 1, although they can also be used. In this case, 
Equation 4 can be used in the FEM to induce damage with well-defined intensity (α) 
and location (𝑛𝑒) in any structures with 𝑁𝑒 elements, with the damage rate varying 
between 0 and 100% (structure intact). An example of objective function widely used to 
guide the meta-heuristic in a damage identification problem is represented in Equation 
18, where this optimization problem is also defined (Pereira et al. [2021]). 
 
 
 

min 
2

,

1 ,

1
MHn
i s
real

i i s

JΦ
=

 Φ
= −  Φ 
∑  

subject to: 

1 ≤ 𝒏𝒆 ≤ 𝑁𝑒  

0 ≤ α ≤ 1 

(18) 

where Φi,s
MH are the nodal displacements in mode shape i in the sensors found in the 

SPO problem for random damages suggested by some meta-heuristic and Φi,s
real  is the 

reading of the nodal displacements in the real structure in the same node positions, 
which could be the MRB. Or, if it's a numerical simulation problem, Φi,s

real  could be the 
displacement data of the mode shapes using the same FEM structure with a known and 
induced damage. The meta-heuristic optimizes suggesting damages, calculating their 
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modal data, and comparing them with the real one. When the difference is zero, the 
damage will be identical. Note that for each point in the population in each iteration, the 
FEM is activated, which makes the optimization process to identify damages 
computationally expensive. A single simulation can take just over a day. 
Nonetheless, this is the only way to validate the accuracy of the sensor configurations 
found. In normal way and as has been discussed in the literature, each of the sensor 
configurations of Figures 7, 11, 12, and 13 can have three damages induced in the root, 
tip and center sections. At least S simulations can be run for each damage and each 
sensor configuration and can be calculated which of these had the smallest error in 
relation to α and 𝑛𝑒. A similar way frequently used referring mainly to 𝑛𝑒 is the 
Probability of Detection (PoD) (Diacenco [2016]). This is a measure that is the rate of 
times that the optimization problem of Equation 18 was executed and found the exact 
location of the damage 𝑛𝑒 in relation to all trials, which can also be used as an objective 
function to be maximized. 
Therefore, two interesting directions can be suggested in relation to the SPO study in 
this chapter, in order of increasing computational cost: i) Do a general damage 
identification study with the sensor configurations found in Figures 7, 11, 12, and 13 to 
see which has the smallest error or the largest PoD and ii) Use the methodology 
presented with MOLA and Feature Selection for multi-objective SPO and for each 
sensor configuration proposed, run the optimization problem of Equation 18 S times and 
calculate the PoD or error, which will be the second objective function instead of the 
main SPO metrics. Note that it may have an exhausting computational cost, but to the 
best knowledge of the authors it has never been done before and it can bring promising 
results, since the first objective is the number of sensors. 
Some suggestions regarding the algorithms can also be presented: i) Test other meta-
heuristics in place of MOLA and compare the results of Figure 10 using robust metrics 
for comparison of Pareto fronts when there is no true Pareto front as a reference, such as 
HyperVolume (Kumar et al., [2021]), ii) Use chaos theory or lévy flights in MOLA to 
try to improve the Pareto fronts results, iii) Test other methods of binarizing the 
continuous values of MOLA and also compare Pareto fronts to try to improve the 
results, iv) apply binary MOLA on different/new SPO metrics, v) apply the SPO 
methodology presented in different structures, since both the method and the application 
in MRB are new and have not yet been applied in any other structure. This includes 
repeating all previous items, among others. 
 

5.2 Improvement of the finite element method and its alignment with reality 
Still on the continuations of the SPO problem presented in this chapter, future 
suggestions can be added regarding modeling in FEM. Although a numerical model of 
the MRB with NACA0012 profile and geometric characteristics similar to the real AS-
350 blade was used, to the detriment of many works in the literature that used simply a 
beam, simplifications were made and may influence the SPO result. 
As can be seen in Figure 6a, the MRB is simply fixed by the root surface and fixation 
by screws in the head rotor, which usually have a metallic jacket, was not modeled. 
Still, in fact, the MRB is connected to the hub via three rings (and Degrees of Freedon): 
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flapping, drag, and pitch-change, which allows movement in these same directions in 
flight. See Figure 4.  

 
Figure 15: Axes of freedom for the MRB (Bramwell et al. [2001]) 

Still comparing Figures 6a and 5, it is also possible to observe that some sections have a 
spline for corner smoothing, which is also not included in the numerical model. The 
same occurred with the leading edge that has a protective steel frame. These are 
geometric and boundary conditions details. 
The following simplification can significantly affect the SPO results and is about the 
dynamic modeling. As seen and discussed, the natural frequencies and mode shapes 
were calculated considering that the blade is simply static and supported by the root at 
the hub. However, there are several sources of forces and vibrations in a helicopter in 
flight and can change the MRB rigidity.  The most important is the centrifugal force due 
to the rotation of the rotor. With it, a traction stress is added to each element of the 
blade, getting bigger from the tip to the root section of the MRB. 
The common and unavoidable sources of vibrations in the main blade that would be 
welcome at the FEM are: i) variable aerodynamic forces resulting from the cyclic 
movement of the blades in translational flight, ii) centrifugal forces from the center of 
gravity variation position due the flapping motion of the blades, and iii) aerodynamic 
forces from the air flow in rotors, among others. These concepts have been better 
discussed in earlier chapters. 
Other studies can also be done in relation to the type of induced damage. As a 
suggestion of section 5.1, a case study of damage identification degrading the elastic 
property of a single element was shown, that is widely used in literature to simulate 
delamination. However, other types of damage can be modeled, such as circular holes 
(which can represent ballistic damage) and cracks, to verify if the sensor configurations 
found are capable of diagnosing them. 
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Abstract

Implementing structural health monitoring (SHM) techniques with a high Tech-
nology Readiness Level (TRL) is still challenging due to several practical require-
ments and assumptions to apply the fundamental methods. Between them, two issues
earn some special attention: the linearity hypothesis and the robustness to the natu-
ral variability of data. The first point to overcome is that many structural engineer-
ing systems inherently behave nonlinearly during operation, even in a healthy state.
Here, the assumption of linearity is typically inaccurate, eliminating large classes of
feature extraction techniques. This issue is more complicated when the Damage also
induces additional nonlinearities, e.g., cracking. The second aspect is the need to
quantify the parameters’ variation and uncertainties and signal data to interrogate
the structural state. This chapter proposes introducing these challenges and some
examples of addressing them in this context.

Keywords: nonlinearities; uncertainty quantification; damage detection

1 Introduction

Implementing a Structural Health Monitoring (SHM) strategy is essential to avoid and prevent
catastrophic failures in civil, mechanical, and aeronautical systems. Different paradigms utilize
physics-based methods (numerical models coupled with model updating, for example) and data-
driven methods (where models or trends are inferred from the data alone). Regardless of approach,
SHM requires sensors to be deployed on the structure to measure raw information from which it
is necessary to extract features sensitive to whatever target Damage mechanisms are of interest.
These features are then subject to some sort of classification or discrimination process to make
informed decisions about the state of the Damage. Damage is a mechanism that modifies the
properties of mass, damping, stiffness, connectivity, or boundary conditions, individually or mu-
tually, that prevent the structure from performing its intended design functions. The primary issue
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is that the variation observed in these properties can be caused by several different sources, not
necessarily only by the presence of Damage. This is a lack of specificity. Furthermore, data itself
contains many sources of noise that corrupt the measurements and propagate the error into the
features and the decision space; this leads to a lack of sensitivity. These combined challenges of
specificity and sensitivity are problematic for practical, long-term SHM applications, reducing its
potential performance.

Among all practical limitations, this chapter focuses on two issues that may decrease the per-
formance of an SHM method, which we have been investigating for the last ten years. The first
is the inherent nonlinear behavior of the vibration motion of flexible and light structures. A non-
linear behavior that leads to the breaking of the superposition principle can be induced when a
linear system is subjected to the presence of some types of Damage. That is the case when a
crack is presented in a simple clamped-free beam when the level of force excitation is low. When
the Damage is propagated, a breathing crack causes a bilinear effect that violates the system’s
linearity and manifests in the data vibration. Modern engineering systems are manufactured with
advanced materials, which demands constitutive equations that are more complex than traditional
ones breaking the assumptions of linearity even in a healthy state. Consequently, an algorithm of
SHM is required to separate the nonlinear effects induced by damaged from the inherent nonlin-
earities.

The second challenge to overcome is the presence of uncertainties in structure monitoring. The
measured data may include heavy noise and systemic uncertainties caused by boundary condition
variations, property change not caused by Damage, variation in the parameters caused by tempera-
ture changes, etc. Consequently, the features extracted from measured signals can be corrupted to
compute the damage indices. On the other hand, the models built to monitor the structures are also
full of uncertainties in the definition of their parameters and the assumptions and simplifications
adopted throughout the modeling. Therefore, to ensure statistical reliability in the results obtained,
such uncertainties must be considered in the construction and testing stage of the methodologies.

Both limitations severely harm damage detection because they can increase the level of false
alarms and reduce the reliability of the diagnosis. It is essential to simultaneously develop and ap-
ply an SHM methodology to deal with these concerns. The key idea to get around these problems
is to choose features that are insensitive to these variations, use projections and transformations,
or use extensive data for learning purposes, increasing the amount of available measured data.
Unfortunately, both options can be problematic and non-trivial to be quickly implemented. This
chapter introduces these challenges by exploiting two benchmarks examples in simple beam struc-
tures with nonlinear behavior and uncertainties. Data of both setups are shared to allow the reader
to deal with methods to observe the effects of nonlinearities and uncertainties in the performance
degradation of the SHM algorithms.

Section 2 introduces general concepts of uncertainty quantification (UQ) and demonstrates
how these natural variabilities can harm the damage-sensitive features used in traditional SHM
algorithms. Section 3 illustrates a general approach for integrating the assumptions and concepts
of uncertainty quantification and nonlinear system identification in damage detection for SHM
purposes in nonlinear systems. First, the section presents an overview of data-driven modeling
and system identification (ID) to detect and understand, based on data, the systems’ nonlinear
behavior. Many different ID models could be chosen, but a nonparametric approach based on the
Volterra series is selected because this series is a straightforward generalization of the convolution
concept of linear systems and strongly correlates with the frequency response functions for higher-
order components. Section 4 provides two examples of applying the described methodology using
experimental data. Firstly, under conditions where a deterministic model is enough to guarantee
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the detection of structural variations, where the variability of the data is small. And then a more
interesting experiment, involving a more significant data variability, where the stochastic approach
is needed to ensure good performance (closer to the real world). Finally, the Section 5 provides
the main conclusions and propositions for future work.

2 Overview in Uncertainty Quantification (UQ) and its relevance to SHM

2.1 General definitions

The uncertainties can be classified into two main groups [Soize, 2012, 2017]:

• Data uncertainties: also known as aleatory, these uncertainties are intrinsic to scenarios
with variabilities, such as noise in the measured data (experimental data) and variations
concerning the nominal configuration of the structures, due to geometric imperfections,
manufacturing irregularities, environmental conditions, etc. These uncertainties can not be
eliminated, only better characterized;

• Model uncertainties: also known as epistemic, these uncertainties result from the limited
knowledge about the model structure to be used, i.e., ignorance about the system’s physics.
These uncertainties can be mitigated or even eliminated by increasing knowledge about the
behavior of the system in analysis.

Dealing with model uncertainty is no simple task. Although they can be reduced as the models
are improved, it is practically impossible to build models that are totally faithful to the physical
phenomena involved. In this case, it is interesting that the model can provide some level of infor-
mation about the uncertainties involved in its own prediction estimation process. Physical models
encounter great difficulty in performing this kind of estimation, which is much more common
when considering machine learning-based models. In the context of this work, we assume that
model uncertainties can be neglected, although we know that in reality, they will be present. This
simplification is made by assuming that the chosen baseline nonlinear model (the Volterra series)
is efficient enough to describe the phenomena under study, so those model uncertainties will not
have much influence on the final result. The results obtained experimentally support this belief.

On the other hand, as mentioned, data uncertainties cannot be eliminated, but they can be
better characterized. A better characterization of this type of uncertainty can give the model the
ability to predict the behavior of the dynamic systems under study with a certain level of statistical
reliability. When dealing with experiments where data variability can be significant (almost all
real-world applications), this capability can improve the performance of the monitoring metrics
adopted. The most usual way to consider data uncertainties in estimating a numerical model is
to apply a parametric probabilistic approach [Soize, 2017], that considers the model parameters
sensitive to the presence of uncertainties as random objects (such as random variables, random
vectors or random processes). After characterizing the joint-distribution of these parameters, the
underlying uncertainties can be propagated through the model using the well-known Monte Carlo
(MC) method, and statistics of the model output can be obtained. Experimental applications will
make clearer the advantage of adopting this kind of approach when estimating stochastic models
in the context of damage detection.

2.2 The problem of data variation in the context of SHM

As mentioned before, in the context of SHM, the presence of data variation can confuse the deter-
ministic metrics, as shown in Villani et al. [2019b], being the use of probabilistic models necessary
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to improve the results. Figure 1 highlights how the data variation can complicate the implemen-
tation of classical SHM methodologies. Modal parameters are standard features to consider in
the damage detection problem because Damage induces variations in structural properties, which
are reflected in the vibration modes of the structures. It is interesting to observe that depending
on the level of data variation in the measured signals and extension of the Damage, it is difficult
to observe the presence of Damage when the modal parameters are used as the damage-sensitive
feature. There is a superposition between the features calculated on reference condition and under
damage I condition. Therefore, if we use the modal parameters directly as damage indicators in a
deterministic approach or even using powerful machine learning algorithms, we will not be able
to detect damage condition I, under these circumstances. The details about the data can be found
in Villani et al. [2019c].

When dealing with data analysis directly (data-based monitoring), it is possible to project these
features in dimensions where the variability of the measured data is reduced or try to compensate
the variability using a reference parameter, the temperature, for example. It is also possible to
extract features from the signals that may be less influenced by data variability and implement
more powerful classification algorithms. However, when dealing with SHM based on prediction
models, as is the case where nonlinear behavior is involved, some statistical certification for the
model is always necessary because the presence of uncertainties also influences the parameters of
the models. Therefore, these uncertainties must be characterized and incorporated into the model
identification step to build stochastic models capable of performing the prediction with statistical
reliability.
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Figure 1: Uncertainties induced by variations in the measured data.

3 An integrated SHM approach using Nonlinearities and UQ

3.1 Nonlinear system identification

There are two main ways to handle the presence of nonlinear phenomena in SHM problems
[Nichols and Todd, 2009]:

• The healthy structures present linear behavior: Damage induces the linear structure to
present nonlinear phenomena in its behavior. The Damage can be detected by observing
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nonlinear behavior in the measured systems’ output signals. When we want to achieve
higher steps of SHM, usually, a nonlinear model is necessary to predict the structure’s
output signals in damaged conditions. Many works were developed in this sense, aiming to
detect delaminations [Ghrib et al., 2018], breathing cracks [Rébillat et al., 2014], unbalance
in rotor systems [Xia et al., 2016], and others;

• The structures present nonlinear behavior even in healthy conditions: the structure
presents nonlinear phenomena in its output signal in the reference condition, and this be-
havior can be confused with damages when the approaches described previously are applied
[Bornn et al., 2010]. This situation makes necessary the use of more sophisticated methods
that can differentiate the effects caused by the damages and the ones caused by the inherent
nonlinearities.

The second scenario is more critical. Figure 2 shows an example of the situation described; the
data used was measured considering a magneto-elastic nonlinear structure exposed to the presence
of a structural change that emulates the behavior of a breathing crack. The presence of multiple
harmonics in the responses suggests nonlinear oscillatory behavior. The structure presents linear
behavior when a low energy level is applied; however, when high amplitudes are achieved, it
manifests nonlinear phenomena. Moreover, the structure is exposed to the presence of a breathing
crack that induces nonlinear behavior. When dealing with the second scenario, the construction
of a model capable of predicting the intrinsically nonlinear behavior of the system and providing
information that allows differentiating the intrinsic phenomena of the system from that caused by
Damage is of great relevance. Many nonlinear models could be proposed to solve this issue, and
the reader is invited to see Kerschen et al. [2007], Worden et al. [2007] for exploring this vast
universe.
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Figure 2: Time-frequency diagram of the system’s output exemplifying the
presence of nonlinear phenomena.

The authors decided to use the Volterra series nonlinear data-driven model for dealing with
the intrinsically nonlinear behavior of such systems. The choice is based on the capability of the
Volterra series to separate linear and nonlinear contributions to the predicted response since this
model represents a generalization of the linear convolution concept.

Consider a discrete-time causal nonlinear system with a single output k ∈ Z+ 7→ y(k) caused
by a single input k ∈ Z+ 7→ u(k), with Z+ representing the set of nonnegative integers. Through
the discrete-time Volterra series, nonlinear system’s output can be written in the form

y(k) =

∞∑
η=1

N1∑
n1=1

. . .

Nη∑
nη=1

Hη(n1, . . . , nη)

η∏
i=1

u(k − ni) = y1(k)︸ ︷︷ ︸
linear

+ y2(k) + · · ·+ yη(k)︸ ︷︷ ︸
nonlinear

, (1)
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where (n1, .., nη) ∈ Zη
+ 7→ Hη(n1, . . . , nη) represents the η-order Volterra kernel, N the number

of input lags considered in each kernel, and k ∈ Z+ 7→ {y1(k), y2(k), . . . , yη(k)} represent,
respectively, the first kernel (linear) contribution, the second kernel (quadratic) contribution, and
the η-order kernel contribution [Schetzen, 1980].

The main disadvantage of the approach is the challenge in achieving the convergence when
a high number of terms is used [Shiki et al., 2017, Villani et al., 2019a]. In order to reduce
the number of terms necessary to obtain a good approximation, the Volterra kernels Hη can be
expanded into an orthonormal basis, such as the Kautz functions [Kautz, 1954]. In this way, the
series can be rewritten according to the approximation

y(k) ≈
∞∑
η=1

J1∑
i1=1

. . .

Jη∑
iη=1

Bη (i1, . . . , iη)

η∏
j=1

lη,ij (k) , (2)

where J represents the number of Kautz functions used in each orthonormal projections of the
Volterra kernels, (i1, . . . , iη) ∈ Zη

+ 7→ Bη(i1, . . . , iη) represents the η-order Volterra kernel ex-
panded in the orthonormal basis, k ∈ Z+ 7→ lη,ij (k) is a simple filtering of the input signal u(k)
by the Kautz function ψη,ij related to each kernel. Information about the Kautz functions can be
found in da Silva et al. [2010]. The kernels’ coefficients can be estimated using linear regression
algorithms, such as the least-squares method [Shiki et al., 2017].

The classical version of the Volterra series expanded using Kautz filters is a useful determin-
istic nonlinear model. However, as mentioned before, practical applications involving real-world
data deal with the presence of uncertainties. If the experimental data present small variability,
related to a low level of noise in the measurements, the deterministic version of the model is suffi-
cient to monitor the system, on the other hand, if the data present high variability, related to noise
and operational conditions, the model can be rewritten to take into account data uncertainties.
The model uncertainties are not considered here, which means that we assume that the nonlinear
model is able to describe the nonlinearities considered in the analysis performed. A parametric
probabilistic approach is employed, meaning that the model parameters subjected to uncertainties
are described as random variables or random processes [Soize, 2017]. The stochastic version of
the Volterra-Kautz model can be described as

y(θ, k) ≈
∞∑
η=1

J1∑
i1=1

. . .

Jη∑
iη=1

Bη (θ, i1, . . . , iη)

η∏
j=1

lη,ij (θ, k) , (3)

where, in this new version, the random process (θ, k) ∈ Θ×Z+ 7→ y(θ, k) represents the stochas-
tic nonlinear system’s output, (θ, n1, .., nη) ∈ Θ × Zη

+ 7→ Bη (θ, i1, . . . , iη) represents the ran-
dom version of the η-order Volterra kernel expanded in the Kautz basis, and the random process
(θ, k) ∈ Θ × Z+ 7→ lij (θ, k) is a simple filtering of the deterministic input signal u(k) by the
random Kautz function Ψη,ij , i.e.,

lη,ij (θ, k) =
Jη∑

ni=0

Ψη,ij (θ, ni)u(k − ni). (4)

Estimating the random kernels (the random coefficients) can be done based on the determin-
istic method described before and Monte Carlo simulations [Kroese et al., 2011, Cunha Jr et al.,
2014]. Since we have the random kernels computed when a new input signal is applied, the output
signal can be obtained using the uncertainty propagation through the model (again implementing
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Monte Carlo simulations). The stochastic model is versatile and can be used to describe a vari-
ety of polynomial nonlinearities, considering data variation. Additionally, the component filtering
characteristic of the model enables the comparison between the use of linear and nonlinear metrics
and the extraction of nonlinear features sensitive to the presence of nonlinear behavior induced by
Damage. More details can be obtained in Villani et al. [2019c].

3.2 Extraction of features sensitive to Damage

With the method described in the previous section, it is possible to identify a model represent-
ing a structural system’s linear and nonlinear dynamics. One can use the discrepancies detected
in a measured output yexp concerning the Volterra series considering η terms in the expansion
described in Eq. 1. The η-th order prediction error can then be defined by

eη = yexp −
η∑

m=1

ym . (5)

It is expected that the prediction error presents an important change in its statistical properties
when the system is subjected to damage. To summarize the deviation of a structure in an unknown
structural state, a λη damage index is applied

λη =
σ (eη,unk)

σ (eη,ref )
, (6)

where σ denotes the sample standard deviation, eη,unk and eη,ref are the prediction errors mea-
sured in an unknown structural condition and the baseline state, respectively. This index is similar
to the one used in the article of Sohn and Farrar [2001] used to detect nonlinear Damage in an
initially linear system. A pure linear dynamics can represent the λη index for η = 1 in the case
where the Volterra expansion matches a simple linear convolution [Peng et al., 2021], or it can take
into account higher-order contributions of the Volterra series expansion for η > 1. This property is
used in the present chapter to evaluate possible issues that might appear when using linear models
to represent and monitor inherently nonlinear structures.

It is worth mentioning that the features described above make use of the deterministic version
of the Volterra series model and are very effective for applications where the uncertainties have
low influence, as will be demonstrated in the experimental example. When dealing with a higher
level of variability, such features can fail in detecting the variations only related to the presence of
Damage, and new features should be determined, considering the nonlinear stochastic model.

Let’s assume that the first three kernels are enough to describe the nonlinearity of the mon-
itored system. The stochastic model represented by Eq. 3 can be estimated with the system
operating under healthy conditions. This model provides a family of models, through MC simu-
lations, that represent the mechanical system in the reference state. This family of models can be
used to formulate a new damage index, stochastic in this case, as follows

Ilin = [Λlin(θ, i1) Clin(θ, npca)](Ns×(J1+npca)) , (7)

for the linear components, and

Inlin = [Λqua(θ, i1 = i2) Λcub(θ, i1 = i2 = i3) . . .

. . . Cqua(θ, npca) Ccub(θ, npca)](Ns×(J2+J3+2npca)) , (8)
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for the nonlinenar ones, where Ns represents the number of MC simulations used. These indices
take into account the identified coefficients of each kernel {Λlin(θ, i1), Λqua(θ, i1 = i2) and
Λcub(θ, i1 = i2 = i3)} and the principal components of the contributions of each kernel to the
total output calculated using the stochastic model

ylin(θ, k) ≫ PCA ≫ Clin(θ, 1), ... ,Clin(θ, npca) ,

yqua(θ, k) ≫ PCA ≫ Cqua(θ, 1), ... ,Cqua(θ, npca) , (9)

ycub(θ, k) ≫ PCA ≫ Ccub(θ, 1), ... ,Ccub(θ, npca) ,

where npca represents the number of principal components to be used. This is a brief description
and more information about the mathematical formulation can be found in Villani et al. [2019c].
The main advantage here is that the damage index in the reference condition takes into account
the natural variability of the experimental data, reducing the probability of false positives in the
analysis while separating out the effect of nonlinearities in the system dynamics. When the me-
chanical system operates in an unknown condition a new index can be calculated and compared
with this reference stochastic model using supervised methods, described below.

3.3 Classification of structural states by using supervised methods

For the index calculated using Eq. 6, a simple outlier analysis using thresholds is enough to differ-
entiate the damage states from the reference condition because the index is uni-dimensional. For
doing so, simply define a theoretical distribution to represent the index in the reference condition
and use the probability measures of false alarms to define the threshold value.

However, for the stochastic indices (Eqs. 7 and 8), this direct procedure is not possible. There
are several ways to approach multivariate data classification. One simple and effective way is
to use metrics based on distance measures to generate a uni-dimensional index that can also be
represented by a theoretical distribution. In this sense, the Mahalanobis distance can be used

D2
m = [Im − µIm ]

T Σ-1
Im [Im − µIm ] , (10)

where the sub-index m represents both linear and nonlinear features, ΣIm and µIm are the co-
variance matrix and the mean vector of the feature vector completed considering the reference
condition (using Eqs. 7 and 8), and Im represents the index vector calculated with the mechanical
system in an unknown condition. This metric calculates the distance between Im and the mean
of Im taken into account the dispersion and correlation of Im. Now, a theoretical probability dis-
tribution can be proposed for D2

m and an outlier analysis can be implemented through threshold
definition.

It is worth mentioning that different machine learning methods could be used to monitor the
structural condition through the proposed damage indices. The choice depends on the ability to
separate the data for the features. Since the features calculated here can remarkably separate the
different conditions, a simple outlier analysis using one-dimensional metrics is enough to detect
the occurrence of Damage. For states considering more incipient Damage, more robust methods
may be needed.

3.4 Definition of thresholds: statistical approaches for hypothesis tests

By considering the deterministic approach with the λη index (Eq. 6), it is possible to define a
statistical methodology assuming that the prediction errors have a Gaussian distribution [Shiki
et al., 2017]. With this, the λη indicator can be related to a F distribution which describes the
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ratio between the variances of two random variables [Bendat and Piersol, 2011]. In this sense, the
expected probability density function P (λ) is given by

P (λ) =
2
[
v1
v2

] v1
2
λv1−1

β
(
v1
2 ,

v2
2

) [
1 + v1

v2
λ2

]( v1+v2
2

) , (11)

where v1 and v2 are the number of degrees of freedom for the prediction errors in the unknown
and reference conditions respectively and β is the function:

β (a1, a2) =
(a1 − 1)! (a2 − 1)!

(a1 + a2 − 1)!
, (12)

where a1 and a2 are the input arguments of the β function. In this sense, using the deterministic
version of the Volterra series, the damage detection process can be summarized by a statistical
hypothesis test to detect a significant increase in the prediction error under a significance level α:{

H0 : σ (eη,unk) = σ (eη,ref ) ,
H1 : σ (eη,unk) > σ (eη,ref ) ,

(13)

where H0 is the null hypothesis which represents the condition where it is likely that the system is
still in the reference condition, and H1 is the alternative hypothesis that represents the case where
the standard deviation presented a significant increase due to some modification in the system
behavior. This means that in this formulation, it is considered that no other effects are changing
the system’s response (e.g., environmental variations or uncertainties effects).

When using the Mahalanobis distance calculated (Eq. 10) it is necessary to propose a new
hypothesis test. In this regard, we can assume that the Mahalanobis distance can be described by
a chi-square distribution when calculated in the reference condition. Within that assumption, we
need to ensure the premise of independence and normality in the underlying multivariate features
used to calculate the distance measure [Yeager et al., 2019]. Therefore, by integrating the chi-
square PDF, we can calculate the probability of a new distance value to belong the theoretical
distribution [Grimmett and Welsh, 2014]

pm = F (D2
m|ν) =

∫ D2
m

0

t(ν−2)/2e−t/2

2ν/2Γ(ν/2)
dt , (14)

where pm is the probability of the value D2
m belonging to the chi-square distribution, ν is the

number of degrees-of-freedom, and Γ(.) is the Gamma function.
At last, we can propose a probability threshold value to decide if the sample belongs or not

to the theoretical distribution. This sensitivity value depends on the probability of false alarms
tolerated in the specific application. At this point, the hypothesis test can be rewritten{

H0 : pm ≥ ϵ ,
H1 : pm < ϵ ,

(15)

where ϵ represents the value of sensitivity chosen. The definition of α and ϵ depends on the practi-
cal application and for laboratory studies, various values can be examined to test the performance
of the methods.
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3.5 Probability of false alarm and ROC curve

With the statistical procedure presented in the subsection 3.4, it is possible to accept or reject the
null hypothesis, which can give an insight into the structural state of the dynamic system. The
threshold for this binary classification is governed by the significance level of the hypothesis test.

The performance of this classification can be carried out by evaluating the false alarm rate,
which represents the number of false positives indicated by a damage index, against the true de-
tection rate, which reflects the sensitivity of the proposed methodology. These two metrics are
mapped for different threshold values in a receiver-operating characteristic (ROC) curve, which
illustrates the false alarm rates against true detection rates [Farrar and Worden, 2012].

4 Experimental applications

This section presents two case studies to highlight various aspects of damage detection involving
nonlinear and uncertain systems. The first one in subsection 4.1 illustrates a nonlinear magneto-
elastic system subjected to linear structural changes and a lower level of data variation related to
uncertainties. In this situation, deterministic metrics can be applied. In subsection 4.2, the second
one presents an uncertainty-robust damage detection scheme in a magneto-elastic system with
nonlinear damage scenarios and a higher level of data variation imposed during the experiments.

4.1 Linear damage detection in a nonlinear magneto-elastic system

The first case study was performed in the MAGNetO-eLastIc beAm (MAGNOLIA1) by the SHM
Group from UNESP [Shiki et al., 2017]. It was mainly composed of a cantilever aluminum beam
with 300 × 19 × 3.2 [mm] and a steel mass attached to its free end. This mass interacted with
a permanent neodymium magnet distant 2 [mm] for the steel end in a mono-stable configuration.
Similar systems were already investigated in the literature exploring their rich nonlinear behavior
in the bi-stable format with multiple magnets [Barton et al., 2010, Erturk and Inman, 2011].

A Modal Shop 2004E electrodynamic shaker was attached 50 [mm] away from the clamped
end with a Dytran load cell model 1022V. A Polytec OFV-525/-5000-S laser vibrometer was used
to measure the velocity in the beam’s free end. A picture of the experimental setup is presented
in Figure 3 (a). The nonlinearity in this system comes from the magnetic interactions between the
permanent magnet and the steel mass placed in the beam’s free end. The magnet is positioned to
attract the beam in the axial direction and during the bending movement. Considering the gap of
2 [mm] in this system, a hardening behavior was observed during the experimental tests in this
structure. A frequency response curve to a stepped sine input with a shaker-controlled input of
0.01 V and 0.15 V highlights the hardening behavior of the first mode of this system.

Also, a single bolt with 4 nuts (with 2 grams each) was placed in the middle of the beam to
simulate mass variations. In this sense, this case study fits the damage detection problems where
the structure is nonlinear in the reference state. Still, the Damage was simulated as a simple mass
variation that mainly affects linear parameters of this kind of system.

To identify the Volterra model representing the baseline condition of the nonlinear system, a
chirp input with two levels: 0.01 and 0.15 V was configured in the shaker to sweep the frequency
range from 10 to 50 Hz with 4096 samples acquired with a sampling frequency of 1024 Hz. Figure
4 shows the short Fourier transform of these signals. It is possible to observe the appearance of
odd and even harmonics, especially with higher levels of force.

1The complete dataset can be obtained on the website of the UNESP SHM Research Group: https:
//github.com/shm-unesp/UNESP-MAGNOLIA
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(a) Experimental setup.
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Figure 3: Setup and nonlinear behavior of the MAGNOLIA system.
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Figure 4: Time-frequency representation of the vibration of the MAGNOLIA
system under low and high levels of excitation.

With these signals, we identified the Volterra kernels using the procedure described in section
3.1. Since both second and third-order harmonics were detected, the Volterra model was consid-
ered to be presented by the first three kernels. A convergence simulation was performed to set
the order of the Kautz filters by calculating the prediction error for different model orders. This
resulted in the choice of J1 = 2, J2 = 2 and J3 = 8. Figure 5 illustrates the convergence study
and the main diagonals of the first three kernels identified to represent the MAGNOLIA system.

The identified model is a nonparametric representation of the MAGNOLIA system in the
baseline condition with 4 masses in the bolt in the middle of the structure. To simulate a linear
kind of Damage, these masses were removed one by one and placed back in the system simulating
the 8 structural states presented in Table 1. The tests for each structural state were repeated 40
times to check the damage indices’ repeatability.

Figures 6 and 7 shows the Volterra-based linear and nonlinear damage indices for all the 8
structural conditions using low and high level chirp input. As shown in Figure 4, higher levels of
displacement tend to cause stronger nonlinear effects shown by the presence of harmonics in the
response. In this sense, the λ1 linear index shows to be sensitive to the Damage only in the linear
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Figure 5: Volterra model representing the MAGNOLIA system.

Table 1: Structural states simulated in the MAGNOLIA system.

State Condition
1 4 masses (baseline)
2 3 masses (damaged)
3 2 masses (damaged)
4 1 mass (damaged)
5 1 mass (repair)
6 2 masses (repair)
7 3 masses (repair)
8 4 masses (repair)

regime of the MAGNOLIA system. Meanwhile, the nonlinear index λ3 shows to be sensitive to
mass variations in both regimes. This simple example clarifies the possible issues when adopting
linear damage indicators for monitoring structures with inherent nonlinear behavior.

Tables 2 and 3 illustrate the results of the Volterra-based damage detection for the low and
high-level input amplitude for different values of the significance level of the hypothesis test.
By the Table 2 it is visible that both λ1 and λ3 indexes were able to accurately detect structural
variations without any false alarms. However, Table 3 illustrating the results of the nonlinear
regime shows that the linear index fails to detect variations while presenting no false alarms. The
nonlinear index presents a true high detection for every case, while false alarms can be minimized
by using lower values of significance levels.

The behavior of the hypothesis test for different values of significance levels α is illustrated
through the ROC curve for both the linear and nonlinear indices. From this analysis, it is clear that
the linear indicator can only increase the detection rate through an increase in the false alarm rate
during the nonlinear regime of the system. Meanwhile, the nonlinear index presents high values
of detection rate without being affected by the nonlinear structural regime.
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Figure 6: Linear damage index under two different input levels for the
MAGNOLIA system. The continuous line represents the indexes during the
damage appplications (states 1 to 4) while represents the indexes during the

repair (states 5 to 8).
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Figure 7: Nonlinear damage index under two different input levels for the
MAGNOLIA system. The continuous line represents the indexes during the
damage appplications (states 1 to 4) while represents the indexes during the

repair (states 5 to 8).

Table 2: Results of the hypothesis tests for different significance levels under low
level input (0.01 V) on the MAGNOLIA system.

α[%]
Linear index (λ1) Nonlinear index (λ3)

False alarm [%] True detection [%] False alarm [%] True detection [%]
2 0 100 0 100
1 0 100 0 100
0.5 0 100 0 100
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Table 3: Results of the hypothesis tests for different significance levels under high
level input (0.15 V) on the MAGNOLIA system.

α[%]
Linear index (λ1) Nonlinear index (λ3)

False alarm [%] True detection [%] False alarm [%] True detection [%]
2 0 0 34.6 100
1 0 0 17.9 100
0.5 0 0 3.85 100
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(b) Nonlinear index.

Figure 8: ROC curves of the damage indexes for the MAGNOLIA system. -△- is
the curve for the low level input (0.01 V) and -□- is the curve for the high level input

(0.15 V).

4.2 Nonlinear damage in a magneto-elastic beam

The second case study was performed in the nonlineAr Damage in a magnEto-eLastic bEam
(ADELE2) by the SHM Group from UNESP [Villani et al., 2019c]. This is a more challenging
benchmark since data variation was induced throughout the experimental tests and the emulated
Damage having nonlinear behavior characteristics. The stochastic formulation becomes necessary
in this situation to deal with the uncertainties.

The main characteristics of the experimental setup used is presented in Fig. 9, with the struc-
ture in the reference condition (without Damage). Figure 9 (a) shows the structure composed of
a cantilever beam, constructed by gluing four beams of Lexan together, 2.4 × 24 × 240 [mm3]
each one. At the free boundary, two steel masses are affixed and interact with a magnet, gen-
erating a nonlinear behavior in the system response that third-order harmonics can verify in the
Time-frequency diagram presented in Fig. 9 (b). The experimental setup uses an Electrodynamic
Transducer Labworks Inc. (ET-132) to apply forces to the structure (close to the clamp), an Ac-
celerometer PCB PIEZOTRONICS (352C22) to measure the structure output (close to the free
end), and a National Instruments acquisition system to convert and save data. Once again, two
levels of input were considered during the experimental tests. A low input amplitude level (1 V
RMS) ensures the system oscillates in a linear vibration regime, and a high input amplitude level
(6 V RMS) ensures the excitation of the system’s nonlinearities.

2The complete dataset can be obtained on the website of the UNESP SHM Research Group:
https://github.com/shm-unesp/ADELE
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(b) Time-frequency diagram of the
system response.

Figure 9: Setup and nonlinear behavior of the ADELE system.

The Damage introduced to the mechanical system aims to simulate a breathing crack behavior.
Therefore, four different configurations were constructed:

1. Training beam: 4 intact Lexan beams glued, used to train the model (see Fig. 10 (a));

2. Test beam: 4 intact Lexan beams glued, used to test the model (see Fig. 10 (a));

3. Damage I: 3 intact and 1 cut beams glued (see Fig. 10 (a) and (b));

4. Damage II: 2 intact and 2 cut beams glued (see Fig. 10 (a) and (b));

(a) All beams constructed. (b) Damaged beams (zoom).

Figure 10: Structural conditions examined.

This kind of structural change can emulate a breathing crack behavior, inducing a nonlinear
quadratic behavior in the system that can be verified by observing the results of Fig. 11. The results
show that a quadratic harmonic was introduced for the Damage I condition compared with Fig. 9
(b). In contrast, the first and third harmonics are not visually affected. For Damage condition II,
all harmonics are altered because of the large extent of Damage.

Furthermore, the data variation was induced by varying the distance between the magnet and
the structure. This variation generates great variability in the modal parameters of the structure
and of the nonlinear components too. The effect of such variation can be seen in Fig. 1. In this
situation, we need to estimate a stochastic model that can represent such variability under reference
conditions and separate the nonlinear contributions generated by the presence of the magnet and
those generated by the presence of Damage.

For doing so, we can identify a stochastic model using the formulation of Eq. 3, and use this
family of models to estimate the indices of Eqs. 7 and 8 that represents the structure in the healthy
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(a) Damage I.
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(b) Damage II.

Figure 11: Time-frequency diagram obtained with the structure damaged.

condition. In this step we considered: a chirp input signal varying the excitation frequency from
25 to 40 Hz (first mode shape region) with two levels of amplitude, as mentioned before, J1 = 2,
J2 = 4, J3 = 6, and 200 experimental realizations for each structural condition. More information
about the step-by-step model estimation procedure can be found in Villani et al. [2019c].

Once the stochastic model is estimated, it can be used to monitor the system. Im can be
estimated, and in an unknown condition, a new model can be identified to calculate Im. Finally,
the Mahalanobis distance (Eq. 10) is calculated and plotted in Fig. 12 for different structural
conditions. It can be noted that the linear index can not detect the nonlinear behavior induced by
Damage at the beginning of the propagation (Damage condition I), as expected. When the Damage
also changes the linear components (Damage condition II), the linear index values grow. Since the
characteristic of the Damage is to induce nonlinear behavior in the structure, the nonlinear index
shows an interesting ability to separate the nonlinearities generated by the presence of the magnet
from those induced by the presence of the Damage, even at the beginning of the propagation
(Damage condition I). Therefore, it is expected that when applying the proposed hypothesis test
(Eq. 15) the nonlinear index will show a more robust behavior, even considering the variability of
the data.
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(a) Linear index.
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(b) Nonlinear index.

Figure 12: Evolution of the Mahalanobis distance.

Table 4 shows the results obtained for both linear and nonlinear indices when applying the
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Table 4: Hypothesis test results for ADELE system.

False detection [%] True detection [%]
ϵ Training Beam Test Beam Damage I Damage II

Linear Index
10−2 0.5 15.5 34.5 100
10−4 0 0 5 100
10−6 0 0 0 100
10−12 0 0 0 75

Nonlinear Index
10−2 4.5 12.5 100 100
10−4 1 7 100 100
10−6 0 4.5 100 100
10−12 0 1.0 96.5 100

hypothesis test. The test is applied using various values for the sensitivity (ϵ). Despite presenting
a higher level of false positives because of its high sensitivity, the nonlinear index has a consid-
erably better performance in detecting this type of Damage, even considering the great variability
of the data. It is worth remembering that a false positive error can generate less catastrophic
consequences than a false negative error, as is seen in the case of the linear index. This ratio be-
tween false positives and false negatives could be controlled by choosing the value of ϵ optimally,
depending on the level of reliability and cost that the error may cause in each practical application.

Finally, we can study the degree of separability of the data that these indices generate by
varying the sensitivity of the hypothesis test and constructing the ROC curve. Figure 13 shows the
results obtained. The results revealed that monitoring the nonlinear components of the structure
output signal, depicted by the second and third-order kernel coefficients and contributions used to
fill the feature vector, is an interesting methodology to be deployed in damage detection problems,
mainly when the Damage exhibits nonlinear characteristics. Additionally, when data variation
represents an issue, the use of the stochastic reference model can improve the capability of the
method to distinguish the changes related to the presence of Damage from the ones related to
the presence of uncertainties. Knowing that the closer to the point (0,1), the better the index’s
performance, we can conclude that the nonlinear index performed better.
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Figure 13: ROC curves of the damage indexes for ADELE system. ◦ represents the
linear index and △ represents the nonlinear index.
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5 Final Remarks

This chapter has demonstrated by some simple illustrative examples how nonlinear vibration and
operation regimes with parameter uncertainty can compromise the correct diagnosis of the struc-
tural state of a system. Some methods of dealing with these difficulties were presented based on
systems identification techniques that seek to filter linear and nonlinear components in a stochas-
tic way and group the effects according to their causes and effects. The results confirmed that the
procedure’s robustness is increased when both effects are mitigated.

It is evident that when not assumed, the possibility of propagating uncertainties and identifying
and separating the nonlinear behavior from damage and operation confounded the detection. On
the other hand, these techniques demand more knowledge from the SHM engineer to identify these
sources and the requirement of implementing some strategy to allow the correct classification.
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Abstract

This chapter presents a compilation of techniques and research results published
by the authors in journal articles concerning the use of numerical methods and
univariate and multivariate statistical methods applied to evaluate, predict and control
the behavior of important engineering variables that are monitored by instruments
in the dam of the Itaipu hydroelectric plant. The introductory section contextualizes
Itaipu and the importance of the methods used. Next, we present a brief theoretical
description of univariate forecasting methods, multivariate statistical techniques, and
the finite element method. After describing the set of techniques, the reader can always
find specific applications in Itaipu of one or more of the preceding techniques. The
results, in general, show that the combination of statistical and numerical methods
helps to improve the performance of forecasts and, in general, can collaborate in the
decision-making of Itaipu engineers and are an additional risk analysis tool that can
be applied to any dam.

Keywords: Dam safety and monitoring; Forecasting methods; Multivariate analysis; Finite element
method; reduction methods
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1 Introduction

In this chapter, we present some numerical and statistical methods applied in the context of dam
safety, resulting from research developed in 2012 by the authors during and after their doctorate
in the Postgraduate Program of Numerical Methods in Engineering at the Federal University of
Paraná (PPGMNE – UFPR), carried out in partnership with the Center for Advanced Studies in
Dam Safety of the Itaipu Technological Park (CEASB – PTI), with the support of Itaipu Binacional.

Dams are barriers or structures that cross streams, rivers, or canals to confine and control water flow
and are generally used for specific purposes such as water supply, hydroelectric power generation, and
irrigation. Among other administrative requirements, dams must have adequate instrumentation and
performance monitoring. The maintenance of safe dams is a guarantee of sustainable development
and management of water resources ICOLD-CIGB [2008].

Controlling the structural behavior of significant engineering work, such as a hydroelectric power
plant dam, is usually done through visual inspections and instrumentation. Visual inspections are
most often used to detect accidents and incidents. However, this does not diminish the importance
of instrumentation, which is either insufficient or not adequately exploited. In particular, the
best instrumentation can minimize accidents and incidents, establish operating rules, propose
conservation measures and allow for the deepening of existing knowledge, improving the quality
and lifespan of the work Silveira [2003].

The literature from international conferences on large dams emphasizes the need to maintain a
safety culture and effective safety management systems. The Itaipu Binacional Hydroelectric Plant
is located on the Paraná River, on the stretch of border between Brazil and Paraguay, 14 km north of
Friendship Bridge, in the Foz do Iguaçu, in Brazil, and Hernandarias, in Paraguay Itaipu [2022a].
The purpose of the plant is to take advantage of the hydraulic potential of the Paraná River and
began to generate energy in 1984 Itaipu [2022a]. The Itaipu dam is made of concrete, rockfill
(rocks), and earth and has a length of 7,919 meters and a maximum height of 196 meters, the
equivalent of a 65-story building.

Itaipu’s installed capacity (power) is 14 gigawatts (GW), through 20 generating units of 700
megawatts (MW) each. Itaipu supplies around 10.8% of the energy consumed in Brazil and 88.5%
of Paraguay’s consumption. In 2020, the Itaipu plant produced 76,382 GWh. Itaipu Binacional is
the world leader in delivering clean and renewable energy, having made more than 2.7 billion MWh
since the beginning of its operation Itaipu [2022b].

Figure 1 presents an illustrative image of the Itaipu Dam with its main parts and dimensions, with
emphasis on the main dam of relieved gravity (U) where the generating units are located and the
spillway (A), which is a concrete structure intended to drain excess water from the reservoir when it
is at its maximum level.

The dam’s superlative dimensions and strategic importance to Brazil and Paraguay have made dam
safety one of Itaipu’s priorities, from the design phase to the completion and maintenance of the
mega-works. Monitoring the dam’s safety began even before the plant’s first generating unit was
installed and remains highly relevant – not only to maintain and extend the project’s useful life but
above all to protect life and property in the vicinity of the hydroelectric plant Itaipu [2022c].

To maintain these essential economic numbers from the point of view of environmental issues and
the impact on the entire community that is close not only to the dam but also to the whole area of
the reservoir, it is necessary to ensure that the behavior of the structures is under control.

Considering that each dam work is unique, Itaipu and CEASB understood that, in addition to

Lazzarotto, Emerson, et al. (2022) Statistical Methods for Monitoring Control a Concrete Dam pp. 279-336

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 281



Figure 1: General arrangement of the Itaipu Hydroelectric power plant dam.
Source: ENCC [2019]

visual inspections and the control already performed by the dam’s safety engineering team about
monitoring instruments, additional investigation through numerical and probabilistic models is
essential. The proposal is that such models, in some way, could let the data speak for itself.

The probabilistic models can also be used and combined with other techniques to produce the most
accurate predictions possible. They serve as a reliable alert for predicting eventual abnormalities in
the dam’s behavior, alerting, if necessary, to the early realization of intervention works and actions.

The reader interested only in the applications can find them in the subsubsections of sections 2 and
3 and subsection 4.3 of section 4.

2 Forecasting Methods

One question to be answered when dealing with dam monitoring data is how can the historical
behavior of data readings help predict the future? The prior indication of a possible anomaly is
crucial to mitigate financial, environmental, and social effects.

The availability of monitoring data has spread the application of statistical models to predict the
dam’s behavior. These have complemented visual inspections and numerical models to support
decision-making (Salazar et al. [2017]).

This section briefly describes several statistical or artificial intelligence techniques used by the
authors and some applications in time series of instrument monitoring data from the Itaipu dam.

2.1 The ARIMAX-GARCH model

Let 𝑦𝑡 (𝑡 = 1, . . . , 𝑇) be a stationary time series (or a non-stationary time series that can be
transformed into a stationary one) that exhibits linear auto-dependence. Also, consider a list
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of 𝑟 + 1 vectors of realizations from 𝑟 + 1 stationary exogenous variables of 𝑦𝑡 (𝑡 = 1, . . . , 𝑇),
denoted by

( (
𝑥1,𝑡

)𝑇
𝑡=1, . . . ,

(
𝑥 (𝑟+1) ,𝑡

)𝑇
𝑡=1

)
. Based on Box and Tiao [1975] and Pankratz [2012],

each realization 𝑦𝑡 can be represented by an ARIMAX (p, d, q) model, with the mathematical
formulation:

∇𝑑𝑦𝑡= 𝜃0 +
𝑝∑︁
𝑗=1

𝜙 𝑗 𝑦𝑡− 𝑗 +
𝑞∑︁
𝑖=0

𝜃𝑖 𝑒𝑡−𝑖 +
𝑟+1∑︁
𝑖=1

𝐿𝑖∑︁
𝑙𝑖=0

𝛼𝑖𝑙𝑖 𝑥𝑖,𝑡−𝑙𝑖 + 𝑒𝑡 (1)

where B is the backward operator defined by 𝐵𝑘𝑦𝑡 B 𝑦𝑡−𝑘 , with k belonging to Z; ∇𝑑 B (1 − 𝐵)𝑑
is the difference operator, with d representing its order; (𝜙𝑖) 𝑝𝑗=1 and

(
𝜃 𝑗

)𝑞
𝑖=0 are the ordered lists

of model complex parameters, with 𝜙𝑝 ≠ 0 and 𝜃𝑝 ≠ 0, and
(
𝑎𝑖𝑙𝑖

)𝐿𝑖
𝑙𝑖=0 is the ith ordered list of

complex model parameters associated with the exogenous component (these three lists of parameters
need to satisfy both the invertibility and the stationarity conditions – see e.g. Hamilton [1994]
and Lütkepohl [2005]); 𝑒𝑡 is an innovation consisting of a state of the random variable 𝑒𝑡 from
an uncorrelated stochastic process with zero mean; p and q are, respectively, the orders of the
Auto-Regressive (AR) part

∑𝑝

𝑗=1 𝜙 𝑗 𝑦𝑡− 𝑗 (AR(p)) and of the Moving Average (MA) part
∑𝑞

𝑖=0 𝜃𝑖𝑒𝑡−𝑖

(MA(q)); and, 𝐿𝑖 is the maximum lag order in the sum
∑𝐿𝑖
𝑙𝑖=0 𝑎𝑖𝑙𝑥𝑖,𝑡−𝑙 of the exogenous variable 𝑥𝑖,𝑡 ,

with 𝑖 = 1, . . . , (𝑟 + 1). Particularly, if 𝑎𝑖𝑙𝑖 = 0, for all 𝑖 = 0, . . . , (𝑟 + 1) and all 𝑙𝑖=0. . . , 𝐿𝑖, then
the model in (1) above becomes a conventional ARIMA (p, d, q). Note that, a SARIMAX (p, d, q)
x (𝑃, 𝐷, 𝑄)𝑆 model – also known as a multiplicative ARIMAX (p, d, q) model – can be used for
modeling a seasonal time series (as in Hamilton [1994]). It generically consists of an ARIMAX
model with seasonal components.

In equation (1) above, it is assumed that the innovation term 𝑒𝑡 is a realization of an uncorrelated
random variable 𝑒𝑡 , with zero mean and constant conditional variance, that is, 𝑠2

𝑡 = 𝑠
2, for all t.

However, many time series do not satisfy this stationarity condition (called homoscedasticity). In
some cases, the changing conditional variance (volatility) may depend on past squared innovations
of the time series or past values of the variance itself such that an ARMA structure, as well as an
extension of it, can be adopted for temporally projecting the volatility. This way, unconditionally,
the variance is constant but conditional on past values; it is allowed to change in time. According to
Bollerslev [1986], the general GARCH (𝑅, 𝑆) model for the conditional variance 𝑠2

𝑡 of the innovation
𝑒𝑡 is given by

𝜎2
𝑡 = 𝛾0 +

𝑅∑︁
𝑗=1
𝛾 𝑗𝜎

2
𝑡− 𝑗 +

𝑉∑︁
𝑖=1

𝛿𝑖 𝑒𝑡
2 (2)

where the following constraints must hold:
∑𝑅
𝑗=1 𝛾 𝑗+

∑𝑉
𝑖=1 𝛿𝑖 < 1; 𝛾0>0; 𝛾 𝑗 = 0 ( 𝑗 = 1, . . . , 𝑅)

and 𝛿𝑖 ≥ 0 (𝑖 = 1, . . . , 𝑉). Equation (2) is used by the WARIMAX-GARCH method to generate
in-sample and out-of-sample forecasts of the conditional variance of the time series 𝑦𝑡 (𝑡 = 1, . . . , 𝑇).
In addition, 𝑠2

𝑡 multiplied by a parameter 𝑓 can be used in (1) to account for a non-linear effect to
construct the forecasting of its level (conditional mean). Notice that the generating mechanism for a
GARCH innovation process 𝑒𝑡 (𝑡 = 1, . . . , 𝑇) is defined by 𝑒𝑡 B 𝜎𝑡 𝑧𝑡 , where: 𝑧𝑡 is a realization of
a standardized, independent and identically distributed random variable 𝑍𝑡 ; and 𝜎𝑡 is the conditional
standard deviation.

A model compounded by (1) and (2), which accounts for the above mentioned constraints, is
called an ARIMAX-GARCH model. In order to obtain the best possible ARIMAX-GARCH
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model, three basic steps should be carried out: (i) test the plausible values for the parameters
p, d, q and 𝐿𝑖, in (1), as well as the parameters 𝑅 and 𝑉 in (2) (which can be obtained through
the profile analysis of the plots of simple and partial auto-correlation functions of the ordinary
standard innovations 𝑧𝑡 (𝑡 = 1, . . . , 𝑇) and the squared standard innovations 𝑧2

𝑡 (𝑡 = 1, . . . , 𝑇), as
described by Bollerslev [1986] and Engle [1982]; (ii) define the method to be used to estimate the
ARIMAX-GARCH parameters – the most common is the Maximum Likelihood Estimation (MLE)
method (as in Hamilton [1994]); and, (iii) make a diagnostic check to choose the most parsimonious
and adequate model to be used for generating both the in-sample and the out-of-sample forecasts
of 𝑦𝑡 (𝑡 = 1, . . . , 𝑇) and their volatilities.

It is worth pointing out that similar to the way that the h-steps ahead out-of-sample forecasts of
conditional means are produced (for instance, through an estimated ARIMAX model), the h-steps
ahead forecasts of conditional variances (volatilities) are generated using an estimated GARCH
model (or an extension of it). For more details, please see [18], wherein a GARCH-in-mean model
produces out-of-sample forecasts of volatilities and employs them in constructing the estimates
for the corresponding conditional means. This approach aims to aggregate non-linear information
(coming from the squared auto-dependence exhibited by a given time series) from the forecasts of
the dependent means to increase its predictive accuracy. Note that the WARIMAX-GARCH method
proposed here can adopt any GARCH approach to forecast volatilities.

For a non-stationary time series, stationarity can be achieved by differentiating order 𝑑 using
the difference operator (∇). Also, suppose the time series presents seasonality. In that case, the
model can be said to be a multiplicative SARIMA(𝑝,𝑑,𝑞)𝑥(𝑃,𝐷,𝑄)𝑠, where 𝑝 is the auto-regressive
parameter of the non-seasonal part (using earlier 𝑝 values to set the forecast); 𝑞 is the parameter of
the moving averages of the non-seasonal position (averaging the errors of 𝑝 auto-regressive values);
𝑑 is the differentiation parameter of the series until it becomes stationary; 𝑃 is the auto-regressive
order of the seasonal part; 𝐷 is the seasonal difference order if the series does not present stationarity;
𝑄 is the moving averages parameter of the seasonal period, and 𝑠 is the seasonal period (s=52 in
this paper, indicating 52 weeks/year). The SARIMA model in the simplified form of the time series
𝑍𝑡 is defined by the equation:

∇𝐷𝑠 ∇𝑑𝑍𝑡 = 𝜙0 +
𝑝∑︁
𝑗=1

𝜙 𝑗 𝑧𝑡− 𝑗 +
𝑞∑︁
𝑗=𝑖

𝜃𝑖𝑒𝑡−𝑖 + 𝑒𝑡 (3)

where ∇𝐷𝑠 := (1 − 𝐵𝑠)𝐷 is the difference operator of the seasonal part; ∇𝑑 := (1 − 𝐵)𝑑 is the
difference operator, with d representing its order; B is the backward operator defined by 𝐵𝑘𝑧𝑡 := 𝑧𝑡−𝑘 ,
with k belonging to 𝑍; (𝜙𝑖) 𝑝𝑖=0 and (𝜃 𝑗)𝑞𝑗=1 are the ordered lists of complex model parameters,
with 𝜙𝑝 ≠ 0 and 𝜃𝑞 ≠ 0; 𝑒𝑡 is a residue; p and q are, respectively, the orders of the AR(p) part
(
∑𝑝

𝑗=1 𝜙 𝑗 𝑧𝑡− 𝑗 ) and of the MA(q) part (
∑𝑞

𝑗=𝑖
𝜃𝑖𝑒𝑡−𝑖).

The univariate Box& Jenkinsmethodology also allows the use of exogenous variables (or explanatory
variables) in the composition of the adjusted model, allowing the study of the impact of these
variables in the prediction model. More information about a certain physical phenomenon is added
to the SARIMA model. The inclusion of an exogenous variable 𝑋 in the model described by the
equation (3) generates the model SARIMAX(𝑝,𝑑,𝑞)x(𝑃,𝐷,𝑄)𝑠 defined by:

∇𝐷𝑠 ∇𝑑𝑍𝑡 = 𝜙0 +
𝑝∑︁
𝑗=1

𝜙 𝑗 𝑧𝑡− 𝑗 +
𝑞∑︁
𝑗=𝑖

𝜃𝑖𝑒𝑡−𝑖 + 𝛼𝑋 + 𝑒𝑡 (4)

Where 𝛼 is the coefficient of the exogenous variable 𝑋 .

Lazzarotto, Emerson, et al. (2022) Statistical Methods for Monitoring Control a Concrete Dam pp. 279-336

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 284



The pre-modeling phase of the SARIMA and the SARIMAX methods consists of identifying the
lagged correlation between the time series of long-term concrete deformations (dependent variable
series) and ambient temperature (exogenous variable series).

2.2 Artificial Neural Network

Artificial Neural Networks (ANNs) are well known to be flexible computing frameworks for
modeling and forecasting a broad range of stochastic time series exhibiting either linear or non-linear
auto-dependence structures. Contrary to many linear statistical forecasting models, stationarity is not
required by ANN methods (see, e.g., Teixeira Júnior et al. [2015]). Another critical aspect of ANNs
is that they are universal approximates of compact (i.e., closed and bounded) support functions,
as shown in Cybenko [1989]. In effect, since observations from a time series 𝑦𝑡 (𝑡= 1, . . . ,𝑇) that
exhibit dependency on past values may be seen as points of the domain of an unknown compact
support function, it follows that the ANNs are capable of approximating them (for modeling or
forecasting) with a high degree of accuracy. According to Zhang [2003], the predictive power of
ANNs comes from the parallel processing of the information exhibited by the data. In addition,
AAN models are primarily determined by the stochastic characteristics inherent in the time series.

In this context, the feed-forward multi-layer perceptron ANNs (see e.g. Haykin [2001]) are the
most widely used neural prediction models for time series forecasting. Particularly, a single hidden
layer ANN (hereafter, for simplicity, referred to as ANN) is characterized by an artificial network
composed of three layers (namely, input, hidden, and output layers) of simple processing units
numerically connected by acyclic links. The relationship between the output 𝑦𝑡 and the L-lagged
inputs, 𝑦𝑡−𝑘 (𝑘 = 1, . . . , 𝐿), has the following mathematical representation

𝑦𝑡 = 𝛼0 +
𝑞∑︁
𝑗=1
𝛼 𝑗 𝑔

(
𝛽0 𝑗 +

𝐿∑︁
𝑖=1

𝛽𝑖 𝑗 𝑦𝑡−𝑖

)
+ 𝜀𝑡 , (5)

where 𝛼 𝑗 ( 𝑗 = 0, 1, . . . , 𝑞) and 𝛽𝑖 𝑗 (𝑖 = 0.1, , . . . , 𝐿; 𝑗 = 0, 1, . . . , 𝑞) are the ANN parameters,
called connection weights; 𝐿 is the number of input nodes; 𝑞 is the number of hidden nodes; 𝜀𝑡 is the
approximation error at time t; and 𝑔 (.) is the transfer function, here, a logistic function – although
it is possible to adopt other functions (see e.g Haykin [2001]). The logistic function is widely
employed as the hidden layer transfer function in neural network forecasting and is mathematically
defined by

𝑔 (𝑥𝑡 ) =
1

1 + exp(−𝑥𝑡 )
, (6)

where 𝑥𝑡 := 𝛽0 𝑗 +
∑𝐿
𝑖=1 𝛽𝑖 𝑗 𝑦𝑡−𝑖 and 𝑒𝑥𝑝(.) is the exponential function with Euler’s basis (as in

Zhang [2003]). Due to 𝑔 (.) being a non-linear transfer function, the ANN model in (5), in fact
performs a non-linear mapping of the past observations 𝑦𝑡−𝑘 (𝑘 = 1, . . . , 𝐿) to produce a forecast
for 𝑦𝑡 . In general, the model in (5) can be rewritten, as

𝑦𝑡 = 𝑓 (𝑦𝑡−1, 𝑦𝑡−2, . . . ,𝑦𝑡−𝐿 , 𝑤) + 𝜀𝑡 , (7)

where 𝑤 denotes a vector of all ANN parameters and 𝑓 (𝑦𝑡−1, 𝑦𝑡−2, . . . ,𝑦𝑡−𝐿 , 𝑤) is the model
determined by the network structure and the connection weights in (5). Note that the neural network
as defined above is equivalent to a non-linear auto-regressive model.

In practice, 𝑤 is unknown and needs to be numerically determined. So, to find its estimated value,
�̂�, that accounts for some criteria (an objective function), an optimization algorithm is applied
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to training data. Although several methodologies are available in the literature, we adopt, in line
with Haykin [2001], Levenberg-Marquardt’s algorithm. The minimization of the in-sample sum of
squared errors (i.e., 𝑚𝑖𝑛𝑤

∑𝑇
𝑡=1 𝜀𝑡

2) is the numerical criteria of this ANN. We have that once �̂� is
determined.

𝑦𝑡 = 𝑓 (𝑦𝑡−1, 𝑦𝑡−2, . . . ,𝑦𝑡−𝐿 , �̂�) + �̂�𝑡 (8)

with 𝑓 (𝑦𝑡−1, 𝑦𝑡−2, . . . ,𝑦𝑡−𝐿 , �̂�) = �̂�𝑡 consisting of the optimized ANN outcome at time t, which is
the forecast of the state 𝑦𝑡 , and �̂�𝑡 being the forecasting error of �̂�𝑡 .

The Recurrent Neural Network (RNN) Nerrand et al. [1993], which uses the architecture Long
Short-Term Memory (LSTM) in the hidden layer for a series of sequential data in the training
process, allows for better precision in the adjustment in the training data as compared to MLP and
RBF networks, due to its property of storing short and long term memory in the training process
that produces better accuracy in the forecast Bengio et al. [2012].

2.3 Support Vector Regression

The Support Vector Machines (SVMs) form a system based on the theory of statistical learning or
VC theory (Vapnik-Chervonenkis), which has been developed since the 1960s as reports Vapnik
[1995]. It was presented for the first time in the Annual Workshop on Computation Learning Theory,
COLT 1992 by Boser et al. [1992]. The SVM algorithm was extended for the case of regression by
Vapnik [1999] making thus possible the estimation of functions of absolute values. The so-called
Supor Vector Regression Machine (SVRM) or Support Vector Regression (SVR) emerged.

The following descriptions of SVR are based on tutorials Smola and Schölkopf [2004]. The basic
idea of SVR consists of imagining a margin around the outline of the transformation function and
finding a function having at most a previously fixed error in all examples, thus trying to obtain a
margin as narrow as possible.

Let it be a sample of training data (𝑦 (𝑡) , 𝑦 (𝑡 + 1))𝑇−1
𝑡=1 ⊂ 𝑋 × 𝑅 where 𝑋 indicates the space of

entry patterns (for instance 𝑋 = 𝑅𝑇−1), with 𝑡 = 1, 2, . . . , 𝑇 − 1 . In Vapnik’s 𝜀 − 𝑆𝑉 regression,
the objective is to find a function 𝑓 (𝑥 (𝑡)), (where 𝑥 (𝑡) = (𝑦 (𝑡))𝑇−1

𝑡=1 ), which presents at most a
deviation from the targets 𝑑 (𝑡), with 𝑑 (𝑡) = (𝑦 (𝑡 + 1))𝑇−1

𝑡=1 ), obtained for all the targets in the
training. In other words, the method is not concerned with errors as long as they are smaller than,
but does not accept any deviation higher than that. Therefore the linear approximation function
is described as follows: 𝑓 (𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏 𝑐𝑜𝑚 𝑤 ∈ 𝑋, 𝑏 ∈ 𝑅, where ⟨. , .⟩ denotes the internal
product at 𝑋 . This notwithstanding, it is not always possible to guarantee the viability of the
problem, since there are points that violate the restrictions. On account of that, the formulation
proposed Vapnik [1995, 1999] and presented in Problem (9) utilizes clearance variables 𝜉 (𝑡) and
𝜉∗ (𝑡) for each 𝑡, where 𝑡 = 1, 2, . . . , 𝑇 − 1, in order to deal with the unfeasible restrictions of the
problem of optimization, that is, penalizing data that lie outside the margin.

Minimize 1
2 ∥𝑤∥

2 + 𝐶
(
𝑇−1∑
𝑡=1

𝜉 (𝑡) + 𝜉∗ (𝑡)
)

subject to :

𝑑 (𝑡) − ⟨𝑤, 𝑥 (𝑡)⟩ − 𝑏 ≤ 𝜀 + 𝜉 (𝑡)
⟨𝑤, 𝑥 (𝑡)⟩ + 𝑏 − 𝑑 (𝑡) ≤ 𝜀 + 𝜉∗ (𝑡)
𝜉 (𝑡) , 𝜉∗ (𝑡) ≥ 0, ∀ 𝑡 = 1, . . . , 𝑇 − 1

(9)
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Where 𝐶 > 0 is the regularization constant, that is, of penalization of errors, since it weighs on the
terms of the minimization function.

Solving the Problem (9) is not always easy due to the inequality restrictions; the model now occupies
the dual space, which provokes the softening of the algorithm.

For the dual formulation, non-negative Lagrange multipliers are introduced as reported by Vapnik
[1995, 1999] and Smola and Schölkopf [2004]. Therefore, Problem (10), now by maximization, in
its dual form, is given by

Maximize
(
− 1

2

) 𝑇−1∑
𝑡 , 𝑗=1

(
𝛼 (𝑡) − 𝛼∗ (𝑡)

) (
𝛼 ( 𝑗) − 𝛼∗ ( 𝑗)

)
⟨𝑥 (𝑡) , 𝑥 ( 𝑗)⟩ +

−𝜀
𝑙∑
𝑖=1

(
𝛼 (𝑡) + 𝛼∗ (𝑡)

)
+ 𝑑 (𝑡)

𝑇−1∑
𝑡=1

(
𝛼 (𝑡) − 𝛼∗ (𝑡)

)
subject to

𝑇−1∑
𝑡=1

(
𝛼 (𝑡) − 𝛼∗ (𝑡)

)
= 0

𝛼∗ (𝑡) ∈ [0, 𝐶] ,∀𝑡 = 1, . . . , 𝑇 − 1

(10)

In this way, the variable 𝑤 of the primal form comes to be defined as 𝑤 =
𝑇−1∑
𝑡=1

(
𝛼 (𝑡) − 𝛼∗ (𝑡)

)
𝑥 (𝑡)

and the linear approximation function is now represented by equation (11):

𝑓 (𝑥) =
𝑇−1∑︁
𝑡=1

(
𝛼 (𝑡) − 𝛼∗ (𝑡)

)
⟨𝑥 (𝑡) , 𝑥⟩ + 𝑏 (11)

The dual formulation of the SVR problem provides the option of working in a higher-dimensional
space. Thus, one may carry out a non-linear mapping of the entry data toward an area of a large
dimension, where the linear regression becomes possible. For this purpose the approach based
on Kernel functions Vapnik [1995, 1999], 𝐾 (𝑥, 𝑥 ′) := ⟨𝜙 (𝑥) , 𝜙′ (𝑥)⟩ is used, that is, there is a
function 𝐾 that receives two points (𝑥, 𝑥 ′) and calculates its scale product in a characteristic space,
whose introduction in the optimization problem changes its description as Problem (12):

Maximize − 1
2

𝑇−1∑
𝑡 , 𝑗=1

(
𝛼 (𝑡) − 𝛼∗ (𝑡)

) (
𝛼 ( 𝑗) − 𝛼∗ ( 𝑗)

)
𝐾 (𝑥 (𝑡) , 𝑥 ( 𝑗)) +

−𝜀
𝑇−1∑
𝑡=1

(
𝛼 (𝑡) + 𝛼∗ (𝑡)

)
+ 𝑑 (𝑡)

𝑇−1∑
𝑡=1

(
𝛼 (𝑡) − 𝛼∗ (𝑡)

)
subject to

𝑇−1∑
𝑡=1

(
𝛼 (𝑡) − 𝛼∗ (𝑡)

)
= 0

𝛼 (𝑡) , 𝛼∗ (𝑡) ∈ [0, 𝐶] , ∀𝑡 = 1, . . . , 𝑇 − 1

(12)

And the approximation function of non-linear SVR comes to be given by Equation (13):

𝑓 (𝑥) =
𝑇−1∑︁
𝑡=1

(
𝛼 (𝑡) − 𝛼∗ (𝑡)

)
𝐾 (𝑥 (𝑡) , 𝑥) + 𝑏 (13)

According to Yu et al. [2006], the most utilized Kernel functions are linear Kernel: 𝐾
(
𝑥𝑖 , 𝑥 𝑗

)
:=〈

𝑥𝑖 , 𝑥 𝑗
〉
; sigmoidal Kernel: 𝐾

(
𝑥𝑖 , 𝑥 𝑗

)
:= tanh

[
𝛾

〈
𝑥𝑖 , 𝑥 𝑗

〉
+ 𝑐

]
; polynomial kernel: 𝐾

(
𝑥𝑖 , 𝑥 𝑗

)
:=[

𝛾
〈
𝑥𝑖 , 𝑥 𝑗

〉
+ 𝑐

]𝑑 and gaussian kernel: 𝐾 (
𝑥𝑖 , 𝑥 𝑗

)
:= exp

(
−𝛾

𝑥𝑖 − 𝑥 𝑗2
)
. With the inclusion of
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Kernel, the SVMs acquire the characteristic described by Cortes and Vapnik [1995] which must
respect the Mercer conditions Vapnik [1995, 1999] and Smola and Schölkopf [2004] to ensure that
the Kernel functions realize the dot product in the space of characteristics.

As Beltrami et al. [2011], the results obtained by SVR depend significantly on the values of the
regularization constant 𝐶, margin 𝜀, the type of Kernel function, and their respective parameters.

2.4 Wavelet decomposition of level r

Let 𝑙2 be the collection of all scalar-valued complex infinite sequences 𝑦𝑡 (𝑡 ∈ Z) in Cz such
that

∑
𝑡 ∈Z |𝑦𝑡 |2<∞, where C and Z denote, respectively, the sets of all complex and integer

numbers; and assume that the function ⟨ ; ⟩ of 𝑙2 into C is the usual inner product (as in Kubrusly
[2011]). An element 𝜔 (.) ∈ 𝑙2 – with ⟨ ; ⟩ – is a 𝑙2 – wavelet function, if the sequence
𝜔𝑚,𝑛 (.) := 2𝑚

2 𝜔 (2𝑚 (.) − 𝑛), where (𝑛, 𝑚) ∈ ZxZ, forms an orthonormal basis for 𝑙2; and amember
𝜙 (.) ∈ 𝑙2 – with ⟨ ; ⟩ – consist of a 𝑙2-scaling function, if the sequence 𝜙𝑚,𝑛 (.) := 2𝑚

2 𝜙 (2𝑚 (.) − 𝑛),
where (𝑚, 𝑛) ∈ ZxZ, holds:

〈
𝜙𝑚′,𝑛′ (.) ; 𝜙 𝑗 ,𝑘 (.)

〉
≠ 0, whenever 𝑚′ = 𝑗 and 𝑛′ ≠ 𝑘; and,

if otherwise,
〈
𝜙𝑚′,𝑛′ (.) ; 𝜙 𝑗 ,𝑘 (.)

〉
≠ 0, where 𝑚′, 𝑛′, 𝑗 , 𝑘 ∈ Z (see e.g. Levan and Kubrusly

[2003] and Mallat [2008]). Based on Kubrusly and Levan [2006], it can be seen that the subset{
𝜔𝑚,𝑛 (.)

}{
𝑐𝑚,𝑛∈Z
𝑚≥𝑚0

∪
{
𝜙𝑚0,𝑛 (.)

}
𝑛∈Z of 𝑙

2-wavelet and 𝑙2-scaling functions, where 𝑚0 is a fixed

integer value, is, in fact, an orthonormal basis for 𝑙2. Accordingly, any sequence 𝑦𝑡 (𝑡 ∈ Z) in 𝑙2 can
be orthogonally decomposed, in terms of an orthonormal basis

{
𝜔𝑚,𝑛 (.)

}{
𝑐𝑚,𝑛∈Z
𝑚≥𝑚0

∪
{
𝜙𝑚0,𝑛 (.)

}
𝑛∈Z,

as represented by

𝑦𝑡 = 𝑦𝐴𝑚0 ,𝑡
+

+∞∑︁
𝑚=𝑚0

𝑦𝐷𝑚,𝑡 , (14)

where 𝑦𝐴𝑚0 ,𝑡
:=

∑
𝑛∈Z 𝑎𝑚0,𝑛 𝜙𝑚0,𝑛 (.) is the WC of approximation at level 𝑚0 of the state 𝑦𝑡 , with

𝑎𝑚0,𝑛 :=
〈
𝑦𝑡 ; 𝜙𝑚0,𝑛 (.)

〉
; and 𝑦𝐷𝑚,𝑡 :=

∑
𝑛∈Z 𝑑𝑚,𝑛 𝜔𝑚,𝑛 (.) is the WC of detail at level 𝑚 of 𝑦𝑡 ,

with 𝑑𝑚,𝑛 :=
〈
𝑦𝑡 ;𝜔𝑚,𝑛 (.)

〉
. The orthogonal decomposition in (14) is usually called a wavelet

decomposition.

Tautologically, any finite (scalar-valued complex) time series 𝑦𝑡 (𝑡 = 1, . . . , 𝑇) can be interpreted
as an infinite sequence 𝑦𝑡 (𝑡 ∈ Z) in 𝑙2, defined as 𝑦𝑡 = 𝑦𝑡 , if 𝑡 ∈ {1, 2, . . . , 𝑇}; and 𝑦𝑡 = 0,
if 𝑡 ∈ Z− {1, 2, . . . 𝑇}. Therefore, any finite time series 𝑦𝑡 (𝑡 = 1, . . . , 𝑇) can be orthogonally
decomposed by the wavelet decomposition in (14).

In practical terms, once it is impossible to model separately all WCs generated by the expansion
(14), an adaptation is required to obtain a finite number of components. Thus, according to [16],
a good alternative may occur thoroughly by means of the wavelet decomposition of level r of
𝑦𝑡 (𝑡 = 1, . . . , 𝑇), where 𝑟 > 0 and 𝑟 ∈ Z, is given by

𝑦𝑡 = �̃�𝐴𝑚0 ,𝑡
+
𝑚0+(𝑟−1)∑︁
𝑚=𝑚0

�̃�𝐷𝑚,𝑡 + 𝜀𝑡 , (15)

where 𝑚0 is the level parameter (which is often assumed to be equal to r); 𝜀𝑡 is the approximation
error term, that is, the difference between the state 𝑦𝑡 and its (wavelet) approximation �̃�𝐴𝑚0 ,𝑡

+∑𝑚0+(𝑟−1)
𝑚=𝑚0 �̃�𝐷𝑚,𝑡 (nevertheless, in practice, it is usually assumed that 𝜀𝑡 is equals zero); �̃�𝐴𝑚0 ,𝑡

B∑2𝑀−𝑚0−1
𝑛=0 𝑎𝑚0,𝑛 𝜙𝑚0,𝑛 (𝑡) and �̃�𝐷𝑚,𝑡 B

∑2(𝑀−𝑚0)−1
𝑛=0 𝑑𝑚,𝑛𝜔𝑚,𝑛 (𝑡), which are, respectively, WCs of
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approximation at level 𝑚0 and of detail at level 𝑚 and consist, respectively, of the approximations to
𝑦𝐴𝑚0 ,𝑡

and 𝑦𝐷𝑚,𝑡 , in (14); and 𝑀 is a parameter that takes an integer value such that 𝑇 = 2 𝑀 . If T
is not an integer power of 2, the sequence 𝑦𝑡 (𝑡 = 1, . . . , 𝑇) is usually completed with zeros such
that its length T is increased up to the next integer power of 2. This procedure may be carried out
because the zeros added up do not affect the calculation of the WCs �̃�𝐴𝑚0 ,𝑡

and �̃�𝐷𝑚,𝑡 generate in
(15) (see e.g. Haven et al. [2012]), preserving the auto-correlation 𝑦𝑡 and its components, in (15),
for all t, where 𝑡 = 1, . . . , 𝑇 .

2.5 Bootstrap

Introduced by Efron [1992] the Bootstrap method is a non-parametric statistical procedure whose
main idea is the re-sampling with repositioning of the original data to create new sets of data
that allow the estimation of a measure of interest. The Bootstrap method is proper when no
probabilistic model can be applied to the collection of data under analysis and when the amount of
data is insufficient for using the Central Limit Theorem Davison and Hinkley [1997]. Tibshirani
[1996] suggests, in the context of regressions, two kinds of Bootstrap sampling that permit the
determination of the trust interval: Bootstrap pairs and Bootstrap residual. Bootstrap pairs consider
the set of original data sampled and replaced in the original set, each with the same probability of
being selected. Bootstrap residual, in its turn, requires a regression model adjusted over the original
collection of data and the calculation of the residues. This way, the residues are re-sampled, and
new series are obtained. This paper considers the Bootstrap residual technique to achieve the trust
interval. Following is a summary of the Bootstrap residual algorithm Tibshirani [1996]:

In the time series (𝑦 (𝑡))𝑇𝑡=1, with 𝑡 = 1, 2, . . . , 𝑇 ′, 𝑇 ′ + 1, . . . , 𝑇 values of the original sample, the
algorithm is given by the following steps:

i To obtain the adjusted model ( �̂� (𝑡))𝑇𝑡=𝑇′ regarding the original data (𝑦 (𝑡))𝑇𝑡=1 where 𝑇 ′

indicates the non-considered degrees of liberty;

ii To determine the residues of the adjusted model, 𝑟 = (𝑦 (𝑡))𝑇𝑡=𝑇′ − ( �̂� (𝑡))𝑇𝑡=𝑇′;

iii To generate Bootstrap samples, each of size 𝑇 −𝑇 ′ to be obtained through the re-sampling of
the residues, obtaining

(
𝑟𝑏 (𝑡)

)𝑇
𝑡=𝑇′ which will be the 𝐵 Bootstrap samples; To generate new

synthetic series
(
𝑦𝑏 (𝑡)

)𝑇
𝑡=𝑇′ =

(
�̂� (𝑡) + 𝑟𝑏 (𝑡)

)𝑇
𝑡=𝑇′;

iv To create new synthetic series
(
𝑦𝑏 (𝑡)

)𝑇
𝑡=𝑇′ =

(
�̂� (𝑡) + 𝑟𝑏 (𝑡)

)𝑇
𝑡=𝑇′;

v For each synthetic series, to obtain the adjusted model
(
�̂�𝑏 (𝑡)

)𝑇+ℎ
𝑡=𝑇′ , ℎ ∈ 𝑁 indicate the values

to be forecast outside the training sample.

vi To estimate the standard error of the 𝑡𝑡ℎ forecasted value using

[
1
𝐵−1

𝐵∑
𝑏=1

(
�̂�𝑏 (𝑡) − ¯̂𝑦𝑏 (𝑡)

)2
]1/2

where ¯̂𝑦𝑏 (𝑡) = 1
𝐵

𝐵∑
𝑏=1

�̂�𝑏 (𝑡).

For further details about Bootstrap, the work of Efron and Tibshirani [1994] and Davison and
Hinkley [1997] may be consulted.
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2.6 Trust intervals

The application of regression models involves the assessment of uncertainties that surround those
who estimate parameters. The trust interval is a valuable statistic and performs this vital function.
They are used to estimate the parameters of the regression model Pan and Politis [2016].

Consider patterns (𝑦 (𝑡) , x(𝑡))𝑇𝑡=1 and the proposed regression model as 𝑦 (x) = 𝑓 (x,w) + 𝑒 (x)
where 𝑒 (x) are the targets, w are the true parameters of the unknown model 𝑓 (x,w) and 𝑒 (x)
the noise (aleatory variable) with zero average. The estimators of w are ŵ and 𝑔 (x, ŵ) is the
approximation of 𝑓 (x,w), where 𝑓 (x,w) can be interpreted as the average of the 𝑦 targets given
the x entry. According to Heskes [1997], for regression problems the accuracy of the true regression
estimate leads to the construction of the trust interval. And according to Khosravi et al. [2014]
the uncertainty of the adjusted regression model is given by the variance 𝜎2

𝑔 (𝑥) associated to
the approximation 𝑔 (x, ŵ) of 𝑓 (x,w). Khosravi et al. [2014] worked with Bootstrap and neural
networks and suggested a trust interval expressed in Equation (16):

𝑚 (x) − 𝑡1− 𝛼
2 ,𝑔𝑙

𝜎𝑔 (x) ≤ 𝑓 (x,w) ≤ 𝑚 (x) + 𝑡1− 𝛼
2 ,𝑔𝑙

𝜎𝑔 (x) (16)

where 𝑡1− 𝛼
2 ,𝑔𝑙
comes from the distribution 𝑡 of Student with a 𝛼 level of significance, 𝑔𝑙is the

number of degrees of liberty, defined as the difference between the number of training samples and
the number of parameters of the model and 𝑚 (x𝑖) = 1

𝐵

∑𝐵
𝑏=1 𝑔 (x𝑖 , ŵ).

According to Haykin [2009], Support Vector Machines is a category of neural networks with
alterations in the re-alimentation of the layers. Thus, this paper used the trust interval as a describer
in Equation (16).

2.7 Forecast combination

The first papers that dealt with forecast combinations were developed by the researchers Reid
[1968], and Bates and Granger [1969], as Clemen [1989] reports. According to Clemen [1989]
combination is an attractive method to obtain forecasts, since instead of choosing the best technique,
the problem becomes deciding which techniques may be of greater help for improved accuracy,
since the performance of combination is, in general, assessed through accuracy. In Wallis [2011]
and Mancuso and Werner [2013], one can find historical reviews in which many of the main articles
on the combination of individual forecast methods are mentioned. These reports bring up more
than forty-two years of research in this area, proving utilization and efficiency, besides showing a
variety of applications and approaches.

Faria and Mubwandarinkwa [2008] report the existence of two possibilities to determine a forecast
method that can generate predictions, which are:

• To choose a forecast method in (𝜇𝑚)𝑀𝑚=1 based on some form of selection;

• To choose 𝐾 forecast methods in (𝜇𝑚)𝑀𝑚=1 and then combine them (either in linear or in
non-linear form)

where (𝜇𝑚)𝑀𝑚=1denotes a set with 𝑀 predictive methods.

In general, the combination idea may be summarized in the following two stages:

• To consider Δ𝐾 as an ensemble of all forecasts (within and without the sample) originating
from 𝐾 individual predictive methods chosen by the modeler, where 𝐾 ≤ 𝑀;
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• To obtain the map

�̂�𝐶𝐿 :
{
∇𝐾 → 𝑅

( �̂�𝑘 (𝑡))𝐾𝑘=1 ∈ ∇𝐾 → �̂�𝐶𝐿 (𝑡) ∈ 𝑅

of forecasts combination (generic) which transforms a ( �̂�𝑘 (𝑡))𝐾𝑘=1 ∈ ∇𝐾 forecast vector into

a combined forecast �̂�𝐶𝐿 (𝑡) =
𝐾∑
𝑘=1

𝜌𝑘 × �̂�𝑘 (𝑡) + 𝛼 for every 𝑡 = 1, . . . , 𝑇 + ℎ.

where ℎ ∈ 𝑁 is the forecast time frame, �̂�𝐶𝐿 (𝑡) is the linearly combined forecast; �̂�𝑘 (𝑡) is the
forecast of the 𝑘 𝑡ℎ base method; 𝜌𝑘 the adaptive weight linearly associated to the �̂�𝑘 (𝑡) forecast,
and 𝛼 the added adaptive constant.

Júnior [2013] used mathematic programming in order to calculate the coefficients of linear
combination, optimizing a problem of non-linear programing where the objective function was
made up by the sum of forecast errors squared. According to Faria and Mubwandarikwa [2008],

it is common to impose restrictions
𝐾∑
𝑘=1

𝜌𝑘 = 1 and 𝜌𝑘 ≥ 0 on the values that may be assumed

by adaptive weights (𝜌𝑘)𝐾𝑘=1 in order to preserve the possibility of its probabilistic interpretation.
According to Júnior [2013] the simple, weighted or harmonic averages may also be used in the
forecast combination.

To evaluate combined or individual the methods MAE, MAPE, MSE and RMSE errors Hamilton
[1994] represented in Equation (17 to 20) were used.

a. Mean Absolute Error (MAE): The mean of the absolute linear distances or absolute linear
deviation, calculated point-to-point between the forecast values �̂�𝑡 and the original values 𝑦𝑡 . It is a
measure of the central tendency that centralizes the errores. It is defined by:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑡=1

|𝑦𝑡 − �̂�𝑡 | (17)

b. Mean Absolute Percentage Error (MAPE): The mean of the absolute proportional linear distances,
i.e., percentual mean calculated point-to-point between the forecast values �̂�𝑡 and the original values
𝑦𝑡 . It is defined by:

𝑀𝐴𝑃𝐸 =
1
𝑛

𝑛∑︁
𝑡=1

���� 𝑦𝑡 − �̂�𝑡𝑦𝑡

���� (18)

c. The mean of the quadratic distances, calculated point-to-point between the forecast values �̂�𝑡 and
the original values 𝑦𝑡 .

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑡=1

(𝑦𝑡 − �̂�𝑡 )2 (19)

d. Root Mean Square Error (RMSE): The square root of the mean of the quadratic distances,
calculated point-to-point between the forecast values �̂�𝑡 and the original values 𝑦𝑡 . I.e., the
proportional distribution of errors where the lesser point differences have less mean error weight
while the more significant point differences have more mean error weight. It is defined by:
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𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑡=1

(𝑦𝑡 − �̂�𝑡 )2 (20)

2.7.1 Application – Combination of forecasting methods in a time series of the Itaipu
flow

In the study of Lazzarotto et al. [2015a], considering that there are a relatively small number of
methods of combining individual predictive models that make the processing of the data, the linear
combination wavelet SARIMA-ANN with multiple stages is proposed. The proposed method can
be described in the following basic steps:

1. measurements are obtained in a time series to be modeled;

2. it is conducted at a 𝑝 level of decomposition, thus generating the first approximation
component and 𝑝 detail components;

3. it is modeled each 𝑝 + 1Wavelet components, (WC) from step (2) through a model of Box
and Jenkins (to map a plausible linear structure), and an artificial neural network (to map a
non-linear structure plausible);

4. combine the predictions for each WC originating from both the individual predictors
mentioned by traditional linear forecasts, where the adjustment of adaptive parameters is
made employing non-linear programming (so long as they are 𝑝 + 1Wavelet components,
linear combinations are required and, therefore, nonlinear programming problem in this step,
and

5. linearly combine the predictions of each hybrid WC is generated in step (4), developing the
predicted the desired time series. In step (5), solving over a non-linear program is necessary,
totaling 𝑝 + 2 nonlinear programs.

To illustrate the hybrid proposed methodology, it was modeled time series of the average monthly
flow of Itaipu, which period is from January 1970 until December 2010 (i.e., 492 observations).
Their choice was due to its relevance and difficulty in modeling. For experimental purposes, 80%
of the first data were used in the training of individual models (Box & Jenkins and artificial neural
networks), as well as to obtain the optimum parameters of the adaptive forecasts combinations; 10%
of the data were used in subsequent validation sample; and 10% of remaining in the test sample.
Short-term predictions were made a step forward, in a horizon of 49 steps ahead. To assess the
performance of predictive methods, residuals were MAE (mean absolute error) and MAPE (mean
fundamental percentage error).

The choice of level 2 for the Wavelet decomposition was made to preserve parsimony in the number
of individual models to be estimated. The base orthonormal Haar wavelet was used to provide the
best forecasts.

For comparison, the modeling of time series was carried out above using the methods of artificial
neural networks (ANN) and Box & Jenkins (BJ) with a traditional approach. Moreover, the
predictive methods used by BJ and ANN integrated with the two-level wavelet decomposition
(respectively denoted by ANN-WAVELET and BJ-WAVELET) Donoho and Johnstone [1994a].

Finally, were used the estimates of linear combinations of approaches BJ and ANN (CL1) and
the ANN-WAVELET and BJ-WAVELET (CL2) as the approach of Flores and White [2008]. The
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process of adjusting the adaptive weights CL1 and CL2 occurred using a PPM, in which the
objective function has the minimum mean square error of the training sample residuals (as usual)
and the convex weights (i.e., not normalized and negative) Faria and Mubwandarinkwa [2008].

Table 1 note that CL1 was superior to the individual ANN and BJ predictive methods. The same
can be checked using the combination CL2 method when compared with the methods based on
ANN-WAVELET and BJ-WAVELET.

Table 1: MAPE values, in samples of training, validation and test.

Methods MAPE (%)
Training Validation Test

ANN 16.35 15.19 21.78
BJ 16.60 19.46 21.25
CL1 14.95 14.82 19.13

ANN-WAVELET 2.11 2.47 2.80
BJ-WAVELET 2.74 3.13 3.63

CL2 2.06 2.38 2.64
Proposed Method 1.27 1.27 1.36

In Figure 2, there is a comparison between the proposed method and the CL2 approach (which was
the best in Table 1 between the benchmark methods). Note that, in every 49 months, in the test
sample, the present process showed stability over the time course of the APE values of CL2 (for
example, in 6 months, the APE values of the CL2 violate the range of 6% while this is at no time in
the proposed method). Moreover, in most instants, the APE proposed combination shows values
lower than those of the CL2.

Figure 2: Temporal out-of-sample evolution of Absolute Percentage Error (APE)
values of the CL2 model (blue line) and the proposed method (red line).

Source: Lazzarotto et al. [2016]

Analyzing the results, it follows that, in Table 1, the method proposed by the statistics MAPE and
MAE were superior to all others, the training samples, validation, and testing – which shows more
power learning (the sample workout) and generalization (in the validation and test samples). In
Figure 2, in turn, obtained from the second-best method of Table 1, (namely, CL2), greater evolution
temporal stability of the APE values (absolute percentage error).

2.7.2 Application – Combination of prediction methods in a time series of dam crest
displacement in Itaipu

In the work of Lazzarotto et al. [2015b], a methodology is proposed in which a performance
evaluation is made through the prediction of the time series of the readings of an instrument of
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the dam of the hydroelectric plant of Itaipu using a hybrid combination of the ARIMA-GARCH
predictors and artificial neural networks, using the Wavelet decomposition.

In this work, we carried out a comparative study between different approaches to predict the time
series of data from the reading of a direct pendulum, which measures the displacement of the dam
crest in the direction of the river flow of the dam of the Itaipu hydroelectric plant, located on the
Parana River, between Brazil and Paraguay. The objective was to compare the performance of the
predictions performed in each approach and to show that the use of the Wavelet decomposition and
the combination of predictive methods such as ARIMA-GARCH and artificial neural networks can
lead to relevant improvements in the performance of the prediction of the behavior of dams.

The autoregressive integrated moving average models (ARIMA), proposed by Box et al. [2008],
are linear predictors established in the literature for the analysis and forecasting of time series. In
contrast, the generalized autoregressive conditional heteroscedasticity models (GARCHs) are used
for the mapping of volatility structures (Gujarati and Porter [2010]).

Artificial neural networks (ANNs) have attracted increasing attention to time series forecasting
in the last decades and have achieved successful applications in nonlinear forecasting problems.
ANNs can capture non-linear self-dependence structures (Adhikari and Agrawal [2013]).

Hybrid methodologies that combine ARIMA and artificial neural networks for predicting classical
time series in the literature were proposed by Zhang [2003]. Their results showed an improvement
in prediction performance compared to the two models used separately.

The Wavelets functions are used to decompose a time series in terms of an approximation wavelet
component and residual detail series. The approximation component is the main one and can be
considered a ’smoothed’ version of the original series. On the other hand, the detail components
represent stochastic fluctuations of low variability and high frequency around the approximation
component. The original series is reconstructed by summing all its features generated from itself
Kriechbaumer et al. [2014].

This work was limited to a direct pendulum located in the E section of the plant’s dam, which is
the only instrument responsible for measuring the variable displacement of the dam crest in the
direction of the flow and normal to it about its base.

Figure 3: Performance of the best approach in the validation period.
Source: Lazzarotto et al. [2015b]

Eleven comparison approaches were constructed in which the use or not of wavelet decomposition,
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ARIMA-GARCH modeling, with neural networks, and hybrid combinations of these techniques
were varied. The best performance for the entire validation period was presented by approach 8,
which consisted of the wavelet decomposition of the original series followed by a hybrid model, in
parallel, of the sum of the optimal ARIMA-GARCH combinations with ANN in each component.

Figure 3 showed the chart in the validation period (July/2011 to October/2014) of the original series
and the best approach (approach 8, as described above) according to all performance measures to
produce the minor forecast error.

The results showed that the proposed hybrid combination achieved performance in terms of accuracy
much better when compared to the individual use of traditional predictive methods and their
combinations.

2.7.3 Application ArimaX-Garch Wavelet Neural model

This section presents the main numerical results of applying the traditional Arima-Garch model
(benchmark) and the ArimaX-Garch Wavelet Neural model – AXGWN – method to a time series of
daily displacement measurements of a block of the dam of the Itaipu hydroelectric plant.

A time series of physical displacement of a dam block that supplies the Itaipu hydroelectric plant is
modeled due to its statistical properties and relevance. In Figure 4, its graph shows the temporal
behavior of the 2,554 observations, in daily intervals, which were collected from the ADAS
automated system.

Figure 4: Daily time series of physical displacement of a dam block of Itaipu.
Source:

This section presents the main numerical results of applying the traditional Arima-Garch model
(benchmark) and the AXGWN method (proposed) to a time series of daily measurements of the
displacement of a block of the dam of the Itaipu hydroelectric plant.

These temporal data comprise the period from October 28, 2005, to October 24, 2012, totaling
2554 points. Of these, the first 2506 observations were used to obtain the optimal parameters of the
two predictive methods involved (in other words, such data compose the training sample), while the
48 subsequent observations from the test sample, considering a prediction of 48 steps ahead.

This section presents the main numerical results of applying the traditional Arima-Garch model
(benchmark) and the AXGWN method (proposed) to a time series of daily measurements of the
displacement of a block of the dam of the Itaipu hydroelectric plant.
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For residual diagnoses, in the modeling stage, the following criteria were used: Ljung-Box test (to
verify the existence of significant autocorrelation up to lag 36); Durbin-Watson statistics (to analyze
empirical evidence of lag one autocorrelation); graphical analyzes of FAC and FACP (to visualize,
respectively, the presence of significant superficial and partial linear self-dependence, up to lag 36);
ARCH test (for verification of evidence of substantial conditional heteroscedasticity, up to fade 36)
(Hamilton [1994]). All Arima-Garch models and their residual tests were performed in software
EViews 8 (www.eviews.com/).

The Arima-Garch model with greater adherence to the time series of displacement was the Arima-
Garch (3, 2, 4) (2, 1) with logarithmic transformation followed by double differentiation. All
estimates of maximum likelihood in both the conditional mean equation and the conditional
variance parameters were statistically significant at the 1% level and satisfied the stationary and
invertibility conditions. In all residual tests, we accepted the hypothesis of no autocorrelation in the
ordinary. We squared standardized residuals at 1% of significance – meaning that the Arima-Garch
model captured a plausible auto-dependence structure. In particular, the Durbin -Watson statistic,
calculated from ordinary standardized residues, obtained the value of 2.092367, suggesting the lack
of lag one autocorrelation (close to the reference value 2). It also stresses that among all identified
plausible models, Arima-Garch were adopted, as selection criteria, the following grip statistics, in
the training sample: Absolute Percentage Error (APE), Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE), e explanation coefficient (𝑅2).

For the implementation of AXGWN method was used MATLAB software version 2013𝑡ℎ
(www.mathworks.com/) and EViews software – version 8 (www.eviews.com/). First, it was
performed in MATLAB, a level 2 wavelet decomposition of the time series workout sample, i.e.,
𝑦𝑡 (𝑡 = 1, . . . , 2056) of the displacement in question, to generate : a Level 2 CW approach, which is
denoted by 𝑦𝐴2,𝑡 (𝑡 = 1, . . . , 2056); two levels of detail CWs 2 and 3, which are denoted respectively
by 𝑦𝐷2,𝑡 (𝑡 = 1, . . . , 2056) and 𝑦𝐷3,𝑡 (𝑡 = 1, . . . , 2056). Its graphics may be viewed Figure 5. To do
this, they used the original scale functions 𝜙 (.) and wavelet 𝜔 (.) of Daubechies family with zero
momentum equal to 40 (𝑦𝑡 (t = 1, . . . , 2506)).The wavelet family selection criterion was based

on the minimization of
2056∑
𝑡=1

𝜀2
𝑡 , where: 𝑦𝑡 = 𝑦𝐴2,𝑡 + 𝑦𝐷2,𝑡 + 𝑦𝐷3,𝑡 + 𝜀𝑡 , for every 𝑡 = 1, . . . , 2056.

Families Daubechies equal to zero moment were tested at 1 to 45 (i.e., 45 different families).

In step 2 of AXGWN method, each of the three components wavelet 𝑦A2,t, 𝑦D2,t and 𝑦D3,t
(t = 1, . . . , 2506) was modeled using an ANN-MLP (described in section 2.3), in order to produce
the following sequences forecasts, 48 steps outside of the sample (i.e., h = 48 ): ŷA2,t, ŷD2,t and
ŷD3,t (t = 2507, . . . , 2554). Table 3 shows the optimal settings of MLP‘s ANN from each of the
three CWs.

In step 3, the three components of the wavelet step 1 are supplemented by 48 estimates generated
in step 2, generating the three supplemented wavelet components (denoted by ỹA2, t,C, ỹD2, t,C e
ỹD3, t,C or, equivalently for x1, x2 and x3. These are interpreted as if they were, in fact, conventional
exogenous variables. In step 4, in turn, such wavelet artificial exogenous variables are used in an
Arima-Garch model.

In step 4, all three artificial exogenous variables wavelets obtained in step 2 were used, but in a
lagged way. Moreover, the prediction of �̂�2

𝑡 provides an artificial neural network effect to construct
the forecast of the conditional mean �̂�𝑡 .

In step 5, errors training forecast ArimaX-Garch model withWavelet Variables Random (WVR) were
modeled by an ANN-MLP to identify a nonlinear structure plausible in residual error – as suggested
[8]. For ANN-MLP, we used the software MATLAB. Topological configurations of optimal
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Figure 5: Daily time series of physical displacement of a dam block of Itaipu.
Source:

Table 2: the ANN – MLP’s Settings for the wavelet components.

Neural architect. parame-
ters

Approach component
level 2

Details’ component
level 2

Details’ component
level 2

Transformation premnmx premnmx premnmx
Input window size 5 2 2
Number of hidden layers 1 1 1
Number of neurons in the
hidden layer

3 3 5

Activation functioning of
the hidden layer

Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent

Output layer Linear activation func-
tioning

Linear activation func-
tioning

Linear activation func-
tioning

Training algorithm Levenberg-
Marquardt [Millar,
2011]

Levenberg-
Marquardt [Millar,
2011]

Levenberg-
Marquardt [Millar,
2011]

ANN-MLP were: premnmx standardization; window size equal to 1; 1 hidden layer consisting of 8
neurons with hyperbolic tangent activation function; output layer with linear activation function;
and training algorithm of Levenberg-Marquardt (Haykin [2001];Millar [2011]). Table 2 Provides
the values obtained by adherence statistics MAPE and MAE in the training and test samples.

Table 3: Performance forecasts of Arima – Garch and AXGWN

METHOD MAPE MAE
In sample Out of sample In sample Out of sample

Arima-Garch 0.719% 0.506% 0.0813 0.0602
AXGWN 0.406% 0.295% 0.0457 0.0350

Please note that, in Table 3, the method AXGWN got better predictive performance relative to the
Arima-Garch model, both within the sample (training samples) and out of the sample (test sample).
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More precisely, the AXGWN method produced a relative predictive gain over the traditional
Arima-Garch model, as the statistical MAPE, equal to 43.53 % in the training sample, equivalent to
41.70 % in the selection of the test; whereas, concerning statistical MAE, it was 43.79 % in the
training sample and 41.87 % in the test sample. The estimates should be the most accurate possible
so that the operational and financial decision-making, which is excellent, could be run at the right
time. It must be stressed that implementing active actions to repair the dam or any unnecessary
investments done at inopportune times can lead, among other things, to high financial losses.

Figure 6: Comparison of temporal evolution of the EPA, in the test sample,
the Arima-Garch and AXGWN.

Source:

Figure 6 shows the graph of Absolute Percentage Error (EPAs) calculated for 48 forecasts out of the
sample for both models. Please note that the model AXGWN shows that the EPAs were lower than
the Arima-Garch model at most 48 points, besides presenting more stability (i.e., smaller “peaks“)
in fluctuating errors. For example, at the 1% level, only one value of EPA is violated by AXGWN,
while three violations occur for the Arima-Garch model. Considering the level of 0.5%, there
are 21 violations for the Arima-Garch model and 9 for AXGWN. Finally, the maximum APE of
the Arima-Garch model was approximately 2.25%. In contrast, the maximum EPA AXGWN was
slightly more than 1% (which means a gain of predictive accuracy in relative terms, around 50%).

In terms of the ratio R2 (which measures the variability explained by the models in the training
sample), the model Arima-Garch obtained 𝑅2 = 0.361378 and AXGWN, of 𝑅2 = 0.997249.

2.7.4 Application - Method Support Vector Regression Wavelet of Multiple Kernels
(SVRWMN)

In this study, time series predictions were made from measurements of the instrument called direct
pendulum denoted by (CO-I-2/X), Located in the key-block (I10) situated on the stretch I of the
Itaipu hydroelectric dam, conform Figure 1, and that contributes to the monitoring of the behavior
of the block through the hybrid predictive method called SARIMA Support Vector Regression
Wavelet of Multiple Kernels (SSVRWMN), to produce predictions that are aggregators of distinct
stochastic information captured by different ways. The confidence interval is estimated using the
Bootstrap technique with the point predictions. The methodology adopted and the results obtained
are described in this section and were published in the work Rodrigues [2015].

The pendulum measures the displacements of the dam; that is, it measures displacements in the
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downstream direction, perpendicular to the flow of the river Osako [2002]. The direct pendulum
is an instrument set at the top of the dam that makes contact with the concrete rock; that is, it is
installed on the structure and is responsible for monitoring displacements of the top of the dam
relative to the point considered as fixed in the foundation. Two measurements are obtained from
the direct pendulum: one in the upstream-downstream direction (CO-I-2/X) and another in the
right-left bank direction (CO-I-2/Y).

In this application, the CO-I-2/X will be considered, which shows the horizontal displacements of
the top of the dam in the upstream-downstream direction. The location of the CO-I-2 pendulum in
the key-block (I10) can be seen in Figure 7.

Figure 7: Locating of the CO-I-2 pendulum in the key-block (I10).
Source: Rodrigues [2015]

For the time series from the measurement of the direct pendulum instrument CO-I-2/X, the values
are given in millimeters and are shown in Figure 8.
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Figure 8: Original series of the pendulum.
Source: Rodrigues [2015]

SARIMA Support Vector Regression Wavelet method of Multiple Kernels considers a time series
(𝑦 (𝑡))𝑇𝑡=1 to be projected through the average of the forecasts obtained by a linear model (SARIMA)
and a non-linear one (Support Vector Regression Wavelet of Multiple Kernels).

The SSVRWMN is given in six stages:

In stage 1 the modeling through SARIMA is proposed, represented in the original time series by
(𝑦 (𝑡))𝑇𝑡=1. The proposed hybrid model requires the forecast of a linear component (𝐿 (𝑡))𝑇+ℎ𝑡=1 and
for this purpose are considered the forecasts obtained by the SARIMAmodel which aim at capturing
the structures of linear self-dependence, taking into consideration the seasonal effect. In case there
is no seasonality, the ARIMA model will be considered.

The estimates of the parameters of the SARIMAmodel are determined by Maximo Likelihood using
Marquardt’s algorithm Marquardt [1963], implemented in the software EViews8. The definition
of the orders of the models, initially, occurs with the analysis of the charts of the self-correlation
functions FAC, partial self-correlation FACP, residues, and tests with several options of orders p, d,
and q.

In stage 2 the Wavelet orthogonal decomposition of level (𝑦 (𝑡))𝑇𝑡=1in the original time series is
performed, generating 𝑟 + 1 CWs, Donoho and Johnstone [1994b]. In this study, the level of
composition 𝑟 = 2 was set, and therefore for each Wavelet base three-time series were obtained:
the time series that represents the approximation component indicated by

(
�̃�𝐴2 (𝑡)

)𝑇
𝑡=1 and two

times series that represent the detail components represented by
(
�̃�𝐷2 (𝑡)

)𝑇
𝑡=1 and

(
�̃�𝐷3 (𝑡)

)𝑇
𝑡=1.

The following bases were utilized: daubechies of null moments from 1 to 45 (db1, db2,. . . ,
db45),coiflets of null moments from 1 to 5 (coif1, coif2,. . . , coif5), symlets of null moments from 1
to 30 (sym1, sym2, . . . , sym30) and bi-orthogonal of null moments Nr=1 and Nd=1,3 and 5, Nr=2
and Nd=2,4,6 and 8, Nr=3 and Nd=1,3,5,7 and 9, Nr=4 and Nd=4, Nr=5 and Nd =5 and Nr=6 and
Nd=8, Daubechies [1992]. Thus, for each time series (𝑦 (𝑡))𝑇𝑡=1 to be modeled 255 sub-series were
obtained.

The Wavelet components of approximation and detail were obtained in this paper from the software
Matlab 8.0, which offers several options of Wavelet base.

In stage 3, the modeling of Wavelet Components is carried out through SVR Multiple Kernels. The
methods named SVR Multiple Kernels take into consideration a time series in which the modelings
are carried out through the SVR of the RBF kernel, SVR Polynomial kernel, and SVR Sigmoidal
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kernel separately. The forecasts obtained through the combination of projections coming from the
SVR modelings of SVR kernel RBF, SVR Polynomial kernel, and SVR Sigmoidal kernel is called
Support Vector regression of Multiple Kernels (SVRMN). In stage 2, three Wavelet components
were obtained for each Wavelet base, modeled through the SVRMN method.

It being so, the decomposed time series in the previous stage and represented by (𝑦 (𝑡))𝑇𝑡=1 �(
�̃�𝐴2 (𝑡)

)𝑇
𝑡=1 +

(
�̃�𝐷2 (𝑡)

)𝑇
𝑡=1 +

(
�̃�𝐷3 (𝑡)

)𝑇
𝑡=1 brings forth the following sequence of forecasts within

and without the sample, conform Equation (21):

(
�̂�𝑅𝐵𝐹_𝐴2 (𝑡)

)𝑇+ℎ
𝑡=𝑇′ ,

(
�̂�𝑅𝐵𝐹_𝐷2 (𝑡)

)𝑇+ℎ
𝑡=𝑇′ ,

(
�̂�𝑅𝐵𝐹_𝐷3 (𝑡)

)𝑇+ℎ
𝑡=𝑇′ ,(

�̂�𝑃𝑜𝑙𝑦_𝐴2 (𝑡)
)𝑇+ℎ
𝑡=𝑇′ ,

(
�̂�𝑃𝑜𝑙𝑦_𝐷2 (𝑡)

)𝑇+ℎ
𝑡=𝑇′ ,

(
�̂�𝑃𝑜𝑙𝑦_𝐷3 (𝑡)

)𝑇+ℎ
𝑡=𝑇′ ,(

�̂�𝑆𝑖𝑔𝑚_𝐴2 (𝑡)
)𝑇+ℎ
𝑡=𝑇′ ,

(
�̂�𝑆𝑖𝑔𝑚_𝐷2 (𝑡)

)𝑇+ℎ
𝑡=𝑇′ 𝑎𝑛𝑑

(
�̂�𝑆𝑖𝑔𝑚_𝐷3 (𝑡)

)𝑇+ℎ
𝑡=𝑇′

(21)

The forecast of the series is given by Equation (22):

( �̂�𝐵𝑎𝑠𝑒𝑊𝑎𝑣𝑒𝑙𝑒𝑡 (𝑡))𝑇+ℎ𝑡=𝑇′ =
1
3
[
�̂�𝑅𝐵𝐹_𝐴2 (𝑡) + �̂�𝑅𝐵𝐹_𝐷2 (𝑡) + �̂�𝑅𝐵𝐹_𝐷3 (𝑡)

]𝑇+ℎ
𝑡=𝑇′ +

+ 1
3
[
�̂�𝑃𝑜𝑙𝑦_𝐴2 (𝑡) + �̂�𝑃𝑜𝑙𝑦_𝐷2 (𝑡) + �̂�𝑃𝑜𝑙𝑦_𝐷3 (𝑡)

]𝑇+ℎ
𝑡=𝑇′ +

+ 1
3
[
�̂�𝑆𝑖𝑔𝑚_𝐴2 (𝑡) + �̂�𝑆𝑖𝑔𝑚_𝐷2 (𝑡) + �̂�𝑆𝑖𝑔𝑚_𝐷3 (𝑡)

]𝑇+ℎ
𝑡=𝑇′

(22)

where ℎ is the limit of forecast; 𝑇 ′ are the degrees of liberty lost by the SVR model; and 𝑇 ′ < 𝑇 ( 𝑇 ′

not necessarily the same in each forecast).

The following forecasts were generated for each Wavelet base:(
�̂�𝑑𝑏𝑖 (𝑡)

)𝑇+ℎ
𝑡=𝑇′ , 𝑖 = 1, 2, . . . , 45(

�̂�𝑠𝑦𝑚𝑖
(𝑡)

)𝑇+ℎ
𝑡=𝑇′ , 𝑖 = 1, 2, . . . , 30(

�̂�𝑐𝑜𝑖 𝑓𝑖 (𝑡)
)𝑇+ℎ
𝑡=𝑇′ , 𝑖 = 1, 2, . . . , 5(

�̂�𝑏𝑖𝑜𝑟𝑖 (𝑡)
)𝑇+ℎ
𝑡=𝑇′ , 𝑖 = 1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.2, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8

For modeling by SVR, a library for SVR for Matlab called LIBSVM proposed by Chang and Lin
[2011] was used, as well as necessary routines.

In stage 4, the modelings that presented the minor average quadratic error (MSE) are selected based
on the validation data, for each Wavelet family, in the previous stage.

Therefore the following forecasts are selected:
(
�̂�𝑑𝑏better−validation (𝑡)

)𝑇
𝑡=𝑇′′′,

(
�̂�𝑠𝑦𝑚better−validation

(𝑡)
)𝑇
𝑡=𝑇′′′
,(

�̂�𝑐𝑜𝑖 𝑓better−validation
(𝑡)

)𝑇
𝑡=𝑇′′′
, and

(
�̂�𝑏𝑖𝑜𝑟better−validation

(𝑡)
)𝑇
𝑡=𝑇′′′
, with 𝑇 ′′ < 𝑇 , so that the linear combina-

tion is carried out next in order to obtain the forecast of the non-linear component (𝑁 (𝑡))𝑇𝑡=1 of the
proposed hybrid method, described in Equation (23):

(
�̂� (𝑡)

)𝑇
𝑡=𝑇′′ = 𝜌1 ×

(
�̂�𝑑𝑏

better−validation𝑜
(𝑡)

)𝑇
𝑡=𝑇′′

+ 𝜌2 ×
(
�̂�𝑠𝑦𝑚

better−validation
(𝑡)

)𝑇
𝑡=𝑇′′

+

+𝜌3 ×
(
�̂�𝑐𝑜𝑖 𝑓

better−validation
(𝑡)

)𝑇
𝑡=𝑇′′

+ 𝜌4 ×
(
�̂�𝑏𝑖𝑜𝑟

better−validation
(𝑡)

)𝑇
𝑡=𝑇′′

(23)

where �̂� (𝑡) is the combined forecast of the 𝑁 (𝑡) non-linear component; and 𝜌𝑖 , 𝑖 = 1, .., 4 are
parameters to be determined with the optimization of the problem of non-linear programming given
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in Equation (24) whose function objective consists of the minimization of the average quadratic
error (MSE).

Minimize 𝑀𝑆𝐸 = 1
𝑇−𝑇′′

𝑇∑
𝑡=𝑇′′

(
𝑦 (𝑡) − �̂� (𝑡)

)2

subject to 𝜌1, 𝜌2, 𝜌3, 𝜌4 unrestricted
(24)

For the optimization of Problem (24) of non-linear programming, the solver package of the Excel
2013 software was used. The forecasts obtained in this stage are part of the Support Vector
Regression Wavelet of Multiple Kernels, or simply SVRWMN.

In stage 5 linear forecast
(
�̂� (𝑡)

)𝑇+ℎ
𝑡=𝑇′′ and non-linear forecast

(
�̂� (𝑡)

)𝑇+ℎ
𝑡=𝑇′′ are taken into consideration

for obtaining the one-off forecasts for each 𝑡 instant. Equation (25) presents the generation of
forecasts originating from the proposed method, thus generating forecasts within and without
the sample, which will be denoted by ( �̂�𝑆𝑆𝑉𝑅𝑊𝑀𝑁 (𝑡))𝑇+ℎ𝑡=𝑇′′, where each �̂� (𝑡) is, in fact, a set of
information from different sources.

( �̂�𝑆𝑆𝑉𝑅𝑊𝑀𝑁 (𝑡))𝑇+ℎ𝑡=𝑇′′ =
1
2

(
�̂� (𝑡) + �̂� (𝑡)

)𝑇+ℎ
𝑡=𝑇′′ (25)

Therefore, the ( �̂�𝑆𝑆𝑉𝑅𝑊𝑀𝑁 (𝑡))𝑇+ℎ𝑡=𝑇′′ list of forecasts, within and without the sample (multi step
forecasts) consists of the results of the proposed method, mentioned as SARIMA Multiple Kernel
Support Vector Regression Wavelet.

And finally, in stage 6, it is expressed that the forecasts within the sample ( �̂�𝑆𝑆𝑉𝑅𝑊𝑀𝑁 (𝑡))𝑇𝑡=𝑇′′

present simultaneously information coming from modeler that captured linear and non-linear
self-dependence structures and may be considered as a filtered version of the 𝑦 (𝑡) time series, both
through a linear and a non-linear filter.

In this way, the forecast errors within the (𝑒 (𝑡))𝑇𝑡=𝑇′′ = (𝑦 (𝑡) − �̂�𝑆𝑆𝑉𝑅𝑊𝑀𝑁 (𝑡))𝑇𝑡=𝑇′′ sample consist,
in fact, of the realization of a stochastic process of the blank noise kind (confirmed by the tests of
residual self-correlation, BDS statistical independence and Dickey-Fuller stationarity) Hamilton
[1994]. By utilizing the residual Bootstrap technique suggested by Tibshirani [1996] the standard

error of the 𝑡𝑡ℎ value predicted can be estimated using

[
1
𝐵−1

𝐵∑
𝑏=1

(
�̂�𝑏 (𝑡) − ¯̂𝑦𝑏 (𝑡)

)2
]1/2

, where

¯̂𝑦𝑏 (𝑡) = 1
𝐵

𝐵∑
𝑏=1

�̂�𝑏 (𝑡) and therefore the trust interval is determined in accordance with Equation
(26):

¯̂𝑦𝑏 (𝑡) − 𝑡1− 𝛼
2 ,𝑔𝑙

�̂�𝑔 (𝑥) ≤ 𝑓 (x,w) ≤ ¯̂𝑦𝑏 (𝑡) + 𝑡1− 𝛼
2 ,𝑔𝑙

�̂�𝑔 (𝑥) (26)

where �̂�𝑔 (𝑥) =
[

1
𝐵−1

𝐵∑
𝑏=1

(
�̂�𝑏 (𝑡) − ¯̂𝑦𝑏 (𝑡)

)2
]1/2

is the estimated standard error, 𝑡1− 𝛼
2 ,𝑔𝑙
comes from

the 𝑡 distribution of Student with 𝛼 significance level and 𝑔𝑙 are the degrees of liberty. If the degrees
of liberty are defined as the difference between the size of the step (number of forecast steps ahead)
and the number of models utilized, that is, 𝑔𝑙 = ℎ − 2, ℎ > 3 where h = 12, it represents the steps
ahead to be considered in the forecast. We consider the number of models equal to 2, one linear and
the other non-linear.

Initially, the information processing for the time series was carried out to be structured according to
the forecasting methodology. The period to be considered was 1994-2014, with monthly values.
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Of the 252 values that the time series possesses, the first 228 data were used to adjust the base
models (SARIMA and SVR, SSVRWMN); the next 12 values were reserved for validation, and the
last 12 values, referring to the year 2014, for testing. The methodology used is a multi-step ahead
forecasting, that is, h steps ahead; in this application, h = 12; therefore, the limit of forecasting
coincides with the total of steps. To evaluate the methods, MAPE (mean absolute percent error),
MSE (mean square error), and MAE (mean absolute error) errors Hamilton [1994] represented in
Equation (17 to 20) were used.

We shall denote the time series of the direct pendulum by (𝑦𝑐𝑜 (𝑡))252
𝑡=1

In stage 1, for the direct pendulum time series, the modeling was carried out through a SARIMA
model, generating predictions within the training sample and predictions in the test sample on a
horizon of 12 steps ahead; these predictions are considered by the hybrid method as the linear
component prediction.

For the SARIMA modeling, the Eviews software was used. The visual analysis of the time series
was made, and the appropriate model was identified. The definition of the orders of models was
done by analyzing the charts of the self-correlation functions FAC, partial self-correlation FACP,
residues, and tests with several options of orders 𝑝, 𝑑, 𝑞. The statistics found through the analysis of
the time series of the direct pendulum are represented in Table 4.

Table 4: SARIMA modelling for time series 𝑦𝑐𝑜.

Variable Coefficient Std. Error t-Statistic Prob
AR(12) 1.001462 0.006894 145.2634 0.0000
MA(1) -0.632463 0.049493 -12.77889 0.0000
MA(3) -0.416386 0.054726 -7.608606 0.0000
MA(9) 0.085333 0.036069 2.365816 0.0189
SMA(12) -0.843251 0.038201 -22.07423 0.0000
R-squared 0.832369 Mean dependent var 0.009692
Adjusted R-squared 0.829348 S.D. dependent var 1.260694
S.E. of regression 0.520793 Akaike info criterion 1.554850
Sum squared resid 60.21192 Schwarz criterion 1.630290
Log likelihood -171.4755 Hannan-Quinn criter. 1.585291
Durbin-Watson stat 1.90166

Source: Rodrigues [2015]

In stage 2 the orthogonal decomposition Wavelet of 𝑟 = 2 level was made for the time series 𝑦𝑐𝑜 (𝑡),
considering the daubechies bases (db 1,2,. . . ,45), (coif 1,2,. . . ,5), symlets (sym 1,2,. . . ,30) and bi-
orthogonal (1.1, 1.3, . . . , 6.8), a total of 95 decompositions, generating an approximation component
that is the representation of the original series in low frequency, and two detail components which
are high frequency series (more noisy series) in each decomposition carried out, thus obtaining 285
sub-series for 𝑦𝑐𝑜 (𝑡) time serie.

Stage 3 forecasts through Multiple Kernel Support Vector Regression were carried out for each of
the 285 sub-series obtained in stage 2. The three main kernels were considered to compose the
method: RBF, polynomial, and sigmoidal Smola and Schölkopf [2004].
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For example, for the series (𝑦𝑑𝑏1_𝑐𝑜 (𝑡))240
𝑡=1 the forecasts,

( �̂�𝑑𝑏1_𝑐𝑜_𝑅𝐵𝐹 (𝑡))240+12
𝑡=12 =

(
�̂�𝑑𝑏1_𝑐𝑜_𝑅𝐵𝐹𝐴2 (𝑡)

)240+12
𝑡=12 +

(
�̂�𝑑𝑏1_𝑐𝑜_𝑅𝐵𝐹𝐷2 (𝑡)

)240+12
𝑡=12 +

+
(
�̂�𝑑𝑏1_𝑐𝑜_𝑅𝐵𝐹𝐷3 (𝑡)

)240+12
𝑡=12(

�̂�𝑑𝑏1_𝑐𝑜_𝑃𝑜𝑙𝑦 (𝑡)
)240+12
𝑡=12 =

(
�̂�𝑑𝑏1_𝑐𝑜_𝑃𝑜𝑙𝑦𝐴2 (𝑡)

)240+12
𝑡=12 +

(
�̂�𝑑𝑏1_𝑐𝑜_𝑃𝑜𝑙𝑦𝐷2 (𝑡)

)240+12
𝑡=12 +

+
(
�̂�𝑑𝑏1_𝑐𝑜_𝑃𝑜𝑙𝑦𝐷3 (𝑡)

)240+12
𝑡=12(

�̂�𝑑𝑏1_𝑐𝑜_𝑆𝑖𝑔𝑚 (𝑡)
)240+12
𝑡=12 =

(
�̂�𝑑𝑏1_𝑐𝑜_𝑆𝑖𝑔𝑚𝐴2 (𝑡)

)240+12
𝑡=12 +

(
�̂�𝑑𝑏1_𝑐𝑜_𝑆𝑖𝑔𝑚𝐷2 (𝑡)

)240+12
𝑡=12 +

+
(
�̂�𝑑𝑏1_𝑐𝑜_𝑆𝑖𝑔𝑚𝐷3 (𝑡)

)240+12
𝑡=12

were generated.

(𝑦𝑑𝑏1_𝑐𝑜 (𝑡))240
𝑡=1 is the forecast of the series, the average forecast, or ( �̂�𝑑𝑏1_𝑐𝑜 (𝑡))240+12

𝑡=12 . Where
( �̂�𝑑𝑏1_𝑐𝑜 (𝑡))240+12

𝑡=12 = 1
3 ( �̂�𝑑𝑏1_𝑐𝑜_𝑅𝐵𝐹 (𝑡))240+12

𝑡=12 + 1
3
(
�̂�𝑑𝑏1_𝑐𝑜_𝑃𝑜𝑙𝑦 (𝑡)

)240+12
𝑡=12 +

+ 1
3
(
�̂�𝑑𝑏1_𝑐𝑜_𝑆𝑖𝑔 (𝑡)

)240+12
𝑡=12 . This process was repeated for all 95 Wavelet decompositions of each

time series.

To obtain the optimum parameters of the SVR model, the data from the time series reserved for
adjustment were subdivided into training and validation. The model that presented the lowest Mean
squared error (MSE) in the validation set was chosen, being the cardinality of the validation set was
equal to 12.

Table 5 shows the two best results obtained for each Wavelet family and the MSE statistics of the
validation sample for the time series of the 𝑦𝑐𝑜 pendulum.

Table 5: Two best results for each Wavelet family for series 𝑦𝑐𝑜.

Families Base Validation-Mse
Daubechies db6 0.02545

db40 0.01639
Symlets sym19 0.03968

sym23 0.02565
Coiflets coif3 0.17120

coif4 0.25507
Biorthogonal bior3.1 0.03982

bior6.8 0.07165

Source: Rodrigues [2015]

From Table 5, it can be seen that the selected models presented the lowest MSE adherence statistics,
and they are for the CO-I-2/X series, the bases db40, sym23, coif3, and bior3.1.

In stage 4, the forecasts of the best modelings were combined when the MSE statistics were
compared in the validation set regarding each Wavelet family.

For the time series of pendulum 𝑦𝑐𝑜 the combination is represented by the equation (27):

( �̂�𝑐𝑜 (𝑡))240
𝑡=12 =

[
𝜌1 × ( �̂�𝑑𝑏40_𝑐𝑜 (𝑡)) + 𝜌2 ×

(
�̂�𝑠𝑦𝑚23_𝑐𝑜 (𝑡)

)
+

+𝜌3 ×
(
�̂�𝑐𝑜𝑖 𝑓 3_𝑐𝑜 (𝑡)

)
+ 𝜌4 × ( �̂�𝑏𝑖𝑜𝑟3.1_𝑐𝑜 (𝑡))

]240

𝑡=12
(27)

where the adaptive constants assume the following values: 𝜌1 = 0.458526, 𝜌2 = 0.085159,
𝜌3 = 0.251612 and 𝜌4 = 0.221247, after the minimization of the average quadratic error (MSE).

In this stage, the forecasts of the multiple kernels of the model SVR Wavelet are obtained, that is, of
the non-linear component of the modeled time series and which is represented by

(
�̂�𝑐𝑜 (𝑡)

)240
𝑡=12.
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In stage 5, the predictions obtained by the linear model (SARIMA) and by the non-linear model
(SVRWMN) are taken. The average is calculated to get the point predictions for each t, forming the
hybrid method SSVRWMN that presents in its structure of self-dependence linear and non-linear
information being considered as a filtered version of the time series 𝑦 (𝑡), both by a linear filter
(stage 1) and by a non-linear filter (stage 3 and 4).

Therefore, the list of forecasts, within and without the sample (multi-step predictions), consists
of the results of the proposed method referred to as Multiple Kernel SARIMA Support Vector
Regression Wavelet (SSVRWMN).

Then, the list of forecasts for the time series of the direct pendulum is represented by the equation
(28):

( �̂�𝑐𝑜 (𝑡))240+12
𝑡=12 =

1
2

(
�̂�𝑐𝑜 (𝑡) + �̂�𝑐𝑜 (𝑡)

)240+12
𝑡=12 (28)

At this stage, it is possible to compare the forecasts of the proposed method with those obtained
through the SARIMA, SVR method, and the combination SARIMA-SVR. The compared adherence
statistics are MSE, MAPE, and MAE.

In Table 6, the comparison for the time series of the pendulum is presented.

Table 6: Variables to be considered on the evaluation of interaction techniques.

Methods MSE MAPE MAE
SARIMA 0.3615 12.7% 0.4581
SVR 0.8398 19.8% 0.8419
SARIMA-SVR 0.7146 18.6% 0.7801
SSVRWMN 0.2157 11.8% 0.4149

Source: Rodrigues [2015]

From Table 6 it can be seen that the proposed method SSVRWMN obtained in the forecasts of the
time series of instrument CO-I-2/X a reduction in the three adherence statistics MSE, MAPE, and
MAE about all other predictive methods listed. Compared with the second-best result (namely, the
SARIMA method), the relative reduction was approximately 40.3% in the measure MSE, 9.4% in
the action MAE and 7.1% in the measure MAPE.

Such results demonstrate the predictive efficiency of the proposed method against renowned
approaches in the time series literature, such as SARIMA, SVR, and the hybrid SARIMA-SVR, in
the present case.

In stage 6, after obtaining the residues series, Bootstrap’s residual process was used to obtain the
trust interval (IC) at the 95% level.

Figure 9 shows the graph of forecasts with the respective trust intervals of the series X, obtained
through the hybrid method SSVRWMN – bootstrap.
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Figure 9: IC graph and forecasts by the SSVRWMN – bootstrap method of
the CO-I-2/X.

Source: Rodrigues [2015]

In summary, in generating forecasts, SSVRWMN developed substantially better estimates than
those obtained by the predictive methods SARIMA and SVR individually and the composite
SARIMA-SVR in all adhesion statistics considered. Therefore, the predictions from the SSVRWMN
method add information, thus contributing to decision-making with regard future behavior of
the pendulum. Such results encourage the application of this method for time series from other
areas. Even if the theoretical base of the hybrid method SSVRWMN – bootstrap is mathematically
complex, the use of software and computer routines mentioned in the text permits its utilization.

2.7.5 Application of the SARIMAX-NEURAL Method in Prediction Times Series of
the Deformation Concrete Dam

The SARIMAX-NEURAL hybrid method was presented by Ribeiro et al. [2019] as the combination
of SARIMAX methods (from the Box & Jenkins methodology) and Recurrent Neural Networks
(RNN) Deep Learning with Long Short-Term Memory (LSTM) architecture. The study of concrete
deformations from time series measured over 40 years using strain-meter rosettes installed in a
buttress concrete block of the Itaipu Dam.

Strain-meter rosettes have recorded the data – RD – with five strain-meters each, installed during
construction in five strategic points of a Buttress Block in Itaipu Dam, according to the river flow
direction (Fig.10). The rosettes are made up of two trihedral orthogonal. The arms 1, 2, 3 and 4 of
the rosette are on the same plane, forming angles of 45◦ between each component (1 − 2, 2 − 3,
and 3 − 4), co-planar to the flow direction, i.e., from upstream to downstream, where the arm 1 is
positioned in the downstream order. The arm 5 is perpendicular (90◦) to the others (and to the river
flow).

The particular modeling methods used were RNN (Recurrent Neural Networks) with hidden layer
LSTM (Long Short-Term Memory), SARIMA (Auto-Regressive Integrated Models of Seasonal
Moving Average), SARIMAX (SARIMA with Exogenous Variables), and a new hybrid method
proposed, called SARIMAX-NEURAL, defined as a linear combination of the SARIMAX and
RNN methods.
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Figure 10: Strain-meter rosettes in the Buttress Block.
Source: Ribeiro et al. [2019]

In the pre-modeling phase of the SARIMA and SARIMAX methods, the lagged correlation between
the time series of long-term concrete strains (series of dependent variables) and ambient temperature
(series of exogenous variables) was identified. All factors related to the thermal conductivity of the
concrete and the geometry of the element were involved in this correlation; that is, the deformations
of the concrete were influenced by the ambient temperature sometime later due to the dimensions
of the block (64.2 m high; 64.0 m in length) and for each rosette position. The greater the distance
between the exposed surface of the block and the part of the rosette, the longer the time required for
the deformations to be influenced by the variation in ambient temperature.

The SARIMAX-NEURAL hybrid method consists of two phases. In the first, SARIMAX modeling
is performed to determine the linear component. In the second, RNN DL-LSTM modeling is
performed in the SARIMAX model residue series to predict the nonlinear element.

Thus, the hybrid method’s prediction is obtained as a linear combination of the predictions of the
individual models:

𝑍 𝑓 (𝑡 + ℎ) = 𝐶𝐿 𝑓 (𝑡) + 𝑁𝐿 𝑓 (𝑡) (29)

Where 𝐶𝐿 𝑓 (𝑡) is the linear component and 𝑁𝐿 𝑓 (𝑡) is the non-linear component corresponding to
the prediction (out-of-sample) of the time series {𝑍𝑡 }𝑁𝑡=1. Residues of the SARIMAX model within
the sample are represented by:

�̂�𝑎 (𝑡) = 𝑍𝑡𝑎 − 𝑍𝑡𝑎 (30)

Where 𝑍𝑡𝑎 is the real value and 𝑍𝑡𝑎 is the predicted value.

The parameters of the Deep Learning neural network models with hidden layer Long Short-Term
Memory (RNN DL-LSTM) are the same applied in the individual model.

Regardless of the fit accuracy to in-sample data, some models could not forecast the atypical curve
behavior of future data (out-of-sample), according to Fig. 11, for a seasonal period 𝑠 of 52 weeks
per year. This may be related to the functionality of strain meters or the interference of external
factors, such as upstream water temperature, deformations due to phenomena other than thermal,
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and irregular thermal diffusivity, among others. In the case of RD-2/5 (Fig. 11), for instance, the
RNN DL-LSTM prediction model has higher accuracy as compared to other models. Still, it cannot
describe the behavior of arm 5 of rosette 2.

Figure 11: Ability of time series prediction models for RD-2/5
Source: Ribeiro et al. [2019]

Table 7 shows the percentage comparison between the averages of the adherence statistics (MAE,
MAPE, RMSE) of the hybrid method about the individual methods for the 25-time series model of
the five rosettes in the Fig. 10. Since the hybrid method considers the influence of the exogenous
variable (ambient temperature) on the modeling, a predictive gain was obtained from the RNN
DL-LSTM and SARIMA neural network models, in which the modeling was performed only on the
concrete deformation data.

About SARIMAX, the predictive improvement of the hybrid method was due to the modeling of
residues of the SARIMAXmodel via the RNNDL-LSTM network. The percentage gain was slightly
better and indicated that concrete deformation and ambient temperature data have a predominantly
linear dependence structure.

The Figure 12 summarizes the mean values of the adherence statistics for each method for the
25-time series modeled. These values correspond to the average of the errors used to calculate
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Table 7: Comparison of the mean predictive precision as a percentage of
SARIMAX-NEURAL method over individual methods

Individual methods SARIMAX-NEURAL Method
MAE MAPE RMSE

RNN DL-LSTM 53.50% 50.31% 50.53%
SARIMA 28.87% 20.71% 27.12%
SARIMAX 1.09% 0.96% 0.51%

Source: Ribeiro et al. [2019]

the percentage predictive improvement of the SARIMAX-NEURAL process about the particular
methods of Table 7.

Figure 12: Mean of MAE, MAPE and RMSE adherence statistics of
the 25 time series. modeled
Source: Ribeiro et al. [2019]

The results show that temperature-sensitive models as an exogenous variable (SARIMAX and
SARIMAX-NEURAL) show better forecasts with actual data than the other two approaches.
Therefore, in the hybrid approach (SARIMAX-NEURAL), the RNN DL-LSTM model has been
chosen for non-linear mapping effects in the residuals and obtaining more accurate out-of-sample
forecasts concerning the SARIMAX model. Thus, the proposed approach yields a slightly better
assessment (1%) of concrete long-term deformation behavior forecasting based on monitoring data.

3 Multivariate Analysis

In general, statistical methods of multivariate analysis are applied to analyze multiple measures on
each individual or object investigated. These methods have their foundations in matrix algebra.

The multivariate data (qualitative or quantitative) are arranged in a matrix whose columns are the
vectors of random variables, and each row corresponds to an object. By random variable is meant
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any characteristic observed in an object. Thus, each row of the matrix presents all the features
verified in an object of the sample.

A collection of 𝑛 observations on 𝑝 different random variables, taken from the same item, composes
a multivariate sample. The matrix representation of this sample can be done through a matrix 𝑋 of
order 𝑛 × 𝑝 (31), in such a way that the lines correspond to the observations, the columns to the
variables, and the elements 𝑥𝑖 𝑗 to the sample values.

𝑋 =

©«
𝑥11 . . . 𝑥1𝑝
𝑥21 . . . 𝑥2𝑝
...

...
...

𝑥𝑛1 . . . 𝑥𝑛𝑝

ª®®®®¬
(31)

Statistical analyzes involving multivariate data generally use the degree of the linear relationship
between random variables, that is, the covariance between them. The covariance (𝜎) between two
random variables is defined by (32):

𝐶𝑜𝑣(𝑋𝑖 , 𝑋 𝑗) = 𝜎𝑖 𝑗 = 𝐸 [(𝑋𝑖 − 𝜇𝑖) (𝑋 𝑗 − 𝜇 𝑗)] (32)

When the study involves more than two random variables, the covariances between all the variables
are calculated (33), and the respective values are stored in the covariance matrix (Σ).

𝐶𝑜𝑣(𝑋) = Σ =

©«
𝜎11 . . . 𝜎1𝑝
𝜎21 . . . 𝜎2𝑝
...

...
...

𝜎𝑛1 . . . 𝜎𝑛𝑝

ª®®®®¬
(33)

Another measure of great importance in multivariate analysis is the correlation between random
variables. The use of correlation is more indicated, especially when the variables have significant
differences in measurement scales. Correlation (𝜌) is also a measure of the linear relationship
between two quantitative variables, with values belonging to the range [−1, 1], determined as
follows (34):

𝐶𝑜𝑟 (𝑋𝑖 , 𝑋 𝑗) = 𝜌𝑖 𝑗 =
𝜎𝑖 𝑗

𝜎𝑖𝜎𝑗
(34)

It is also possible to represent the values of the correlations of a set of random variables in matrix
form (35):

𝐶𝑜𝑟 (𝑋) = R =

©«
1 . . . 𝜌1𝑝
𝜌21 . . . 𝜌2𝑝
...

...
...

𝜌𝑛1 . . . 1

ª®®®®¬
(35)

Lazzarotto, Emerson, et al. (2022) Statistical Methods for Monitoring Control a Concrete Dam pp. 279-336

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 310



3.1 Factorial Analysis

When instrument measurements are correlated with each other and subjected to factor analysis, it is
possible to form a new set of unobservable independent variables, called factors. The application
of this technique allows the description of extensive data matrices in an exploratory way and the
identification of the primary relationships of a large set of instruments with each other or the
relationships between measurements and tools.

Let 𝑋𝑝×1 be a vector whose elements are the instruments installed in a dam, with a 𝑝-varied
normal distribution, with a covariance matrix 𝐶𝑜𝑣(𝑋) = Σ𝑝×𝑝 and vector of averages 𝜇𝑝×1.
Generally, these instruments have marked discrepancies between the variances, caused by the
different measurement units. In this case, performing a standardization takes all the data to the
same measurement scale, through the transformation 𝑍 = (𝑉1/2)−1(𝑋 − 𝜇), where 𝑉1/2

𝑝×𝑝 is the
diagonal matrix of the standard deviations of the observable random variables. Thus, 𝑍𝑝×1 will
also have a normal distribution 𝑝-varied, vector of means 𝐸 (𝑍) = 0𝑝×1 and covariance matrix
𝐶𝑜𝑣(𝑍) = (𝑉−1/2)−1Σ(𝑉−1/2)−1 = 𝜌𝑝×𝑝. In this case, 𝜌𝑝×𝑝 is the correlation matrix of the original
variables (observable).

An assumption for the application of factor analysis is that the measurements of the instruments
(random variables) are correlated with each other. Bartlett’s sphericity test makes it possible to
verify the significance of correlations when the null hypothesis that 𝜌𝑝×𝑝 is equal to the identity
matrix 𝐼𝑝×𝑝 is rejected. The statistic 𝑇 of the Bartlett test [36], calculated based on the sample
size 𝑛, the number of instruments 𝑝 and the eigenvalues 𝜆 of the sample correlation matrix, has an
approximate chi-square distribution with 1

2 𝑝(𝑝 − 1) degrees of freedom, for 𝑛 large enough.

𝑇 = −[𝑛 − 1
6
(2𝑝 + 11)]

𝑝∑︁
𝑖=1

ln𝜆𝑖 (36)

In the orthogonal factorial model [37], the standardized random variables are linearly dependent on
𝑚 unobservable random variables (𝑚 < 𝑝), called common factors (𝐹𝑚×1), with factor loadings
𝐿 estimated by the maximum likelihood method [38], and from other sources of variation, called
specific factors (𝜖𝑚×1). The portion of the variance of each instrument that is explained by the
common factors is estimated by the commonalities ℎ [39]. Thus, both common and specific factors
have a multivariate normal distribution, with 𝐸 (𝐹) = 0𝑚×1 and𝐶𝑜𝑣(𝐹) = 𝐼𝑚×𝑚, while 𝐸 (𝜖) = 0𝑝×1
and 𝐶𝑜𝑣(𝜖) = Ψ𝑝×𝑝 (Johnson and Wichern [2019]).

𝑍𝑝×1 = 𝐿𝑝×𝑚 𝐹𝑚×1 + 𝜖𝑝×1 (37)

𝐿𝑉 (0, 𝜌) = 𝑒
− 1

2
𝑛∑
𝑗=1

(𝑧 𝑗 )′ (𝐿𝐿′+Ψ)−1 (𝑧 𝑗 )

(2𝜋)𝑛𝑝/2 |𝐿𝐿 ′ + Ψ|𝑛/2 (38)

ℎ2
𝑖 = 𝑙

2
𝑖1 + 𝑙2𝑖12 + · · · 𝑙2𝑖𝑚, for 𝑖 = 1, 2, · · · , 𝑝 (39)

The adequacy of the fit of the orthogonal factor model can be evaluated using the Kaiser-Meyer-Olkin
(KMO) criterion and Bartlett’s sphericity test [36]. The KMO coefficient varies between 0 and
1. It is calculated [40] based on the sample correlations 𝜌𝑖 𝑗 and partial correlations 𝑄𝑖 𝑗 between
the pairs of observable variables 𝑋𝑖 and 𝑋 𝑗 . The closer to unity, the greater the adequacy of the
adjustment of the factor model to represent the multivariate set.
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𝐾𝑀𝑂 =

∑︁
𝑖≠ 𝑗

𝜌2
𝑖 𝑗∑︁

𝑖≠ 𝑗

𝜌2
𝑖 𝑗 +

∑︁
𝑖≠ 𝑗

𝑄2
𝑖 𝑗

(40)

The maximization of the maximum likelihood function [38] is done by numerical procedures,
starting from a random sample of size 𝑛 from the vector 𝑍 , for a fixed value of 𝑚, which can be
obtained through Horn’s Parallel Analysis Method (Çokluk and Koçak [2016]).

If the factor loadings are high by more than one factory for the same instrument, the factors will
not be orthogonal, as initially assumed. This makes it difficult to interpret the results. In these
situations, Johnson and Wichern [2019] suggests performing the varimax rotation, an orthogonal
transformation, to obtain a factor structure in which each factor has a group of variables highly
correlated with its negligible correlation with the other elements.

The varimax rotation consists of finding a given matrix 𝑇 , which maximizes 𝑉 [41], such that
𝐿𝐿 ′ = 𝐿𝑇𝑇 ′𝐿 ′ = �̂� �̂� ′.

𝑉 =
1
𝑝

𝑚∑︁
𝑗=1


𝑝∑︁
𝑖=1

𝑙4𝑖 𝑗 −

(
𝑝∑︁
𝑖=1

𝑙2𝑖 𝑗

)2

𝑝


(41)

For each of the 𝑚 factors, numerical values are calculated for each sample element, called factor
scores ( 𝑓 𝑗 , with 𝑗 = 1, · · · , 𝑛), which can be estimated by the method of minimums weighted
squares (42), as follows (Johnson and Wichern [2019]):

𝑓 𝑗 = (𝐿 ′ Ψ−1 𝐿)−1 𝐿 ′ Ψ−1 𝑧 𝑗 (42)

3.1.1 Application – Representation of the behavior of a buttress block by a statistical
index

In the study carried out by Oro et al. [2021], the data from 61 instrumentation sensors used in
the monitoring of the Itaipu Dam, including piezometers, extensometer bases, plumblines, and
multiple-rod extensometers, were analyzed using the factor analysis to obtain a statistical index,
called the Monitoring Index of Joint Responses of the Blocks of Dams (IMCRB), which represents
the global behavior of the block responses and can be used in real-time monitoring of the dam and
assist in the making process of decision.

The correlations between the sensors were significant ( 𝑇 = 53949.51 > 𝑇𝛼=5% = 1930.63) and the
sample was considered adequate (𝐾𝑀𝑂 = 0.92). Horn’s Parallel Analysis indicated the extraction
of 5 factors. The resulting factor model was able to explain approximately 85.21% of the variability
observed in the dataset of the 61 sensors.

The factors were interpreted according to the sensors most correlated with them and their respective
factor loadings estimated by the maximum likelihood method. In the first factor, most of the
multiple-rod extensometers were considered. In the second, the sensors of the extensometer bases
that measure the gap between blocks were considered. Most piezometers had higher correlations
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with the third factor. The fourth factor included plumbline sensors that measure radial displacements.
Only two piezometers were felt in the last element. Thus, it can be stated that for the analyzed
dataset, most of the variability came from foundation creep, measured by extensometers with high
factor loadings in 𝐹1 (39.56%), and from the openings/closings of the contraction joints between
blocks, measured by the extensometer bases strongly correlated with 𝐹2 (27.68%). The time-series
of these two factors (Figure 13) showed seasonal movements resulting from thermal variation with
maximum annual values in the winter and minimum in the summer. In addition, 𝐹1 and 𝐹2 showed
downward and upward trends, respectively, similarly to the sensors most correlated with each factor.

Figure 13: The factors and the statistical index IMCRB.
Source: Oro et al. [2021]

The factor, being a latent variable, cannot be measured directly. Thus, the factor values, called factor
scores, were estimated based on the factor loadings and sensor data. Considering the factors as
quantitative variables, which jointly represent the variability of the dam’s responses to the various
phenomena acting on it, these were used as parameters for generating a statistical index IMCRB.
The model’s coefficients (43) were estimated based on the proportion of variance explained by each
factor.
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𝐼𝑀𝐶𝑅𝐵 = 0.3956𝐹1 + 0.2768𝐹2 + 0.0858𝐹3 + 0.0569𝐹4 + 0.0369𝐹5 (43)

The IMCRB time-series showed combined characteristics of the factors, with similar seasonality to
factors 𝐹1 and 𝐹2 and a slight downward trend until 2012. Observing the instruments that had a
more excellent representation according to the factorial model, it was possible to list the phenomena
that most influenced the behavior of the dam blocks represented by this index, namely: the variation
in the level of the reservoir, environmental thermal influences and eventual strains in the rock-mass.

3.2 Canonical Correlation Analysis

The Canonical Correlation Analysis is an interdependence analysis technique that allows researchers
to identify and quantify the associations between two groups of variables (𝑋 and 𝑌 ). The basic
idea is to find the linear combination of variables 𝑋 and the linear combination of variables 𝑌 that
produces the highest correlation between the two groups (Johnson and Wichern [2019]). The first
group (𝑋) comprises 𝑝 decision variables, also called explanatory variables (independents). In
comparison, the second (𝑌 ) is formed by 𝑞 response variables (dependents on descriptive).

Given that 𝑈 and 𝑉 are linear combinations of the vectors in 𝑋 and 𝑌 , the canonical problem is
obtaining the vectors of coefficients a and b that maximize the correlation between𝑈 and 𝑉 . The
vectors a and b, in this case, are solutions to a system of equations. The linear combinations𝑈 and
𝑉 , in this case, are called canonical variables.

Thus, each pair of canonical variables have unit variance and maximum correlation and is not
correlated with others pairs of canonical variables. The number of pairs of canonical variables that
can be obtained equals the lowest value of 𝑝 and 𝑞. In general, we try to get a few pairs of canonical
variables that explain much of the interdependence between the two sets of observable variables.

The application of canonical correlation analysis can be performed according to the following
sequence of steps:

1. Composition of groups 𝑋 and 𝑌 , with variable 𝑝 and 𝑞, respectively;

2. Estimation of covariance matrices for each group Σ𝑋 and Σ𝑌 , and cross-covariance matrices
Σ𝑋𝑌 ;

3. Obtaining the canonical variable pairs𝑈 and 𝑉 , through the linear combinations𝑈 = 𝑎′𝑋
and 𝑉 = 𝑏′𝑌 , respectively (44), so as to maximize the correlation between𝑈 and 𝑉 (45);

(Σ𝑋𝑌Σ−1
𝑌
Σ𝑌𝑋 − 𝜆𝑘Σ𝑋)𝑎 = 0

(Σ𝑌𝑋Σ−1
𝑋
Σ𝑋𝑌 − 𝜆𝑘Σ𝑌 )𝑏 = 0 (44)

𝐶𝑜𝑟𝑟 (𝑈𝑘 , 𝑉𝑘) =
√︁
𝜆𝑘 =

𝑎′Σ𝑋𝑌𝑏√︁
𝑎′Σ𝑋𝑎

√︁
𝑏′Σ𝑌𝑏

(45)

Where 𝜆𝑘 is the 𝑘-th eigenvalue of the matrix Σ−1
𝑋
Σ𝑋𝑌Σ

−1
𝑌
Σ𝑌𝑋 or, equivalently, from the

matrix Σ−1
𝑌
Σ𝑌𝑋Σ

−1
𝑋
Σ𝑋𝑌 ;

Similarly, it is possible to perform canonical correlation analysis based on sample correlation
matrices.

4. Estimation of the correlations of the canonical variables with the original variables;
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5. Calculation of the proportion of the total variation that is explained by each canonical
variable;

6. Interpretation of correlations and canonical pairs.

3.2.1 Application – Study of the relationship between two environmental variables
with the displacements of the structures of a concrete dam

Two sets of data were subjected to canonical correlation analysis in the study carried out by Oro
et al. [2016]. The first was composed of 38 extensometer bases, plumblines, and multiple-rod
extensometers to measure different types of displacements of two critical blocks of the Itaipu dam.
The second set was formed by four indicators of environmental conditions (temperature on the
surface of the concrete downstream) upstream, the temperature of the air, and the water level of the
dam reservoir).

Initially, the data matrix composed of the monthly averages (rows) of the values recorded between
January 1990 and December 2013 for each of the 42 sensors (columns) considered in the study was
organized. The values were standardized as these are measurements on different scales of measures
and magnitudes.

All the eigenvalues were considered significant (Table 8), but the authors chose to detail the results
only for the first pair of canonical variables, as it was the one with the highest correlation.

Table 8: Canonical correlation of displacement sensors vs environmental conditions.

Eigenvalues Canonical
Correlation

Wilks Lambda Chi-square Degrees of
Freedom

P-Value

𝜆1 = 0.973 0.986 0.003 1537.08 152 0
𝜆2 = 0.717 0.847 0.114 577.122 111 0
𝜆3 = 0.437 0.661 0.402 242.062 72 0
𝜆4 = 0.286 0.535 0.714 89.492 35 0

Source: Oro et al. [2016]

The canonical variable 𝑈1 (46) explained 38.7% of the variance observed in the displacements,
while the proportion of the variance is explained by 𝑉1 (47) for the environmental conditions group
was 65.6%. Thus, the groups of Displacements and Environmental Conditions sensors were well
represented by the first pair of canonical variables since the correlation between these groups was
0.986. In contrast, the other teams had lower values.

𝑈1 = −0.04𝑍1 − 0.09𝑍2 − 0.24𝑍3 + 0.02𝑍4 − 0.04𝑍5 − 0.05𝑍6 − 0.24𝑍7 +
+0.05𝑍8 + 0.12𝑍9 − 0.08𝑍10 − 0.04𝑍11 − 0.03𝑍12 + 0.26𝑍13 − 0.07𝑍14 −
−0.28𝑍15 + 0.11𝑍16 − 0.16𝑍17 − 0.07𝑍18 + 0.08𝑍21 − 0.07𝑍22 + 0.04𝑍23 −
−0.36𝑍24 + 0.06𝑍25 + 0.10𝑍26 + 0.02𝑍27 − 0.01𝑍28 − 0.04𝑍29 − 0.01𝑍30 −
−0.02𝑍31 − 0.02𝑍32 + 0.17𝑍33 − 0.28𝑍34 − 0.11𝑍35 + 0.04𝑍36 − 0.12𝑍37 −
−0.52𝑍38 + 0.06𝑍39 + 0.43𝑍40 (46)

𝑉1 = 0.20𝑍41 − 0.02𝑍42 + 0.12𝑍19 + 0.72𝑍20 (47)
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Figure 14: Scatterplot of the canonical variables𝑈1 and 𝑉1.
Source: Oro et al. [2016]

Estimates of correlations between sensors that measure displacements and environmental indicators
were also obtained. The Table 9 shows the most intense relationships (𝜌 > |0.8|), with a
predominance of multiple rod strain gauges (𝑍23, 𝑍24, 𝑍35, 𝑍38, 𝑍40) and three pendulum sensors
(𝑍2, 𝑍3 and 𝑍5) strongly related to temperatures (𝑍19, 𝑍20 and 𝑍41).

Table 9: Strongly correlated variables.

Sensors Correlations
𝑍35 − 𝑍20 −0.913
𝑍24 − 𝑍20 −0.910
𝑍24 − 𝑍41 −0.889
𝑍23 − 𝑍20 −0.888
𝑍23 − 𝑍41 −0.872
𝑍5 − 𝑍41 −0.855
𝑍40 − 𝑍19 −0.855
𝑍40 − 𝑍41 −0.843
𝑍3 − 𝑍41 −0.829
𝑍2 − 𝑍20 −0.820
𝑍35 − 𝑍41 −0.815
𝑍23 − 𝑍19 −0.814
𝑍24 − 𝑍19 −0.812
𝑍38 − 𝑍19 −0.811

Source: Oro et al. [2016]

In the region where the Itaipu dam is located, the difference between average monthly temperatures
can reach 20◦C. In addition, the largest displacements, even negligible, occur during periods of
low temperature. This justifies the solid negative correlations of the sensors with the confirmed
temperature variables. However, the water level of the dam reservoir showed a slight positive
correlation individually with only a few sensors. This is probably due to the history of slight
variation in the analyzed period, which led to practically constant forces acting on the dam. Another
reason may be the need to interact the reservoir water level with the temperature to influence the
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displacements.

3.3 Cluster Analysis and Discriminant Analysis

Cluster Analysis seeks to find a small number of homogeneous groups within a heterogeneous data
set whose variation within the group is substantially smaller than the total variability of the data set.

First, the researcher must select the methods he will use to calculate the distances between the
groups and compare observations on the variables used to characterize the elements to be grouped.
The similarity is a measure of proximity between two groups. One way of calculating this measure
is the Mahalanobis distance. A widely used comparison method is the agglomerative hierarchical
method, which initially considers each observation as a separate group. At each step of the process,
groups are joined according to similarities, forming new clusters until only one set remains with the
total number of observations. The graphic representation of these steps is known as a dendrogram,
characterized by a hierarchical tree structure, generated sequentially in forming the groups.

Discriminant Analysis is a technique that enables, starting from an independent variable, to study
the profile, performing classification and differentiation of two or more group elements. The number
of groups should be known in advance. The discrimination is based on a mathematical rule, which
minimizes the likelihood of incorrect classification errors.

3.3.1 Application – Clustering of monitoring data of a concrete dam by similarity in
the environmental conditions

The study carried out by Oro et al. [2016] involved 288 observations collected by 42 sensors used
to monitor a block of the Itaipu dam; first, the five factors identified by the application of Factor
Analysis were used as input variables for the cluster analysis.

The hierarchical clustering of the 288 observations was performed using the mean linkage method
and the Mahalanobis distance. Three homogeneous groups of dates were formed (Figure 15),
aggregating 190 elements in the first (G1), 83 in the second (G2) and 15 in the third (G3).

Figure 15: Clustering by the mean linkage method, using the Mahalanobis distance.
Source: Oro et al. [2021]

The first group consisted essentially of observations obtained from November to May, a period
characterized by the highest air temperatures. The second was primarily composed of months with
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lower air temperatures. The third group gathered the dates on which the lowest water levels in the
reservoir were recorded.

The classification of the 288 observations was submitted to discriminant analysis, using as
discriminant variables the sensors that presented the highest commonalities in the factor analysis
(𝑍7, 𝑍9, 𝑍33, 𝑍34, 𝑍35 and 𝑍42). Due to the significant difference in the size of the groups, the
proportionality of the number of observations per group was considered. The high percentage of
correct classification, 94.1%, confirmed the discriminating power of these sensors.

Two functions were considered statistically significant, at the confidence level of 99%, to distinguish
the observations belonging to each group (Figure 16). The first function discriminates the "High
Temperature" and "Low Temperature" groups, G1 and G2, while the second function discriminates
the "Low Water Level of Reservoir" (LWLR) group from the others, G3.

Figure 16: Dispersion of the elements according to discriminant functions between groups.
Source: Oro et al. [2021]

The classification functions of the observations in the groups (48) resulted from the linear
combinations of the sensors. To classify new observations, it is sufficient to calculate the scores of
each new element in each group and then allocate it to the one with the highest score.

𝐺1 = −0.66 + 0.66𝑍34 − 1.33𝑍33 − 0.08𝑍35 + 0.32𝑍9 + 0.13𝑍42 − 0.88𝑍7

𝐺2 = −3.40 − 0.45𝑍34 + 2.87𝑍33 + 0.07𝑍35 − 1.284𝑍9 + 1.656𝑍42 + 2.674𝑍7

𝐺3 = −23.81 + 5.94𝑍34 + 1.01𝑍33 + 0.54𝑍35 + 3.01𝑍9 − 10.87𝑍42 − 3.64𝑍7 (48)

3.4 Principal Components Analysis

When the number of variables to be analyzed increases, the parameter that evaluates the average
number of samples required to detect changes in the process deteriorates; in this way, if suspected
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that the process variability is not equally distributed among all variables, it is helpful to use other
methods (Montgomery [2013]).

Techniques reduction data are based on creating sets of latent variables that capture the data’s
significant variation hidden. The change that the sets of latent variables extract from the process
variables is of fundamental importance for evaluating product quality, process security, and, more
generally, if the process is in statistical control (Kruger and Xie [2012]).

3.4.1 Application – Principal components multivariate control chart

In the study of Lazzarotto et al. [2016], considering that:

• a high number of instruments that assess various quality characteristics of interest that have
an inherent variability monitors hydroelectric plants;

• the readings of these instruments generate time series of data on many occasions correlate;

• each project of a dam plant has characteristics that make it unique and faced with the need to
establish statistical control limits for the instrumentation data;

this article approaches multivariate statistical analysis and proposes a model that uses principal
components control charts and statistical 𝑇2 and 𝑄 to explain the variability and establish a method
of monitoring to control future observations.

Because of the the economic, social, and environmental importance of plants, the structural behavior
of hydroelectric dams requires that dams are monitored using tools for assessing the safety and
ensuring the operation of power generation. Usually, a large dam has hundreds or even thousands
of instruments that measure various quality characteristics of the dam. Evaluating the results of
measurement instrumentation of a large number of instruments individually may be impractical or
even lead to high false alarms and discredit the monitoring system.

In the dam instrumentation, control values are those closer to the physical reality, considering
the thermal environmental influences that act on structures and more realistic rheological models
of concrete and foundation. Control values are used to monitor the performance of the systems
using readings taken and are warning signs for abnormal situations of structural behavior. Values
are determined earlier in the design phase, and the reservoir filling is not, in many cases, more
applicable during the operation phase Itaipu [1999]. It is necessary to establish operational control
values for the instrumentation of hydroelectric plants.

This article aims to propose amultivariate statistical model for monitoring instruments for monitoring
dams via control charts and principal components analysis and seeks to separate the effect of
environmental variables on the reading of instruments from other sources of variability by use
of statistics and and establish control values for monitoring future observations. The method is
evaluated in a case study applied accurate data from monitoring a hydroelectric dam plant.

The field of multivariate analysis consists of statistical techniques that consider two or more random
variables related to a single entity to produce an overall result that considers the relationship between
the variables (Jackson [1991]). Multivariate process control is a methodology based on control
charts used to monitor the stability of a multivariate process. Stability is achieved when one or
more parameters of interest remain stable on samples (Mason and Young [2002]).

The application of univariate control charts can lead to erroneous and misleading interpretations,
and those multivariate methods are a good alternative (Montgomery [2013]; Johnson and Wichern
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[2019]); if the variables are correlated increases the probability of emission of false alarms and not
receiving an alert when the multivariate process is out of control (Ryan [2011]).

A method that can extract features in the data can be helpful in dam safety studies. As the
instrumentation readings are a result of the combination of several factors, methods of multivariate
data analysis can provide the following advantages: 1) more profitable by reducing the number
of individual analyses, 2) more remarkable ability to explain and separate the variability due to
one because of random variability attributable since the random variabilities are, by definition,
uncorrelated from one instrument to another and 3) to identify patterns of behavior (Nedushan
[2002]).

The PCA is a multivariate data analytical technique in which several related variables are transformed
into a set of uncorrelated variables that are linear combinations of the original variables, which is
expected to explain the variability between variables with a smaller number of variables (JACKSON,
1991). Its industrial application has contributed to the multivariate statistical process control since
only a few multivariate control charts can serve as an index of process performance. PCA improves
the early detection of failures in the univariate graphs (Hourti [2005]).

The 𝑄 statistic, also known as squared prediction error, represents the changes that the principal
component model does not explain. It measures the difference between the sample mean and its
projection on the primary components model (Mujica et al. [2011]).

This work was developed with accurate data from the instrumentation section E of the Itaipu
hydroelectric plant. Faced with various instruments present, the piezometers were chosen because
of the amount and the importance of their role in measuring uplift pressures in the dam. The E
section has seven piezometers.

For phase, I, the adjustment test (retrospective) of the model, were selected 300 readings, and
for Phase II validation (perspective) of the model, we selected 19 readings. Variables in very
different scales and domain variations should be standardized (Johnson and Wichern [2019]). This
procedure is because the original variables can have scales and domains quite distinct, giving a false
interpretation of its absolute magnitude variability, which is avoided by standardizing (Montgomery
[2013]).

The main steps of the method consist of:

• Gathering and data standardization

• Testing the multivariate normality

• Choosing the Type I error probability and the estimate of the covariance matrix

• Construct the graphic 𝑇2 for the full set of variables

• Extraction and selection of the number of principal components and normality test

• Construction of the graph 𝑇2 and the ellipse control of the principal components in phases I
and II

• Calculation of residual and 𝑄 statistics

• Construction of 𝑄-chart

• Interpretation of results.
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For each vector, 𝑋 ′ = (𝑋1, 𝑋2, · · · , 𝑋7) containing the standard readings of piezometers was
calculated the quantity

𝑇2 = (𝑋 − 𝑋) ′𝑆−1(𝑋 − 𝑋)

where 𝑋 is the sample mean vector, 𝑆−1 the covariance matrix, and 𝑋 ′ represents the transpose
matrix of 𝑋 . This value was compared with the value corresponding to the 95% percentile of the
distribution 𝜒2 with seven degrees of freedom which is the reference distribution for this case, to
conclude that the data set can be accepted following a multivariate normal distribution.

Once wewere able to accept the hypothesis that the data come from amultivariate normal distribution
with a 95% confidence level, for comparison, univariate control Shewhart plots of the sample mean
xbar were constructed for phase I generating an unacceptable number of observations outside the
control limits for respective univariate Shewhart plots from instruments 𝑃1 to 𝑃7 for phase I data.
Note the impossibility of univariate treatment with the high number of observations outside the
control limits.

For this study, the usual covariance matrix of equation (49) was selected because it is less sensitive
to minor deviations from the mean.

𝑆 =
1

𝑚 − 1

𝑚∑︁
𝑖=1

(𝑋𝑖 − 𝑋) (𝑋𝑖 − 𝑋) ′ (49)

Extracting the principal components of the data set of phase I, a simulation was performed by
selecting 𝑘 = 2 . . . , 6 main features. Data from scores of 𝑘 main components were retained, and
multivariate normality was tested by the test 𝜒2

𝑘
at a confidence level of 95% that obtained the

acceptance of the hypothesis normality,

The control chart of statistical 𝑇2
4 including the data of the two phases is shown in Figure 17. Figure

18 displays the control of the ellipse 95% confidence data 𝑇2
4 for the first two principal components;

the point in red represents the single observation out of control, which is outside the ellipse control;
we take the components 2 and 3. These plots were constructed for 𝛼 = 0.0027 and the usual
covariance matrix at a 95% confidence level. Finally, the Figure 19 shows the behavior of the
statistic 𝑄 in the period of analysis, for 𝑘 = 4.

Figure 17: 𝑇2 chart for 4 principal components retained in phases I and II.
Source: Lazzarotto et al. [2016]

This article established a method for building control charts for dam monitoring instruments.
Considering the large number of devices that monitored a large dam and the correlation between
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Figure 18: Ellipse control scores the first 2 components of 4 PC’s retained.
Source: Lazzarotto et al. [2016]

Figure 19: Values of the statistic 𝑄 for 𝑘 = 4 principal components in the phases I and II.
Source: Lazzarotto et al. [2016]

them, the individual monitoring of each instrument is not feasible, either because of the high number
of individual control charts that would be generated or because of a large number of false alarms
could discredit the system.

The results showed that the principal components model combined with the Q statistic was able to
fit the phase better I data when at least four main components are taken because, in this case, the
observations indicated as out of control for the 𝑇2 graph appear as out of control either for the 𝑇2

graph of the 𝑘 principal components or for the graph of 𝑄 and was able to show that, in the applied
case study, the multivariate monitoring system of the piezometers, located in section E of the Itaipu
hydroelectric plant, was under statistical control at the 95% confidence level.

The adopted model enabled an interpretation of the principal components as a consequent variability
of environmental factors (inherent) to the model. It is essential to understand that the variability
of the main components originated from these factors and also can be controlled by the aleatory
variability by Q statistic.
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4 Finite Element Method (FEM)

According to Silva [2003], and Maken et al. [2013], dams are subject to changes in their internal
temperature due to changes in external temperature and heat of hydration, which is a source of
heat from chemical reactions of the concrete during the construction phase of the dam, but which
dissipates after a specific time. External thermal loads to a surface come from solar radiation and air,
foundation, and reservoir temperature variations. Such loads can cause significant deformations and
volumetric changes in the structure, which often exceeds the tensile strength of concrete, leading to
the development of cracks.

The study of temperature behavior in a concrete dam is linked to the heat transfer processes to
which it is subject (conduction, convection, and radiation). And the mathematical models that
describe these phenomena can present the following characteristics: they are non-linear; algebraic,
partial, and integral differentials; they constitute a coupled system; the properties of the materials
involved are generally a function of temperature, and the solution region usually has a complex
geometry. (Ozisik [1993], Shukla [2005] and Incropera et al. [2011])

Such characteristics make analytical methods very limited and exact solutions unfeasible, so
numerical methods are the most used means of resolution to obtain answers to complex problems
of genuine interest.

The finite element method consists of a numerical process to obtain an approximate solution for a
mathematical model that describes a physical phenomenon typically. This technique is based on
decomposing the solution domain into simple regions, the so-called elements, for which approximate
solutions are systematically constructed from variational methods or weighted residuals. The
resolution of the problem is obtained from the reconstruction of the domain with the individual keys
of each element, guaranteeing the continuity in the borders between the components (Zienkiewicz
and Taylor [2005]; Chen and Liu [2018]).

The steps to achieve an approximate solution to a physical model using FEM (according to
Zienkiewicz and Taylor [2005]; Chen and Liu [2018] and Lewis et al. [2004]) are:

1. Discretization of continuous: dividing the solution region into subdomains or non-overlapping
element (This step can be represented by Figure 20);

2. Selection of basis functions or interpolation: such functions determine the variation of the
unknown variable in the study;

3. Formulation of the equations of nodes: take into account the individual properties of each
element;

4. Assembling the global matrix for the simultaneous solution of the elements equations;

5. Application of the initial and boundary conditions and loadings;

6. Resolution of the global system for determining the nodal results, such as displacements and
temperatures on different nodes.
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Figure 20: Discretization of continuous.
Source: Bobet et al. [2009]

In the interest of understanding the basic principle of this method, it will be approached in a problem
of heat transfer by conduction in three-dimensional geometry.

4.1 Heat Conduction Equation

Conduction heat transfer aims to determine the temperature field of a medium resulting from
conditions imposed on its borders. The classical equation for heat diffusion is determined by the
first law of thermodynamics and by the Fourier law. It is an empirical relationship involving the heat
flow and the temperature gradient through a proportionality constant called the thermal conductivity
of the properties of materials.

According to Ozisik [1993], the heat conduction equation for an anisotropic material is given by
(50):

𝜕

𝜕𝑥

(
𝑘𝑥 (𝑇)

𝜕𝑇

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
𝑘𝑦 (𝑇)

𝜕𝑇

𝜕𝑦

)
+ 𝜕

𝜕𝑧

(
𝑘𝑧 (𝑇)

𝜕𝑇

𝜕𝑧

)
+ 𝐺 = 𝜌𝑐

𝜕𝑇

𝜕𝑡
, (50)

where 𝑘𝑥 (𝑇), 𝑘𝑦 (𝑇) e 𝑘𝑧 (𝑇) are the thermal conductivities (𝑊/𝑚𝐾) dependent on the temperature
in the directions 𝑥, 𝑦 e 𝑧, respectively; 𝜌 is the specific mass (𝑘𝑔/𝑚3); 𝑐 is the specific heat (𝐽/𝑘𝑔 𝐾)
of the material e 𝐺 is the rate of internal heat generation (internal energy) per unit volume (𝑊/𝑚3).

Briefly, the Equation (50) states that at any point in the medium, the rate of energy transfer by
conduction for a unit volume plus the volumetric rate of thermal energy generation must be equal to
the rate of change of thermal energy stored inside of the volume.

For an isotropic material in which the thermal coefficients 𝑘 , 𝜌 and 𝑐 are all constant, and there is
no internal heat generation and Equation (50) can be rewritten as Equation (51):

∇2𝑇 =
1
𝛼

𝜕𝑇

𝜕𝑡
, (51)

where ∇2 is the Laplacian operator, and 𝛼 = 𝑘
𝜌𝑐
, is called thermal diffusivity 𝑚2/𝑠 (see e.g. Lewis

et al. [2004]).
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Yet, according to Lewis et al. [2004], the solution of the Equation [50] is possible if the initial and
boundary conditions defined are adequate to the physical problem analyzed. The initial condition
consists of a temperature function 𝑇 to which the structure is subjected, at a certain instant 𝑡0. And
the boundary conditions, which can be of two types: Dirichlet or Neumann, describe, respectively,
the temperature (𝑇 |Γ1 = 𝑇1) and the heat flux to which the surface of the structure is subjected
( 𝜕𝑇
𝜕𝑛

��
Γ2

= 𝑞), as can be seen in the Figure 21.

Figure 21: Boundary conditions.
Source: Adapted from Alexandrov [2007]

4.2 Galerkin Method

An expression that describes how temperatures are interpolated in a finite element is given by the
Equation (52):

𝑇 (𝑥 , 𝑦 , 𝑧 , 𝑡) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑥 , 𝑦 , 𝑧)𝑇𝑖 (𝑡) (52)

where 𝑁𝑖 are the basis functions, 𝑛 is the number of nodes in an element and 𝑇𝑖 (𝑡) is a nodal
temperature time-dependent.

The most widely used basic functions are polynomial type, in particular linear and quadratic,
according to the size of the mesh elements. Examples of such functions and applications can be
viewed in Lewis et al. [2004] and Oñate [2013].

Multiplying the Equation (50) by a base function and integrating over the domain of analysis, the
representation of Galerkin is:∫

Ω

𝑁𝑖

[
𝜕

𝜕𝑥

(
𝑘𝑥 (𝑇)

𝜕𝑇

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
𝑘𝑦 (𝑇)

𝜕𝑇

𝜕𝑦

)
+ 𝜕

𝜕𝑧

(
𝑘𝑧 (𝑇)

𝜕𝑇

𝜕𝑧

)
+ 𝐺 − 𝜌𝑐 𝜕𝑇

𝜕𝑡

]
𝑑Ω = 0.

Using integration by parts and the initial and boundary conditions mentioned above (21), the Finite
Element Method (Galerkin modality) can be written from the matrix Equation (53):

[
𝐶𝑖 𝑗

] {
𝜕𝑇𝑗

𝜕𝑡

}
+

[
𝐾𝑖 𝑗

] {
𝑇𝑗

}
= { 𝑓𝑖} , (53)

where:
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[
𝐶𝑖 𝑗

]
=

∫
Ω
𝜌𝑐𝑁𝑖𝑁 𝑗𝑑Ω;[

𝐾𝑖 𝑗
]
=

∫
Ω

[
𝑘𝑥 (𝑇) 𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁 𝑗

𝜕𝑥
+ 𝑘𝑦 (𝑇) 𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁 𝑗

𝜕𝑦
+ 𝑘𝑧 (𝑇) 𝜕𝑁𝑖

𝜕𝑧

𝜕𝑁 𝑗

𝜕𝑧

]
𝑑Ω

{ 𝑓𝑖} =
∫
Ω
𝑁𝑖𝐺 𝑑Ω −

∫
Γ2
𝑞𝑁𝑖 𝑑Γ2

4.3 Application of FEM and ARIMA model for temperature forecast in concrete
dam

The main objective of this section is to describe an application of the FEM and the time series
forecasting method, called ARIMA, to describe predicted temperature fields. The methodology
adopted and the results obtained are described in this section and were published in work: Hickmann
et al. [2016].

In chapter 2 some forecasting methods for univariate time series and in this chapter (in the sections
above), the finite element method applied to a heat conduction equation in a three-dimensional
domain were presented. It is possible to combine these tools to calculate predicted temperature
fields.

Since a concrete structure, such as the dams of a hydroelectric power plant, is exposed to the effects
of temperature, the future thermal behavior of the dam can help conduct the study of other variables
to which the dam is subject, such as deformation and displacement, which are strongly influenced
by the dam body temperature. Thus, knowing the future structural response of the dam may be
possible, and this will collaborate in the monitoring and predictive actions of the dam.

The sequence describes a methodology that can be used to determine predicted temperature fields.

4.3.1 Methodology

The flowchart (Figure 22) presents a practical scheme that can be adopted to obtain a forecast of the
temperature fields, using the ARIMA method (Section 2.1) and the FEM (sections above):
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Figure 22: Flowchart of the proposed method.
Source: Hickmann et al. [2016]

The flowchart above displays two initial parts that are independent. One aspect involves the
temperature prediction process and the other deals with the concrete block’s heat conduction model.

Initially, data is collected, obtained from reading thermometers in the field (surface and internal
to the structure), and stored in a database. The time series of surface thermometers provide the
boundary conditions for the thermal model, and to obtain the predictions of these series, the data
must be periodic. To determine the forecasts, the data were adjusted to monthly periodicity. After the
prophecy was made, they were changed to become daily so that the FEM, applied computationally
through the commercial software Ansys, is practicable. A simple math technique for completing
data is cubic spline interpolation.

The next step consists of forecasting the temperature from the data series of surface thermometers,
now with daily periodicity. The thermometer series can be predicted using several techniques, as
mentioned in the previous sections of chapter 2. But in this case, only the ARIMA model was used.
These predicted data will be used as boundary conditions (in this case, Dirichlet) to compose the
concrete block’s thermal model together with the heat conduction equation.

The FEM will solve the thermal model (heat equation and initial and boundary conditions).
Therefore, it is necessary that: the thermal constants (thermal conductivity, specific mass, and
specific heat) are defined for the type of concrete that the structure has; the geometry that represents
the block must be the most faithful to the actual geometric model, and the finite element mesh for
the geometry is adequate.

Since the boundary conditions are predicted temperature data, the temperature fields, obtained
by numerical resolution by FEM of the thermal model, will be expected. This complete process
generates indicated temperature fields for the concrete block under analysis. An internal point,
where an internal thermometer is located, was monitored, and the MAPE was calculated to assess
the methodology’s applicability.

Lazzarotto, Emerson, et al. (2022) Statistical Methods for Monitoring Control a Concrete Dam pp. 279-336

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 327



4.3.2 Case Study and Results

The methodology presented in the above section was used in a case study of a dam block at the
Itaipu Hydroelectric Power Plant. A concrete block (called E-6) was selected for analysis, and
temperature data were taken from four surface thermometers (TS-D-903, TS-D-904, TS-E-1, and
TS-D-5). Figure 23 shows the block’s two-dimensional geometry and the thermometers’ location.

Figure 23: Geometry buttress block, location of thermometers and delimitation of
boundary conditions.

Source: Hickmann et al. [2016]

As seen in Figure 23, from point A to point B (clockwise), the adopted temperature function was
the thermometer TS E-1, from point B to C of TS-D-903 thermometer, point C to D TS-D-904
thermometer from the point D to E TS-D-5 thermometer and from point D to point E; the face was
considered that it had zero heat flow, 𝑞 = 0.

The thermometer data was split into a training in-sample (from 11/01/2010 to 11/11/2013) and
a forecasting out-of-sample (09/12/2013 to 27/11/2014). Figure 24 graphically shows the data
adjusted by the spline versus the data obtained from the forecast by the ARIMA model. The
MAPE-in is an error within the sample, and de MAPE-out is the error out-of-sample:
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Figure 24: Cubic splines vs ARIMA for the out-of-sample period for each of
the surface thermometers (TS-D-5, D-TS-903, TS-904 and TS-D-E-1).

Source: Hickmann et al. [2016]

The numerical-computational solution of the thermal model was obtained from some simplifications
adopted: no source of heat, the material homogeneity, isotropic and linear elastic behavior,
considered the state of plane stress and simplifications in geometric section (chamfers, drainage,
supports, and other beams). And the thermal constants, obtained in the block design, were: a
thermal conductivity of 1.2𝑊 (𝑚𝐾)−1, a specific heat of 895.38𝐽 (𝑘𝑔 𝐾)−1 and a specific mass of
2550 𝑘𝑔𝑚−3.

The simulations were performed in ANSYS – Workbench V16.1 environment, commercial software
with the license acquired by CEASB-FPTI, widely used in static and dynamic structural simulations.
The mesh had 1386 elements (quadrangular and some triangular). A stationary simulation with
the temperature data approximate temperature on 25/11/2013 was performed with the aim being
to block an equilibrium temperature range, and this was used as the initial temperature of the
block for the transient analysis, following temperature data set of 4 thermometers obtained through
the ARIMA model in the period from 26/11/2013 to 31/10/2014 served as boundary conditions
to the thermal model. The Figure 25 provides trimonthly temperature fields during this period,
considering the last day of the month.
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Figure 25: Trimonthly transient temperature fields.
Source: Hickmann et al. [2016]

The color scale at the left-hand side of each of the four diagrams in Figure 25 shows the various
temperatures (in Celsius) in increasing order from minimum values at the bottom (dark blue) to
maximum values at the top (red). The highest temperatures are in the downstream phase (contact
with the environment), while warmer temperatures are located upstream (communication with the
reservoir).

The simulation results showed that heat storage in the dam of the soul throughout the year, since the
color change in the graph, is closest to the surface. As expected on the type of material, the energy
dissipation is gradually slow. Moreover, it has monitored a control point within the structure where
the internal thermometer TI-E-01 is located (see Figure 23). The data measured by this thermometer
for the out-of-sample forecasting year were compared with those obtained by numerical simulation
(the FEM), and the calculated MAPE was 15.37%. With this, the thermal model of the block is
within the engineering safety limits, according to the superintendence of the Itaipu Power Plant
Engineering.

5 Final Remarks

This chapter had as its primary objective to present some numerical and probabilistic methods with
applications aimed at the dam of the Itaipu Hydroelectric Power Plant. The range of applications is
certainly not restricted to the above and continues to be the subject of study by the researchers who
wrote this chapter.
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The instrumentation data are updated daily, either automatically or through manual readings, and
therefore all models applied in the mentioned works can be updated and new results obtained. In
addition, the methods discussed in this chapter can be used in other dams or concrete structures,
respecting their particularities and with the necessary adaptations or simplifications.

The specific knowledge of engineers combined with the result of mathematical methods provides
excellent foundations for the safety of any structure, a topic of high relevance, especially in dams,
which have a large size and whose economic, environmental, and social damages are enormous in
the event of a catastrophe.
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Abstract

This chapter presents methodologies for preprocessing electromechanical
impedance-based structural health monitoring data sets with the objective of er-
ror reduction when inferring changes in the structure. Atypical signatures may not
represent the actual state of the structure and should be excluded from the inference
step. The impedance signature trend in the frequency domain is another aspect that
must be considered because divergences between the samples regarding this feature
can also lead to mistakes. Polynomial regression models for matching the effect of
temperature on impedance signatures are also discussed in this chapter, and method-
ologies to infer the state of the structure from the CCD metric.

Keywords: Impedance-based structural health monitoring; Statistical preprocessing tools; Re-
gression models

1 Data preprocessing in SHM

Structural health monitoring can be performed from the electromechanical impedance signature,
and a set of signatures acquired under the same conditions are expected to be similar. In other
words, repeatability of signatures is expected.
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The monitored structure may be located in environments where it is impossible to control
variables whose effect may interfere with the electromechanical impedance signature, reducing
the degree of repeatability among measurements. The repeatability requirement may not be met
due to atypical signatures. Abrupt actions resulting from a falling object, somebody walking, or
a bird landing is an uncontrolled interference that can affect the electromechanical impedance
signature.

The verification of outliers in the damage metrics, calculated within the same group of signa-
ture repetitions, can help detect atypical signatures, which should be removed from the database
for further analysis. The procedures used for the necessary data cleansing will be called pre-
processing (Section 1).

Further analyses, in this chapter, in particular, are defined as the processing (Section 2) of the
baseline data for the determination of polynomial models for temperature compensation and the
post-processing (Section 3) as the use of data to investigate the integrity of the structure.

After collecting a set of signatures representing the same state of the structure, the median
signature can be taken as a reference signature. In this way, it is possible to calculate some damage
metrics, such as the CCD (Correlation Coefficient Deviation), which in this situation will depict the
degree of variability or similarity between the group’s signatures. The median signature is chosen
as a reference due to the generally asymmetrical character of the electromechanical impedance
distribution at each frequency.

The correlation coefficient is defined as in Eq. 1

CCZ1Z2 =
1

n

n∑
i=1

{[
Z1,i − Z̄1

] [
Z2,i − Z̄2

]
SZ1SZ2

}
(1)

where Z1,i and Z2,i are the real parts of the electromechanical impedance of the two signals in-
volved in calculating the metric, at frequency i, with i = 1, 2, · · · , n and n is the number of
frequency points used to data acquisition. To calculate the correlation coefficient within the same
group of signature repetitions, you can define Z1 as any signature and Z2 as the median signature.
The averages of each sample set are represented respectively by Z̄1 and Z̄2 and, SZ1 and SZ2 are
the standard deviations of them. The metric is then determined by Eq. 2.

CCD = 1− CCZ1,Z2 . (2)

Example 1. Consider the 16 impedance signatures as presented in Table 7 (adapted data),
measured from a real experiment developed at the Structural Mechanics Lab of the Mechanical
Engineering School of the Federal University of Uberlandia. Calculating the CCD values
associated with each measurement using the R software:

�� ��Solution
The developed code is shown in the following image (Figure 1), whose output is the CCD

values rounded to 4 decimal places.
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Figure 1: Calculating CCD in R language.

It is assumed that outliers values of CCD will be obtained from atypical or discordant signa-
tures about the others in the group. Therefore, the corresponding signatures must be retaken from
the database for further analysis. There are some methods of identifying outliers, among them,
the Tukey method [Tukey, 1977], better known as boxplot, and the method de Chauvenet [Reddy,
2011]. These two methods will be presented in subsections 1.1 and 1.2 to follow.

1.1 Tukey Method - Boxplot

The box plot or BoxPlot is defined by a rectangle in which, if presented vertically, the lower
and upper sides coincide with the first (q1) and the third (q3) quartiles, respectively. The inner
dash is the median value (q2). The distance between q1 and q3 is the interquartile range, IIQ =
q3 − q1. This interval contains 50% of the central observations, and its amplitude, as well as the
full amplitude of the Boxplot, contains information about the dispersion of the data.

A value located between q1 − 1.5× IIQ and q1 − 3× IIQ or between q3 + 1.5× IIQ and
q3 +3× IIQ is called outlier. A point beyond q3 +3× IIQ or short of q1 − 3× IIQ is called an
extreme value. In this text we will not make this distinction and extreme values will also be called
outlier (Figure 4).

Example 2. Consider the CCD values presented in the example solution 1 and check the existence
of outliers values using Tukey’s method. �� ��Solution

Getting q1 =
x(4) + x(5)

2
= 0.0201 and q3 =

x(12) + x(13)

2
= 0.02075, values greater than

0.02075+1.5× (0.02075−0.0201) = 0.0217 or less than 0.0201−1.5× (0.02075−0.0201) =
0.0191 are classified as outliers. The index in parentheses, x(i), indicates the value of x in the i-th
position after all values are sorted in ascending order. In this example, only the value 0.0223 is
classified as outliers.

The descriptive analysis presented in the Example 2 can be performed in the Software R [R
Core Team, 2021]. However, a different methodology for determining the quartiles. There are
several methods for estimating quartiles [Langford, 2006], and they may differ in the way of
determining their position and their calculation itself.
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The same data explored in the Example 2 were used to illustrate the obtaining of outliers from
the standard methodology implemented in the R software (Figure 2).

Figure 2: Calculating outlier in R language.

The outlier point, as well as the behavior of the data distribution, are shown in Figure 3.

0.
02

05
0.

02
15

C
C

D

Figure 3: Boxplot of the outlier as well as the CCD distribution.

Based on this criterion, the twelfth signature (CCD=0.0223) may have been acquired under
the effect of some atypical event and therefore does not represent the actual status of the structure
and thus must be removed from the database for future analysis.

Another example of detecting outliers at the two extremes of the data distribution, from a set
of data arising from the observation of any variable Y , is shown in Figure 4.

4
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8
10

12
14

16
y

Figure 4: Boxplot of the outliers at the extreme right (top) and left (bottom) of the
data distribution.

The values of outliers shown in Figure 4, as well as the positions of these values in the data
list, can be obtained with the R commands shown in the following image (Figure 5 )
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Figure 5: Identification of outlier values and their respective positions in the data
vector.

The position of an outlier damage metric in the list of values makes it easier to identify the
atypical impedance signature associated with that value.

1.2 Chauvenet’s method

This method is based on the number of standard deviations z (Eq. 3) that a value, (y) is far from
the mean (ȳ).

z =
y − ȳ

s
=⇒ (y − ȳ) = zs (3)

If z is greater than the maximum allowable deviation (dmax) or less than the minimum per-
missible deviation (dmin), then the corresponding value y is considered an outlier.

The thresholds dmax and dmin are determined from the normal distribution. Therefore, the
hypothesis of normality of the variable (Y ), from which measurements or observations are made,
cannot be rejected. This is a necessary assumption for applying the Chauvenet criterion [Taylor,
2012].

According to this criterion, a value is considered non-typical if the corresponding number
of deviations from the mean z belongs to a range of values, symmetrically delimited by dmin and
dmax around the mean, with probability 1−1/2nwhere n is the number of elements in the sample.

Since z, presented in Eq. 3 is a standardized score, the critical values of the Chauvenet test
(dmax and dmin) are determined from the resolution of the integral as presented in Eq. 4.

P (−dmax < Z < dmax) =

∫ dmax

−dmax

1√
2π
exp

{
z2

2

}
dz = 1− 1

2n
(4)

Figure 6 shows the area corresponding to the probability presented in Eq. 4, for any n.
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Figure 6: Illustration of non-rejection and rejection data regions using the Chau-
venet criterion.

To eliminate the need to determine two thresholds, dmax and dmin, just use the absolute value

of the difference in Eq. 3, that is z =
|x− x̄|
s

and x will be outliers if z > dmax. This strategy is
justified by the symmetry property of the normal distribution.

Failure to comply with the assumption of normality may result in not-so-promising results.
Therefore, in this case, other techniques for detecting outliers should be used, such as Tukey’s
(Section 1.1).

In practical terms, the critical value dmax can be obtained from some software that returns

quantiles of the normal distribution for the probability 1− 1

2n
(Eq. 4).

Example 3. Consider the dataset presented in Figure 5 and check for the presence of outlier
values using the Chauvenet method. If they exist, identify their positions in the dataset.�� ��Solution

Figure 7: R source code to identify outliers and respective positions.
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Using the chauvenet function presented in Figure 7 can be obtained the value 3.01. It is
classified as an outlier by the Chauvenet method. Match function indicates that this value occupies
the 21a position in the dataset.

It is recommended that the Chauvenet criterion be applied only once (Reddy [2011];Taylor
[2012]).

1.3 Trend Analysis

The trending effect on signatures can lead to erroneous inferences about the state of the structure
or temperature compensation polynomials if this effect is not the same in all signatures. Therefore,
verifying its presence and removal is necessary for further processing or inference.

It is suggested that if trend correction is necessary for some impedance signatures, the same
procedure is performed in the others to match them.

The significance of the exponential model (Eq. 5), or its correspondent in linearized form (Eq.
6), for some signature, indicates that the trend characteristic is present and must be adjusted.

The significance of the regression model can be investigated through the analysis of variance.
Also, it can be done by verification of the null hypothesis for the parameter associated with the
independent regressor variable, in the case of simple linear regression.

The determination coefficient R2 is another measure that helps in the decision regarding the
suitability of the model.

The methodology and basic concepts necessary for regression analysis are presented in the 1.4
section.

1.4 Regression Model for Trend Adjustment

Assuming that the trend effect is exponential, the model presented in Eq. 5 can be used. In this
model, impedance is considered a function of frequency:

yi = β0e
β1xi × ϵi; i = 1, 2, · · · , n, (5)

where yi and xi are respectively the impedance and frequency values obtained in the i-th observa-
tion to which the error ϵi is also associated; n is the frequency sample at which impedances were
collected.

Assuming that the model error described in Eq. 5 is multiplicative, then this model can be
approached in its linearized form (Eq. 6). Linearization is advantageous since, in this case, the
system of ordinary equations associated with the model has an analytical solution. It, therefore,
does not depend on the convergence of algorithms to determine the estimates of the coefficients as
in the nonlinear case.

ln(yi) = ln(β0) + β1xi + ln(ϵi) (6)

If the proposed model is indeed effective then the trend-free signature will be obtained by
yi − exp(l̂n(yi)).

To present some theoretical aspects of the simple linear regression model, consider two vari-
ables y and x where y is a variable that linearly depends on x. The statistical model of a simple
linear regression is shown in Eq. 7.
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yi = β0 + β1xi + ϵi (7)

where yi: represents the i-th observed value; xi: the independent variable, i = 1, 2,..., n; ϵi : is
the unobservable error associated with i-th observation; β0 and β1: are the intercept and the slope,
parameters of the model.

In a linear regression model, the following assumptions must be met:

•

• The x values are fixed, that is, known before the observation of y and therefore x is not a
random variable;

• The mean error is zero, ie E[ϵi] = 0, ∀i = 1, 2, . . . , n;

• For a given value of x, the error variance is always constant, that is, V [ϵi] = E[ϵ2i ] −
(E[ϵi])

2 = E[ϵ2i ] = σ2, ∀i = 1, 2, . . . , n , The error is then said to be homoscedastic;

• The error of one observation is uncorrelated with the error of another observation (the errors
are independent), ie E[ϵiϵj ] = 0, for i ̸= j;

• The error has a Normal distribution with zero mean and constant variance (σ2), that is,
ϵi ∼ N(0, σ2). Concluding, the errors are independent and identically distributed, that is,
ϵ ∼ iidN(0, σ2).

This last item assembles the necessary assumptions so that the inference on the model param-
eters can be made from the parametric point of view, the ordinary least-squares method. On the
other hand, if these assumptions are not met, the inference must be made by alternative means
such as the bootstrap method Efron and Tibshirani [1993].

A dependent variable can be modeled as a function of a single regressor variable (Eq. 7), by
several regressors (Eq. 8)

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi, (8)

where x1, x2, · · ·, xk represent the k explanatory variables considered. Yet another possibility
is the modeling of y by a single regressor variable but in polynomial form (Eq. 9) and in this case,
k represents the degree of the polynomial

yi = β0 + β1xi + β2x
2
i + · · ·+ βkx

k
i + ϵi. (9)

The model presented in Eq. 7 is a particular case of both the model presented in Eq. 8 and
Eq. 9. It should be noted that other variations are possible as multiple linear regression models,
in addition to the linear terms, quadratic, cubic terms, etc., are considered for some or some
regressors in addition to interactions between them. The real need for these terms and even for the
variables in the modeling can be verified from the techniques of selection of variables.

The models presented in Eqs. 7, 9 and 8 can be written in matrix form as in Eq. 11 since for
each i, there is a line as shown in Eq. 10.


y1
y2
...
yn


︸ ︷︷ ︸

Y

=


1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
... . . .

...
1 xn1 xn2 . . . xnk


︸ ︷︷ ︸

X


β0
β1
...
βk


︸ ︷︷ ︸

β

+


ϵ1
ϵ2
...
ϵn


︸ ︷︷ ︸

ϵ

(10)
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Y = Xβ + ϵ (11)

When k = 1 in Eq. 10 it means a simple linear regression model (Eq. 7) and when the
columns of the matrix X correspond to the quadratic terms x2, x3, etc, from this same variable x,
represents the polynomial model.

1.4.1 Least-squares estimators

The least-squares estimator for β is determined by minimizing the sum of squared errors, pre-
sented in Eq. 12 which can be interpreted as a function of β, which will be named Q(β).

Q(β) = ϵ′ϵ = (Y −Xβ)′(Y −Xβ) (12)

= Y′Y − Y ′Xβ − β′X′Y + β′X′Xβ.

Note that Y ′Xβ and β′X′Y are scalar and therefore equal. Then Eq 12 can be presented as
in Then Eq 13,

Q(β) = Y′Y − 2β′X′Y + β′X′Xβ. (13)

Differentiating Q(β) with respect to β is obtained:

∂Q(β)

∂β
= −2X′Y + 2X′Xβ (14)

and equating to Eq. 14 set to zero, specific values are admitted for the vector β, allocated in a
vector b, which satisfies Eq. 15

−2X′Y + 2X′Xb = 0, (15)

and therefore the least-squares estimator of β is as shown in Eq. 16

b = (X ′X)−1X ′Y . (16)

Determining the regression equation or the estimation of regression coefficients does not re-
flect any information about the significance of the model, that is, how important the estimated
model is to explain the response variable. The regression analysis of variance allows this study
and is presented in the 1.4.2 section below.

1.4.2 Analysis of variance for regression

The analysis of variance for regression consists of verifying how much variation of the dependent
variable is explained by the model adopted. The total variance quantified through the total sum of
the square, SSTotal, can be written as the sum of the variance explained by the regression model,
SSReg, with the unexplained or residual variance, SSRes.
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Figure 8: Decomposition of deviations from the mean in a simple linear regression.

Figure 8 illustrates the decomposition of the variation in y considering a simple linear regres-
sion. Note, from this Figure, that (y0 − ȳ) = (y0 − ŷ0) + (ŷ0 − ȳ) and, generalizing, for any pair
(xi, yi) obtains,

(yi − ȳ) = (yi − ŷi) + (ŷi − ȳ) (17)

It is possible to show that

SSTotal = SSReg + SSError

or, that

n∑
i=1

(yi − ȳ)2︸ ︷︷ ︸
SSTotal

=
n∑

i=1

(ŷi − ȳ)2︸ ︷︷ ︸
SSReg

+
n∑

i=1

(yi − ŷi)
2

︸ ︷︷ ︸
SSError

. (18)

To show the validity of the equality in Eq. 18, apply the sum to the square of the deviations,
term to the right of the equality in Eq. 17, after subtracting and conveniently adding Ŷi, that is,

SSTotal =

n∑
i=1

(yi − ȳ)2 =

n∑
i=1

(yi − ŷi + ŷi − ȳ)2 =

n∑
i=1

((yi − ŷi) + (ŷi − ȳ))2

=

n∑
i=1

(yi − ŷi)
2 + 2

n∑
i=1

(yi − ŷi)(ŷi − ȳ)︸ ︷︷ ︸
=0

+

n∑
i=1

(ŷi − ȳ)2 (19)

and verify that

n∑
i=1

(yi − ŷi)(ŷi − ȳ) = 0. (20)

The validity of Eq. 20 can be shown by noting that

Silva, José W., et al. (2022) Statistical Processing to Impedance-based SHM for Oil & Gas Industry pp. 337-383

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 347



n∑
i=1

(yi − ŷi)(ŷi − ȳ) =
n∑

i=1

(yi − ŷi)ŷi︸ ︷︷ ︸
I

+ȳ
n∑

i=1

(yi − ŷi)︸ ︷︷ ︸
II

= 0. (21)

Writing I in Eq. 21 in a matrix form obtains

I =
n∑

i=1

(yi − ŷi)ŷi = (Y −Xb)′Xb = Y ′Xb− b′X ′Xb = Y ′Xb−
[
(X ′X)−1X ′Y

]′
X ′Xb

= Y ′Xb− Y ′X(X ′X)−1X ′Xb = Y ′Xb− Y ′Xb = 0

and further, knowing that the least-squares method consists of minimizing, that is, determining the
values βs that minimize the sum of squares in Eq. 22,

n∑
i=1

(yi − ŷi) =
n∑

i=1

(Yi − [β0 + β1x1i + β2x2i + · · ·+ βkxki])
2 (22)

applying this method will lead to a system with k+1 equations and k+1 unknowns in which the
first equation is obtained by differentiating the given function in Eq. 22 and setting the result to
zero. So the derivative concerning β0

∂

n∑
i=1

(yi − [β0 + β1x1i + β2x2i + · · ·+ βkxki])
2

∂β0

= −2

n∑
i=1

(yi − [β0 + β1x1i + β2x2i + · · ·+ βkxki])
2 (23)

and equating to zero, specific values are allowed for β0, β1, β2, · · ·, βk, which b0, b1, b2, · · ·, bk
satisfy Eq. 24, below.

n∑
i=1

(yi − [b0 + b1x1i + b2x2i + · · ·+ bkxki]) = 0. (24)

then,

II =
n∑

i=1

(yi − ŷi) = 0 (25)

because,

II =

n∑
i=1

(yi − ŷi) =

n∑
i=1

(yi − [b0 + b1x1i + b2x2i + · · ·+ bkxki]) = 0. (26)
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From the results presented in Eqs. 22 and 26 it follows that the sum in Eq. 20 is in fact zero and
therefore the total change in Y , quantified by SSTotal is decomposed into the model-explained
change, SSReg, and the residual change, SSError.

Under the assumption that the errors are independent and identically distributed according to
the normal distribution with zero mean and constant variance, σ2, the F test of the analysis of
variance for the linear regression model (Table 1) allows testing the hypothesis that the variance
explained by the model, with p coefficients, is significant. This hypothesis is equivalent to the idea
that the slope parameter of the line, or slope of the line, β1 is zero, in the case of simple linear
regression, or that the coefficients of the explanatory variables are all null as shown in Eq. 27. The
alternative hypothesis is that at least one of these coefficients differs from zero.

Table 1: Analysis of variance for the complete model

Source DF SS MS F-Value
Regression p− 1 SSReg MSReg MSReg/MSError
Error n− p SSError MSError

Total n− 1 SSTotal

The hypotheses verified from the analysis of variance can be described as follows,

{
H0 : β0 = β1 = · · · = 0
Ha : βj ̸= 0 para pelo menos um j, com j = 0, 1, 2, · · · , k (27)

Thus, H0 is rejected, at the α level of significance, if F0 ≥ Fα,p−1,n−p where Fα,p−1,n−p is a
quantile of the F distribution of Snedecor with p−1 and n−p degrees of freedom such that P (F >
Fα,p−1,n−p) = α. The values MSReg and MSError are obtained by doing SSReg/(p−1) and
SSError/(n− p), respectively.

1.4.3 Goodness of fit

As mentioned earlier, parametric inference on a regression model requires the fulfillment of some
assumptions such as normality, independence, and homoscedasticity of errors. The lack of knowl-
edge of the population model makes it necessary to consider the evidence for rejection or non-
rejection of these assumptions. This evidence is obtained from the sample data and summarized
in the estimated model. The decision on whether or not to reject the assumptions is made based
on appropriate hypothesis tests. When any of these assumptions are not met, alternative method-
ologies must be used, such as data transformations in cases of non-normality and homogeneity or
dependence modeling in cases of non-independence, or even non-parametric methodologies such
as the bootstrap technique.

The assumptions necessary for the validity of the parametric inference from models estimated
via the ordinary least-squares method are:

• Normality of errors: errors must be normally distributed. Normality is required so that
hypothesis tests based on the normal, t, chi-square, and F distribution are unbiased. There
are some normality test methods such as Kolmogorov-Smirnov, Lilliefors, Shapiro-Wilk
Royston [1995];

• Independence of errors or residuals: the errors must be independent, that is, the proba-
bility of occurrence of any error must not depend on other errors. There are some tests to
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verify the independence hypothesis, among which the Durbin-Watson Durbin [1969] test,
which is widely used;

• Homogeneity of errors: The lack of homogeneity can interfere with the hypothesis tests
(F test and t-test) and the quality of the estimates of the model coefficients. In the presence
of heterogeneity, least squares estimators may not have a minimum variance compared
to other estimators, and therefore they are no longer efficient. To verify the hypothesis
of homoscedasticity, the Breusch-Pagan [Breusch and Pagan, 1979] or Levene [Fox and
Weisberg, 2018] tests can be used.

The Shapiro-Wilk, Durbin-Watson and Breusch-Pagan tests are implemented in R software
through the functions shapiro.test, dwtest and bptest. These last two are in the lmtest [Zeileis and
Hothorn, 2002] package.

The Shapiro-Wilk test is limited to samples with sizes between 3 and 5000, but there are
several other tests in the literature with the same purpose [Khatun et al., 2021]. Among them is the
Anderson-Darling test [Thode, 2002b] that can be applied from the function ad.test, implemented
in the package nortest [Gross and Ligges, 2015], of the software R.

Graphical methods involving the residuals can also be used to verify the adequacy of the
model. Some graphs and their usefulness are presented below.

• Residuals versus adjusted/predicted values:

– It may indicate poor specification of the model;

– Evaluate whether the errors have constant variance;

– Identify outliers.
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Figure 9: Residuals versus adjusted values.

• Q-Q plot:

– Check if the errors are approximately normally distributed;

– Identify outliers.
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Figure 10: Q-Q plot for residuals.

• Residuals versus collection order:

– Check the induced correlation by the collection order;
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Figure 11: Residuals versus observation collection order.

• Residuals versus omitted variable in the model:

– Any systematic pattern indicates the need to incorporate the variable into the model.
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Figure 12: Residuals versus covariate w omitted in the model.

• Residuals versus variable included in the model:

– Systematic patterns may indicate another relationship between the considered regres-
sor variable and the response variable.

– Assessment of the homogeneity.
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Figure 13: Residuals versus variable x included in the model.

In the Figures 9, 10 and 11 there is a desirable behavior of the residuals when the model is
adequate but, on the other hand, Figures 12 and 13 illustrate the inadequacy of the model.

The coefficient of determination R2 and the adjusted coefficient of determination R̄2 are mea-
sures of model adequacy and express how much of the variation of the response variable is ex-
plained by the model.

R2 =
SSReg

SSTotal
(28)

R̄2 = 1−
(
n− 1

n− p

)
(1−R2) (29)
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As the number of parameters, p, increases, with n fixed, R̄2 decreases when compared to R2.
This penalty is important because the variation explained by a model with a greater number of
parameters will always be greater, which is desirable. On the other hand, the model will be more
complex, which is not desirable. Therefore R̄2 is a better measure of suitability than R2 when the
complexity caused by the greater number of parameters is considered.

Example 4. Let the real part of an electromechanical impedance signature (Ω) be obtained from
monitoring a steel plate in an experiment developed at the Gloria campus of the Federal University
of Uberlandia. The impedance values were obtained at 3000 frequency points ranging from 40000
to 70000Hz. Given a large amount of data, only this signature’s initial and final values are shown
in Table 2.

Table 2: Initial and end values of the impedance signature.

Frequency Impedance
40000.00 91.10
40010.00 90.86
40020.01 88.53
40030.01 86.53

...
...

69969.99 41.58
69979.99 41.39
69990.00 40.76
70000.00 40.71

a) Estimate the parameters of the linearized exponential model (Eq. 6).�� ��Solution

The referred model can be adjusted from the function lm of R with the logarithmic trans-
formation in the base e. The log function does this transformation, and the fitted model
is:

l̂n(y) = 5, 548− 2, 676× 10−5Freq.

The following image (Figure 14) illustrates the R code and its output to obtain this model.

Silva, José W., et al. (2022) Statistical Processing to Impedance-based SHM for Oil & Gas Industry pp. 337-383

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 353



Figure 14: Output of the function lm for the linearized exponential model.

b) Assume that the assumptions of normality, homogeneity, and independence of the residuals
are met and verify the significance of the model using the F test of the analysis of variance.�� ��Solution

According to the results in item a’s figure, the p-value associated with the F test was less
than 2.2×10−16. From this, it is concluded that the model is highly significant in explaining
the variation in ln(y). The value for the F test presented in Table 1 (Table of analysis of
variance) is defined by the probability P (F > F0) obtained from an F distribution with 1
and 2998 degrees of freedom.

c) Give the value of the coefficient of determination and interpret it.

�� ��Solution

The coefficient of determination was 0.9395, which indicates that the fitted model explains
93.95% of the variation in ln(y).

d) Graphically present the signature before and after the trend correction.�� ��Solution
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Figure 15: Impedance signature before trend correction.

Since the fitted model satisfactorily models the trend, the impedance signal without trend is
obtained by making y − exp(l̂n(y)) and is shown in Figure 16.
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Figure 16: Impedance signature after trend correction.

1.5 Linear Regression With Bootstrapping

The bootstrap resampling method is an alternative to classical parametric inference methodologies.
This method calculates the empirical distribution of the statistic of interest, mean, variance, model
coefficients, etc., over hundreds or thousands of resamples.

There is no need to worry about assuming a distribution for the statistic in question and,
therefore, with the inherent assumptions. The estimates in each resampling allow building the
empirical distribution of the distribution of interest.

The central idea of this method is to reproduce several scenarios from the original sample by
performing other samples with the same amount of elements but with replacement.

The statistics obtained in each resample are enough to summarize all the information from the
mean, variance, and confidence interval, among other possible measures.
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Therefore, it is enough to assume that the original sample is reliable and to have enough
computational resources to calculate a value of the statistic of interest (θ∗) in each new sample.

Each sample obtained from the original is called a bootstrap sample of size n. With the same
size as the original sample, from θ∗ obtained in each of the hundreds or thousands of samples, it
models the distribution of bootstrap.

The bootstrap method is classified into parametric and non-parametric. In the first, it is neces-
sary to postulate a distribution to generate the samples later; in the second, the samples are gener-
ated from the empirical distribution. This chapter will use the non-parametric bootstrap since the
necessary assumptions for parametric inference are not always met.

In regression, bootstrapping can be performed by resampling the pairs (dependent and inde-
pendent variables) and the model residuals. In this chapter, pairwise resampling will be used.

Example 5. Assume that the electromechanical impedance (Ω) is a function of the temperature
at a given frequency point (Hz). Consider the following baseline data set on these two variables
and estimate the coefficients of the simple linear regression model using the bootstrap technique.
Baseline data sets represent the reference state of the specimen and, in this case, are obtained at
different temperatures.

Temperature (◦C) Impedance (Ω)
29,80 123.53
27.25 122.98
25.70 122.74
24.90 122.41
23.90 122.50
27.25 123.87
30.10 124.46
31.10 124.85
28.20 123.89
26.50 123.86
25.20 122.79
24.20 122.33
27.75 123.60
30.00 124.44
26.40 123.34

�� ��Solution

The following image illustrates the execution of the R source code to obtain the estimates of
the intercept (β0), the slope (β1) and the coefficient of determination (R2 ), from the simple linear
regression model, yi = β0 + β1xi + ei

Silva, José W., et al. (2022) Statistical Processing to Impedance-based SHM for Oil & Gas Industry pp. 337-383

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 356



Figure 17: R source code executed to get bootstrap estimates.

The estimated model is ŷi = 114.8316+0.3163xi withR2 = 80.77% and from the confidence
intervals, it is verified that the null hypothesis of the parameters β0 and β1, is rejected since the
intervals b0.IC and b1.IC do not include the value zero. The value of R2 indicates that 80.77%
of the change in impedance is explained by the change in temperature.

Figure 18 shows the behavior of impedance as a function of temperature at a given frequency
point and the main results obtained from bootstrap estimates.
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Figure 18: Impedance behavior as a function of temperature.
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The bootstrap estimation of the model presented in Eq. 6, for trend correction in the signature,
can be obtained similarly to the one shown in the example 5.

Example 6. Illustrate a case where the assumptions necessary for parametric inference about the
example model 4 are not met. �� ��Solution

Note from the image above that the p-values for the normality (Shapiro-Wilk), independence
(Durbin-Watson), and homogeneity of variances (Breusch-Pagan) tests were all less than 0.01.
Therefore, the respective tests were significant at 1%, indicating that these assumptions are not
met. This finding justifies the use of the bootstrap method for non-parametric inference as applied
in the 5 example.

In this chapter, pre-processing of the data set arising from the impedance-based structural
health monitoring (SHM) is understood as the investigation and disposal of signatures that are not
representative of the actual state of the structure. Matching signatures for trends is also considered
a preprocessing technique.

The use of signatures to infer the structure’s integrity is classified as post-processing. There-
fore, the intermediate step (processing) is defined by using techniques to equate the signatures
measured in the baseline acquisition step and the investigation status regarding the effect of tem-
perature. This variable can cause changes in the structure and, if not considered, can lead to
erroneous inferences. In the following section, two statistical methodologies can be used for tem-
perature compensation or modeling baseline signatures at a temperature of interest.
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2 Data processing

In a sufficiently large number of frequencies, modeling impedance as a function of temperature
allows for building reference signatures at temperatures not necessarily observed in the baseline
acquisition step. This methodology is called temperature compensation. To apply this method-
ology, the baseline signatures must be collected in a sufficiently large range of temperatures. In
other words, the sampling of temperatures is representative in quantity and amplitude.

The following subsection presents the methodology of polynomial regression, a generalization
of simple linear regression, which can be shown in a matrix form as specified in Eq. 11.

2.1 Polynomial regression

The behavior of a dependent variable can be modeled as a function of a single regressor variable
by a polynomial model of any order p (Eq. 9). Note that if p = 1, we have the simple linear
regression model as shown in Eq. 7.

The model shown in Eq. 9 can be written in matrix form as in Eq. 11 and therefore, the vector,
least squares estimator for β, is as shown in Eq. 16.

In polynomial regression, the model matrix, X , is composed of columns that are powers of
the same variable. Building this matrix implies increasing the correlation or dependence between
the columns.

There is multicollinearity when a regressor variable is dependent on another or others. This
means that, at least in part, an independent (regressive) variable can be explained by the others.
Multicollinearity is, therefore, not a matter of presence or absence but a matter of intensity. This
intensity can be quantified by the coefficient of determination, R2

k, obtained from the adjusted
model for k-th independent variable as a function of the others. The closer to 1 (100%) the R2

k is,
the more serious the multicollinearity problem.

The variance inflation factor over the coefficient estimators, V IFk, is used to measure multi-
collinearity [Belsley et al., 2005].

V IFk =
1

1−R2
k

(30)

Multicollinearity can cause problems such as a high value of the coefficient of determination,
non-significance of the parameters (they do not differ significantly from zero), and unexpected
(negative/positive) signs for the parameter estimates. Perfect multicollinearity prevents even ob-
taining least squares estimates since the columns of the matrix X , in Eq. 11, will be linearly
dependent. Therefore, the classic inverse of the matrix X′X will not exist. This inverse is neces-
sary for the estimation of least squares.

According to Rawlings et al. [1998], the VIF must be below 10 for the multicollinearity prob-
lem to be considered unimportant.

A corrective measure is to use data centered, that is, to replace x with x∗ = x − x̄. Using
orthogonal polynomials is a more efficient alternative. Therefore, it should be preferred when this
methodology is applicable.

The study of the model’s adequacy in meeting the assumptions of normality, independence,
and homogeneity of residual variance, as well as the presentation in the 1.4 section, should also
be done for polynomial regression. The significance of the model to explain the response variable
and the proportion of explained variation are items that must also be investigated in the polynomial
regression. A desirable model is one in which the assumptions are met with relatively high and
significant R2.
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Example 7. Consider the data set on the real part of the electromechanical impedance (Ω) ob-
tained at different temperatures (◦C) at a given frequency (Hz). These data come from an exper-
iment developed at the Structural Mechanics Laboratory (LMEst) of the Faculty of Mechanical
Engineering (FEMEC) of the Federal University of Uberlandia (UFU).

Temperature (◦C) Impedance (Ω)
29.80 631.59
27.25 748.09
25.70 775.73
24.90 775.34
23.90 761.51
27.25 747.76
30.10 605.71
31.10 558.08
28.20 700.31
26.50 767.44
25.20 785.90
24.20 780.12
27.75 719.67
30.00 609.17
26.40 760.08

Fitting the degree 2 polynomial model and checking the multicollinearity problem. In the
affirmative case, adopt a strategy to mitigate it. Also, verify that the assumptions of normality,
independence, and residual homogeneity are met. Perform all the requested analyses with the
help of the R software. �� ��Solution

The following R source code was used to get the questions’ required results. In this code, y
represents the impedance values and x the respective temperatures.
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Figure 19: R source code and output solution for polynomial regression analysis.

The VIF values indicate a severe multicollinearity problem and are the same for the two vari-
ables considered. The second is a power of the first. The VIF values’ equality is obtained from the
regressions of x as a function of x2 and x2 as a function of x, which are simple linear regressions.
In this case, the R2 is the square of the Pearson correlation that does not distinguish between the
correlations of x and x2 and between x2 and x.

On average, the centralization of the explanatory variable x corrected the multicollinearity
problem (VIF < 10), and the model adjusted with the new variable, z met the assumptions of
normality, independence, and homogeneity according to the Shapiro-Wilk tests, Durbin-Watson
and Breusch-Pagan, respectively. The p-values in these tests were greater than 0.05.

The image below shows that the model significantly explains the variation in impedance, ac-
cording to the F test of the analysis of variance (p-value < 0.01). The percentage of explained
variation is high (R2 = 98.98%), and all coefficients are significantly different from zero accord-
ing to the t-test. (p-value < 0.01).
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Figure 20: R source code and output solution for polynomial regression analysis.

The scatter plot with the fitted model are shown in Figure 21.
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Figure 21: Polynomial regression for the impedance (y) as a function of the temper-
ature centered on the mean (z = x− x̄).

The typical characteristic dependence of data set in SHM [Schubert Kabban et al., 2015] mo-
tivates the use of statistical methodologies that can consider this autocorrelation in data analysis,
for example, in temperature compensation via regression models. Regression models as ARIMA
errors is an existing proposal in the literature [Hyndman and Athanasopoulos, 2018] for such an
analysis. A summary of this methodology, including the R source codes necessary to obtain re-
sults, is presented in the following section.

2.2 Regression with ARIMA errors

The dependence between the impedance values motivates the use of methodologies that can ac-
commodate this characteristic reflected in the residuals of the regression model. The successive
nature of the acquisitions carried out by the collection system may justify this dependence.
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Regression models with ARIMA errors (Auto-Regressive Integrated Moving Averages Model)
are flexible in terms of the residual autocorrelation structure in the sense that it is possible to adopt
one among several possibilities (order) for the ARIMA model. The function auto.arima of the
package forecast [Hyndman et al., 2020] of the R software [R Core Team, 2021] is a very useful
computational resource that can help in the adjustment and in choosing the most adequate model
for each case. This resource will be used in this section to illustrate how to obtain the results in
the exemplification analyses.

A polynomial regression with ARIMA errors can be written according to the equation pre-
sented in Eq. 31,

yt = β0 + β1xt + β2x
2
t + · · ·+ βkx

k
t + nt (31)

em que ϕ(B)(1−B)dnt = θ(B)et.

In Eq. 31, nt are the errors or a variable resulting from an AR (Auto-Regressive), MA (Mov-
ing Averages), ARMA (Auto-Regressive Moving Averages), and ARIMA ( Auto-Regressive In-
tegrated Moving Averages ) processes, among others; et is called soft noise, that is, a random
variable with zero mean and variance σ2e and B is called a delay operator. The index t in Eq. 31 is
purposely used to denote the temporal dependence of data acquisition.

The process nt is said to be moving averages of order q, or MA(q), if,

nt = et + δ1et−1 + δ2et−2 + · · ·+ δqet−q, (32)

Using the delay operator, Eq. 32 can be rewritten as

nt = (1 + δ1B + δ2B
2 + · · ·+ δqB

q)et = θ(B)et, (33)

On the other hand, if

nt = α1nt−1 + α2et−2 + · · ·+ αpet−p + et (34)

then nt is called an autoregressive process of order p, or AR(p). Using the delay operator, Eq. 34
is:

(1− α1B − α2B
2 − · · · − αpB

p)nt = et ou ϕ(B)nt = et (35)

and therefore the AR(p) process can be rewritten as:

nt = ϕ(B)−1et = ψ(B)et (36)

Another possibility for time-dependent data modeling is the autoregressive moving average
models, ARMA(p, q). The expression for a ARMA(p, q) model is:

nt = α1nt−1 + α2nt−2 + · · ·+ αpnt−p + et + δ1et−1 + δ2et−2 + · · ·+ δqet−q (37)

In general, representations through models as described in Eq. 37 requires a smaller number
of parameters when compared to representations through models as in Eq. 32 or in Eq. 34. Using
the delay operator, the model in Eq. 37 is as in Eq. 38:
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(1− α1B − α2B
2 − · · · − αpB

p)nt = (1 + δ1B + δ2B
2 + · · ·+ δqB

q)et (38)

or

ϕ(B)nt = θ(B)et (39)

The models described in Eq. 32, 34 and 37 are suitable for stationary time series. The trend is
a characteristic that, if present, characterizes a lack of stationarity and can be removed by taking
one or more differences between consecutive values of the series.

An ARMA model, where nt is replaced by its d-th difference ∆dnt, can accommodate some
kind of non-stationarity and the differentiated series will be denoted by the expression as shown
in Eq. 40.

Wt = ∆dnt = (1−B)dnt (40)

and the integrated autoregressive process of moving averages, ARIMA(p, d, q) is written accord-
ing to equation Eq. 41 or Eq. 42,

Wt = α1Wt−1 + α2Wt−2 + · · ·+ αpWt−p + et + δ1et−1 + δ2et−2 + · · ·+ δqet−q (41)

or, equivalently according to Eq. 42:

ϕ(B)(1−B)dnt = θ(B)et. (42)

After establishing the model, either as defined in Eq. 31, 32, 34, 37 or in Eq. 41 the next step
is to estimate its parameters. Considering a polynomial regression model with ARIMA errors, the
number of parameters will be k+1+p+q+1+1 where k+1 (Eq. 31) is the number of coefficients
of the polynomial model, p+ q + 1 the number of parameters associated with the ARIMA model
(Eq. 41) and 1 more parameter to be estimated is the variance associated with white noise.

Making β = (β0, β1, · · · , βk), α = (α0, α1, · · · , αp), δ = (δ0, δ1, · · · , δq) and considering
ξ = (β, α, δ, σ2e), the likelihood function for ξ will be L(ξ|D), where D represents the sample
data. The maximum likelihood estimators (MLE) of ξ will be the values that maximize L or
l = log(L).

After the adjustment, the study of the model’s suitability must be carried out. One possibility
is to insert more parameters, obtaining a new model. The significance of the parameter(s) inserted
allows verifying whether the more complex model improves the fit of the simpler model.

Among the criteria for selecting models, and in particular the regression models with ARIMA
errors, the criteria based on the maximum likelihood function are the most used, most often the
Akaike Information Criterion (AIC) [Akaike, 1974], the Akaike Information Corrected Criterion
(AICc) [Bozdogan, 1987] and the Bayesian Schwarz Criterion (BIC) [Schwarz, 1978].

The adequacy of the models adjusted via the maximum likelihood method can be quantified
using pseudo coefficients of determination and, in the case of time series models, also using the
precision of the forecasts.

The adequacy of the model must also be done through the analysis of residuals. If the model is
adequate, it is expected that the residuals or white noise are normally distributed, randomly around
zero, with constant variance and uncorrelated.

In time series analysis, he traditionally uses the Lilliefors [Thode, 2002a] test to verify the
hypothesis of normality, the Box-Ljung [Ljung and Box, 1978] or Breusch-Godfrey [Breusch,
1978, Godfrey, 1978] tests to confirm the independence hypothesis and the Breusch-Pagan test
[Breusch and Pagan, 1979] to verify the homogeneity of variance.
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Example 8. Consider the data in the table below from an experiment carried out on the Gloria
campus from the Federal University of Uberlandia (UFU).

Table 3: Real part of electromechanical impedance signature (Ω) at 36 temperatures
(◦C).

Temperature Impedance Temperature Impedance
18.43 84.36 17.14 88.60
17.95 85.66 18.43 86.09
17.95 86.28 18.27 87.26
19.08 83.71 17.63 88.80
17.14 90.26 17.95 87.73
16.66 91.14 19.24 84.06
16.66 91.28 18.92 84.59
17.47 90.11 17.95 87.32
17.31 90.42 18.27 87.34
16.82 90.72 19.72 84.85
15.86 95.33 19.56 85.10
17.14 94.28 18.92 86.46
16.02 95.76 19.24 85.98
15.53 97.28 20.04 84.95
16.02 96.16 19.56 85.58
17.31 90.72 18.59 87.42
17.14 89.94 18.92 87.01
16.50 88.20 18.76 87.04

a) Fit the simple linear regression model for the impedance as a function of temperature and
show that the assumptions of normality and homogeneity are met. Still, the same is not valid for
the assumption of independence. �� ��Solution

The model was fitted with y representing the impedance values and x the respective temper-
atures. In the following image, it can be seen that the p-values for the Lilliefors test (lillie.test)
and the Breusch-Pagan test (bptest) were greater than 0.05, and therefore the hypotheses of nor-
mality and homogeneity are not rejected at 5% significance. On the other hand, in the Box-Ljung
test (checkresiduals(fit2,test="LB")), a p-value lower than 0.05 was obtained, and, therefore, the
independence assumption is not met.

The two measures R2 and mean squared error (mean squared error - mse) were calculated
and are helpful for decision making regarding the model’s adequacy and for comparing it with
another proposed model. The values of these measures were respectively 79.21% and 2.6889.
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Figure 22: R source code and output solution for fitting the simple linear regression
model.

b) Fit the simple linear regression model with an ARIMA structure for the residuals. This
can be done with the function auto.arima of the package forecast of R language. Show that the
assumptions are met in this case; therefore, the parametric inference from this model is valid.�� ��Solution

With the function auto.arima, the autoregressive structure of order one was selected for the
residuals, ARIMA(1,0,0) and the assumptions of normality (lillie.test), of independence (check-
residuals(fit2,test="LB")) and homogeneity (bptest) were met because the p-values of the respec-
tive tests were greater than 0.05. The value of the pseudo R2 was 91.60%, and the month was
equal to 1.0969.

Then, from the evaluation of the assumptions, the pseudo R2, and the mse, it is concluded that
the regression model with AR(1) structure for the residuals is more suitable than the simple linear
regression model.

Silva, José W., et al. (2022) Statistical Processing to Impedance-based SHM for Oil & Gas Industry pp. 337-383

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 366



Figure 23: R source code and output solution for fitting the simple linear regression
model with ARIMA structure to residuals.

Polynomial models with ARIMA structure for residuals (example 8) appear as an excellent
alternative to traditional polynomial models (example 7) when they do not satisfy the necessary
assumptions for inference under the parametric optics. These models can predict electromechani-
cal impedance at temperatures not necessarily observed in the baseline data collection step but in
the structure investigation steps. The recurrent use of these models at different frequencies (Hz)
allows for modeling or predicting a baseline signature.

In this chapter, the processing is understood as the matching of a signature in the investigation
of the structure with its respective reference signature regarding the effect of the temperature
variable. The post-processing stage of statistical analysis, the inference about the structure’s status,
is called post-processing. Some possible statistical techniques at this stage are presented in the 3
section below.

Silva, José W., et al. (2022) Statistical Processing to Impedance-based SHM for Oil & Gas Industry pp. 337-383

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 367



3 Data post-processing

3.1 Comparison tests on damage metrics

3.1.1 Hypothesis test on more than two means

The F test, in the analysis of variance, is used to verify whether the null hypothesis, defined as the
equality of groups or populations, on average, should be rejected or not. The set of possibilities
complementary to the null hypothesis represents the alternative hypothesis. The expression “at
least one population differs from the others on average” clearly illustrates the alternative hypothe-
sis. In this case, it is also assumed that the groups are independent.

One-way analysis of variance consists of breaking down the total variance of the data or the
response variable into variance between and within factor levels. There is a statistical difference
between them, on average. Otherwise, the evidence will be weak, and the different hypotheses
will not be supported.

The test statistic used in the analysis of variance is given by:

F =
SSbetween

J−1
SSwithin
J(I−1)

(43)

where SSBetween is the sum of squares between levels, SSWhitin is the sum of squares within
levels, J is the number of levels or groups, and I is the number of values or repetitions in each
group. Assuming that the assumptions of homogeneity of variance and normality of the residuals
are met, the variable defined in (43) follows a distribution F of Snedecor with J − 1 and J(I − 1)
degrees of freedom. When the number of repetitions is not the same in all groups, the amount

J(I−1) must be calculated considering this fact by making
J∑

j=1

(Ij−1) in where Ij is the number

of repetitions at each factor level.
The hypothesis test (test F ) of the analysis of variance is a right-sided test because the null

hypothesis will only be rejected if the observed value of F is located at the extreme right of the F
distribution of Snedecor. The decision rule or critical value is determined from the F distribution
with J −1 and J(I−1) degrees of freedom and a given significance; if the observed value of F is
greater than the critical value, it is said that it is strong enough evidence to reject the hypothesis of
equality between the means, that is, the null hypothesis, and it is concluded that at least one mean
differs from the others for the established significance.

The analysis of variance is linked to a model that can be defined as follows:

yij = µ+ fj + eij (44)

yij is the i-th observation of the response variable at the j-th level of the factor f , µ is constant
(generally the average of all observations), and eij is the error associated with the i-th repetition
of the j-th level. For the inferences to be valid, it is necessary that the assumption of normality,
independence, and homogeneity of the residuals (constant variance) be valid, in notation eij ∼
N(0, σ2), These assumptions can be verified using the Shapiro-Wilk tests [ROYSTON, 1982] and
the Bartlett test [BARTLETT, 1937]. The validity of Bartlett’s test is dependent on the normality
hypothesis. When this hypothesis is not met, the Levene test [LEVENE, 1960] is an alternative
that only requires the existence of any continuous distribution for the variable in question. For the
independence of the residuals, we have the Durbin-Watson test [DURBIN and WATSON, 1950].

The hypotheses involved in the analysis of variance do not allow us to verify which levels or
groups differ from each other. They only allow us to reject or not the hypothesis of equality of all
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means. Therefore, in situations where the decision is for at least one mean different from the others
(rejecting the null hypothesis), there is a need for an additional test for two-by-two comparisons or
to contrast groups of means. The Student-Newman-Keuls (SNK) [NEWMAN, 1939] and Tukey
tests [TUKEY, 1953], among others, are indicated for two-by-two comparisons. The Scheffé Test
[SCHEFFÉ, 1953] is flexible as it allows comparing any contrast between means. The two groups
(contrasts) involved can have different amounts of means and each mean can come from a different
number of repetitions or observations.

Example 9. Consider the following data about the CCD metric under baseline conditions (B),
and damage 1, 2, and 3 (D1, D2, and D3). These data come from electromechanical impedance
signals obtained from a steel plate from the petrochemical industry.

Table 4: CCD by condition and repetition.

Condition Replications
1 2 3 4 5 6 7 8 9 10

B 0.0234 0.0305 0.0393 0.0474 0.0385 0.0208 0.0243 0.0408 0.0342 0.0206
D1 0.1739 0.1577 0.1840 0.1894 0.1586 0.1999 0.1856 0.1579 0.1623 0.1654
D2 0.2767 0.2659 0.2554 0.2564 0.2718 0.2761 0.2957 0.2546 0.2746 0.2875
D3 0.3500 0.3749 0.3570 0.3693 0.3841 0.3810 0.3624 0.3786 0.3517 0.3637

a) Check the model assumptions, normality of residuals, homogeneity of variances,
and independence of residuals at 5% of significance, using the Shapiro-Wilk,
Bartlett, and Durbin-Watson tests.�� ��Solution

Figure 24: R source code for verification of assumptions.

From the results presented in Figure 24 there is no significant evidence to reject
the hypotheses of normality (p-value = 0.06021), of homogeneity of variances (p-
value=0.5616) and of independence of residuals (p-value = 0.91). Therefore, the
assumptions about the residuals of the model are satisfied.

b) Do the analysis of variance for the model, conclude on the F test and apply Tukey’s
test for comparison of means, if applicable.
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�� ��Solution

Figure 25: R source code for analysis of variance and multiple comparison.

The result of the F test presented in Figure 25 allows us to conclude that there is
significant evidence to reject the hypothesis of equality of means (p-value < 0.05), and
at least one differs from the others. Using the Tukey test, all experimental conditions
vary, two by two, regarding the average CCD metric. Thus, the methodology effectively-
identified structure changes since all damages differed from baseline.

3.1.2 Wilcoxon-Mann-Whitney Test

This test is an alternative to the t test when the normality assumption is not met in at least one of
the populations involved. Its application can be made even when there is no information about the
distributions, but the variables involved have a measurement scale that is at least ordinal. The two
samples must be independent. The interest in applying this test is to verify if a population tends to
have higher values than the other or if they have the same median.

The Wilcoxon-Mann-Whitney test is based on the ranks of the values obtained by combining
the two samples. The values are ordered from smallest to largest, regardless of which population
each value comes from. Let R1 be the sum of ranks in sample 1 and R2 be the sum of ranks in
sample 2, then define the test statistic as follows:

W1 = n1n2 +
n1(n1 + 1)

2
−R1;W2 = n1n2 +

n2(n2 + 1)

2
−R2 (45)

where n1 and n2 are respectively the sizes of samples 1 and 2. MakeW equal to the smallest value
between W1 and W2 as the value of the test statistic. For values of n < 20, the Mann-Whitney U
table is used to find the critical values necessary for the decision to reject the null hypothesis. The
normal distribution can be approximated if n is greater than 20.

Let R be the sum of the ranks in sample 1:
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z =
R− µR
σR

(46)

where µR = n1(n1+n2+1)
2 , σR =

√
n1n2(n1+n2+1)

12 , n1 and n2 are respectively the sizes of samples
1 and 2. The variable defined in Eq. 49 has an approximately standard normal distribution and
therefore, the critical values needed for decision making are determined from this distribution.

Example 10. Considering the following data set on the CCD metric (baseline and damage), cal-
culated from electromechanical impedance signatures obtained from steel sheet from the petro-
chemical industry.

Table 5: CCD metric for damage and repetition.

Condition Replications
1 2 3 4 5 6 7 8 9 10

Baseline 0.0054 0.0469 0.0447 0.0145 0.0162 0.0197 0.0195 0.0048 0.0261 0.0066
Damage 0.1255 0.1051 0.2240 0.4486 0.1718 0.1134 0.1199 0.1064 0.4540 0.3349

a) Check normality assumptions for populations at 5% significance.

�� ��Solution

Figure 26: R source code and its output solution for the normality test.

According to the results (Figure 26), there is no significant evidence to reject the
hypothesis of normality (p-value = 0.09221) for the baseline population. Still, the
same does not occur for the damaged population (value -p = 0.0009561); Still,
a non-parametric alternative, such as the Mann-Whitney test, should be used to
compare the two conditions.

b) Using the Mann-Whitney test, comparing baseline and damage CCD metric
populations at 5% significance.

�� ��Solution
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R1 = 55;W = n1n2 +
n1(n1 + 1)

2
−R1 = 100 +

10(11)

2
− 55 = 100 (47)

R2 = 155;W = n1n2 +
n2(n2 + 1)

2
−R2 = 100 +

10(11)

2
− 155 = 0 (48)

Thus, the smallest value for W is zero (W = 0). The value of the Mann-Whitney table
with α = 0.05 and n1 = n2 = 10 is 23, so as W < 23 the null hypothesis is rejected.

Another alternative to solve this question is through the function wilcox.test, in the R
language, as shown in Figure 27.

Figure 27: R source code and output solution for comparison of baseline and dam-
aged groups.

According to the results presented in Figure 27, there is significant evidence to reject
the hypothesis that the populations are centered in the same position (p-value <0.05),
that is, the two populations differ, with the median damaged CCD (0.14865) higher than
baseline (0.01785).

3.1.3 Kruskal-Wallis Test

The Kruskal-Wallis test is an alternative to conventional analysis of variance when the assumptions
of normality and homogeneity of variances are not met.

The procedure for implementing the test consists of sorting the data set from all samples or
(K) levels as a single sample and assigning ranks to all values. For each sample or level, determine
the sum of ranks Rk with k = 1, 2, 3, · · · ,K. The following test statistic follows a chi-square
distribution with K − 1 degrees of freedom.

H =
12

N(N + 1)

K∑
k=1

(
R2

k

nk

)
− 3(N + 1) (49)

In Eq. 49, N is the total number of observations and nk is the size or number of observations
at the factor level k. If the ranks are similarly distributed among the sample groups, then H will be
a relatively small number. The Kruskal-Wallis test is right-sided; that is, the hypothesis of equality
between the groups will be rejected if the test statistic, H , is a value located at the extreme right
of the chi-square distribution . Based on the significance of the test and the degrees of freedom,
the critical value for decision-making is determined.
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If the necessary assumptions are met, the use of analysis of variance is preferable since, in
general, parametric tests are more powerful than non-parametric tests.

Example 11. Let the following values from the baseline CCD metric (B) and damage 1, 2, and
3 (D1, D2, and D3) conditions, be calculated from electromechanical impedance signatures for
steel sheet from the petrochemical industry.

Table 6: CCD for damage and repetitions

Condition Replications
1 2 3 4 5 6 7 8 9 10

B 0.0383 0.0364 0.0480 0.0385 0.0232 0.0387 0.0434 0.0476 0.0213 0.0496
D1 0.1804 0.1797 0.1792 0.1698 0.1663 0.1926 0.1836 0.1719 0.1995 0.1660
D2 0.2540 0.2671 0.2841 0.2601 0.2508 0.2765 0.2786 0.2539 0.2924 0.2727
D3 0.3534 0.1143 0.4307 0.4080 0.2019 0.2710 0.1899 0.3106 0.3743 0.4862

a) Show that the assumptions of normality of residuals, homogeneity of variances, and
independence of residuals, at 5% significance, are not met. Use the Shapiro-Wilk,
Bartlett, and Durbin-Watson tests implemented in R language.

�� ��Solution

Figure 28: Normality, homogeneity and independence tests in R language.

From the results presented in Figure 28, it appears that there is significant evidence
to reject both the hypothesis of normality and homogeneity of residues (p-value <
0.05). The independence hypothesis is not rejected (p-value = 0.462). Being of
interest, the groups must be compared using non-parametric tests.

b) Comparing the groups using the Kruskal-Wallis test, at 5% significance.�� ��Solution
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Figure 29: R source code and solution for the Kruskal-Wallis test application.

From the results presented in Figure 29, it can be concluded that there is significant
evidence to reject the hypothesis that all groups are equal (p-value < 0.05). The
Kruskal-Wallis test is a global test, and an additional examination is needed for
specific comparisons such as two-by-two comparisons. For this, the modified t test
can be used. This test verified that all experimental conditions present significantly
different CCD metrics (Figure 30) and ascend from baseline condition to damage
3.

Figure 30: Rankings and Kruskal-Wallis test results for the four experimental con-
ditions.
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3.2 Threshold definition

The decision on a significant change in the structure, based on some damage metric such as the
CCD metric, for example, is not a deterministic issue, given the inherent variations in data gen-
eration. In this way, there will be variation between the CCD values calculated using impedance
signatures collected in the baseline measurements and between the CCD values calculated at times
of damage investigation even under the same experimental conditions.

These uncertainties must be considered in the decision-making regarding the change in the
structure of the baseline measurement step.

The procedure presented in this section consists of establishing a threshold or threshold from
the confidence intervals for the mean and standard deviation. The interval estimates for these two
parameters include the error associated with the forecast of each one of them.

The threshold is defined by adding to the upper limit of the confidence interval for the mean
three times the upper limit of the confidence interval for the standard deviation. A CCD value
greater than the threshold will indicate a change in the structure of the pristine condition. On the
other hand, a CCD value less than the threshold will suggest that the structure has not changed, at
least expressively, when compared to the reference status.

3.2.1 Parametric Threshold

The parametric intervals with 1 − α confidence for the mean and the variance of the metric are
obtained from Eq. (50) and (51). It should be noted that these intervals are obtained from the
baseline data. The denomination parametric intervals is due to the fact that normal distribution is

assumed for the sample mean and chi-square for the variable χ2 =
(n− 1)S2

σ2
, from which the

confidence interval for σ2 is established.[
X̄ − t(v,α

2
)
S√
n
; X̄ + t(v,α

2
)
S√
n

]
(50)

[
vS2

χ2
(v,α

2
)

;
vS2

χ2
(v,1−α

2
)

]
(51)

where, X̄ and S2 are respectively the mean and variance calculated from the metric values obtained
in the pristine condition, n is the sample size, v = n − 1 are the degrees of freedom, t(v,α) is a
quantile of the t distribution of Student with v degrees of freedom and probability α

2 accumulated
to its right, χ2

(v,α
2
) and χ2

(v,1−α
2
) are quantiles of the distribution of Chi-Square with probabilities

α
2 and 1 − α

2 rolled to the right, respectively. The confidence interval for the standard deviation
is determined by calculating the square root of the confidence interval limits for the variance Eq.
(51), as shown in the equation Eq. (52).[√

vS2

χ2
(v,α

2
)

;

√
vS2

χ2
(v,1−α

2
)

]
(52)

The threshold or threshold for the decision rule is then determined through Eq. (53)

Threshold = µmax + 3σmax (53)
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where µmax and σmax are respectively the upper limits for the confidence intervals for the mean
and standard deviation built from the baseline data set.

The inference from the interval estimates calculated through Eq. (50) and (52) is valid if
the normality hypothesis about the variable in question, the CCD metric, for example, is not
rejected. This hypothesis can be verified using the Shapiro-Wilk [Royston, 1995] test, using the
experimental data.

Example 12. Let the following CCD damage metric values be calculated from electromechanical
impedance signatures for a pristine condition of the steel plate.

0,0223 0,0453 0,0700 0,0632 0,0183
0,0523 0,0550 0,0290 0,0375 0,0057
0,0259 0,0194 0,0359 0,0611 0,0372
0,0098 0,0426 0,0206 0,0311 0,0317

a) Checking the hypothesis of normality, at 5% of significance, using the Shapiro-Wilk test.

�� ��Solution

The p-value associated with the Shapiro-Wilk test is greater than 0.05; Then, the normality
hypothesis is not rejected at 5% of significance.

b) Building the interval for the mean with 95% confidence.�� ��Solution

Figure 31: Confidence interval obtained via parametric inference for the mean of
the CCD metric.

With 95% confidence, the range from 0.02731178 to 0.04407822 contains the mean of the
CCD variable (Figure 31).
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c) Obtaining the range for the standard deviation with 95% confidence.

�� ��Solution

Figure 32: Confidence interval obtained via parametric inference for the standard
deviation of the CCD metric.

With 95% confidence, the range from 0.01362214 to 0.02616222 contains the standard
deviation of the CCD variable (Figure 32).

d) Determine the parametric threshold from the previous results.

�� ��Solution

Figure 33: Threshold obtained via parametric inference.

Therefore, CCD values lower than 0.1226 (Figure 33) do not suggest significant changes in
the integrity of the structure at investigation moments after the baseline condition.

The purpose of implementing the functions in the R language for calculating the confidence
intervals for the mean and variance is that they can be used in other situations where the interest
is to obtain these interval estimates.

The statistical methodology for the construction of confidence intervals in Eq. (50) and (51)
assumes that the hypothesis of normality of the variable in question is not rejected. This hypothesis
was tested based on the available sample data set. If there is no normality, the threshold can be
obtained from the non-parametric approach via bootstrap resampling estimation.
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3.2.2 Non parametric threshold

As mentioned, this method calculates the empirical distribution of the statistic of interest, mean,
variance, etc., over hundreds or thousands of resamples. Then, no need to worry about assuming
a distribution for the statistic in question and with the inherent assumptions.

With the values of the statistic of interest obtained in each resampling, it is enough to sum-
marize all the information from the mean, variance, and confidence interval, among other possible
measures.

The following example calculates the threshold (Eq. 53) in which the intervals for the mean
and the standard deviation are defined using the bootstrap method.

Example 13. The CCD values presented below were calculated from 16 impedance signatures
measured from an experiment developed at the Structural Mechanics Laboratory of the Faculty
of Mechanical Engineering of the Federal University of Uberlandia. The data set was adapted
considering the signatures only in the frequencies indicated in Table 7. The median signature of
the group was considered as baseline status. Therefore, the CCD metric was calculated using the
pairs formed by each signature and the median signature. The variation in this baseline metric is
due only to random or uncontrolled factors and not structural changes. The CCD values are as
shown below.

0,0202 0,0202 0,0201 0,0202 0,0201 0,0201 0,0201 0,0201
0,0201 0,0202 0,0201 0,0223 0,0209 0,0209 0,0208 0,0207

a) Checking the hypothesis of normality of the variable via the Shapiro-Wilk test.�� ��Solution

Figure 34: Normality test for the CCD variable.

The sample data provide enough evidence to reject the normality hypothesis about the
CCD variable at 0.5% of significance (Figure 34).

b) Calculating bootstrap confidence intervals for the mean of the CCD metric.�� ��Solution

Figure 35: Bootstrap confidence interval for the mean.
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With 95% confidence, the range from 0.0202 to 0.0208 contains the mean of the CCD
variable (Figure 35).

c) Calculating bootstrap confidence intervals for the standard deviation of the CCD.�� ��Solution

Figure 36: Bootstrap confidence interval for the standard deviation.

With 95% confidence, the range from 0.0002 to 0.0008 contains the population standard
deviation of the CCD metric (Figure 36).

d) Determining the threshold from the results obtained in the previous items via the non-
parametric method of bootstrap. �� ��Solution

Figure 37: Threshold obtained via bootstrap method.

In later health conditions than the baseline, obtaining a CCD value lower than 0.0233
(Figure 37) indicates that the structural integrity hypothesis is not rejected.

4 Concluding Remarks

The quality of the data set to infer the structure’s condition is of principal importance under penalty
of erroneous decisions. Thus, atypical signatures should be disregarded in the baseline and pos-
terior signature measuring step. Signatures associated with the CCD metric’s outliers should also
be considered outliers and discarded.

The trend in the impedance curve along the frequency domain, i.e., a characteristic not neces-
sarily atypical, can affect the results if its effect is different in the different impedance signatures.
In this chapter, this characteristic was modeled using the linearized exponential model.

The effect of temperature on impedance was another application explored in this chapter, using
regression polynomials. The residual dependence attributed, at least in large part, to the consec-
utive form of data collection was also considered in the modeling. The status of the structure’s
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integrity was compared by comparing the CCD metrics obtained for pristine and investigated
cases. Thresholds were also determined to verify statistically significant changes in the structure’s
behavior.

In conclusion, parametric inference techniques cannot always be applied; therefore, both this
kind of inference and alternative non-parametric methods were presented. Parametric inference
should be preferred as it is more powerful when the conditions for its application are met.

Acknowledgements

The authors are thankful to Petrobras for the financial support via the research project (R&D).

References

H. Akaike. A new look at the statistical model identification. IEEE transactions on automatic
control, 19(6):716–723, 1974.

M. S. BARTLETT. Propriedades de suficiência e testes estatísticos. Anais da Royal Society de
Londres. Série A - Ciências Matemáticas e Físicas, 160(901):268–282, 1937.

D. A. Belsley, E. Kuh, and R. E. Welsch. Regression diagnostics: Identifying influential data and
sources of collinearity. John Wiley & Sons, 2005.

H. Bozdogan. Model selection and akaike’s information criterion (aic): The general theory and its
analytical extensions. Psychometrika, 52(3):345–370, 1987.

T. S. Breusch. Testing for autocorrelation in dynamic linear models. Australian economic papers,
17(31):334–355, 1978.

T. S. Breusch and A. R. Pagan. A simple test for heteroscedasticity and random coefficient varia-
tion. Econometrica: Journal of the Econometric Society, pages 1287–1294, 1979.

J. Durbin. Tests for serial correlation in regression analysis based on the periodogram of least-
squares residuals. Biometrika, 56(1):1–15, 1969.

J. DURBIN and G. S. WATSON. Testing for serial correlation in least squares regression. I.
Biometrika, London, 37:409–428, 1950.

B. Efron and R. Tibshirani. An introduction to the bootstrap/bradley efron and robert j, 1993.

J. Fox and S. Weisberg. An R companion to applied regression. Sage publications, 2018.

L. G. Godfrey. Testing against general autoregressive and moving average error models when
the regressors include lagged dependent variables. Econometrica: Journal of the Econometric
Society, pages 1293–1301, 1978.

J. Gross and U. Ligges. nortest: Tests for Normality, 2015. URL https://CRAN.
R-project.org/package=nortest. R package version 1.0-4.

R. Hyndman, G. Athanasopoulos, C. Bergmeir, G. Caceres, L. Chhay, M. O’Hara-Wild,
F. Petropoulos, S. Razbash, E. Wang, and F. Yasmeen. forecast: Forecasting functions for time
series and linear models, 2020. URL http://pkg.robjhyndman.com/forecast. R
package version 8.12.

Silva, José W., et al. (2022) Statistical Processing to Impedance-based SHM for Oil & Gas Industry pp. 337-383

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 380



R. J. Hyndman and G. Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

N. Khatun et al. Applications of normality test in statistical analysis. Open Journal of Statistics,
11(01):113, 2021.

E. Langford. Quartiles in elementary statistics. Journal of Statistics Education, 14(3), 2006.

H. LEVENE. Robust tests for equality of variances. In: I. Olkin, et al., Eds., Contributions to
Probability and Statistics: Essays in Honor of Harold Hotelling, Stanford University Press,
Palo Alto, 1960.

G. M. Ljung and G. E. Box. On a measure of lack of fit in time series models. Biometrika, 65(2):
297–303, 1978.

M. H. A. NEWMAN. Elementos da topologia de conjuntos de pontos planos. Cambridge, 1939.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.

J. O. Rawlings, S. G. Pantula, and D. A. Dickey. Applied regression analysis: a research tool.
Springer, 1998.

R. A. Reddy. Applied data analysis and modeling for energy engineers and scientists. Springer,
Nova Iorque; Dordrecht; Heidelberg; Londres., 2011.

J. Royston. Shapiro-wilk normality test and p-value. Applied statistics, 44(4):547–551, 1995.

J. P. ROYSTON. An extension of shapiro and wilk’s w test for normality to large samples. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 31(2):115–124, 1982.

H. A. SCHEFFÉ. A method for judging all contrasts in the analysis of variance. Biometrika, 40
(1-2):87–110, 1953.

C. M. Schubert Kabban, B. M. Greenwell, M. P. DeSimio, and M. M. Derriso. The probability of
detection for structural health monitoring systems: Repeated measures data. Structural Health
Monitoring, 14(3):252–264, 2015.

G. Schwarz. Estimating the dimension of a model. The annals of statistics, pages 461–464, 1978.

J. R. Taylor. Introdução à análise de erros. Bookman, Porto Alegre., 2012.

H. Thode. Testing for normality marcel dekker. Inc. New York, pages 99–123, 2002a.

H. Thode. Testing for normality marcel dekker. Inc. New York, pages 99–123, 2002b.

J. W. TUKEY. The problem of multiple comparisons. Unpublished manuscript, Princeton Uni-
versity, 1953.

J. W. Tukey. Exploratory data analysis, volume 2. Reading, Mass., 1977.

A. Zeileis and T. Hothorn. Diagnostic checking in regression relationships. R News, 2(3):7–10,
2002. URL https://CRAN.R-project.org/doc/Rnews/.

Silva, José W., et al. (2022) Statistical Processing to Impedance-based SHM for Oil & Gas Industry pp. 337-383

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 381



A Baseline data set from an experiment carried out on steel sheets at the Structural Mechanics Laboratory (LMEst) of the Faculty
of Mechanical Engineering (FEMEC) of the Federal University of Uberlandia (UFU).

Table 7: Real part of electromechanical impedance signatures (Ω) by frequency (Hz), in 16 samples and median.

Freq,
Impedance Signatures

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mediana
40000.00 25.75 25.93 25.93 25.40 25.77 25.77 25.94 25.94 25.94 25.75 25.76 25.92 25.75 25.21 25.57 25.75 25.77
40010.00 26.26 26.26 26.07 25.90 26.08 26.09 26.26 26.09 26.26 26.26 26.26 26.23 26.06 25.71 26.06 26.08 26.09
40020.01 26.20 26.20 26.21 26.20 26.21 26.38 26.20 26.37 26.20 26.02 26.20 26.02 26.01 26.01 25.83 25.82 26.20
40030.01 26.99 26.98 27.00 26.99 26.99 26.99 27.00 26.98 27.00 26.98 26.99 26.60 26.61 26.60 26.60 26.78 26.98
40040.01 29.17 29.01 29.00 29.01 29.00 29.01 29.01 29.02 29.02 29.01 29.01 28.62 28.95 28.80 28.79 28.78 29.01
40050.02 32.66 32.66 32.66 32.66 32.67 32.66 32.67 32.67 32.67 32.69 32.69 32.64 32.81 32.81 32.63 32.80 32.67
40060.02 36.62 36.46 36.63 36.46 36.44 36.63 36.46 36.63 36.46 36.44 36.62 36.26 36.62 36.63 36.61 36.59 36.60
40070.02 37.53 37.53 37.54 37.54 37.54 37.54 37.54 37.54 37.54 37.54 37.53 36.99 37.35 37.53 37.53 37.53 37.53
40080.03 37.66 37.49 37.66 37.67 37.67 37.85 37.67 37.66 37.66 37.67 37.67 37.25 37.47 37.46 37.62 37.48 37.66
40090.03 38.48 38.45 38.45 38.28 38.27 38.45 38.46 38.46 38.28 38.45 38.27 38.20 38.44 38.25 38.25 38.25 38.36
40100.03 37.44 37.63 37.65 37.66 37.64 37.63 37.66 37.63 37.63 37.63 37.64 37.80 37.81 37.79 37.81 37.78 37.64
40110.04 35.24 35.25 35.24 35.24 35.24 35.25 35.42 35.44 35.25 35.25 35.25 35.61 35.42 35.60 35.42 35.61 35.25
40120.04 32.91 32.72 32.91 32.92 32.72 32.91 32.91 32.91 32.91 33.10 32.92 32.91 32.92 32.92 32.92 32.94 32.91
40130.04 30.35 30.36 30.18 30.54 30.36 30.36 30.54 30.55 30.35 30.55 30.55 30.18 30.18 30.19 30.19 30.01 30.36
40140.05 27.56 27.36 27.56 27.56 27.36 27.37 27.56 27.56 27.56 27.55 27.56 27.19 26.98 26.99 27.01 26.98 27.46
40150.05 25.21 25.21 25.21 25.21 25.21 25.21 25.21 25.21 25.21 25.21 25.21 24.84 24.82 24.84 24.83 24.83 25.21
40160.05 24.53 24.53 24.53 24.35 24.34 24.34 24.34 24.34 24.35 24.53 24.35 24.14 23.96 24.14 24.32 24.15 24.34
40170.06 24.40 24.40 24.60 24.40 24.40 24.58 24.42 24.58 24.58 24.40 24.58 24.03 24.21 24.20 24.21 24.20 24.40
40180.06 25.38 25.55 25.38 25.56 25.56 25.37 25.38 25.38 25.39 25.56 25.39 25.18 25.36 25.36 25.36 25.18 25.38
40190.06 27.45 27.63 27.45 27.45 27.45 27.46 27.46 27.46 27.45 27.44 27.46 27.08 27.26 27.43 27.43 27.26 27.45
40200.07 30.36 30.35 30.36 30.36 30.35 30.36 30.54 30.36 30.35 30.36 30.36 29.99 30.17 30.17 30.35 30.18 30.36

Silva, José W., et al. (2022) Statistical Processing to Impedance-based SHM for Oil & Gas Industry pp. 337-383

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 382



40210.07 32.25 32.28 32.25 32.08 32.26 32.26 32.26 32.26 32.09 32.26 32.08 31.87 31.72 31.71 31.72 31.90 32.17
40220.07 30.33 30.16 30.16 30.15 30.33 30.16 30.16 30.16 30.14 30.16 30.16 29.94 29.75 29.76 29.75 29.75 30.16
40230.08 27.03 27.04 27.05 27.04 27.04 27.05 27.05 27.05 27.05 27.23 27.05 26.66 27.00 27.00 27.00 27.00 27.04
40240.08 24.75 24.75 24.93 24.75 24.75 24.95 24.94 24.95 24.75 24.77 24.95 24.54 24.91 25.10 25.09 24.91 24.91
40250.08 24.08 23.91 24.08 23.91 23.92 24.09 23.90 24.09 23.72 24.10 23.91 23.86 23.91 24.26 24.09 23.90 23.91
40260.09 24.00 24.00 24.00 24.00 24.00 24.18 24.01 24.00 24.01 24.00 24.01 24.17 23.98 23.98 23.98 23.99 24.00
40270.09 24.30 24.48 24.31 24.31 24.32 24.32 24.32 24.31 24.32 24.32 24.32 24.15 24.12 24.13 24.12 24.13 24.31
40280.09 24.29 24.30 24.31 24.48 24.48 24.48 24.31 24.31 24.30 24.48 24.31 23.78 24.11 24.10 24.12 24.12 24.30
40290.10 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 24.09 23.92 22.99 23.54 23.53 23.53 23.71 23.91
40300.10 23.47 23.64 23.46 23.64 23.47 23.47 23.66 23.49 23.49 23.48 23.48 22.92 23.10 23.27 23.10 23.27 23.47
40310.10 23.91 23.92 23.74 23.92 23.91 23.74 23.92 23.91 23.91 23.92 23.74 23.00 23.54 23.54 23.54 23.53 23.82
40320.11 24.57 24.57 24.57 24.59 24.56 24.59 24.57 24.59 24.56 24.59 24.58 23.65 24.54 24.54 24.55 24.37 24.57
40330.11 25.25 25.23 25.24 25.23 25.23 25.23 25.24 25.24 25.23 25.24 25.23 24.64 25.38 25.20 25.20 25.22 25.23
40340.11 26.39 26.38 26.39 26.39 26.39 26.39 26.40 26.40 26.22 26.40 26.22 26.32 26.53 26.36 26.35 26.35 26.39
40350.12 28.80 28.78 28.79 28.79 28.80 28.80 28.79 28.79 28.79 28.80 28.62 29.23 29.10 28.93 28.93 28.76 28.80
40360.12 32.38 32.39 32.39 32.22 32.37 32.40 32.40 32.22 32.37 32.38 32.40 33.08 32.55 32.55 32.36 32.57 32.39
40370.12 35.15 35.15 34.98 35.14 34.98 35.14 35.14 34.97 35.15 34.98 34.97 35.39 34.99 34.97 34.96 34.97 34.98
40380.13 35.32 35.32 35.33 35.31 35.31 35.31 35.32 35.30 35.32 35.12 35.31 34.61 34.95 35.13 35.12 34.94 35.31
40390.13 34.08 33.90 33.90 33.90 33.90 33.89 33.90 33.89 33.90 33.89 33.89 33.31 33.69 33.70 33.69 33.70 33.89
40400.13 32.02 32.02 32.03 32.02 32.02 32.02 32.03 32.04 32.03 32.02 32.02 31.46 31.46 31.46 31.46 31.47 32.02
40410.14 29.12 29.12 29.12 28.94 29.12 29.30 29.11 29.11 29.12 29.12 29.11 28.73 28.73 28.72 28.54 28.54 29.11
40420.14 27.03 27.03 27.03 26.85 26.85 26.84 27.02 26.85 26.85 27.04 27.03 26.64 26.64 26.64 26.64 26.64 26.85
40430.14 25.85 25.86 25.86 25.86 25.86 25.86 25.86 25.86 25.86 25.85 25.86 25.66 25.48 25.66 25.47 25.66 25.86
40440.15 25.43 25.42 25.61 25.42 25.42 25.43 25.43 25.61 25.44 25.44 25.62 25.41 25.41 25.22 25.40 25.41 25.43
40450.15 25.39 25.22 25.21 25.22 25.21 25.40 25.40 25.40 25.40 25.39 25.40 25.21 25.03 25.03 25.02 25.01 25.22
40460.15 24.66 24.85 24.67 24.85 24.84 24.66 24.85 24.85 24.67 24.85 24.67 24.47 24.48 24.48 24.47 24.48 24.67
40470.16 23.91 23.91 23.92 23.91 23.91 23.91 24.09 23.92 23.91 23.91 24.10 23.71 23.70 23.54 23.72 23.72 23.91
40480.16 23.29 23.29 23.29 23.31 23.30 23.31 23.31 23.30 23.30 23.31 23.30 23.10 23.10 22.92 22.92 23.10 23.30
40490.16 23.55 23.55 23.55 23.72 23.73 23.73 23.55 23.55 23.55 23.55 23.55 23.35 23.52 23.35 23.35 23.34 23.55
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Abstract

The electromechanical impedance-based approach can perform Structural Health
Monitoring (SHM). The impedance signature is used to map any structural change
and for follow-up purposes. Two major challenges for SHM are normalizing the col-
lected impedance data and determining strategies to assess the level of damage to
engineering structures and equipment over time. The objectives of this chapter are to
present a data normalization technique and to illustrate a case study by modeling the
damage level of an aluminum beam using Fuzzy Rule-Based Systems (FRBSs) that
are generated using the Adaptive Neuro-Fuzzy Inference System (ANFIS). The train-
ing is carried out for the first aim with the input variables temperature and frequency,
and the output data are impedance baseline signatures. The temperature effect can
generate changes in the impedance signature, leading to incorrect structural diag-
noses. Because of that, it is necessary to compensate for the impact of this variable
for later prediction of impedance signatures without damage at temperatures that
were not necessarily observed in the data collection. Results were obtained in the
validation, in which a part of the data was used for training the FRBSs, and another
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part was intended for confirmation. Both of the baseline data indicate good accu-
racy of the predicted signatures since the highest Correlation Coefficient Deviation
(CCD) damage index was 0, 003800021. To evaluate the damage level, FRBSs were
constructed, with the input variables being two damage indices established by the
electromechanical impedance signatures. The FRBSs average hit percentages are
95%. This result can indicate possible inputs for FBRSs to identify the damage levels
when these FRBSs output values are unknown. Finally, the methodology proposed is
used for the damage detection process in an experiment to detect corrosion-related
damage in metallic structures. .

Keywords: Electromechanical impedance-based SHM; Fuzzy sets; ANFIS; Data normalization;
Damage detection

1 Introduction

The Electromechanical Impedance-based Structural Health Monitoring technique (EMI-SHM)
allows detecting structural changes using PZT (Lead Zirconate Titanium) ceramic transducers,
bonded or embedded in the evaluated host structure. This technique reduces direct and indirect
maintenance costs through an online and near real-time monitoring approach. It is also possible
to improve by detecting design mistakes in their developing stage. This is possible by allowing
a change of potential changes through a shift in excitation that can be changed. These changes
are changed to qualitative parameters and can be tested through pattern models, which are either
tested pure or untested curvature indices or tested as basal curvature with a verified curvature in
the current state [Rabelo et al., 2017] EMI-SHM can be applied to complex structures, such as
[Maruo et al., 2015] aircraft panels, steel fiber reinforced concrete structures [Silva et al., 2020]
and other types of applications.

This technique has several advantages that make it promising, such as it can be applied to
complex structures; transducers can be installed in hard-to-reach places; it has a high sensitivity
to incipient failures; measurement data is easy to interpret; it can be implemented online; and
is adapted for continuous monitoring, which can reduce the number of maintenance stops [Park
et al., 1999].

However, an important limitation of this technique is the choice of the ideal frequency band
used for the monitoring process. This parameter is usually determined experimentally in the signa-
ture range with high peak density, indicating good electromechanical coupling. It is worth noting
that the width of the frequency band can influence the ability to detect structural faults, so a very
narrow band can limit the variety of detectable damage types. On the other hand, an extensive fre-
quency range may contain regions of low electromechanical coupling, and small changes may not
be found in a specific part of the frequency range, due to a low local electromechanical coupling
[Rabelo et al., 2017]. Therefore, it is necessary to use several frequency points and assume that, at
least in some of them, the impedance will be modified in the presence of damage. Alternatively,
the frequency range can also be determined using artificial intelligence techniques [Moura and
Steffen, 2004].

Thus, EMI-SHM allows the early detection of structural failures, which can increase work
environment safety and reduce maintenance costs. The presence or absence of structural modi-
fications, in general, is verified from damage indices or metrics computed from the comparison
between reference signatures, known as baseline, and investigated signatures.

Among the various existing damage indices or metrics, RMSD1 (root mean square deviation),
CCD (correlation coefficient deviation), and ASD (mean square difference) [Palomino, 2008] can
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be mentioned. The RMSD1 index can be calculated through the equation (1), the ASD through
the equation (2), while the CCD is computed by (3), which also involves the difference between
one and the correlation coefficient (CC), given by the equation (4), as follows:

RMSD1 =

√√√√ n∑
j=1

(ZB,j − ZI,j)2

Z2
I,j

, (1)

ASD =
n∑

j=1

[(ZB,j − ZI,j)− (Z̄B − Z̄I)]
2, (2)

CCD = 1− CC, (3)

CC =
1

n

n∑
j=1

{[
ZB,j − Z̄B

] [
ZI,j − Z̄I

]
SZB

SZI

}
, (4)

where ZB,j is the real part of the baseline signature at frequency j and ZI,j is the real part of
the investigated signature at frequency j, both considering n frequency points, Z̄B and Z̄I are the
averages of the baseline and investigated signatures, respectively, in the selected frequency range,
SZB

is the standard deviation of the baseline signature and SZI
is the standard deviation of the

investigated signature, considering all frequency points of each one.
Suppose the structure does not show significant changes at the time of investigation regarding

the state of the baseline signature. In that case, it is expected that the damage index determined
from the two signatures will be relatively small.

Fluctuations or changes in the impedance signature due to factors other than the damage itself
can inflate the damage index, leading to a false diagnosis. This is especially true if temperature
changes are not adequately compensated for, which can lead to false positives as to the presence of
damage. Therefore, it is necessary to use methodologies that compensate for temperature effects
so that the impedance changes detected in the analysis are mainly due to structural changes and
not environmental impacts.

The term data normalization in SHM systems refers to a data processing procedure, which
may include variations caused in the impedance signatures due to environmental and operational
effects. There are many studies on the normalization of electromechanical impedance signatures,
such as Krishnamurthy et al. [1996]; Bhalla et al. [2003]; Zhou et al. [2009]; Sepehry et al. [2011]
and Bastani et al. [2012], whose results can be applied under specific conditions. There are also
other studies such as Sun et al. [1995], Park et al. [1999] and Koo et al. [2009] on the correction of
the variation of the impedance signature caused by the temperature effect, maximizing the corre-
lation between the baseline signature and the signature measured for investigation of the structure.
In these approaches, a necessary condition for model validation is that a baseline signature at a
specific temperature level must be stored to be used for compensation purposes. Due to weather or
climate constraints, this can be an important limitation if impedance signature(s) were not stored
at a given temperature during the baseline acquisition procedure.

A technique to remove the temperature effect, based on the fit of regression polynomials, is
proposed in Gianesini et al. [2021]. However, applying this technique is conducted in two steps:
the first to adjust the horizontal displacement of the signature and the second to adjust the vertical.

However, these techniques have limitations, such as the size of the frequency band and, in the
case of adjustment via regression analysis, there are assumptions to be taken into account, such as
homogeneity, normality, and independence on the model residuals, which is not always possible
to guarantee, and therefore the normalization of the data would be compromised.

Another critical difficulty encountered in traditional SHM methodologies is quantifying dam-
age from these metrics obtained at their respective temperatures since there is no information on
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whether the behavior of the damage increment and metric values are or are not directly linked.
Thus, the main objective of this chapter is to present an alternative for the normalization of

electromechanical impedance data and a way to quantify the possible structural changes. To this
end, we propose using Fuzzy Rule-Based Systems (FRBSs), a methodology that enables the ma-
nipulation of uncertain information or the mathematical representation of imprecision. This chap-
ter is based on Freitas [2021].

The mathematical tool used in modeling the problems under study is the theory of Fuzzy Sets,
which was proposed by Zadeh [1965]. This theory has proved to be an efficient mathematical tool
for quantifying and characterizing uncertainties in various contexts. To exemplify, in the work
of Ferreira [2011], the mathematical modeling of luminescence is carried out from experiments
with a beam of light focused on a point on the surface of a glassy sample; in Nardez [2015], it is
required the determination and positioning of points with high accuracy, using the Global Navi-
gation Satellite System (GNSS), in which it is necessary to know the phase center displacements
of the antennas GNSS; in the work of Alfaro [2019], the dynamics of delayed Human Immun-
odeficiency Virus (HIV) under antiretroviral treatment in seropositive individuals with two fuzzy
parameters is simulated. In the first two works, ANFIS was used to determine SBRFs applied in
modeling these phenomena.

In the building and elaboration of FRBSs, there is a need for the help of a specialist in the area
to find its best configuration and development of its rules. Thus, ANFIS [Fresno et al., 2015] has
proved to be an exciting tool as an aid for this FRBS configuration step when the data of the input
and output variables are known.

Thus, this chapter aims to determine the FRBSs through ANFIS that make possible the nor-
malization of electromechanical impedance data (Part I) and damage identification (Part II).

• Part I, which deals with normalization, took place in two steps, given by:

Step 1: (Validation of FRBSs) In this phase, the baseline impedance signatures are divided
into two distinct groups. One group is used for training the model and the other for
validation. The validation of the FRBS is performed through some damage metric;
the CCD, for example, is calculated from a signature that was left out of training and
the corresponding baseline signature built from the FRBSs and, therefore, both at the
same temperature. It is noteworthy that the objective is to create baseline signatures
and, therefore, it is expected that the damage metrics, under the hypothesis of model
validity, will be low because they are comparisons between signatures that represent
the structure in the same state, that is, baseline status;

Step 2: (Building baseline signatures) The second step consists of determining new FRBSs,
taking into account all signatures collected in the baseline stage. These FRBSs build
baseline signatures at any temperature, even if not measured but within the collection
range. Thus, the problem of the lack of equivalence of the temperature effect between
the baseline signatures and the signatures in the investigation step is solved through
the FRBSs obtained by ANFIS.

• Part II deals with the identification of the damage level and consists of initially computing
the values of the metrics RMSD1 (equation (1)) and CCD (equation (3)) and, from that,
using these metrics as FRBS inputs, perform training through ANFIS to generate the FRBS
that can identify the level of damage in the structure.

To meet the objectives proposed above, section 2 presents the main concepts of fuzzy set the-
ory, which underlie the uncertainty found in FRBSs, and an example that illustrates this method-
ology, used in the context of electromechanical impedance at detecting levels of damage. Section
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3 presents the primary tool for obtaining the FRBSs built in this work, ANFIS. Section 4 offers a
proposal, in the form of an application, for data normalization. In section 5, another application
is presented to investigate the structure’s level of damage. Finally, in section 6, the conclusions of
the chapter are presented.

2 Fuzzy Sets Theory

The fuzzy sets theory was initially proposed by Zadeh [1965], aimed at modeling uncertain situa-
tions. Thus, unlike classical set theory, which determines in a very well-defined way the insertion
of an element in the set or not, in fuzzy logic, the elements are inserted in the groups with their
respective degrees of membership, according to Pourjavad and Shahin [2018]. Thus, a fuzzy set is
used to present vague concepts in the characterization of models mathematically.

The following section provides a formal definition of this concept and some examples, accord-
ing to Jafelice et al. [2012], Barros and Bassanezi [2015].

2.1 Fuzzy Sets

Definition 2.1 A set fuzzy A of the universe U is characterized by a membership function: µA :
U → [0, 1]. This is called the membership function of the set fuzzy A. The value µA(x) of the
function is interpreted as the degree to which the element x belongs to the set fuzzy A, that is,
µA(x) = 0 indicates a no membership of x to A, and µA(x) = 1 indicates total membership
of the set [Zadeh, 1965]. A classical set of ordered pairs can also represent a set fuzzy: A =
{(x, µA(x))|x ∈ U}.

In this context, the intention is to establish, for each element of a set, a value between 0 and 1,
which is considered the membership degree and serves to express how much the element belongs
or not to a subset of this set. The membership function can be triangular, trapezoidal, Gaussian, or
even have other geometric shapes [Barros and Bassanezi, 2015].

Definition 2.2 A singleton set is a fuzzy set with a membership function that is unity at a single
point in the considered universe and zero elsewhere.

When it comes to fuzzy sets, it is possible to think about operations that can be performed
in this context. Thus, the union, intersection, and complement operations of classical sets can be
applied to fuzzy sets and will be covered in the following subsection.

2.2 Operations with Fuzzy Sets

Definition 2.3 Given A and B two fuzzy sets with µA and µB their respective membership func-
tions, one can define the union operations (5) (Figure 1b), intersection (6)(Figure 1c) and comple-
mentary (7)(Figure 1d) of the sets fuzzy A and B, for all x ∈ U , given by:

µ(A∪B)(x) = max{µA(x), µB(x)}, (5)

µ(A∩B)(x) = min{µA(x), µB(x)}, (6)

µA′(x) = 1− µA(x), (7)

where 1 represents the constant function.
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a: Fuzzy sets A and B. b: Fuzzy set A ∪B in purple.

c: Fuzzy set A ∩B in purple. d: Complementary fuzzy set A′ in purple.

Figure 1: Representation of operations on fuzzy sets through membership functions.
Source: Freitas et al. [2021c].

In the next subsection, the triangular norms are defined.

2.3 Triangular Norms

Definition 2.4 A triangular conorm (s-norm) is a binary operation s : [0, 1] × [0, 1] → [0, 1],
denoted by s(x, y) = xsy , satisfying the following conditions:

• Commutativity: xsy = ysx;

• Associativity: xs(ysz) = (xsy)sz;

• Monotonicity: If x ⩽ y and w ⩽ z then xsw ⩽ ysz;

• Boundary conditions: xs0 = x and xs1 = 1.

Example 2.1

a) Standard Union: s : [0, 1]× [0, 1] → [0, 1] with xsy = max(x, y), (Figure 2a);

b) Algebraic Sum: s : [0, 1]× [0, 1] → [0, 1] with xsy = x+ y − xy, (Figure 2b);

c) Limited Sum: s : [0.1]× [0.1] → [0.1] with xsy = min(1, x+ y), (Figure 2c);

d) Drastic Union: s : [0, 1]× [0, 1] → [0, 1] com

xsy =


x if y = 0;
y if x = 0;
1 otherwise;

(Figure 2d).
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a: Standard Union. b: Algebraic Sum.

c: Limited Sum. d: Drastic Union.

Figure 2: Representation of the surfaces generated by the examples of s-norms.
Source: Freitas et al. [2021c].

Definition 2.5 A triangular norm (t-norm) is a binary operation t : [0, 1]×[0, 1] → [0, 1], denoted
by t(x, y) = xty, satisfying the following conditions:

• Commutativity: xty = ytx;

• Associativity: xt(ytz) = (xty)tz;

• Monotonicity: If x ⩽ y and w ⩽ z then xtw ⩽ ytz;

• Boundary conditions: 0tx = 0 and 1tx = x.

Example 2.2

a) Standard Intersection: t : [0, 1]× [0, 1] → [0, 1] with xty = min(x, y), (Figure ??);

b) Algebraic Product: t : [0, 1]× [0, 1] → [0, 1] with xty = xy, (Figure 3b);

c) Limited Difference: t : [0, 1]× [0, 1] → [0, 1] with xty = max(0, x+ y − 1), (Figure 3c);

d) Drastic Intersection: t : [0, 1]× [0, 1] → [0, 1] with

xty =


x if y = 1;
y if x = 1;
0 otherwise;

(Figure 3d).
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a: Standard Intersection. b: Algebraic Product.

c: Limited Difference. d: Drastic Intersection.

Figure 3: Representation of the surfaces generated by the examples of t-norms.
Source: Freitas et al. [2021c].

Next, an essential technique of fuzzy set theory for this work, the fuzzy rule-based systems, is
discussed.

2.4 Fuzzy Rule-Based System

The Fuzzy Rule-Based System (FRBS) is a process of mapping an input set to an output set. To
introduce an FRBS, it is necessary to define linguistic variables.

2.4.1 Linguistic Variables

According to Jafelice et al. [2012], linguistic variables are used to quantify data or information
using expressions of human communication.

Definition 2.6 A linguistic variable is a variable whose value is expressed qualitatively by a lin-
guistic term, providing a concept to the variable and quantitatively through the membership func-
tion. Thus, the linguistic variable is composed of a symbolic variable and a numerical value.

Example 2.3 Considering the linguistic variable structural change in aluminum plate, ranging
from 0 to 1, its linguistic terms are assumed as small, medium, and large. These values are
represented by fuzzy sets as shown in Figure 4.

Freitas, Fernando A., et al. (2022) Neuro-Fuzzy Data Normalization I-SHM Oil&Gas Industry pp. 384-426

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 392



Figure 4: Linguistic variable structural change in an aluminum plate. Source:
Adapted from Freitas et al. [2021c].

With the definition of linguistic variables, one can go further to the concept and structuring of
FRBS, which will be done in the following subsection.

2.4.2 FRBS

An FRBS is composed of four components: the input processor (fuzzification process), a rule base,
a fuzzy inference method, and an output processor (defuzzification process), which are connected
as shown in Figure 5.

x Input Fuzzy inference method Output

Rule base

y

Figure 5: FRBS architecture.

Each component is defined as:

• Input Processor (Fuzzification) The system inputs are translated into fuzzy sets in their
respective domains in this component.

• Rule Base This component, together with the inference method, can be considered the
core of fuzzy rule-based systems. This is composed of a collection of fuzzy propositions
described in the linguistic form:

If x1 is A1 and x2 is A2 and . . . and xn is An

then y1 is B1 and y2 is B2 and . . . and ym is Bm,
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where A1, . . . , An are the fuzzy input sets and B1, . . . , Bn are the fuzzy output sets.

• Fuzzy Inference Method
It is in this component that each fuzzy proposition is mathematically translated using ap-
proximate reasoning techniques. Mathematical operators will be selected to define the rule
base’s fuzzy relationship. In this way, the fuzzy inference machine is of fundamental im-
portance for the success of the fuzzy system, as it provides the output from each input fuzzy
and the relationship defined by the rule base.

– Mamdani Method
A rule is characterized by If (antecedent) then (consequent), provided by the Cartesian
product fuzzy of the fuzzy sets that compose its antecedent and consequent. Mam-
dani’s method groups the logical OR operator, arranged by the maximum operation
in the s-norm, and the AND operator, configured by the minimum operation in the
t-norm, in each rule, as shown in Figure 6. Given the following rules:

Rule 1: If (x1 is A1 and x2 is B1) then (y is C1);
Rule 2: If (x1 is A2 and x2 is B2) then (y is C2).

In Figure 6 the output y is represented through the Mamdani inference method for the
inputs x1 and x2, using the max-min composition.

Figure 6: Mamdani inference method with max-min composition. Source: Adapted
from Freitas et al. [2021c].

– Takagi-Sugeno method
The consequence characterizes this method in that each rule is a function depending
on the input variables. Therefore, given the inputs, x1 and x2, the output for each rule
is given as a linear combination of these inputs. Thus, given the following rules:

Rule 1: If (x1 is A1 and x2 is B1) then (y = f1(x1, x2));
Rule 2: If (x1 is A2 and x2 is B2) then (y = f2(x1, x2)).
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A representation of the output y, obtained from this inference method (Takagi-Sugeno),
for the inputs x1 and x2, with kij ∈ R, i = 1, 2 and j = 0, 1, 2, is shown in Figure 7

Figure 7: Takagi-Sugeno inference method. Source: Adapted from Freitas et al.
[2021c].

The generalization of these inference methods can be found in Barros and Bassanezi [2015].

• Output Processor (Defuzzification)
defuzzification is a process that allows representing a set fuzzy by a crisp number. In
fuzzy systems, in general, the output is a fuzzy set. Thus, we must choose a method to
defuzzify the output and obtain a real number representing it. The most common method
of defuzzification is as follows:

– Center of gravity
This defuzzification method is similar to the weighted average for data distribution,
with the difference that the weights are the values µC(yi) that indicate the degree of
compatibility of the value yi with the concept modeled by the fuzzy C set.
For a discrete domain, we have:

G(C) =

n∑
i=0

yiµC(yi)

n∑
i=0

µC(yi)

, (8)

where yi belongs to the domain of C.

The following section will present an example of a system based on fuzzy rules using Mamdani’s
inference method.

2.5 FRBS Example: Grinding of Aluminum Beams

The experiment used to obtain the sampled data was carried out on aluminum beams. The struc-
tural modification was caused by the grinding process, which is the mechanical wear of the struc-
ture. The data set were obtained using the electromechanical impedance-based SHM technique, so
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that the experiment was carried out in a climatic chamber, as shown in Figure 8, with temperature
and humidity control, at the Structural Mechanics Laboratory (LMEst) of Faculty of Mechan-
ical Engineering of the Federal University of Uberlandia. This experiment was chosen due to
the increasing behavior, from the third cycle, of the metrics referring to the electromechanical
impedance data set obtained, a condition that occurs, in general, in the actual SHM.

Figure 8: Climatic chamber used in the experiment. Source: Freitas et al. [2021c].

2.5.1 The Experimental Setup

In this experiment, four aluminum beam structures were used. The aluminum beams are 500mm
long, 38mm wide, and 3.2mm thick. In each of them, a 1 mm thick and 20 mm diameter PZT
patch was bonded 100 mm from the edge of the structure.

The failure mechanisms, or simulated damage, used in the experiment were surface grinding
on one of the faces of the 30mm wide beams at 70mm from the opposite end and the same face on
which the PZT patch was bonded. Nine levels of damage were considered in total, two baseline
and seven levels of thickness removal by machining. Specimen 4 was used as a control mechanism,
being removed from the chamber along with the others, but no failure mechanism was introduced
in it. The difference between the mass values for specimen 4 (Table 1) comes from a failure in the
measurement mechanism since the integrity of the beam was not altered in this case.

Figure 9 shows the four specimens tested in the bi-supported boundary condition. The beams
were supported under the thickness, not over the width.

Figure 9: Specimens used in the test. Source: Freitas et al. [2021c].

It is important to emphasize that the stands for positioning the structures inside the chamber
were printed in ABS plastic, with rounded feet, to reduce the interference of the chamber floor
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in the structures and make it possible to embed connectors in the specimens themselves. The
structures were removed from inside the chamber for machining and returned to the chamber for
continuity of measurements with the least possible interference from the cables since they were
placed in the same position inside the chamber, as shown in Figure 10.

Figure 10: Positioning the specimens inside the chamber. Source: Freitas et al.
[2021c].

The temperature range increased with an increment of 3 ◦C, in the range of 13 to 40 ◦C;
therefore, the measurements were obtained at ten different temperatures or in ten cycles.

For each configuration: specimen, temperature, and damage condition, samples of size 30
were obtained. Thus, in a total of 10 temperature cycles, nine damage levels, four specimens, and
30 repetitions, 10800 impedance signatures were gathered.

Since inserting damage was performed manually from a grinder, it was decided to adopt two
variables as the response of each specimen after inserting the damage. The first answer is the
mass, considering the mass loss from the previous state. For this answer, a precision balance
of two decimal places of the gram was used, and eight measurements were taken to obtain the
average. The second answer is the thickness in the region delimited for machining, considering
the loss of thickness in the previous state. A gauge with a resolution of 0.01mm was used for the
second answer. The average of 10 random measurements of the thickness of the area delimited by
the machining was recorded. An image of one of the experimental conditions or machining levels
is shown in Figure 11, which shows the distance between the edge point and the machined region.

The results of the mass measurements for each specimen are presented in Table 1 and for the
thicknesses in each specimen in Table 2, which consist of eight conditions since the baseline con-

Figure 11: Damage 2 on specimen 1. Source: Freitas et al. [2021c].
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dition was placed in the same parameter because they have the same data. In this experiment, we
have the data of each damage attributed to the structure through the measurements of mass and
thickness; however, the SHM technique is used to verify the structural change from the electrome-
chanical impedance data set without worrying about the values presented in the tables. Thus, these
values show that this experiment’s loss of mass and thickness was slight.

Table 1: Mass, in grams, of specimens at each damage level.

Damage Specimen
1 2 3 4

No damage a 191 .36 192 .42 192 .86 195 .89
1 191 .20 192 .27 192 .69 -
2 191 .16 192 .02 192 .58 -
3 190 .95 191 .82 192 .39 -
4 190 .41 191 .48 192 .02 -
5 189 .96 190 .54 191 .33 -
6 189 .16 189 .42 189 .78 -
7 187 .44 188 .57 188 .37 195 .83

aBaseline condition
Source: Adapted from Freitas et al. [2021c].

Table 2: Thickness, in millimeters, of the specimens at each damage level.

Damage Specimen
1 2 3 4

No damage a 3.17 3.17 3.19 3.18
1 3.09 3.11 3.09 -
2 3.01 2.96 2.99 -
3 2.97 2.93 2.95 -
4 2.85 2.85 2.89 -
5 2.72 2.49 2.63 -
6 2.44 2.23 2.09 -
7 1.93 1.92 1.83 3.18

aBaseline condition
Source: Adapted from Freitas et al. [2021c].

As can be seen in all structures, by Table 2, the damages inserted in the three specimens never
exceeded 50% of the thickness, and the last two machining levels applied were more severe to
observe this more remarkable growth (more minor and greater progressions) in thickness loss. The
electromechanical impedance technique seeks to analyze structural change; however, when the
change is minimal, as found for the initial damages of the experiment, the methodology through the
metrics may not show such a structural change. When this change was not included, the structural
modification was considered irrelevant. The metric had a value very close to the structure metrics,
comparing signatures in the baseline state.

Data from PZT1 patch were not used in the analysis due to problems in acquiring signatures.
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2.5.2 Criteria for evaluation and design of FRBSs

A significant difficulty in obtaining FRBSs for damage classification is the enormous variability of
signatures according to the material used and experiment settings. An experiment set up in close
conditions can vary greatly in its signatures. This interference is smaller in metrics determined
from these signatures, which justifies the use of CCD and ASD (Figure 12).

Then, the FRBS was built considering CCD and ASD metrics as input variables.

CCD

ASD

FRBS
Mamdani

Inference Method
Damage Level

Output

Inputs

Figure 12: FRBS architecture.

To assess the quality of the FRBS, the combination of CCD and ASD metrics was used to
determine the damage that each combination assumes. Three linguistic terms were designed for
the damage level output variable: irrelevant, low, and medium. There was no characterization of
high damage because the damage to the structure did not exceed 50% change from the original
state when looking at the Table 2 of the thickness of the specimens.

2.5.3 Results of the Model Evaluation Step

Considering the experiment data for PZT2 and PZT3 patches, the CCD and ASD metrics were
calculated from the baseline signatures and those investigated. For the output variable, damage
level, the irrelevant linguistic term corresponds to the signature baseline and damages 1, 2, and 3;
the small to damage 4 and 5; and the medium to 6 and 7, where the damages from 1 to 7 are those
in Table 1.

In Figure 13, the numbers 1 and 2 on the abscissa axis represent baseline experimental con-
dition measurements, and the numbers 3 to 9 are the actual damage, listed in this text, from 1 to
7.

For the construction of the FRBS, CCD and ASD metrics were considered for the inputs, as
mentioned, due to the similar behavior of these two metrics, along with the damage, as shown in
Figure 13.

From the analysis of the behavior of the CCD and ASD metrics, for PZT2 patch, trapezoidal
membership functions were established for each input and output, which are given by:

• Inputs, as shown in Figure 14:

– CCD values: the domain [0, 0.1], representing the ranges [0.0.025], [0.02, 0.045] and
[0.04, 0.1], with the linguistic terms: Low, Medium and High, respectively.

– ASD values: the domain [1.2 × 106, 3.5 × 107], representing the ranges [1.2 ×
106, 7, 089×106], [6.09×106, 1.2×107] and [1.1×107, 3.5×107], with the linguistic
terms: Low, Medium and High, respectively.
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a: CCD metric behavior according to damage. b: ASD metric behavior according to damage.

Figure 13: Behavior of CCD and ASD metrics with respect to damage. Source:
Adapted from Freitas et al. [2021c].

• Output Values: the domain [0, 2], represented by functions singleton in 0, 1 and 2, with the
linguistic terms: Irrelevant, Small and Medium, respectively, as shown in Figure 15.

a: Membership function for the CCD variable. b: Membership function for the ASD variable.

Figure 14: Membership functions for the FRBS inputs. Source: Adapted from Fre-
itas et al. [2021c].
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Figure 15: Membership functions for the FRBS output. Source: Adapted from
Freitas et al. [2021c].

The following fuzzy rules were established:

Rule 1 : If (CCD is Low) and (ASD is Low) then the Damage Level is Irrelevant;
Rule 2 : If (CCD is Low) and (ASD is Medium) then Damage Level is Irrelevant;
Rule 3 : If (CCD is Low) and (ASD is High) then Damage Level is Small;
Rule 4 : If (CCD is Medium) and (ASD is Low) then Damage Level is Irrelevant;
Rule 5 : If (CCD is Medium) and (ASD is Medium) then Damage Level is Small;
Rule 6 : If (CCD is Medium) and (ASD is High) then Damage Level is Medium;
Rule 7 : If (CCD is High) and (ASD is Low) then Damage Level is Small;
Rule 8 : If (CCD is High) and (ASD is Medium) then Damage Level is Small;
Rule 9 : If (CCD is High) and (ASD is High) then Damage Level is Medium.

Data validation was performed by comparing the level of damage generated by the FRBS and
that expected through the experiment by the absolute value of the difference between the level of
damage obtained by the FRBS with that of the investigation. If this value is less than 0.5, it is
compatible with the expected linguistic term. Otherwise, it is considered incompatible.

For the PZT2 patch data, the accuracy of 92.21% was found, showing that the methodology
could identify the level of damage for a complex problem in most of the data. This same SBRF
was used to verify the damage level for the PZT3 patch, and it was found that this sensor had a
hitting percentage of 81.93%. Thus, the global hit level, regardless of the two PZT patches, was
87.03%, which is satisfactory, given the difficulty in performing such an analysis.

In the section 3, presented below, the theoretical foundation of ANFIS and relevant examples
of numerical methods used for its computational implementation are discussed.

3 Fuzzy Rule-Based System on Adaptive Network

According to Fonseca [2012], the Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid
technique of artificial intelligence that infers knowledge using fuzzy set theory principles and
adds to this structure the possibility of learning inherent to artificial neural networks. Thus, this
hybrid system solves one of the biggest problems of using fuzzy set theory: tuning the input and
output functions of an FRBS. This section presents an explanation of artificial neural networks
and ANFIS.
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3.1 Artificial neural networks

Artificial Neural Networks (ANNs) can be seen as a computational method that, through expe-
rience, acquires knowledge based on the structure of biological neurons in the human brain, as
shown in Figure 16.

The human brain is a parallel processing system that, even if the processing of an individual
neuron is slow, is capable of processing trillions of operations simultaneously [Bezerra, 2016].

According to Valenca [2008], the biological neuron (Figure 16) is composed of a cell body,
from which branches, known as dendrites, come out. The cell body and the telodendron, known
as the terminal, are connected by the axon. The nerve impulse transmission between two neurons
occurs from the axon of one neuron to the dendrite of the next, always in that order. The region
where impulse transmission occurs is known as a synapse.

An important concept to understand the functioning of the biological neuron is the intensity of
the stimulus, called the excitatory threshold, from which the neuron fires, or not, the nerve impulse.
Therefore, if the stimulus is too small, its intensity will be below the excitatory threshold, and no
nerve impulse will occur. On the other hand, after this threshold, the neuron’s action potential will
always be the same, whatever the intensity of the stimulus.

Figure 16: Representation of a biological neuron. Source: [Valenca, 2008].

The first to propose this biological neuron in an artificial model were McCulloch and Pitts
[1943], and the model of this neuron is presented in Figure 17. Valenca [2008] states that this
model looks for the biological neuron from a representation model.

Figure 17: Threshold Logic Unit by McCulloch and Pitts. Source: [Bezerra, 2016].

Thus, consider x1, x2, x3, to be the input variables of the output neuron y. The following
propagation rule gives the

∑
entry:
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3∑
i=1

wixi − b,

where wi are the synaptic weights and b is the excitatory threshold. From this, it is possible to
calculate the f(

∑
), known as the activation function, thus giving the desired output y = f(

∑
).

Neural networks are commonly structured in layers, where each unit can be related to units in
the previous layer. There are the input layers, in which the patterns are indicated to the network,
the intermediate or hidden layers, where most of the network’s learning processing is performed,
and the output layer, which presents the final result [Antognetti and Milutinovic, 1991].

There are two steps in developing an ANN: learning and use carried out sequentially and sep-
arately. In the learning stage, the data entered are visualized in two sets. The first group adjusts
the network weights, while the second evaluates the training quality. Then, the utilization step is
the mode in which the network corresponds to the input stimulus, not making further adjustments
to its parameters [Braga et al., 2000].

In the case of ANFIS, in its training, it is necessary to use the method of least squares and
gradient descent .

ANFIS, developed by Jang [1993], is a neuro-fuzzy system used to adjust membership func-
tions and rules of an SBRF to find the most suitable answer for this system [Sodre et al., 2016].
The theory will be presented in the following subsection (subsection 3.2).

3.2 ANFIS

ANFIS is an artificial neural network of five layers interconnected through unit weights. Each
layer is responsible for an operation that will produce an output equivalent to the one found at a
given stage of a Takagi-Sugeno-type fuzzy system. Figure 18 is shown the equivalent architec-
ture of ANFIS. To facilitate the understanding of the neuro-fuzzy network, we present a schema
containing only two inputs, x1 and x2, and an output, y.

x1

x2

A1

A2

B1

B2

∏
∏
∏
∏

N

N

N

N

xx

xx

xx

xx

∑
y

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 18: ANFIS architecture.

ANFIS implements four Takagi-Sugeno-type fuzzy rules:

Rule 1: If (x1 is A1) and (x2 is B1) then y = f1 = k10 + k11x1 + k12x2;
Rule 2: If (x1 is A2) and (x2 is B2) then y = f2 = k20 + k21x1 + k22x2;
Rule 3: If (x1 is A2) and (x2 is B1) then y = f3 = k30 + k31x1 + k32x2;
Rule 4: If (x1 is A1) and (x2 is B2) then y = f4 = k40 + k41x1 + k42x2;
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where A1 and A2 are fuzzy sets of the universe X1; B1 and B2 are fuzzy sets of the universe X2;
and ki0, ki1 and ki2 are the parameter sets of rule i. Figure 7 shows the mechanism to obtain the
inference method from the rules (9).

According to [Jang, 1993], after reading the data, its values are computed by membership
functions that will identify the compatibility of each entry with its respective linguistic terms
associated with this node. The function that is calculated in this layer is given by:

y
(1)
i = µAi(x1) for i = 1, 2 ou

y
(1)
i = µBi−2(x2) for i = 3, 4,

where x1 or x2 is an input of node i, Ai or Bi−2 is the fuzzy set related to this node and y
(1)
i is the

output on the first layer.
For better understanding, we will assume that the membership functions are of the Gaussian

type, according to the following equation:

µ(x) = e
−1

2

(
x− a

b

)2

(9)

Note that each neuron in this layer has membership functions as its activation function in
which the parameters of each of these functions are adaptive. It means that the parameters a and b
are adjustable.

In the second layer, neurons have non-tunable activation functions
∏

. In an ANFIS, the
conjunction of rule antecedents is evaluated by the product of the operator (using some t−norm),
where the output is given by:

y
(2)
1 = w1 = µA1(x1) · µB1(x2),

y
(2)
2 = w2 = µA1(x1) · µB2(x2),

y
(2)
3 = w3 = µA2(x1) · µB1(x2),

y
(2)
4 = w4 = µA2(x1) · µB2(x2),

where y
(2)
i is the output of this neuron obtained by the t−norm of the algebraic product.

In the third layer, there is another layer with fixed nodes, called N , non-adjustable, which
normalizes the degrees of pertinence of each rule. Its function is given by:

y
(3)
i = wi =

wi

w1 + w2 + w3 + w4
, i = 1, 2, 3, 4.

In the fourth layer, we have adaptive nodes again, whose function is composed of a set of
parameters (ki0, ki1 and ki2) called consequent parameters. These parameters appear linearly in
the output of each rule, according to the following function:

y
(4)
i = wifi = wi(ki0x1 + ki1x2 + ki2),

where wi is the activation level calculated in the previous layer.
Finally, in the last layer, there is, again, a layer with a single fixed node called

∑
, in which

the correct output of the neuro-fuzzy system is calculated, encompassing all inputs given by the
function:
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y
(5)
i =

4∑
i=1

wifi =

4∑
i=1

wifi

4∑
i=1

wi

.

ANFIS uses a hybrid learning algorithm that combines the least squares estimator and the
[Jang, 1993] gradient descent method. First, initial activation functions are assigned to each asso-
ciated neuron. The centers of the functions of the neurons connected to the input xi are defined so
that the domain of xi is divided equally, and the widths and slopes are defined to allow sufficient
overlap of the respective functions.

In the ANFIS training algorithm, each epoch comprises one step forward and one step back.
In the forward pass, a training set of input patterns (an input vector) is presented to ANFIS. The
neuron outputs are calculated layer by layer, and the consequent parameters of the rule are iden-
tified by the least-squares estimator. The antecedent parameters are adjusted through the error
backpropagation algorithm. The following shows how this training takes place.

In the Takagi-Sugeno inference method, as shown in Figure 7, an output, f, is a linear function.
Thus, given the values of the membership parameters and joint training of input-output patterns
p = 1, · · · , P , we can form linear equations P in terms of the consequent parameters as:

Yd(1) = w1(1)f1(1) + w2(1)f2(1) + · · ·+ wn(1)fn(1)

Yd(2) = w1(2)f1(2) + w2(2)f2(2) + · · ·+ wn(2)fn(2)
...

Yd(p) = w1(p)f1(p) + w2(p)f2(p) + · · ·+ wn(p)fn(p)
...

Yd(P ) = w1(P )f1(P ) + w2(P )f2(P ) + · · ·+ wn(P )fn(P )

(10)

or 

Yd(1) = w1(1)[k10 + k11x1(1) + k12x2(1) + · · ·+ k1mxm(1)]
+w2(1)[k20 + k21x1(1) + k22x2(1) + · · ·+ k2mxm(1)] + · · ·
+wn(1)[kn0 + kn1x1(1) + kn2x2(1) + · · ·+ knmxm(1)]

Yd(2) = w1(2)[k10 + k11x1(2) + k12x2(2) + · · ·+ k1mxm(2)]
+w2(2)[k20 + k21x1(2) + k22x2(2) + · · ·+ k2mxm(2)] + · · ·
+wn(2)[kn0 + kn1x1(2) + kn2x2(2) + · · ·+ knmxm(2)]

...
Yd(p) = w1(p)[k10 + k11x1(p) + k12x2(p) + · · ·+ k1mxm(p)]

+w2(p)[k20 + k21x1(p) + k22x2(p) + · · ·+ k2mxm(p)] + · · ·
+wn(p)[kn0 + kn1x1(p) + kn2x2(p) + · · ·+ knmxm(p)]

...
Yd(P ) = w1(P )[k10 + k11x1(P ) + k12x2(P ) + · · ·+ k1mxm(P )]

+w2(P )[k20 + k21x1(P ) + k22x2(P ) + · · ·+ k2mxm(P )] + · · ·
+wn(P )[kn0 + kn1x1(P ) + kn2x2(P ) + · · ·+ knmxm(P )]

(11)

where m is the number of input variables, n is the number of neurons in the third layer, and Yd(p)
is the desired overall ANFIS output for inputs x1(p), · · · , xn(p).

The equation (11) can be written as follows:

yd = Ak, (12)
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where yd is a desired P × 1 output vector,

yd =



Yd(1)
Yd(2)

...
Yd(p)

...
Yd(P )


P×1

,

A is an matrix P × n(1 +m),

A =



w1(1) w1(1)x1 · · · w1(1)xm(1) · · · wn(1)x1(1) · · · wn(1)xm(1)

w1(2) w1(2)x1 · · · w1(2)xm(2) · · · wn(2)x1(2) · · · wn(2)xm(2)
...

... · · ·
... · · ·

...
...

...
w1(p) w1(p)x1 · · · w1(p)xm(p) · · · wn(p)x1(p) · · · wn(p)xm(p)

...
... · · ·

... · · ·
...

...
...

w1(P ) w1(P )x1 · · · w1(P )xm(P ) · · · wn(P )x1(P ) · · · wn(P )xm(P )


P×n(1+m)

and k is a vector n(1 +m)× 1 of unknown consequent parameters

k =
[
k10 k11 k12 · · · k1m k20 k21 k22 · · · k2m · · · kn0 kn1 kn2 · · · knm

]T
.

Typically, the number of input-output patterns P used in training is greater than the number of
consequent parameters n(1+m). This means that we are dealing with an overdetermined problem,
so the exact solution to the equation (12) may not even exist. Thus, one must find a least-squares
solution k∗ that minimizes the quadratic error ||Ak − yd||, determined by:

k∗ = (ATA)−1AT yd, (13)

where, AT is the transpose of A, and (ATA)−1AT is the pseudo-inverse of A if (ATA) is not
singular. Once the consequent parameters of the rule are established, we can calculate a real
network output vector, y, and determine the error vector e,

e = yd − y,

so the backward propagation algorithm step is applied. Error signals are propagated back, and
antecedent parameters are updated according to the chain rule.

It is considered a correction applied to the parameters a and b of the Gaussian activation func-
tion, equation (9), used in the neuron Ai. The chain rule is expressed according to the equations
(15) and (16), for the parameters a and b, respectively. The squared error value E for the output
neuron of ANFIS is given by:

E =
1

2
e2 =

1

2
(yd − y)2. (14)

According to Sandmann [2006], the partial derivatives are given by:

∂E

∂a
=

∂E

∂e
· ∂e
∂y

· ∂y

∂(wifi)
· ∂(wifi)

∂wi
· ∂wi

∂wi
· ∂wi

∂µAi

· ∂µAi

∂a
. (15)

∂E

∂b
=

∂E

∂e
· ∂e
∂y

· ∂y

∂(wifi)
· ∂(wifi)

∂wi
· ∂wi

∂wi
· ∂wi

∂µAi

· ∂µAi

∂b
. (16)
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note that

∂E

∂e
= ∂

(
1

2
(e2)

)
= e; (17)

∂e

∂y
=

∂(yd − y)

∂y
= −1; (18)

∂y

∂(wifi)
=

∂

(
n∑

i=1

wifi

)
∂(wifi)

= 1; (19)

∂(wifi)

∂wi
= fi; (20)

∂wi

∂wi
=

∂

(
wi∑n
j=1wi

)
∂wi

=

 n∑
j=1

wj

− wi

 n∑
j=1

wj

2 =
wi(1− wi)

wi
; (21)

∂wi

∂µAi

=
wi

µAi

; (22)

∂µAi

∂a
=
(
e−

1
2(

x−a
b )

2)
a = e−

1
2(

x−a
b )

2
(
(x− a)

b2

)
; (23)

∂µAi

∂b
=

∂(e−
1
2(

x−a
b )

2

)

∂b
= e−

1
2(

x−a
b )

2
(
(x− a)2

b3

)
. (24)

(25)

The expressions of a and b, considering the learning rate α, will be corrected using the equa-
tions (15) and (16), given by:

a = a+ α(yd − y)fiwi(1− wi) ·
1

µAi

· e
−1

2

(
x− a

b

)2 (
(x− a)

b2

)
, (26)

b = b+ α(yd − y)fiwi(1− wi) ·
1

µAi

· e
−1

2

(
x− a

b

)2 (
(x− a)2

b3

)
. (27)

Thus, according to ANFIS suggested by Jang [1993], it is verified that both the antecedent
parameters and the consequent parameters are optimized. In the forward pass, the consequent
parameters are adjusted while the antecedent parameters remain fixed. In the backward pass, the
antecedent parameters are adjusted while the consequent parameters are kept fixed. According
to Negnevitsky [2005], in some cases, when the input and output datasets are relatively small,
membership functions can be described by a human expert. In such situations, these membership
functions are kept fixed throughout the training process, and only the consequent parameters are
adjusted.

In the sections 4 and 5 are shown ANFIS applications using experiments related to SHM.
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4 ANFIS: Application in Temperature Compensation

This section presents an example that aims to perform data normalization, that is, to correct con-
ditions that affect the signatures collected through the electromechanical impedance-based SHM
technique, especially temperature.

4.1 The Experiment

The data used in this study come from an experiment carried out to investigate the ability of the
electromechanical impedance technique to detect corrosion-associated failures in steel beams. The
corrosion process is gradual and permanent and promotes increasing wear. In a long-term exper-
iment, the beams were subjected to corrosion in an environment outside the laboratory through
exposure to acid mist, while the impedance was measured cyclically. Acid mist induces corrosion
acceleration. Results obtained from the analysis of this experiment were published by Freitas et al.
[2021a].

A PZT patch was bonded to each beam to collect impedance signatures. Each impedance sig-
nature was measured with 8,000 frequency samples. The impedance analyzer used was developed
by Finzi Neto et al. [2010], which is a portable and low-cost device.

Three specimens (steel beams 1020) with dimensions of 300mm × 50mm × 3.06mm and a
mass of 354.15g were instrumented with PZT patches, with a diameter of 30mm and a thickness
of 2mm each. The PZT patches were bonded with epoxy resin-based adhesive and subsequently
protected with a sealant. A temperature sensor was coupled to each of the three specimens to com-
pensate the measurements for the effect of temperature variation on the signals obtained. Figure
19a illustrates specimens instrumented with PZT patches.

Then, the samples were lightly sanded to remove the oxide layers formed and to set the initial
pristine condition (baseline).

An acid mist was used, which reacted with the specimens, as a corrosive agent. To this end,
a structure located outside the laboratory building was adapted to contain the specimens in an
airtight environment, in a place with restricted access. In addition, this environment had a cover
to protect against gusts of strong winds and rain. For better control of the corrosive mist action
environment, a control box was developed, designed in a 3D design software as shown in Figure
19b.

a: Specimens instrumented with PZT
patches.

b: Control box used in the acid mist exper-
iment.

Figure 19: Instrumented specimens and control box. Source: Freitas et al. [2021a].

Figure 19b represents the box that delimits an intermediate and considerable region of the
specimens that remain subject to corrosive mist. Inside the box, small reservoirs were developed
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to add a small amount of hydrochloric acid, providing a corrosive environment. The control box
was built in 3D printing. The final assembly of the experiment can be seen in Figures 20a and 20b.

a: Beams inside the control box. b: Cable details and temperature sensor.

Figure 20: Control box. Source: Adapted from Freitas et al. [2021a].

The location of the temperature sensor, with the wire in white, can be seen by the red circle in
Figure 20b

As stated earlier, temperature changes play an essential role in the damage detection process
of the electromechanical impedance-based SHM method. The impedance signature of a structure
can be different, even under the same structural conditions but at different temperatures. These dif-
ferences are seen as horizontal and vertical displacements along with the signatures. Most of this
variation is attributed to the temperature variation, as this variable interferes with the impedance
value. If there is an important relationship between impedance and temperature, then it is possible
to make predictions for impedance at temperatures not recorded in the experiment.

4.2 FRBSs Modeling

The FRBSs were modeled considering temperature and frequency as input variables. It was ob-
served, through empirical tests, that the best setup consists of only two frequency values (points)
per FRBSs, totaling 4,000 SBRFs. The output variable was impedance with a value at each fre-
quency and temperature combination.

The data acquisition hardware stores the temperature values for each impedance reading per
PZT patch. Therefore, each PZT patch has a set of temperature values corresponding to each
impedance signal measured. In the validation process, part of the data set obtained in the base-
line measurements was used to train and get the FRBSs. The other part for calculating damage
indices, in which the signatures collected and modeled from the data set were used. FRBSs, at
the respective temperatures. The temperatures in each of the two groups are shown in Table 3.
Figure 21 shows the schematic of the mathematical modeling of the two phases that make up
the experiment, in which the red rectangle represents the data obtained in the investigation; the
blue rectangles represent the stage of training and construction of the FRBSs; and, in green, the
validation step.
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Figure 21: Scheme of the mathematical modeling used for the experiment.

To assess the quality of the models, the CCD metric was calculated from the pairs of base-
line signatures measured and modeled from the SBRFs, at the same temperature. Low values of
the CCD metric indicate the adequacy of the models or that the constructed signatures configure
baseline signatures.

In the damage detection step, all temperatures observed in the baseline collection were used
to train the FRBSs. For the second input variable, frequency, as in the validation step, two consec-
utive values were used in each FRBS. At this step, the output variable’s impedance values were
also observed in all frequency and temperature combinations.

The automation of building FRBSs for all frequency point pairs is relevant since the num-
ber of points used is generally significant. An iterative process was implemented in the software
R [R Core Team, 2020] to obtain the 4000 FRBSs built from ANFIS through the package AN-
FIS [Fresno et al., 2015]. The R software allows the export of the FRBS built in each iteration
to, for example, predict the impedance signatures at temperatures that can be observed in future
investigations of the state of the structure.

4.3 Results: Model Evaluation

From the experimental data composed of 450 baseline signatures, each one with 8,000 frequency
points, collected at temperatures between 23.7 to 31.3 ◦C, 46 different temperatures were ob-
served. The analysis was implemented from the median signature at each temperature. A median
signature is defined by the set of median impedance values at each frequency point. For the three
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PZT patches, the ANFIS training routine was programmed 4000 times, that is, to generate 4000
FRBSs. The training for the determination of the FRBSs was carried out considering two input
variables and one output, as follows:

• First Input: For the temperature variable (t), the first and last values were considered, in
ascending order, which corresponds respectively to 23.7 ◦C and 31.3 ◦C, in addition to
the temperatures corresponding to the exact positions of the 46 values, also arranged in
ascending order. In this way, the extreme values were considered in training, ensuring that
there was no validation data outside the training range;

• Second Input: For the frequency variable (f ), two consecutive values were always used
among the 8,000 values;

• Output: For the impedance variable (i), the values collected in the combination of the two
input variables were considered, totaling 48 training values.

Temperatures not used in training were assigned for further validation. Table 3 shows the
temperature values used in the training and validation of the PZT patches of the experiment.

Table 3: Temperatures (◦C) recorded in the accelerated corrosion experiment.

PZT Patch Set Temperatures

1
Training

23.7 23.9 24.2 24.7 25.0 25.4 25.7 26.0 26.3 26.7 27.0 27.3
27.7 28.0 28.3 28.6 29.0 29.3 29.6 30.0 30.3 30.6 30.9 31.3

Validation
24.0 24.4 24.9 25.2 25.5 25.8 26.2 26.5 26.8 27.2 27.5 27.8
28.1 28.5 28.8 29.1 29.5 29.8 30.1 30.5 30.8 31.1

2
Training

23.7 23.9 24.2 24.7 25.0 25.4 25.7 26.0 26.3 26.7 27.0 27.3
27.7 28.0 28.3 28.6 29.0 29.3 29.6 30.0 30.3 30.6 30.9 31.3

Validation
24.0 24.4 24.9 25.2 25.5 25.8 26.2 26.5 26.8 27.2 27.5 27.8
28.1 28.5 28.8 29.1 29.5 29.8 30.1 30.5 30.8 31.1

3
Training

23.7 23.9 24.2 24.7 25.0 25.4 25.7 26.0 26.3 26.7 27.0 27.3
27.7 28.0 28.3 28.6 29.0 29.3 29.6 30.0 30.3 30.6 30.9 31.3

Validation
24.0 24.4 24.9 25.2 25.5 25.8 26.2 26.5 26.8 27.2 27.5 27.8
28.1 28.5 28.8 29.1 29.5 29.8 30.1 30.5 30.8 31.1

Source: Adapted from Freitas et al. [2021a].

Thus, 4000 FRBSs were generated, all of which have two Gaussian membership functions for
each input. The membership functions for temperature are the same for all FRBSs, as shown in
Figure 22a. For frequency, the membership function centers on the fixed points of the experiment,
as represented, for example, in Figure 22b. The four generated fuzzy rules, for PZT1 patch and
frequencies 99990 and 100000, are described below:

Rule 1: If (t is High) and (f is High) then i1 = 0, 3116833t+ 0, 00025376f + 2, 5 ∗ 10−9

Rule 2: If (t is Low) and (f is High) then i2 = 0, 3134568t+ 0, 00025488f + 2, 5 ∗ 10−9

Rule 3: If (t is High) and (f is Low) then i3 = −0, 02506984t+ 0, 00035051f + 3, 5 ∗ 10−9

Rule 4: If (t is Low) and (f is Low) then i4 = −0, 01136947t+ 0, 00034594f + 3, 4 ∗ 10−9.
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Figure 22: Membership functions of FRBS inputs. Source: Adapted from Freitas
et al. [2021a].

Figure 23 shows the surface generated from training step.
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Figure 23: Surface built from an FRBS of the accelerated corrosion experiment,
model evaluation step. Source: Freitas et al. [2021a].

The graphical validation was performed from the generated FRBSs, which consists of using an
impedance signature of a given validation temperature from Table 3 with the signature predicted
by the FRBSs at this same temperature. Three examples are shown in Figures 24, 25 and 26
for temperature values of 30.8 ◦C, 24.0 ◦C and 27.2 ◦C in PZT patches 1, 2 and 3, respectively.
In addition to the graphical validation of the model, the validation is performed using the CCD
values, according to the equation (3). Figure 27 presents the values obtained for the CCD damage
metric for PZT patches 1, 2, and 3.

Freitas, Fernando A., et al. (2022) Neuro-Fuzzy Data Normalization I-SHM Oil&Gas Industry pp. 384-426

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 412



PZT1 − Temp. 30.8 °C

Frequency [Hz]

Im
pe

da
nc

e 
[Ω

]

2 4 6 8 10

20
0

40
0

60
0

Data
Values of FRBSs

×104

Figure 24: Impedance signatures measured and modeled from FRBSs, at tempera-
ture 30.8 ◦C in PZT1 patch
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Figure 25: Impedance signatures measured and modeled from FRBSs, at tempera-
ture 24 ◦C in PZT2 patch.
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Figure 26: Impedance signatures measured and modeled from FRBSs, at tempera-
ture 27.2 ◦C in PZT3 patch.

Figure 27: Baselines CCD metrics for the three PZT patches.

The highest CCD value was 0.003800021, and the difference between the impedance signa-
tures collected and those predicted by the FRBSs is not significant (Figures 24, 25 and 26) and
therefore built signatures configure baseline signatures.

4.4 Results: Damage Detection

Considering the same data from the first step and using the same settings for the SBRFs, two
inputs (temperature and frequency) and one output (impedance), 4000 routines were performed for
ANFIS training. All temperatures presented in Table 3 (training and validation), in this situation,
were considered for training. Thus, 4000 FRBSs were generated, where the membership function
for each entry has the same characteristics as those presented previously.

The four fuzzy rules generated for PZT1 patch and frequencies 99990 and 100000 are given
by:
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Rule 1: If (t is High) and (f is High) then i1 = 0, 4298513t+ 0, 0002239f + 2, 2 ∗ 10−9

Rule 2: If (t is Low) and (f is High) then i2 = 0, 4356641t+ 0, 0002240f + 2, 2 ∗ 10−9

Rule 3: If (t is High) and (f is Low) then i3 = 0, 0542666t+ 0, 0003258f + 3, 2 ∗ 10−9

Rule 4: If (t is Low) and (f is Low) then i4 = 0, 0706055t+ 0, 0003206f + 3, 2 ∗ 10−9.

Figure 28 shows the surface generated from training.
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Figure 28: Surface generated from an SBRF from the accelerated corrosion experi-
ment, damage detection step.
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Figure 29: Impedance signatures, in some cycles, in the presence of damage and the
corresponding baseline signature modeled from the FRBS, in PZT1 patch. Source:
Adapted from Freitas et al. [2021a]
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Figure 30: Impedance signatures, in some cycles, in the presence of damage and the
corresponding baseline signature modeled from the FRBS, in PZT2 patch. Source:
Adapted from Freitas et al. [2021a]
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Figure 31: Impedance signatures, in some cycles, in the presence of damage and the
corresponding baseline signature modeled from the SBRFs, in PZT3 patch. Source:
Adapted from Freitas et al. [2021a]

For the validation part, a data set containing 33 distinct cycles were used, with 30 repetitions
each, in which the first 14 cycles correspond to the original condition of the steel beams. In
contrast, the acid mist was present in cycles 15 to 33, causing structural changes.

Figures 29, 30 and 31 show, in some corrosion cycles, a comparison of a signature with the
damage corresponding to that cycle and a baseline signature modeled by the FRBSs, showing the
difference between the measured signature and that provided by the FRBSs. This fact reveals that
the methodology was able to distinguish baseline signatures from signatures with the presence of
damage.

In Figures 32, 33 and 34 it is possible to observe the values of the CCD metric found accord-
ing to the corrosion cycle. The cycles represent different moments of collection of impedance
signatures due to the time elapsed in the execution of the experiment, called corrosion cycles. The
CCD was calculated considering the median of the real signature collected in a given cycle and
the signature of the baseline predicted by the SBRFs.
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Figure 32: CCD values in the different conditions of the experiment in PZT1 patch.
Source: Adapted from Freitas et al. [2021a]
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Figure 33: CCD values in the different conditions of the experiment in PZT2 patch.
Source: Adapted from Freitas et al. [2021a]
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Figure 34: CCD values in the different conditions of the experiment in PZT3 patch.
Source: Adapted from Freitas et al. [2021a]

The evolution of CCD values over the cycles indicates that the increase in acid caused a sig-
nificant change in the values of this metric, mainly from the third cycle onwards. In cycles 15 and
16, this change was smaller, which is understandable, given that the acid action time, responsible
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for corrosion, was still small when compared to cycles identified by higher numbers. Another in-
fluence that must be considered is the accumulated oxides of the acid over time, which can affect
the CCD value.

As mentioned, for the first phase, the model validation was perfect since the highest computed
CCD was not significant and therefore did not indicate a structural change, which was expected
given that the training and validation data were all baselines. The highest CCD baseline value
obtained is 0.003800021, a shallow difference, meaning that the simulated signatures would be
considered a sample of the actual baselines.

From the results presented in Figures 32, 33 and 34, it is possible to distinguish situations with
damage, by the application of acid, from those without damage characterized by the absence of
acid from the constructed FRBSs.

Therefore, the two steps of the experiment showed excellent results, providing an effective
technique for data normalization.

5 ANFIS: Structural Change from the Increment of Mass

In this experiment is identified the level of damage in aluminum beams.
The experimental data used for the application of the methodology were obtained from eight

specimens in an experiment in a climatic chamber (Figure 8), with temperature and humidity
control installed in the Structural Mechanics Laboratory (LMEst) from the School of Mechanical
Engineering of the Federal University of Uberlandia. This work was presented at the X Scientific
Initiation Exhibition of FAMAT Freitas et al. [2021b].

5.1 Beams with added mass

A PZT patch was bonded to each beam to measure impedance signatures. Thus, the setup of the
experiment began.

The specimens were aluminum beams 500 mm long, 38 mm wide, and 3.2 mm thick, and in
each of these structures a 1 mm thick and 20 mm diameter PZT patch was bonded to 100 mm.
from the end. The processes of promoting structural changes adopted were the addition of masses
glued 380 mm from the center of the PZT patch at the opposite end of the beam. These specimens
can be seen in Figure 35.

The experiment was carried out to use the addition of mass to change the structure behavior.
Figure 35 shows the eight beams or specimens tested in the bi-supported boundary condition. A
polystyrene foam (styrofoam) was used to make the base of the beams to reduce possible vibration
transfer from the chamber and external environment to the specimens during measurements.

The experiment was carried out at temperatures −10, 0, 10, and 20◦C. For cases of damage
by adding masses, five levels of failure were considered, the first being without additional mass
(baseline signature) and four progressive levels. For a slight controlled variation in the experiment,
the masses were added to the specimens according to Table 4.
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Figure 35: Instrumented and identified beams.

Table 4: Mass values by damage level and beam.

Baseline Damage 1 (g) Damage 2 (g) Damage 3 (g) Damage 4 (g)
Beam 1 No damage 0.6 1.1 1.6 2.2
Beam 2 No damage 0.6 1.1 1.6 2.2
Beam 3 No damage 0.6 1.1 1.6 2.8
Beam 4 No damage 0.6 1.1 1.6 2.7
Beam 5 No damage 0.6 1.1 1.6 2.2
Beam 6 No damage 0.6 1.1 1.6 2.2
Beam 7 No damage 0.6 1.1 1.6 2.2
Beam 8 No damage 0.6 1.1 1.6 2.2

As represented in Table 4, damage level 4 was not the same mass value in all beams. In Figure
36, it is possible to identify the different configurations, in three beams, for damage level 4.

Figure 36: Different mass values: damage level 4, on beams 3, 4 and 1.

For each experimental condition, determined by the temperature value and damage level, 20
impedance signatures were collected in each of the eight beams, totaling 3200 signatures.

Previous exploratory analyses found that the data obtained in the PZT2 patch did not represent
typical impedance signatures due to acquisition problems; therefore, these data were not used in
the study.
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5.2 FRBSs Evaluation and Modeling Criteria

One of the difficulties encountered in this methodology is quantifying the damage from the metrics
since their behavior does not follow the change made in the structure.

The SBRFs modeled for this experiment consist of two inputs, CCD and RMSD1, calculated
from the investigated signature and respective baseline.

In the validation step, the FRBS output value was compared using the pairs CCD and RMSD1,
continuously computed with identical impedance signatures. Figure 37 presents a schematic of the
mathematical modeling for the experiment, in which the red rectangle represents the data obtained
in the investigation; the blue rectangles represent the stage of training and construction of the
FRBSs, and in green the validation step.

Experimental
Data

Training
Data

Validation
Data

Input
Values
CCD

RMSD1

Output
Values

Damage
Level

Input
Values:
CCD

RMSD1

ANFIS FRBS Damage Leve

Output
Values

Damage Level

Comparison:
Predicted

versus
Desired

Figure 37: Scheme of the mathematical modeling used for the experiment

5.3 Results: Model evaluation

Considering the data set from the experiment for each PZT patch, the CCD (equation (3)) and
RMSD1 (equation (1)) metrics are computed for each signature, which are the variables of SBRF
entries. The output variable is the damage level obtained from Table 4, observed in the experiment
by increasing the mass in the structure.

The training step in ANFIS (MATLAB) is performed by taking the even or odd indices of the
combinations of CCD and RMSD1 metrics, taken according to the order of signature collections
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or, in some training, in ascending order of RMSD1 metric. The choice of the data set used in
training is the one that best approached the expected results. Thus, data set not used in training
were considered for validation. Therefore, the number of FRBSs built is 28, as four temperatures
and seven PZT patches were considered in the study.

For the training of each model, different amounts of membership functions are configured.
Figure 38 illustrates the membership functions generated by training in the PZT1 patch for a
temperature of 20oC. The input variables are:

• CCD values: the domain [0, 0.52], representing the ranges [0, 0.1], [0.04, 0.22], [0.17, 0.35],
[0.3, 0.48] and [0.43, 0.52], with the linguistic terms: Very Low, Low, Medium, High and
Very High, respectively.

• RMSD1 values: the domain [1.25, 5402], representing the ranges [1, 25, 757.3], [325.3, 1837],
[1405, 2918], [2486, 3998] , [3566.5078], [4646.5402], with the linguistic terms: Very Low,
Low, Medium, Medium High, High and Very High, respectively.

a: Membership functions to input CCD metric. b: Membership functions to input RMSD1 metric.

Figure 38: Membership functions to inputs.

Figure 39 shows the surface generated from training. The system generated 30 possible fuzzy
rules and output function parameters.
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Figure 39: Surface generated from a FRBS. Source: Freitas et al. [2021a]

FRBSs are validated by approximating the output values of FRBSs by the nearest integer to
the damage level 0, 1, 2, 3, or 4 and comparing it with the damage observed in the experiment.
Furthermore, Table 5 presents the percentages of correct answers for the FRBSs, considering 50
values of CCD and RMSD1 metrics for each temperature and PZT patch.

Table 5: FRBSs hit percentages according to each temperature.

PZT Patch
Temperature [◦C]

−10 0 10 20
1 88% 96% 88% 100%
3 100% 90% 100% 98%
4 94% 100% 100% 100%
5 88% 94% 100% 100%
6 80% 96% 100% 100%
7 100% 92% 100% 94%
8 88% 88% 98% 88%

The results presented in Table 5 show that a high proportion of correct answers is obtained
from the proposed model. The lowest hit percentage is 80% in the PZT6 patch with −10◦C, while
in 12 PZT patches and temperature combinations, there was a 100% hit. The results obtained
through the FRBSs showed that the technique could be a promising tool for damage detection
since it achieved an average percentage of hits of 95%, comparing the predicted and the expected.

Finally, the next section addresses the conclusion of this chapter.

6 Concluding Remarks

ANFIS combines artificial intelligence and fuzzy set theory, providing efficient models for dif-
ferent problems. The combination of these two tools, through ANFIS, can improve the ability to
represent and infer models.

In the application example, the methodology used for temperature compensation was efficient
because the values of the CCD metric between the modeled signatures and the measured baseline
signatures were low. Therefore, this approach through ANFIS is a suitable implementation of the
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baseline state representation. The proposed method is effective for data normalization, and it is
possible to build reference signatures in the temperature range collected in the baseline gathering
process. In other applications, wider temperature ranges can be considered, and these applications
can be extended to different structures such as bridges, buildings, and tanks.

From the second application proposed in this chapter, it can be concluded that the percentage
of correctness regarding the state of the structure was high, 95%. In this case, ANFIS was also
used to model FRBSs in which the input variables were the CCD and the RMSD1 metrics.

The mathematical approach proposed in this chapter for the study of electromechanical impedance-
based SHM provided promising results. This methodology allows the tuning of the functions of
the input and output variables. It is a mathematical tool with great potential as it combines the
learning characteristics of neural networks with the interpretability of Fuzzy Rule-Based Systems.
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Abstract

In Impedance-based Structural Health Monitoring Systems, it is essential to
identify the location of possible damage so that corrective measures can be taken
promptly. Several approaches have been developed to predict the location of dam-
age, including the one based on indicator kriging. This chapter illustrates the com-
putational packages in Python for carrying out estimates by kriging methods. A case
study of the location of structural damage in the center of an aluminum plate using
indicator kriging is presented. They are detailed, sequentially, the necessary steps,
and discussing each one. The results obtained with the case study showed that it
was possible to map the place with the highest probability of occurrence of damage,
which proved to be consistent with the actual position of the same, which highlights
the ability of the proposed approach to predict the location of structural damage. In
addition, perspectives regarding future research involving the use of the technique
are discussed.

Keywords: Impedance-based structural health monitoring; Kriging methods; Indicator kriging;
Damage location

1 Introduction

The electromechanical impedance technique has been vastly applied to the monitoring of struc-
tures due to its low cost - concerning other approaches - and its characteristic of being a non-
destructive evaluation (NDE) method (Giurgiutiu [2014]). Further, the method can access the
structure’s conditions at relatively high frequencies (usually between 30 kHz and 400 kHz), which
reduces the environment’s interferences, allowing the structure’s monitoring at small scales, such
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as cracks, delamination, and disbonds, not detectable by other methods (Bhalla and Soh [2012];
Zagrai and Giurgiutiu [2009]).

Post-processed information obtained by ISHM refers to damage metric data (e.g., RMSD and
CCD indexes), which can indicate the presence of damage in the structure by comparing the elec-
trical impedance signatures at any moment in time and at the initial (pristine) condition of the
structure (Giurgiutiu [2014]; Giurgiutiu and Rogers [1998]). As each damage metric data is re-
lated to a specific actuator, it’s necessary to interpolate all data collected, each assigned to a point
in the space (actuator position), to identify the damage location.

The works of Kravolec et al. [2018] and Cherrier et al. [2013] evidenced the existence of a
correlation between the electrical impedance signatures and the distance from the damage, which
suggests the presence of spatial correlation between the damage metric data arranged in the form
of a network. Results derived from the application of kriging methods (Gonçalves et al. [2021];
Gonçalves et al. [2020]) for the interpolation of RSMD values in an aluminum plate revealed a
spatial correlation between these, allowing the identification of the damage location, especially
when using the indicator kriging method. Despite the positive results achieved, more research on
this approach is necessary, which can allow several new possibilities.

This chapter presents the theoretical concepts related to indicator kriging for applications in
structural health monitoring. First, concepts of ISHM and kriging are exposed, followed by com-
putational routines on Python packages for estimations based on kriging methods. Finally, a case
study is presented regarding the location of damage from indicator kriging, where the steps in-
volved are sequentially detailed, accompanied by source codes in Python language.

2 Fundamentals of ISHM and Kriging

2.1 Fundamentals of ISHM

There are several techniques for monitoring the occurrence and propagation of structural dam-
age to increase the useful life, improve the performance of structures/equipment and reduce costs
(Park et al. [2003]). Among the SHM techniques, there is the Electromechanical Impedance-based
Structural Health Monitoring (EMI-SHM), which is based on the electromechanical coupling that
results from the bonding of piezoelectric transducers to the structure or equipment that will be
monitored, keeping the impedance function defined, which depends on the mechanical charac-
teristics of the transducer and structure to be monitored (Lin and Giurgiutiu [2006]; Park et al.
[2003]).

In the EMI-SHM technique, PZT transducers are usually excited by a sinusoidal waveform
with an amplitude of approximately 1V RMS (effective voltage) and a frequency range of 10 to
250 kHz (Raju [1997]), or even as high as 1,000 kHz, depending on the structure and type of
application (Giurgiutiu et al. [1999]). The lower frequency band covers a larger detection area,
while the higher frequency band can determine the location of damage (Sun et al. [1995]). Among
the advantages of the high-frequency response is that the wavelength of the signal applied to the
structure is short enough to detect even small initial cracks. Such cracks can expand and cause
serious failures depending on the structure (Park et al. [2003]).

Electromechanical models were formulated to describe the relationship between the structure
and the piezoelectric transducer. Liang et al. [1994] define the electrical impedance of the trans-
ducer ZE(ω) associated with the mechanical impedance of the structure Zs(ω) by Eq. 1.

ZE(ω) =
1

jωτ

(
ϵT33 −

Zs(ω)

Zs(ω) + Zp(ω)
d23XY E

XX

)−1

(1)

where Zp(ω) corresponds to the mechanical impedance of the transducer; ω is the angular

Pereira, Paulo E. C., et al. (2022) Kriging & I-based SHM to Damage Detection 2D Structures pp. 427-458

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 429



frequency; τ , a geometric constant; ϵT33, the dielectric constant for constant mechanical stress (T );
Y E
XX , Young’s modulus for a constant electric field (E); d23X , a dielectric constant; and j, an

imaginary unit.
In the one degree of freedom model presented by Liang et al. [1994], the influence of the

adhesive layer (glue) between the transducer and the structure is not considered. Thus, the PZT
patch is excited at a high frequency and returns the impedance curve of the structure studied.
Changes in the mechanical impedance of the structure due to a failure lead to a modification of the
signal (electrical impedance) emitted by the PZT patches coupled or embedded in the structure,
whose signal is measured within a frequency range. Changes in structural conditions are then
identified by comparing the impedance signatures before and after the fault’s occurrence (Maruo
et al. [2015]; Bhalla and Soh [2012]; Baptista and Vieira Filho [2010]; Zagrai and Giurgiutiu
[2009]; Peairs et al. [2007b]; Peairs et al. [2007a]).

The measurement of the difference between the electrical impedance signals before and after
the occurrence of changes in the structure’s status is done through some indexes, among which we
have the Root Mean Square Deviation-RMSD (Eq. 2) and the Correlation Coefficient Deviation-
CCD (Eq. 3).

The RMSD (Eq. 2) measures the similarity of impedance attributed to the same frequency and
is supported by the Euclidean standard (Giurgiutiu [2014]; Giurgiutiu and Rogers [1998]). This
indicator is based on the comparison between the impedance values before the damage, that is,
in the pristine condition (Z0

E(k)), whose signal is also called the baseline, and those obtained at
some point in the future (ZE(k)), all measured at several k points in the frequency domain, whose
range varies from ωI (initial frequency) to ωF (final frequency).

RMSD =

√√√√∑ωF
k=ωI

[
ZE(k)− Z0

E(k)
]2∑ωF

k=ωI

[
Z0
E(k)

]2 (2)

Unlike the RMSD, which measures the average distance/difference between the impedance
curves, the CCD (Eq. 3) analyzes the impedance curves globally, based on the correlation coeffi-
cient (Marqui et al. [2008]).

CCD = 1− 1

n

n∑
i=1

((
Re (Zbase ,i)− Re

(
Z−

base

)) (
Re (ZFIS,i)− Re

(
Z−
FIS

))
SFISSbase

)
(3)

In Eq. 3, n is the number of frequency-domain values, Re(Z(base,i)) is the real part of
the impedance signal in the pristine condition, Re(Zbase) is the average of the real part of the
impedance signal in the pristine status, Re(Z(FIS,i)) is the real part of the PZT patch impedance
signal after damage, Re(ZFIS) is the average of the real part of the PZT patch impedance signal
after damage, SFIS the standard deviation of the real part of the PZT impedance signal that repre-
sents the damage and Sbase is the standard deviation of the real part of the PZT impedance signal
that represents the signal in the intact condition.

An impedance analyzer such as the HP4194A is the simplest way to determine the electrome-
chanical impedance of smart structures (structures containing PZT transducers). However, the
equipment cost is approximately US$ 40,000 and weighs about 30 kg. There are other options
with limited functions that cost less than $2,000. However, they are still bulky (weighing several
pounds). As a consequence, researchers have been looking for alternative ways to perform this
task (Maruo et al. [2015]).
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2.2 Semivariogram

Estimating unsampled points and regions using kriging methods are based on the spatial correla-
tion of the analyzed variable. The spatial continuity means that sample (or input) data close to each
other have similar values attributed to them, whose difference increases as the distance between
them becomes higher (Revuelta [2018]; Chilès and Delfiner [2012]). In this sense, closer sample
(or input data) points have a more significant correlation with each other than those more distant -
spatially - among each other.

The quantification of the spatial continuity is done using the semivariogram function (γ(h)),
defined in the Eq. 4, which calculates the mean quadratic difference between the sample (or input)
point pairs z(xi), located at a point xi of the - stationary - domain being analyzed, and z(xi + h),
located at the xi + h, distant h from the first point, where h refers to the distance vector between
the data being compared (Journel and Huijbregts [1978]). The term N(h) represents the number
of the sample (or input) data pairs in the direction under analysis.

γ(h) =
1

2N(h)

N(h)∑
i=1

(z(xi)− z(xi + h))2 (4)

The calculation of the semivariogram for several classes of distances in a specific spatial di-
rection provides an inventory of the continuity in this one in the form of a graphic (experimental
semivariogram) comparing the semivariance values (γ(h)) and their respective classes of distances
(Figure 1). The growth of the function represents the progressive loss of spatial continuity between
the compared sample (or input) pairs as the distance between them increases (Abzalov [2016];
Chilès and Delfiner [2012]; Sinclair and Blackwell [2002]). The total loss of continuity between
the input points is evidenced at the point from which the growth of the function stops, and the next
ones stay oscillating, normally around the variance a priori, which recurrently corresponds to the
variance of the variable being analyzed within the domain.
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Figure 1: Experimental semivariogram with its respective theoretical fitting
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Mathematical functions must adjust experimental semivariograms for their use in the estima-
tion processes (kriging equations). The justifications for this encompass several aspects, whose
arguments and discussions can be found in Journel and Huijbregts [1978], Rossi and Deutsch
[2014] and Revuelta [2018]. A semivariogram model can be constituted of one or more mathe-
matical functions, depending on the shape of the experimental semivariogram (Kitanidis [1997]).
Some mathematical functions for semivariogram fitting include the following (Figure 2): Spheri-
cal, exponential, and Gaussian, which are characterized to have a sill (semivariance value) limiting
the increase of the function.
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Figure 2: Graphical representation of the spherical, exponential, and Gaussian semi-
variogram models. All of them are represented using the same parameters.

Three parameters define the semivariogram models (Figure 3): Nugget Effect, Sill, and Range.
The first one is a chaotic or unstructured variance. It represents a variability that occurs at a scale
lower than the spacing between the sample (or input) data and, therefore, is not mapped by the
semivariogram and is also due to sampling errors. The Sill corresponds to the variance of the
variable in the direction of the vector h, and the Range is the distance from which there’s no
more spatial correlation between the pairs of values in the direction being mapped (Journel and
Huijbregts [1978]; Hustrulid et al. [2013]; Rossi and Deutsch [2014]).

Calculating the semivariograms in several directions in the analyzed - and stationary - do-
main quantifies the spatial continuity behavior of the variable under analysis. In this context,
directional semivariograms will frequently show different spatial continuities in the function of
the spatial direction (vector h), which will indicate the presence of a direction endowed with a
greater homogeneity between the values along this one and another one with a lower homogene-
ity (higher variability). Cases in which the semivariograms’ shape are a function of the spatial
direction corresponds to the occurrence of anisotropy, among them, the most common is the ge-
ometric anisotropy, in which the range varies in function of the spatial direction (vector h), and
the sill remains constant (Figure 4) (Armstrong [1998]; Isaaks and Srivastava [1989]; Journel and
Huijbregts [1978]).
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Figure 3: Example of a spherical semivariogram model with its parameters.
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Figure 4: Semivariograms showing a phenomenon with geometric anisotropy.

The possibility to map the spatial continuity of a variable (e.g., damage index) using semivari-
ograms can help identify possible preferential directions of structural damage propagation, which
will be shown in Section 4, where there is an occurrence of geometric anisotropy in indicator
variables obtained from RMSD-based damage index values.
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The information obtained from semivariograms allows the complete characterization of the
variable’s spatial continuity and is used for estimating its values at the unsampled locations by
kriging methods.

2.2.1 Kriging Methods

The term kriging covers a wide variety of estimation methods, characterized to be exact interpo-
lators, whose mathematical formulations of the main types can be obtained in the works of Rossi
and Deutsch [2014], Chilès and Delfiner [2012], Sinclair and Blackwell [2002], Kitanidis [1997]
and Journel and Huijbregts [1978].

Among the kriging methods, there is the ordinary kriging one, which is a local estimation
method, where the estimation of a point at an unsampled location (Z∗

KO(x0)) is obtained by a linear
combination (Eq. 5) of n sample (or input) values Z(xi) contained in the search neighborhood,
where the weights λi reflects the spatial correlation between the unsampled point (or block) and
the actual (or input) values within the search neighborhood, and between the sample (or input)
values among each other contained in the search neighborhood (Yamamoto and Landim [2013]).

Z∗
KO =

n∑
i=1

λiZ(xi) (5)

The weights of the linear combination shown in the Eq. 5 are obtained through the solution
of the ordinary kriging’s system of equations (Eq. 6), where it’s intended to get the combination
of weights in such a way that the kriging variance is minimized, considering the aspects of spatial
continuity of the variable under estimation, being these, reproduced in the semivariogram values
between sample (or input) values in the xi and xj locations (γ(xi − xj)), and the semivariogram
values between the point to be estimated at the x0 location and the input data at the xi locations
(γ(xi − x0)). Also, a restriction, which refers to the need for the sum of the weights to be unitary,
is imposed on the system to obtain unbiased estimates, called an unbiased constraint. This system
can be expressed in the matrix form (Eq. 7), from which the optimal weights are calculated
(Yamamoto and Landim [2013]).{ ∑n

j=1 λjγ(xi − xj)− µ = γ(xi − x0) for i = 1, . . . , n∑n
j=1 λj = 1

(6)


λ1

λ2
...
λn

−µ

 =


γ(x1 − x1) γ(x1 − x2) . . . γ(x1 − xn) 1
γ(x2 − x1) γ(x2 − x2) . . . γ(x2 − xn) 1

...
... . . .

...
...

γ(xn − x1) γ(xn − x2) . . . γ(xn − xn) 1
1 1 . . . 1 0


−1

×


γ(x0 − x1)
γ(x0 − x2)

...
γ(x0 − xn)

1

 (7)

In addition to the variable’s estimated value at the unsampled location x0, the kriging methods
are capable of providing the estimation variance, which, in the case of the ordinary kriging method,
is given by the Eq. 8, where µ is the Lagrange parameter, and n refers to the number of samples
(input data) used for the estimation at an unsampled location.

σ2
KO =

n∑
i=1

λiγ(xi − x0) + µ (8)

The ordinary kriging estimator can be used as the base for estimation of indicator variables,
characterized to be binary, the situation in which there is the so-called indicator kriging, being a
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non-parametric method, in such a way that the statistical distribution of the variable doesn’t re-
strict its application under estimation (Rossi and Deutsch [2014]; Revuelta [2018]). The indicator
kriging performs the estimation of binary variables, whose values are determined according to
a specific criteria, as shown in the Eq. 9, where, from an original distribution, are indicated K
thresholds zk, and for each of them, are created indicator variables, coding the values according to
the value’s position of the original variable (Z(x)) relative to the specified threshold zk (Eq. 9).

I(x, zk) =

{
1, if Z(x) ≤ zk

0, otherwise
(9)

In the case of using the ordinary kriging as the interpolator for the estimation of indicator
variables at the unsampled locations, the estimated values I(x0) at each x0 location are calculated
as a linear combination (Eq. 10) of the n sample (or input) data I(xi) located at the xi points and
contained in the search neighborhood, generally with an elliptical shape, whose weights λi reflects
the spatial correlation between the estimated point and the sample values within the search neigh-
borhood, and between the sample (or input) values among each other (Yamamoto and Landim
[2013]).

I(x0) =
n∑

i=1

λiI(xi) (10)

The estimated indicator variable values by ordinary kriging are determined in such a way that
the variance of the estimation error is minimized, considering the unbiased constraint (average of
the estimation error is zero), resulting in optimal weights-based estimations, which minimizes the
estimation error variance (Isaaks and Srivastava [1989]).

3 Python packages applied to Kriging

The geostatistical methods and tools (e.g., kriging) have been implemented in several program-
ming languages, including Python. Among the packages used to carry out kriging-based estimates,
there is the Geostatspy (Pyrcz et al. [2021]), whose package is characterized to be reimplementa-
tions of the functionalities of the Geostatistics Software Library (GSLIB) in the Python language.
The GSLIB is a set of pretty robust codes for building spatial modeling workflows. Therefore,
this package offers the opportunity to create projects of 2-D spatial modeling in Python without
the necessity of trust in the GSLIB’s compiled Fortran code, together with the use of datasets
that moves between the GSLIB’s Geo-EAS format to Pandas’ dataframes and grids to NumPy’s
n-dimensional arrays.

The operation of the Geostatspy package requires some dependencies, which includes the
following libraries: (1) NumPy (Harris et al. [2020]), for n-dimensional arrays; (2) Pandas (McK-
inney [2010]), for DataFrames; (3) numpy.linalg, for linear algebra; (4) numba, for numerical
acceleration; (5) scipy, for quickly nearest neighbor search, and; (6) Matplotlib (Hunter [2007]),
for plotting.

The Geostatspy package contains geostatspy.geostats and geostatspy.GSLIB. The first includes
GSLIB functions rewritten in Python, including all semivariograms, distribution transformations,
and estimation and simulation-based methods. The second consists of the reimplementations of
the GSLIB visualizations and low-tech wrappers of numerical methods, which require access to
the GSLIB executables.

The first part, geostatspy.geostats, contains numerical methods, for example, the ik2d function
(GSLIB’s ik3d program implemented for indicator kriging estimation of 2-D data), correct trend
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(fix the order relationships of an indicator-based trend model), and backtr (GSLIB’s backtr pro-
gram for back-transform a normal-shape distribution to an original one). These and other functions
are presented and described in the Table 1.

Table 1: Some functions of the geostatspy.geostats part of the Geostatspy package

Function Application
correct trend fix the order relationships of an indicator-based trend model

nscore Transform an original distribution to a normal-shape one
backtr Back-transform a normal-shape distribution to the original one
declus Execution of sample’s declustering (cell-based declustering)
gam Calculation of semivariograms basing on regularly spaced 2-D data
gamv Calculation of semivariograms basing on irregularly spaced 2-D data

varmapv Semivariogram map of irregularly spaced 2-D data
vmodel Semivariogram fitting

kb2d Simple and/or ordinary kriging for 2-D data
ik2d Indicator kriging for 2-D data

The second part, geostatspy.GSLIB, contains utility functions that support moves between
data tables: DataFrames, n-dimensional arrays, Geo-EAS, and grid data. It also contains data
transformation functions, spatial continuity, spatial model re-sampling, and visualization using
Matplotlib. Some functions are showed and described in the Table A1, Appendix A.

4 Damage location prediction using Indicator Kriging – A Case Study

Herein it’s considered an aluminum plate of 100 cm x 100 cm dimensions containing 100 RMSD-
based damage metric values arranged in a regular mesh of 9.09 cm x 9.09 cm, with a known
damage located at the plate’s center. For the development of the case study it was used the python
packages geostatspy (Pyrcz et al. [2021]), os-sys (Labots [2019]), NumPy (Harris et al. [2020]),
Pandas (McKinney [2010]), pygeostat (Deutsch et al. [2020]), and Matplotlib (Hunter [2007]),
which were imported according the Code 1.

Code 1: Source code for import the Python packages used in this case study
1 import geostatspy.GSLIB as GSLIB
2 import geostatspy.geostats as geostats
3 import os
4 import numpy as np
5 import pandas as pd
6 import pygeostat as gs
7 import matplotlib.pyplot as plt
8 from matplotlib import gridspec
9 %matplotlib inline

In the sequence, it was selected the working directory using the chdir function of the os-sys
package. The data, in the CSV format, was then imported using the Pandas’ read csv function.
Subsequently, it was necessary to plot the RMSD values, which was done using the Code 2,
resulting in the Figure 5, where one can observe the occurrence of high RMSD values near the
damage, with those decreasing gradually from center to the plate’s border.
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Code 2: Source code for import the dataset and plot the RMSD values in X-Y plane
1 os.chdir(’C:\\YOUR_DATABASE_PATH’)
2 df=pd.read_csv(’dataset.csv’, header=0, sep=’;’)
3 xmin = 0.0; xmax = 100.0
4 ymin = 0.0; ymax = 100.0
5 xsiz = 4; ysiz = 4
6 nx = 25; ny = 25
7 xmn = 2; ymn = 2
8 cmap = plt.cm.viridis
9 GSLIB.locmap_st(df,’X’,’Y’,’PDANO’,xmin,xmax,ymin,ymax,0,5,’Damage

metric values’,’X (cm)’,’Y (cm)’,’Damage metric values’,cmap)
10 plt.savefig(’map_points.PDF’, dpi=800, bbox_inches=’tight’)
11 plt.show()
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Figure 5: Localization map of the PZT patches in the plate

In the Code 2, the directory was defined in line 1, and the dataset, imported using the read -
csv function, shown in line 2, where were added the file’s name, the number of the header line,
and the column’s delimiter. Between lines 3 and 7 was defined the followed variables: minimum
coordinate in the X direction (xmin); maximum coordinate in the X direction (xmax), minimum
coordinate in Y (ymin), maximum coordinate in Y (ymax), cell size in the X direction (xsiz), cell
size in the Y direction (ysiz), number of cells in X (nx), number of cells in Y (ny), origin of the
grid in X (xmn), and origin of the grid in Y (ymn). In the sequence (line 8), the color palette
was exposed. Then, using the geostatspy’s function named locmap st (line 9), the points (PZTs
location) were plotted according to the parameters defined previously.

The statistical analysis of the RSMD values was done by means of boxplot (Figure 6), his-
togram (Figure 6), and descriptive statistical indicators (Table 2), which were obtained using the
Code 3 (boxplot and histogram) and the Code 4 (descriptive statistics). According to the results
(Figure 6 and Table 2), one can observe a highly asymmetric, positive skewed distribution, with
only 25% of the data higher than 1.9, with presence of outliers, all of them higher than 4.0.
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Figure 6: Boxplot and histogram of the RMSD values

Table 2: Descriptive statistics of the damage metric values.

Count Min Q1 Median Mean Q3 Max STDEV Variance Skewness
100 0.000 0.000 0.600 1.199 1.900 5.000 1.414 1.998 1.151

Code 3: Source code to get the boxplot and histogram of the RSMD values
1 fig=plt.figure(figsize=(10,5))
2 gs=gridspec.GridSpec(1,2, width_ratios=[1.3,3])
3

4 ax1=plt.subplot(gs[0])
5 meanpointprops=dict(marker=’D’, markeredgecolor=’black’,

markerfacecolor=’firebrick’)
6 flier_props=dict(marker=’x’, markerfacecolor=’magenta’, markeredgecolor

=’steelblue’)
7 box_props=dict(color=’steelblue’)
8 whisker_props=dict(color=’steelblue’)
9 median_props=dict(color=’red’)

10 ax1.boxplot(df[’PDANO’], showmeans=True, meanprops=meanpointprops,
flierprops=flier_props, boxprops=box_props, medianprops=
median_props, whiskerprops=whisker_props)

11 ax1.tick_params(axis=’x’, labelsize=0)
12 ax1.tick_params(axis=’y’, labelsize=12)
13 ax1.set_ylabel(’Damage metric values’, fontsize=12)
14

15 ax2=plt.subplot(gs[1])
16 ax2.hist(df[’PDANO’], density=True, facecolor=’white’, edgecolor=’

steelblue’, linewidth=1)
17 ax2.set_xlabel(’Damage metric values’, fontsize=12)
18 ax2.set_ylabel(’Relative frequency’, fontsize=12)
19 ax2.tick_params(axis=’x’, labelsize=12)
20 ax2.tick_params(axis=’y’, labelsize=12)
21

22 plt.subplots_adjust(wspace=0.2, hspace=0.1)
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23 fig.tight_layout()
24 plt.savefig(’statistic_analysis.pdf’, dpi=800, bbox_inches=’tight’)
25 plt.show()

Code 4: Source code for obtaining the statistical indicators of the results showed in
Table 2

1 print(df[’PDANO’].describe())
2 print(df[’PDANO’].skew(skipna=True))
3 print(df[’PDANO’].var())

In the Code 3, initially was defined the figure’s size (line 1), and then the specifications of
the grid, containing the boxplot and the histogram, using the GridSpec function (line 2). In the
sequence (line 4), it was determined the position of the boxplot in the subplot grid (first position),
followed by the boxplot properties relative to the mean (line 5), the outliers (line 6), the boxes
(line 7), the whiskers (line 8) and median (line 9), which were used to make the boxplot (line
10), whose general formatting features were defined in the lines 11, 12 and 13. In line 15, it was
defined the position of the histogram in the subplot grid (second position) and then the histogram
(line 16), whose formatting features were stated between lines 17 and 20. Finally, the horizontal
and vertical spacing between the plots was established in line 22, followed by the definition of the
tight layout (line 23), the savefig function to save the figure (line 24), and a command line to show
the plots (line 25).

The Code 4 shows the source code for obtaining the descriptive statistics of the RMSD values.
In line 1 was used the describe function, which returned the following indicators: number of
values; mean; standard deviation; minimum and maximum value, and; the first, second, and third
quartiles. The skewness was gotten using the skew function (line 2) and the sample variance, the
var function (line 3).

Based on the statistical information (Figure 6), where one can observe the occurrence of out-
liers, all of them higher than 4.0, it was done a localization map with only the values higher than
4.0 (Figure 7), obtained using the Code 5.
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Figure 7: Localization map of the RMSD values higher than 4.0
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Table 3: Thresholds and their respective indicator variables.

Threshold Indicator Variable
1 IND0
2 IND1
3 IND2
4 IND3

Code 5: Source code for make the localization map of the RMSD values higher than
4.0

1 df_thr4=df[df[’PDANO’]>4]
2 df_thr4
3 xmin = 0.0; xmax = 100.0
4 ymin = 0.0; ymax = 100.0
5 xsiz = 4; ysiz = 4
6 nx = 25; ny = 25
7 xmn = 2; ymn = 2
8 cmap = plt.cm.viridis
9 GSLIB.locmap_st(df_thr4,’X’,’Y’,’PDANO’,xmin,xmax,ymin,ymax,0,5,’Damage

metric values’,’X (cm)’,’Y (cm)’,’Damage metric values’,cmap)
10 plt.savefig(’localization_map_thr_4.pdf’, dpi=800, bbox_inches=’tight’)
11 plt.show()

In the Code 5, initially (line 1) it was defined a new dataset, containing only the RMSD values
higher than 4.0. In the sequence, between lines 3 and 8, it was defined the plot’s parameters:
minimum (xmin) and maximum (xmax) coordinates in the X direction (line 3); minimum (ymin)
and maximum (ymax) coordinates in the Y direction (line 4); cell sizes in the X (xsiz) and Y (ysiz)
directions (line 5); number of cells in the X (nx) and Y (ny) directions (line 6); origin of the grid
in the X (xmn) and Y (ymn) directions (line 7), and; color palette to be used (line 8). Finally, it
was used the locmap st function of the Geostatspy package in the line 9 to plot the data, whose
resulting figure was saved using the savefig function (line 10).

Figure 7 shows an occurrence of values higher than 4.0 near the plate’s center, where the
known damage is located. Based on this, four thresholds were selected, 1, 2, 3, and 4, to map the
occurrence of these values along the plate. The latter threshold (4.0) is particularly interesting,
once it’s related to the damage position. From the established thresholds, were created four indi-
cator variables, each of them assigned to a specific threshold (Table 3), whose binary values were
defined according to Eq. 9, implemented using the Code 6, and indicating the probability below a
specific threshold.

Code 6: Source code for defining the indicator variables related to the stablished
thresholds

1 thrs=[1,2,3,4]
2 for i in range(1,5):
3 cont=i
4 df["IND"+str(cont-1)]=np.zeros(len(df[’PDANO’]))
5 df["IND"+str(cont-1)]=np.where(df[’PDANO’]<=thrs[cont-1],1,0)
6 df

The Code 6 started with defining the threshold values (line 1). Then, a loop (line 2) was used
for creating the indicator variables, all of them assuming initially zero values (line 4) and with
the same length of the variable containing the RMSD values. In the sequence, it was used the
where function of the NumPy package to apply the criterion defined in the Eq. 9, resulting in the
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probabilities below the respective thresholds.
To calculate the semivariograms, it was necessary, initially, to obtain the variance of each

indicator variable (Table 4); once these values are, in most cases, the variance a priori in the semi-
variogram plot. This step was done with the Code 7, based on the standard deviation calculation
and then the variance.

Table 4: Sample variance of each indicator variable.

Indicator Variable Sample Variance
IND0 0.2356
IND1 0.1824
IND2 0.1131
IND3 0.0384

Code 7: Source code used for calculating the variance of each indicator variable
1 var = np.zeros(4)
2 for i in range(4):
3 cont = i
4 x = "IND"+str(cont)
5 var[i] = np.std(df[x])
6 var[i] = (var[i])**2
7 print(var[i])

According to Code 7, firstly it was created a variable named var (line 1) with a length equal to
4 to receive the variance value of each indicator variable. A for loop was then applied in line 2 to
calculate all variances. Inside the loop, a variable named cont was defined (line 3), being equal to
i, and in the sequence, it was defined a variable named x (line 4), which was equal to the respective
indicator variable. Afterward, each value of the var variable was defined as the standard deviation
of the respective indicator variable (line 5). Finally, these values were squared, resulting in the
respective variances, shown in Table 4.

The results obtained for the indicator variables’ sample variance showed that the highest vari-
ance is related to the indicator variable attributed to the threshold equal to 1, and the lowest, with
the threshold equal to 4. This was expected once 62% of the samples were equal or lower than
1.0 (38% higher than 1.0), and 96% of the samples were equal or lower than 4 (only 4% higher
than 4), indicating that the indicator variable related to the threshold equal to 1 would have a vari-
ability much higher than the other ones. This also means a spatial variability much higher for the
indicator variable attributed to the threshold equal to 1 about the others. This characteristic would
be manifested in the semivariogram model used to fit the experimental semivariograms in the next
step.

The calculating of the experimental semivariograms was done using the Geostatspy’s gamv
function (see Section 3), which calculates the semivariogram for irregularly spaced data (general
case). Firstly, an example of the calculation of the semivariogram for the IND0 variable, related
to the threshold equal to 1.0, in the North-South direction (Azimuth equal to 0°), along with its
variographic fitting. The calculation and fitting of this semivariogram were done using the Code
8, resulting in the semivariogram shown in Figure 8.
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Code 8: Source code for calculating the experimental semivariogram for the IND0
variable in the North-South direction with its fitting by a theoretical model

1 azi=0
2 lag_dist=9.09
3 lagtol=2
4 nlag=8
5 bandh=10
6 atol=10
7 isill=var[0]
8 tmin=-1.0e21
9 tmax=1.0e21

10 lag0, por_gamma0, por_npair0 = geostats.gamv(df,"X","Y","IND0",tmin,
tmax,lag_dist,lagtol,nlag,azi,atol,bandh,isill)

11 plt.plot(lag0[2:-1], por_gamma0[2:-1], color=’darkblue’, marker=’o’,
linestyle=’dashed’,linewidth=1, markersize=5,label = ’Experimental
Semivariogram’)

12 plt.xlim(0,80)
13 plt.ylim(0,0.4)
14 plt.plot([0,100],[var[0],var[0]], color=’#238A8DFF’, linewidth=1,

linestyle=’dashed’, label=’Variance a priori’)
15

16 nugg=0.02
17 nst=1
18 it11=1
19 cc11=var[0]-nugg
20 azi1=0
21 hmaj11=52
22 hmin11=52
23 nlag1=160
24 xlag=0.5
25 vario_IND0=GSLIB.make_variogram(nugg,nst,it11,cc11,azi1,hmaj11,hmin11)
26 index_IND0_azi0, h_IND0_azi0, gam_IND0_azi0, cov_IND0_azi0,

ro_IND0_azi0 = geostats.vmodel(nlag1,xlag,azi1,vario_IND0)
27 plt.plot(h_IND0_azi0,gam_IND0_azi0, color=’darkblue’, label=’

Theoretical Fitting (spherical model)’)
28 plt.xlabel(’Distance (cm)’, fontsize=10)
29 plt.ylabel(’Semivariance’, fontsize=10)
30

31 plt.legend(fontsize=12, loc=’upper left’)
32 plt.savefig(’IND0_semivariogram_az0.pdf’, dpi=800, bbox_inches=’tight’)
33 plt.show()

The Code 8 starts with the definition of the parameters for calculation of the experimental
semivariogram, which were: azimuth direction (line 1); lag separation distance (line 2), usually
equal to the lowest spacing between sample pairs (in a regular grid, similar to the sample spacing);
lag tolerance (line 3), which should be lower than 50% of the lag separation value; number of lags
in the direction (line 4), being equal to the number of lags to cover at least the half of the field being
analyzed; horizontal bandwidth (line 5), which can be the sample spacing in the perpendicular
direction; angular tolerance (line 6), being lower than 90°, once angular tolerance equal to 90°
results in the unidirectional semivariogram; sill of the semivariogram (line 7), usually equal to the
variance a priori; the minimum value to be considered (line 8), in such a way that values lower
than the minimum are ignored, and; the maximum value to be considered (line 9), in such a way
that values higher than the maximum are ignored in the semivariogram calculation.
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Figure 8: Experimental and theoretical fitting of the semivariogram of the IND0
variable in the North-South direction (Azimuth equal to 0°)

Based on the parameters defined between lines 1 and 9 of the Code 8, the experimental semi-
variogram was calculated using Geostatspy’s gamv function in line 10, resulting in three variables:
classes of distances (lag0 variable), semivariance values (por gamma0 variable), and the number
of pairs (por npair0 variable) used of obtaining each point of the experimental semivariogram.
In the sequence, the semivariance and their respective classes of distances were plotted (line 11)
using the plot function, where only the semivariance values were higher than zero using a filter.
Subsequently, the limits of the plot (lines 12 and 13) were plotted, using line 14, the variance a
priori (normally the semivariogram’s sill) together with the experimental semivariogram.

The experimental semivariogram needs to be fitted by theoretical models to firstly identify the
preferential directions of continuity, which would be the directions of highest and lowest range
values, and then; provide spatial continuity information (based on such preferential directions) for
the kriging equations’ solving (see Section 2.2.1), resulting in the kriging estimates.

The parameters of the semivariogram’s fitting were defined between the lines 16 and 24 of the
Code 8, which were: (1) Nugget Effect (variable nugg in the line 16), which approximately refers
to the interception in the Y axis; (2) position of the nested structure (nst in the line 17), in this case,
it’s the first nested structure; (3) code for the model type (it11 in the line 18), which can be 1, 2, 3,
4 or 5 for spherical, exponential, Gaussian, Power law, or Cosine hole effect models, respectively;
(4) contribution of the structure for the semivariogram’s sill (cc11 in the line 19), which was, in
this case, the sill minus the nugget effect; (5) azimuth direction of the semivariogram’s major axis
(azi1 in the line 20), in this case, 0°; (6) range of the structure in the major direction (hmaj11 in
line 21); (7) range of the structure in the minor direction (hmin11 in the line 22); (8) number of
lags (nlag1 in the line 23), and; (9) lag separation, defined in the variable xlag, line 24.

Based on the aforementioned parameters, it was obtained the semivariogram model by means
of the make variogram function, described in line 25, whose model was attributed to a variable
named vario IND0. To determine the full information for plotting the semivariogram’s model, the
variable vario IND0 was used in the vmodel function (line 26), resulting, among others, in the
classes of distances (variable h IND0 azi0 in line 27) and the theoretical semivariogram values
(variable gam IND0 azi0 in line 27), which were used for the semivariogram model plotting (line
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27). The resulting figure was, then, saved in the PDF format using Matplotlib’s savefig function
(line 32).

Based on the steps for semivariogram calculation, it was obtained experimental semivari-
ograms for several directions for all indicator variables in the form of a report with the plots.
This was done using Code 9, in such used loops, automating the semivariogram calculation, and
filtering the results obtained in such a way to plot only those that showed a spatial continuity.

Code 9: Source code for obtain the experimental semivariogram of all indicator
variables and plotting only those ones which demonstrates a spatial continuity

1 lag_dist = np.zeros(4)
2 azi = [0,30,60,90,120]
3 color = [’red’,’green’,’pink’,’darkblue’,’black’]
4 lag = [np.zeros(1)]*20
5 por_gamma = [np.zeros(1)]*20
6 por_npair = [np.zeros(1)]*20
7 tmin = -1.0e21; tmax = 1.0e21;
8 lag_tol = 1; nlag = 8; bandh = 10; atol = 10;
9

10 k = 0
11 for i in range(4):
12 cont = i
13 ind = "IND"+str(cont)
14 plt.figure(figsize=(7, 4))
15 plt.xlabel(r’Lag Distance $\bf(h)$, (cm)’)
16 plt.ylabel(r’$\gamma \bf(h)$’)
17 plt.title(’Variogram ’+ind+’ 10x10’)
18 plt.plot([0,2000],[var[i],var[i]],color = ’#238A8DFF’,linewidth=1,

linestyle=’dashed’)
19 plt.xlim(0,80)
20 plt.ylim(0,0.42)
21 for j in range(0,5):
22 lag_dist[i] = 9.09; azi[j]; isill = var[i]
23 lag0, por_gamma0, por_npair0 = geostats.gamv(df,"X","Y",ind,

tmin,tmax,lag_dist[i],lag_tol,nlag,azi[j],atol,bandh,isill)
24 lag[k] = lag0; por_gamma[k] = por_gamma0; por_npair[k] =

por_npair0;
25 filtro = lag[k] != 0; filtro2 = por_gamma[k]!= 0;
26 aux1 = lag[k][filtro]; aux2 = por_gamma[k][filtro2]
27 if len(aux1)==len(aux2):
28 lag[k] = aux1;por_gamma[k] = aux2
29 if len(lag[k])>2:
30 plt.plot(lag[k][0:len(lag[k])], por_gamma[k][0:len(

por_gamma[k])], color=color[j], marker=’o’, linestyle=’dashed’,
linewidth=1,markersize=5,label = ’Porosity’)

31 print(’Preferential Direction:’,azi[j],’;cor:’,color[j],’;
lag[’+str(k)+’], por_gamma[’+str(k)+’]’)

32 k +=1
33 plt.show()

In Code 9, firstly, it was defined the arrays to receive the lag separation values (lag dist in line
1), the azimuth directions (azi in line 2), the color for each direction (color in line 3), the classes of
distances (lag in line 4), the semivariance values (por gamma in line 5), and the number of pairs
for each class of distance (por npair in line 6). In the sequence, it was defined the trimming limits
(tmin and tmax in line 7), the lag tolerance (lag tol in line 8), the number of lags (nlag in line 8),
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the horizontal bandwidth (bandh in line 8), and the angular tolerance (atol in line 8), all of them
used as parameters for the semivariogram calculation.

The information obtained by the experimental semivariograms was used for the semivariogram
fitting. Theoretical models fitted those associated with the preferential directions of continuity
(highest and lowest range values). The fitting was executed using the make variogram function
and then the vmodel function for each direction and indicator variable. Taking as an example,
the source code used to plot the experimental semivariograms and their respective fittings for the
threshold equal to 1 (IND0) is shown in the Code 10, and the resulting plot, in the Figure 9,
where one can observe the existence of two semivariogram models (continuous lines), one for
each experimental semivariogram.
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Figure 9: Plot of the experimental semivariograms and its respective fittings in the
preferential directions of continuity for the indicator variable related to the

threshold equal to 1

The Code 10 starts with determining the figures and the subplots’ sizes (lines 1 and 2). In line
4, the position of this specific plot was defined in a grid, in this case, composed of only one plot,
using the subplot2grid function of the Matplotlib package. Between lines 5 and 10, it was defined
the overall parameters of the plot: Position of the variance a priori of the indicator variable under
analysis, limits in the X-axis, limitations in the Y-axis, label for the X-axis, label for the Y-axis,
and plot’s title, respectively. The experimental semivariograms were plotted using the function plot
(lines 11 and 12) with the respective legends (line 13). In the sequence, the semivariogram models
were determined and then plotted, whose procedures and parameters are described between the
lines 15 and 20 for the azimuth 0°and between the lines 22 and 27 for the azimuth 90°. Lastly, the
figure was saved in PDF format using the savefig function (line 29).

Applying similar procedures to that described in the Code 10 for the other semivariogram
plots, it was obtained the results shown in the Figure 10, whose fitting parameters used are shown
in Table 5.

The analysis of the range values in the experimental semivariograms for each indicator vari-
able (Figure 10 and Table 5) showed the occurrence of geometric anisotropy (differences in the
range values, with equal sill), for the thresholds equal to 1 and 3. The preferential directions for
these thresholds were the 0° (North-South) and 90° (East-West) azimuths, with North-South being
the major axis. The occurrence of anisotropy wasn’t identified in the other indicator variables,
suggesting an isotropic phenomenon for these.
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Code 10: Source code for plotting the experimental semivariogram and its respective
fitting for the threshold equal do 1

1 plt.figure(figsize=(6,3))
2 fig, axs = plt.subplots(1, 1, figsize=(6,3), constrained_layout=True)
3

4 plt.subplot2grid((1,1),(0,0))
5 plt.plot([0,200],[var[0],var[0]], linestyle=’dashed’, linewidth=1,

color=’#238A8DFF’)
6 plt.xlim(0,80)
7 plt.ylim(0,0.35)
8 plt.xlabel(’Distance (cm)’, fontsize=10)
9 plt.ylabel(’Semivariance’, fontsize=10)

10 plt.title(’Threshold = 1’, fontsize=10)
11 plt.plot(lag[0][0:len(lag[0])], por_gamma[0][0:len(por_gamma[0])],

color=’red’, marker=’o’, linestyle=’dashed’,linewidth=1, markersize
=5,label = ’Azimuth 0Â° - IND0’)

12 plt.plot(lag[3][0:len(lag[3])], por_gamma[3][0:len(por_gamma[3])],
color=’darkblue’, marker=’o’, linestyle=’dashed’,linewidth=1,
markersize=5,label = ’Azimuth 90Â° - IND0’)

13 plt.legend(fontsize=12)
14

15 nugg[0] = 0.01; nst = 1; it11[0] = 1; cc11[0] = var[0]-nugg[0];
16 azith[[0],[0]] = 0; hmaxmin11[[0],[0]]=48; hmaxmin11[[0],[0]] = 48
17 vario_IND0_az0 = GSLIB.make_variogram(nugg[0],nst,it11[0],cc11[0],azith

[[0],[0]],hmaxmin11[[0],[0]],hmaxmin11[[0],[0]])
18 nlag = 160; xlag = 0.5;
19 index_IND0_az0, h_IND0_az0, gam_IND0_az0, cov_IND0_az0, ro_IND0_az0 =

geostats.vmodel(nlag, xlag,azith[[0],[0]], vario_IND0_az0)
20 plt.plot(h_IND0_az0,gam_IND0_az0,color=’red’)
21

22 nugg[0] = 0.01; nst = 1; it11[0] = 1; cc11[0] = var[0]-nugg[0];
23 azith[[0],[1]] = 90; hmaxmin11[[0],[1]] = 30; hmaxmin11[[0],[1]] = 30
24 vario_IND0_az90 = GSLIB.make_variogram(nugg[0],nst,it11[0],cc11[0],

azith[[0],[1]],hmaxmin11[[0],[1]],hmaxmin11[[0],[1]])
25 nlag = 160; xlag = 0.5;
26 index_IND0_az90, h_IND0_az90, gam_IND0_az90, cov_IND0_az90,

ro_IND0_az90 = geostats.vmodel(nlag, xlag,azith[[0],[1]],
vario_IND0_az90)

27 plt.plot(h_IND0_az90,gam_IND0_az90,color=’darkblue’)
28

29 plt.savefig(’Exp_adjusted_semivariogram_thr_1.pdf’, dpi=800,
bbox_inches=’tight’)

30 plt.show()

The existence of preferential directions of continuity can indicate a directional propagation of
the failure since the RMSD values vary more gradually in a direction in relation to the other ones.
Therefore, this information, only derived from semivariograms, can be helpful in mapping this
aspect.

The results of the semivariograms’ fitting (Table 5) show the presence of two types of models:
spherical (threshold equal to 1) and Gaussian (thresholds equal to 2, 3, and 4). Since the Gaussian
model indicates a more continuous (homogeneous) relation to the spherical one, the results show a
highly constant phenomenon for the thresholds equal to 2, 3, and 4, also occasioned by the absence

Pereira, Paulo E. C., et al. (2022) Kriging & I-based SHM to Damage Detection 2D Structures pp. 427-458

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 446



of the nugget effect in these. Because 62% of the RMSD values are lower than 1, the indicator
kriging results for the threshold equal to 1 may be characterized to have a spatial variability much
higher than in the other ones, reflected by the semivariogram’s shape (fitted by spherical model),
and their nugget effect, which represents 4,06% of the sill. Furthermore, the fitting of the indicator
semivariogram attributed to the threshold equal to 4 (Figure 10) was based on only one point
of the experimental semivariogram. However, this is an expected result once semivariograms
based on indicator variables related to values situated on the distribution’s upper tail may result in
deteriorated semivariograms, with few points attributed to the structured region (distances lower
than the range).

The input dataset and the information derived from the semivariogram fitting were used to
obtain the estimates by the indicator kriging method. In this step, initially, it was necessary to
define the general parameters for estimating, described in the Code 11.
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Figure 10: Experimental semivariograms in several directions for all indicator
variables

Table 5: Parameters of the indicator semivariograms’ fitting.

Structure 1
Threshold Indicator Variable Orientation Nugget Effect Model Contribution Range (cm)

1 IND0 Azimuth 0° 0.01 spherical 0.236 48.0
Azimuth 90° 0.01 spherical 0.236 30.0

2 IND1 Azimuth 0° 0.01 Gaussian 0.182 24.5
Azimuth 90° 0.01 Gaussian 0.182 24.5

3 IND2 Azimuth 0° 0.00 Gaussian 0.114 22.0
Azimuth 90° 0.00 Gaussian 0.114 19.0

4 IND3 Azimuth 0° 0.00 Gaussian 0.039 17.0
Azimuth 90° 0.00 Gaussian 0.039 17.00
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Code 11: Source code for determining general parameters to obtain the kriging
estimates

1 xmin = 0.0; xmax = 100.0
2 ymin = 0.0; ymax = 100.0
3 xsiz = 4; ysiz = 4
4 nx = 25; ny = 25
5 xmn = 2; ymn = 2
6 nxdis = 3; nydis = 3
7 ndmin = 1; ndmax = 4
8 radius = lag_dist[0]
9 ktype = 1

10 ivtype = 1
11 tmin = -999; tmax = 999;
12 vmin = 0.0; vmax = 1.0;
13 ncut = 4
14 pdano = np.array(df[’PDANO’])
15 cont1 = 0; cont2 = 0; cont3 = 0; cont4 = 0
16 th1 = 1; th2 = 2; th3 = 3; th4 = 4
17 for i in pdano:
18 if i<=th1:
19 cont1 += 1
20 if i<=th2:
21 cont2 += 1
22 if i<=th3:
23 cont3 += 1
24 if i<=th4:
25 cont4 += 1
26

27 gcdf1 = (cont1/len(pdano))
28 gcdf2 = cont2/len(pdano)
29 gcdf3 = cont3/len(pdano)
30 gcdf4 = cont4/len(pdano)
31 print(gcdf1, gcdf2, gcdf3, gcdf4)

In the Code 11 it was necessary to define, initially, the block model’s parameters: Minimum
and maximum coordinates in the X-axis (line 1); Minimum and maximum coordinates in the Y-
axis (line 2); cell’s dimensions in the X and Y directions (line 3); the number of cells in the X and
Y axis (line 4), and; origin coordinates of the model (line 5). In the sequence, it was specified the
general parameters for the kriging process: The number of points to be estimated inside each cell
in the X and Y directions (line 6), in such a way that the estimated value in each cell is the average
of the estimated points in each one; the minimum and a maximum number of input data inside the
search ellipse to be used (line 7); maximum search distance (line 8); kriging estimator to be used,
which can be 0 for simple kriging or 1 for ordinary kriging (line 9); type of the variable being
estimated, which can be 0 for categorical variable or 1 for a continuous one (line 10); trimming
limits (line 11); minimum and maximum value for legend displaying (line 12), and; the number of
thresholds (line 13).

Lastly, still in the Code 11, it was calculated the global cumulative distribution function of
the variable PDANO (lines 14 to 31) related to the damage metric values for the threshold values
defined previously (1, 2, 3, and 4), which was executed using a for loop to count the number of
data lower than the respective threshold value, and then, dividing this amount by the total number
of data in the PDANO variable, resulting in the following global cumulative distribution function:
0.62, 0.76, 0.87 and 0.96, related to the thresholds equal to 1, 2, 3 and 4, respectively.

The cell’s sizes were defined in such a way due to the following: (1) the cell’s dimensions
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are lower than all ranges in the semivariogram models, and; (2) the cell’s sizes are multiple of
the plate’s dimensions in each direction, allowing an adequate adjustment of the model about the
actual dimensions of the plate. Also, the chosen cell’s dimensions define the model’s resolution
(40 cm).

Regarding the kriging estimator used to obtain the estimates (parameter ktype in Code 11),
it was used the ordinary kriging one, due to its capability to reproduce more properly the local
variations of the variable being estimated (local estimation method).

In the sequence, it was defined lists for storing some information for the ik2d function of the
Geostatspy package, shown in the Code 12.

Code 12: Source code for defining the list objects for the ik2d process
1 thresh = [th1,th2,th3,th4]
2 gcdf = [gcdf1, gcdf2, gcdf3, gcdf4]
3 varios = []
4 varios.append(GSLIB.make_variogram(nug=nugg[0],nst=1,it1=it11[0],cc1=

cc11[0],azi1=azith[[0],[0]],hmaj1=hmaxmin11[[0],[0]],hmin1=
hmaxmin11[[0],[1]]))

5 varios.append(GSLIB.make_variogram(nug=nugg[1],nst=1,it1=it11[1],cc1=
cc11[1],azi1=azith[[1],[0]],hmaj1=hmaxmin11[[1],[0]],hmin1=
hmaxmin11[[1],[1]]))

6 varios.append(GSLIB.make_variogram(nug=nugg[2],nst=1,it1=it11[2],cc1=
cc11[2],azi1=azith[[2],[0]],hmaj1=hmaxmin11[[2],[0]],hmin1=
hmaxmin11[[2],[1]]))

7 varios.append(GSLIB.make_variogram(nug=nugg[3],nst=1,it1=it11[3],cc1=
cc11[3],azi1=azith[[3],[0]],hmaj1=hmaxmin11[[3],[0]],hmin1=
hmaxmin11[[3],[1]]))

8 no_trend = np.zeros((1,1,1,1))
9 ikmap = ik2d(df,’X’,’Y’,’PDANO’,ivtype,0,4,thresh,gcdf,no_trend,tmin,

tmax,nx,xmn,xsiz,ny,ymn,ysiz,ndmin,ndmax,radius,ktype,vario=varios)

The Code 12 starts with the definition of the following list objects: Thresholds to be used (line
1); a global cumulative distribution function for each threshold (line 2), and; a list for receiving
the semivariogram fitting information, which was specified in the sequence, between the lines 4
and 7, and appended in a single list named varios. In the sequence, an array of ones was created
to indicate the absence of trends (line 8). Then, it was defined a variable named ikmap for storage
of the results of the ik2d process, whose parameters are described in line 9 of the Code 12, where
each of these is linked to a specific variable defined in the previous steps.

The indicator kriging results are in the form of probability below thresholds due to the proce-
dure performed to create the indicator variables (Eq. 9). To represent the results more appropri-
ately, the results were converted to probability above thresholds by applying the Eq. 11, subtract-
ing each probability (I(x0)) by one (maximum probability), resulting, then, in the probabilities of
each estimated cell (x0 location) to be higher than the respective threshold.

IAbove(x0) = 1− I(x0) (11)

The Eq. 11 was applied to the indicator kriging results and each input indicator variable,
aiming to represent them in the form of probability above thresholds. This was done by adapting
the original locpix st function of the Geostatspy package, whose part of the source code is shown
in the Code 13.
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Code 13: Part of the locpix st function’s source code where the adaptations were
made

65 array = 1-array
66 array[len(array)-1,len(array)-1] = 0
67 array[len(array)-1, 0] = 0
68 array[0, len(array)-1] = 0
69 array[0, 0] = 0
70 cs = plt.contourf(
71 xx,
72 yy,
73 array,
74 cmap=cmap,
75 vmin=vmin,
76 vmax=vmax,
77 levels=np.linspace(vmin, vmax, 100),
78 )
79

80 plt.scatter(
81 df[xcol],
82 df[ycol],
83 s=None,
84 c=1-df[vcol],
85 marker=None,
86 cmap=cmap,
87 vmin=vmin,
88 vmax=vmax,
89 alpha=0.8,
90 linewidths=0.8,
91 verts=None,
92 edgecolors="black",
93 )

The conversion of the probabilities below thresholds to the probabilities above thresholds in
the indicator kriging results was done using the Eq. 11, applied in line 65 of the Code 13. In
the sequence, the map was centralized in the plot using the procedures shown between lines 66
and 69 since the map was slightly displaced in the original function. The last modification was
related to the input indicator variable, subtracted from 1 (maximum probability), done using the
procedure shown in line 84. Therefore, all data plotted using the locpix st function was in the form
of probability above thresholds. The indicator kriging results and the respective input data were
plotted using the function above, resulting in the plots shown in Figure 11, and the source code
used to generate these are displayed in the Code 14.

For plotting the estimated values and the input data, it was used the locpix st function of the
Geostatspy package, as shown in the Code 14, starts with the addition of the information (estimated
and input data) related to the threshold equal to 1 (lines 1 to 2). Similarly, the other plots were
added by the subplot function. In each locpix st function, it’s necessary to add the succeeding
information, ordered in the following sequence: an array containing the indicator kriging results
to be plotted; minimum coordinate in the X-axis; maximum coordinate in the X-axis; minimum
coordinate in the Y direction; maximum coordinate in the Y direction; cell’s size in the X-axis;
minimum value for legend; maximum value for legend; the name of the dataset (in the format
of a dataframe) containing the input values; the name of the column in the dataset storing the
coordinates in the X-axis; the name of the column in the dataset storing the coordinates in the Y-
axis; the name of the variable in the input dataset to be plotted, in this case, the indicator variables;
plot’s title; label in the X-axis; label in the Y-axis; legend’s title, and; color palette to be used.
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Figure 11: Probability maps of the damage metric values to be higher than each
defined threshold, jointly with the respective input data

Code 14: Source code to plot the estimated and the input values of probability above
thresholds

1 plt.subplot(221)
2 locpix_st(ikmap[:,:,0],xmin,xmax,ymin,ymax,xsiz,0.0,1.0,df,’X’,’Y’,’

IND0’,’Threshold = 1’,’X (cm)’,’Y (cm)’,’Probability above
threshold’,cmap)

3 plt.subplot(222)
4 locpix_st(ikmap[:,:,1],xmin,xmax,ymin,ymax,xsiz,0.0,1.0,df,’X’,’Y’,’

IND1’,’Threshold = 2’,’X (cm)’,’Y (cm)’,’Probability above
threshold’,cmap)

5 plt.subplot(223)
6 locpix_st(ikmap[:,:,2],xmin,xmax,ymin,ymax,xsiz,0.0,1.0,df,’X’,’Y’,’

IND2’,’Threshold = 3’,’X (cm)’,’Y (cm)’,’Probability above
threshold’,cmap)

7 plt.subplot(224)
8 locpix_st(ikmap[:,:,3],xmin,xmax,ymin,ymax,xsiz,0.0,1.0,df,’X’,’Y’,’

IND3’,’Threshold = 4’,’X (cm)’,’Y (cm)’,’Probability above
threshold’,cmap)

9 plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=2.2, wspace
=0.1, hspace=0.2)

10 plt.savefig(’IK2D_map.pdf’, dpi=800, bbox_inches=’tight’)
11 plt.show()
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The resulting plots were adjusted using the subplots adjust function (line 9) and then saved in
the PDF format using the savefig function (line 10), resulting in the plots shown in Figure 11.

Figure 11 shows the probability maps of the RMSD values being higher than their respective
thresholds. The results for the threshold equal to 1 exhibit a wide area of high probability, indi-
cating an eventual area affected by the damage. Also, the elongated shape of the area where these
high values occur can mean the existence of locations more impacted by the damage than others,
providing information for supporting the decision-making process in condition-based maintenance
programs.

Since the damage is located at the plate’s center, as the thresholds increases, the highest prob-
abilities of the RMSD values to be greater than each threshold are sequentially restricted to the
plate’s center, converging the existence of these to this location, where the RMSD values were
higher than 4.0. Therefore, by mapping the RMSD values to be higher than four, it was possible
to predict the structural damage’s location.

In the sequence, the average of the probabilities below thresholds in the indicator kriging re-
sults and in the input data (indicator variables) was calculated to compare them, analyzing the
adherence of the estimates about the respective input indicator variables. The averages were cal-
culated using the Code 15.

The Code 15 starts with the creation of the variables: The mean value of each indicator vari-
able (mean inds in line 1), the mean value of each indicator kriging-based estimated probability
(mean iks in line 2), the percentage deviation of the estimated probabilities about the input ones
(desv means percent in line 3). In the sequence, a for loop (lines 4 to 7) was used to calculate
the means and the percentage deviations, each related to a specific threshold value. Lastly, the re-
sulted percentage deviations were formatted to a maximum decimal place of 2, done by the format
function in a for loop (lines 10 and 11).

The average of the probabilities below thresholds obtained by the indicator kriging approach
was compared to its respective input indicator variable, resulting in the plot shown in Figure 12A,
whose percentage differences are plotted in Figure 12B. The source code used for preparing these
is shown in the Code 16.

Code 15: Source code for calculating of the estimate’s and input indicator variables’
averages

1 mean_inds=np.zeros(len(thrs))
2 mean_iks=np.zeros(len(thrs))
3 desv_means_percent=np.zeros(len(thrs))
4 for i in range(0,len(thrs)):
5 mean_inds[i]=np.mean(df[’IND’+str(i)])
6 mean_iks[i]=np.mean(ikmap[:,:,i])
7 desv_means_percent[i]=((mean_iks[i]-mean_inds[i])/mean_inds[i])*100
8

9 desv_means_percent_format=np.zeros(len(desv_means_percent))
10 for i in range(0,len(desv_means_percent)):
11 desv_means_percent_format[i]="{:.2f}".format(desv_means_percent[i

],2)
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Code 16: Source code for plotting the average of the probabilities below thresholds
in the estimated and input data, and the percentage differences between these ones

1 fig = plt.figure(figsize=(14,5))
2 plt.subplot(121)
3 plt.plot([1,2,3,4],mean_inds,label=’Input data’,marker=’o’, color=’

#440154ff’)
4 plt.plot([1,2,3,4],mean_iks, label=’Estimated data’, marker=’o’, color=

’#22A884FF’)
5 plt.legend(loc=’lower right’,fontsize=12)
6 plt.xlabel(’Threshold value’, fontsize=12)
7 plt.ylabel(’Mean’, fontsize=12)
8 plt.ylim(0,1)
9 plt.xticks([1,2,3,4])

10 plt.text(1,0.92,’A’,fontsize=16,fontweight=’bold’)
11

12 plt.subplot(122)
13 plt.bar([1,2,3,4],desv_means_percent,color=’#2A788EFF’)
14 plt.xticks([1,2,3,4])
15 plt.xlabel(’Threshold value’, size=12)
16 plt.ylabel(’Deviation (%)’, size=12)
17 plt.ylim(0,12)
18 plt.text(0.6,11,’B’,fontsize=16,fontweight=’bold’)
19 plt.text(0.9,10,’’+str(desv_means_percent_format[0])+’’, fontsize=12)
20 plt.text(1.9,5,’’+str(desv_means_percent_format[1])+’’, fontsize=12)
21 plt.text(2.9,2.1,’’+str(desv_means_percent_format[2])+’’, fontsize=12)
22 plt.text(3.9,0.25,’’+str(desv_means_percent_format[3])+’’, fontsize=12)
23

24 plt.tight_layout()
25 plt.savefig(’difference_results_input.pdf’, dpi=800, bbox_inches=’tight

’)
26 plt.show
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Figure 12: A) Average of the indicator variables in the input data and in the
IK-based model (probabilities below thresholds). B) Percentage differences between

the averages of the probabilities in the kriging-based model and the input data

In the Code 16, initially, it was defined the plot’s size (line 1). In the sequence, using the
subplot function (line 2), the first plot was positioned in the specified grid (1 row and 2 columns).
Then, it was plotted the average of the probabilities below thresholds in the input data against the
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threshold values (line 3) and the average of the probabilities in the estimated results against each
threshold value (line 4); this first plot was formatted using the functions between the lines 5 and
10. Also, using the subplot function, the second plot was positioned in the grid (line 12) and was
created using the bar function (line 13) and subsequently formatted (lines 14 to 22). Lastly, it was
applied the tight layout option (line 24) and the final plot was saved using the savefig function
(line 25).

Comparing the average of the probabilities in the kriging-based model with those of the input
data (Figure 12A and Figure 12B), one can ensure that the mean values were approximately re-
produced in the model, whose highest deviation was 9.84%, attributed to the threshold equal to 1.
Such deviation can be a consequence of the higher spatial variability intrinsic to the indicator vari-
able associated with this threshold than the other ones, observed by the presence of the spherical
model in the semivariogram fitting of this variable (IND0). In contrast, in the others, the Gaussian
one was used, which indicates a phenomenon with a much higher continuity (Table 10).

Also, it’s noted in Figure 12B the occurrence of the smallest deviation (0.05%) in the thresh-
old equal to 4. Despite the low reliability of the experimental semivariograms for this threshold,
as stated previously, the occurrence of a smaller deviation for this one, in relation to the others,
can be a consequence of the high spatial continuity in this scenario (fitting by Gaussian models),
with probabilities higher than zero strictly limited to the plate’s center, where the damage is lo-
cated. Thus, despite instabilities in the semivariograms of indicator variables related to very high
thresholds, the results were not inconsistent, allowing the prediction of the structural damage’s
occurrence.

5 Concluding Remarks

This chapter briefly discussed concepts related to ISHM and kriging methods used to locate struc-
tural damages. Using a case study built step by step, the elementary phases were detailed using
Python language packages to find structural damage in the center of an aluminum plate. The
results showed that this new approach made it possible to estimate the location of the damage,
resulting in maps of easy visual identification.

Additional studies are needed to better understand the technique’s applicability in structural
health monitoring systems, especially regarding the dimensions of the piezoelectric element mesh
(spacing and number of elements in the mesh) for the identification of the damage occurrence
site, through the proposed approach. In this aspect, other geostatistical tools, such as conditional
simulation, could be explored for application in structural integrity monitoring systems regarding
sensor mesh determination.
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A Module geostatspy.GSLIB

Table A1: Some functions of the geostatspy.GSLIB

Funtion Application
ndarray2GSLIB Utility to convert a NumPy’s 1-dimensional or 2-dimensional array to a GSLIB’s

Geo-EAS file, which can be used in GSLIB methods
GSLIB2ndarray Utility to convert a GSLIB’s Geo-EAS file to a NumPy’s 1-dimensional or 2-

dimensional array for using in Python methods
Dataframe2GSLIB Utility to convert a Pandas’ Dataframe to a GSLIB’s Geo-EAS file for using in

GSLIB methods
GSLIB2Dataframe Utility to convert a GSLIB’s Geo-EAS file to a Pandas’ DataFrame one for use

in Python methods
DataFrame2ndarray Utility to convert a Pandas’ DataFrame to a NumPy’s 2-D array

affine Affine distribution transformation to correct feature mean and standard deviation
nscore Transform an original distribution to a normal-shape one
declus Cell-based declustering

make variogram Make a dictionary of semivariogram parameters for use in estimation and/or sim-
ulation methods

gamv Calculation of semivariograms in an irregularly spaced 2-D spatial data
varmap Map of semivariograms for regularly spaced 2-D data

varmapv Map of semivariograms for irregularly spaced 2-D data
vmodel Semivariogram fitting
kb2d Simple and/or ordinary kriging for 2-D data

sgsim uncond Non-conditional sequential Gaussian simulation for 2-D data
sgsim Sequential Gaussian simulation for 2-D or 3-D data

cosgsim uncond Non-conditional sequential Gaussian Co-simulation for 2-D data
sample Utility to create samples from a 2-D model with provided X and Y, and append

to a DataFrame
gkern make a Gaussian kernel for convolution, moving window averaging

regular sample Utility to extract samples regularly spaced from a 2-D spatial model
random sample Utility to extract samples randomly spaced from a 2-D spatial model

pixelplt Plotting of 2-D estimated grids. Reimplementation in Python of the GSLIB’s
pixelplt with Matplotlib methods

pixelplt st Plotting of 2-D estimated grids. Reimplementation in Python of the GSLIB’s
pixelplt with Matplotlib methods, with support for sub plots.

pixelplt log st Plotting of 2-D estimated grids. Reimplementation in Python of the GSLIB’s
pixelplt with Matplotlib methods, with support for sub plots and log color bar

locpix Plotting of 2-D estimated grids and sample points. Reimplementation in Python
of a GSLIB’s MOD with Matplotlib methods

locpix st Plotting of 2-D estimated grids and sample points. Reimplementation in Python
of a GSLIB’s MOD with Matplotlib methods, with support for sub plots

locpix log st Plotting of 2-D estimated grids and sample points. Reimplementation in Python
of a GSLIB’s MOD with Matplotlib methods, with support for sub plots and log
color bar

locmap Plotting of 2-D sample points. Reimplementation in Python of a GSLIB’s MOD
with Matplotlib methods

locmap st Plotting of 2-D sample points. Reimplementation in Python of a GSLIB’s MOD
with Matplotlib methods, with support for sub plots

hist Utility for histogram plotting. Reimplementation in Python of the GSLIB’s hist
with Matplotlib methods

hist st Utility for histogram plotting. Reimplementation in Python of the GSLIB’s hist
with Matplotlib methods, with support for sub plots

Pereira, Paulo E. C., et al. (2022) Kriging & I-based SHM to Damage Detection 2D Structures pp. 427-458

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 458



 

459 
 

 

Chapter 14 
Time Series Models and Expansion 

Optimal Linear Estimation for Time-
Dependent Reliability Analysis 

 
 
 

Chapter details 

Chapter DOI: 
https://doi.org/10.4322/978-65-86503-88-3.c14 
 
Chapter suggested citation / reference style: 

Torii, André J., et al. (2022). “Time Series Models and Expansion Optimal Linear 
Estimation for Time-Dependent Reliability Analysis”. In Jorge, Ariosto B., et al. 
(Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. III, UnB, 
Brasilia, DF, Brazil, pp. 459–478. Book series in Discrete Models, Inverse 
Methods, & Uncertainty Modeling in Structural Integrity. 

P.S.: DOI may be included at the end of citation, for completeness. 

 

 

 

Book details 

Book: Uncertainty Modeling: Fundamental Concepts and Models 
Edited by: Jorge, Ariosto B., Anflor, Carla T. M., Gomes, Guilherme F., & Carneiro, 
Sergio H. S. 

Volume III of Book Series in: 
Discrete Models, Inverse Methods, & Uncertainty Modeling in Structural Integrity 
Published by: UnB City: Brasilia, DF, Brazil Year: 2022 
DOI: https://doi.org/10.4322/978-65-86503-88-3 

https://doi.org/10.4322/978-65-86503-88-3.c14
https://doi.org/10.4322/978-65-86503-88-3


Time Series Models and Expansion Optimal
Linear Estimation for Time-Dependent

Reliability Analysis
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Abstract
This chapter presents conceptual and computational comparisons between EOLE

(Expansion Optimal Linear Estimation) and AR (Auto-Regressive) models to repre-
sent stochastic processes in the context of time-dependent reliability analysis. Even
though expansion techniques, such as EOLE, are appropriate for problems where the
properties of the stochastic process are explicitly known, such information is rarely
available in practical situations. On the other hand, time series models, such as AR,
are widely employed to represent stochastic processes from real time monitoring or
available historical data. For this reason, here we compare EOLE and AR in the
context of time-dependent reliability analysis. We first demonstrate how AR models
can be calibrated to represent a given stochastic process with known properties. It is
then demonstrated that similar results for time-dependent reliability can be obtained
using the two approaches. This is an important contribution from both conceptual
and practical reasons, since it demonstrates that existing AR models (and likely other
types of time series models) can be directly employed for time-dependent reliability
analysis, without the need to first obtain an equivalent EOLE model.

Keywords: Time Dependent Reliability Analysis; Expansion Optimal Linear Estimation; Time
Series Models;
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1 Introduction

Several problems from sciences and engineering cannot be appropriately studied in the determinis-
tic context, due to uncertainties concerning its parameters. In these cases, some kind of probabilis-
tic (i.e. stochastic) approach is necessary. In this kind of approach, some problem parameters are
modeled as random variables and/or stochastic process, in order to take into account randomness
and uncertainty.

A problem of great interest in engineering is that of Reliability Analysis. In this context,
one wishes to evaluate the probability of occurrence of undesired events, generally classified as
failures. Reliability Analysis is widely employed for design considering uncertainties in several
fields of engineering, such as: aerospace, nuclear, structural, mechanical, among others.

Several engineering systems of interest are also subject to uncertain time-dependent effects,
such as ageing, deterioration, corrosion and time-evolving demands. In these situations, it is
necessary to model the time-dependent uncertainties as Stochastic Processes. This approach leads
to what is generally known as Time-dependent Reliability Analysis, a topic of great interest in the
scientific community.

Most works concerning time-dependent Reliability Analysis presented in the past employed
the same technique to represent the involved stochastic processes: the Expansion Optimal Lin-
ear Estimation (EOLE). EOLE was originally presented by Li and Kiureghian [1993] and is very
popular because of its generality and computational efficiency. For this reason, most available
methods for time-dependent Reliability Analysis are based on the concepts of EOLE. However, it
should be noted that EOLE is not, by far, the most popular technique employed to model stochas-
tic process in practice. In fact, the most common models employed in practice are those gen-
erally known as Time Series Models, such as: Auto-Regressive (AR), Moving Average (MA),
Auto-Regressive with Moving Average (ARMA) and Auto-Regressive Integrated Moving Aver-
age (ARIMA) [Cryer and Chan, 2008, Box and Jenkins, 1978]. The ARMA model, in particular, is
widely employed in several fields of sciences and engineering to model real time-dependent data.
In the engineering community things are not much different. Time Series Models such as AR and
ARMA are much more popular in practical applications concerning modeling of time-dependent
data.

The popularity of Time Series Models1 is likely a consequence of the simple mathematical
structure of such models. As will be discussed later on this work, the AR model has a much
simpler mathematical structure than EOLE. For this reason, Time Series Models are generally
in the reach of a larger number of scientists and engineers. However, it must be emphasized that
another apparent reason for the popularity of Time Series Models is that this subject has been under
careful investigation by researchers for almost a century now. Thus, there are sound mathematical
foundations and efficient computational techniques concerning these methods.

Even though Time Series Models were already employed in the context of time-dependent
Reliability Analysis, specific comparison to EOLE was only carried out in the works by Kroetz
et al. [2020] and de Medeiros [2022]. For this reason, in this chapter we compare the application
of Time Series Models (AR in particular) and EOLE in the context of time-dependent Reliability
Analysis. Here we wish do answer two main questions: i) how can one apply the AR model for
problems that have been traditionally modeled using EOLE; ii) are the results obtained with AR
models and EOLE similar? In this work we only investigate stationary Stochastic Process, that
can be modeled using the AR model. Also, we do not try to discuss the possible advantages of
employing Time Seris Models over EOLE, since we understand that this depends much more on
the application being investigated.

1Here we employ the term “Time Series Models” to collectively represent the MA, AR, ARMA, ARIMA
models and its modifications.
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The rest of this work is organized as follows. In the next section we present an overview of
the literature concerning the subject of this work. We then present the main concepts concerning
Reliability Analysis and time-dependent Reliability Analysis. Application of Monte Carlo Simu-
lation for evaluation of the probability of failure is detailed in Section 5. The EOLE and the AR
techniques for modeling a stochastic process are presented in Sections 6 and 7, respectively. We
then present two numerical examples to demonstrate the results obtained. The concluding remarks
of this work are finally summarized in Section 9.

2 Literature Overview

In the context of time-dependent Reliability Analysis, stochastic processes are frequently mod-
eled using expansion techniques such as Karhunen-Loève (KL) and Expansion Optimal linear
estimation method (EOLE). The KL expansion (see Loève [1977]) is widely employed in several
fields of science and engineering. However, the EOLE, originally presented by Li and Kiureghian
[1993], presents some numerical advantages in comparison to KL, mainly for the representation of
stochastic process with arbitrary distribution. For this reason, EOLE is more popular in the context
of time-dependent Reliability Analysis. Zhang and Ellingwood [1994] also compared expansion
techniques in the context of Reliability Analysis.

An important method for time-dependent Reliability Analysis is the PHI2, originally proposed
by Andrieud-Renaud et al. [2004] and latter improved by Sudret [2008]. The PHI2 method basi-
cally estimates an upper bound for the probability of failure by integration of the failure rate. The
failure rate, on the other hand, is evaluated using concepts from FORM (First Order Reliability
Method) [Madsen et al., 1986, Ditlevsen and Madsen, 1996a]. Some additional methods on the
subject were later proposed by Li and Mourelatos [2009], Singh et al. [2010], Hu and Du [2013a],
Hu and Du [2013b], Hu and Du [2014], Jiang et al. [2014], Jiang et al. [2017], Jiang et al. [2018],
Hawchar et al. [2015], Hawchar et al. [2017], Moarefzadeh and Sudret [2018], Nie and Elling-
wood [2005], Gong and Frangopol [2019], Zhou et al. [2017], Yu et al. [2020], Wu et al. [2020],
Hu et al. [2021], Zhang et al. [2021]. However, it must be emphasized that all these methods are
based on a discretization of the stochastic processes using expansion techniques such as EOLE or
KL.

The works by Singh et al. [2011a], Singh et al. [2011b], Walls and Bendell [1987], Mignolet
and Spanos [1989], Ho and Xie [1998], Billinton and Wangdee [2007] Sohn et al. [2000], Fugate
et al. [2001], Sohn and Farrar [2001], Sohn and Farrar [2001], Owen et al. [2001] Omenzetter
and Brownjohn [2006], Carden and Brownjohn [2008], Zheng and Mita [2008], Drignei [2011],
Bao et al. [2013], Yao and Pakzad [2013], Goyal and Pabla [2016], Hu and Mahadevan [2017],
Datteo et al. [2018], Zhang et al. [2018], Wang et al. [2021], Samaras et al. [1985] and Hu and
Mahadevan [2017] employed Time Series models (i.e. AR, ARMA, among others) in the context
of structural engineering and Time-dependent Reliability Analysis. These works demonstrate the
popularity of Time Series models in practical engineering applications. However, no extensive
comparison between Time Series models and EOLE in the context of Reliability Analysis was
carried until recently. The work by Kroetz et al. [2020] was the first to extensively compare
EOLE and ARMA in the context of time-dependent Reliability analysis. However, in that work
the employed ARMA models were calibrated using a sample obtained with EOLE and standard
techniques for Time Series calibration, described by Cryer and Chan [2008], Box and Jenkins
[1978]. Although the comparisons were enough to demonstrated that ARMA was able to obtain
similar results to EOLE, the calibration approach employed included sampling error. The work by
Kroetz et al. [2020] was latter extended in the thesis by de Medeiros [2022], were a more accurate
approach was conceived to calibrate ARMA models directly from the properties of the stochastic
processes. The approach employed by de Medeiros [2022] to calibrate the ARMA is based on

Torii, André J., et al. (2022) Time Series & Optimal Estimation Time-Dependent Reliability Analysis pp. 459-478

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 462



an optimization scheme that searches for the time series coefficients that minimize the distance
between the resulting ARMA autocovariance and the autocovariance of the stochastic process.
The approach also includes constraints on stationarity and invertibility of the resulting ARMA
time series.

This chapter is based on the works by Kroetz et al. [2020] and de Medeiros [2022]. However,
here we focus on AR models, that are generally simpler to employ and can be calibrated by solving
a system of linear equations.

3 Reliability Analysis

Consider a limit state function g that depends on a vector of random variables X, such that g < 0
indicates failure of the system under analysis. We then define the probability of failure as [Madsen
et al., 1986, Ditlevsen and Madsen, 1996b, Melchers and Beck, 2018, Beck, 2019]

Pf = P [g (X) < 0] , (1)

where P [·] represents the probability of ocurrence of a given event.
The most common type of limit state function that appears in Structural Safety is of the kind

g = R− S, (2)

where R and S represent the resistance and the load effects, respectively. In this case, failure is
assumed to occur when S > R. Several problems in engineering can be stated in this form, con-
sidering that R represents the capacity of the system under analysis and S represents the demand
that the system must supply.

Assuming the random vector X has density given by fX(x) with support Ω ⊆ Rn, the proba-
bility of failure can also be written as

Pf =

∫
Ω
I (g (x)) fX (x) dx, (3)

where

I(ζ) =

{
1, ζ < 0,
0, ζ ≥ 0.

(4)

is the Indicator function. Note that the Indicator function simply returns 1 when its argument is
negative and 0 otherwise. I (g (x)) then indicates if g is negative at x, i.e. if failure occurs for x.

From the definition of expected value (see Ross [2010]) we then conclude that the probability
of failure can also be written as

Pf =

∫
Ω
I (g (x)) fX (x) dx = E [I (g (X))] , (5)

where E[·] represents the expected value of its argument. In other words, the probability of failure
can also be defined as the expected value of I (g (X)).

4 Time-dependent Reliability Analysis

The reliability analysis problem from Eq. (5) is important for a wide variety of engineering appli-
cations. However, when time-dependent effects are considered, the problem is usually restated in
order to explicitly account for them. This type of problem is known as Time-Dependent Reliabil-
ity Analysis. Some examples of time-dependent problems include reliability analysis considering
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structures subject to ageing effects, such as corrosion; structures subject to loads with seasonal
variation, such as storms; among others.

4.1 Stochastic Processes

In the context of Structural Safety, uncertain time-dependent effects are generally modeled as
Stochastic Processes. A Stochastic Process can be understood as a time-dependent random vari-
able X(t), with time-dependent density function fX(x, t)2. In Figure 1 we present an example of
one realization of a given stochastic process X(t). A given realization of X(t) is also known as
a “path” and is represented as x(t). Note that a path is a time-dependent function. If one tries to
observe a stochastic process several times, different paths would be observed. A group of several
paths of a given stochastic process is called an “ensemble” of X(t).

0 1 2 3 4 5 6 7 8 9 10

t

0.5

1

1.5

2

2.5

3

X
(t
)

Figure 1: A path of a given stochastic process X(t)

Strictly speaking, in order to define a stochastic process X(t) we need to define the time-
dependent density f(x, t) for each time instant t [Shriryaev, 1995, Loève, 1977]. This can be
done explicitly or implicitly. However, explicit definition of f(x, t) is uncommon, for practical
reasons.

A common approach for defining a stochastic process is to define it implicitly (i.e. indirectly),
by defining the following properties: a parametric distribution for X(t) (e.g. Normal, Uniform,
Gamma, among others); a time-dependent expected value

µ(t) = E [X(t)] ; (6)

a time-dependent standard deviation

σ(t) =
√
V [X(t)] =

√
E
[
(X(t)− µ(t))2

]
, (7)

where V [·] represents the variance, and the auto-correlation

ρ [X(ta), X(tb)] =
C [X(ta), X(tb)]

σ(ta)σ(tb)
=

E [(X(ta)− µ(ta)) (X(tb)− µ(tb))]

σ(ta)σ(tb)
, (8)

where C [X(ta), X(tb)] represents the covariance between X(ta) and X(tb). Note that ρ [X(ta), X(tb)]
measures the correlation between X(t) at time-instants ta and tb.

2Higher order density functions are required to describe the correlation structure of the process.
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If the density f(x, t) of the stochastic process X(t) does not depend on t the process is called
“strictly stationary”. In this case the process has constant expected value

µ = E [X(t)] (9)

and constant standard deviation

σ =
√
V [X(t)]. (10)

Besides, the auto-correlation of a strictly stationary process depends only on the distance between
the time instants and thus

ρ [X(0), X(τ)] = ρ [X(t), X(t+ τ)] . (11)

For this reason, the auto-correlation of a strictly stationary process is frequently written as

ρ(τ) = ρ [X(0), X(τ)] =
E [(X(0)− µ) (X(τ)− µ)]

σ2
, (12)

that results

ρ(τ) =
E [X(0)X(τ)]− µ2

σ2
. (13)

A stochastic process that satisfy Eqs. (9), (10) and (13) is called “weakly stationary” or, more
often, stationary. Note that a process X(t) that satisfies Eqs. (9), (10) and (13) does not neces-
sarily has time-independent density f(x, t). In other words, a stationary process is not necessarily
“strictly stationary”. However, any “strictly stationary” process is also “weakly stationary”. This
means that “strict stationarity” is a stronger requirement.

It is also important to highlight that for some specific stochastic process, satisfaction of Eqs.
(9), (10) and (13) imply “strict stationarity”. This is the case of the important family of Nor-
mal/Gaussian stochastic process, where X(t) has Normal/Gaussian distribution [Shriryaev, 1995,
Loève, 1977]. Thus, stationary Normal/Gaussian stochastic process are also “strict stationarity”.
However, note that this is not the general rule.

4.2 Time-dependent Probability of Failure

Consider a time-dependent limit state function g(Y, X(t), t), that depend on a vector of random
variables Y, a stochastic process X(t) and time t. In this case the total (or cumulative) probability
of failure in the time interval [t1, t2] can be defined as

Pf (t1, t2) = P [∃ξ ∈ [t1, t2],y ∈ Ω|g(y, X(ξ), ξ) < 0] , (14)

that is the probability of existing some time instant ξ in the time interval and some y in the support
of the random variables for which failure occurs.

On the other hand, the instantaneous probability of failure is defined as

pf (t) = P [g(Y, X(t), t) < 0] . (15)

Note that evaluation of the instantaneous probability of failure is basically a time-independent
reliability analysis problem, since the time instant t is fixed.

In order to simplify notation a little, from now on we will represent the above quantities
omitting the explicit dependence on the random vector Y and time t, as is commonly done in
literature. In this case we write simply
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g(X(t)) = g(Y, X(t), t) (16)

and consequently

Pf (t1, t2) = P [∃ξ ∈ [t1, t2]|g(X(ξ)) < 0] , (17)

pf (t) = P [g(X(t)) < 0] , (18)

where dependence on Y and t is implicit, i.e. it is implied it should be considered, but it is not
written out in the expression.

4.3 Approaches for Time-dependent Reliability Analysis

There exist two main approaches for estimating the cumulative probability of failure Pf (t1, t2).
The first approach is to generate an ensemble for the stochastic process and then employ a sample-
based estimate, such as Monte Carlo Simulation (MCS), that directly evaluates Pf (t1, t2) from
Eq. (17). In this case, the probability of failure is estimated from the number of cases where g
becomes negative at least once in the time interval divided by the total number of cases considered.
We will cover this approach in more details later this chapter.

The second approach is based on the fact that (see Ditlevsen and Madsen [1996b] for a proof
and more extensive discussion on this subject)

Pf (t1, t2) ≤ pf (t1) +

∫ t2

t1

v+(t)dt, (19)

where v+(t) is the so-called “up-crossing rate”. Formally, the up-crossing rate is defined as

v+(t) = lim
∆t→0

P [g(X(t+∆t)) < 0|g(X(t)) ≥ 0]

∆t
. (20)

Note that the up-crossing rate represents the time-instant probability of getting g(X(t+∆t)) < 0
if we have g(X(t)) ≥ 0. In other words, the up-crossing rate can be understood as the probability
of departing for the safety and getting into failure domain.

Note that integration of the up-crossing rate produces an upper bound for the the cumulative
probability of failure. However, it turns out that this upper bound becomes sharp (i.e. accurate)
for small v+(t) [Ditlevsen and Madsen, 1996b]. In other words, for most practical situations we
can assume the approximation

Pf (t1, t2) ≈ pf (t1) +

∫ t2

t1

v+(t)dt, (21)

when v+(t) is small. For this reason, several approaches estimate the cumulative probability of
failure using the above approximation.

Some methods based on the integration of the up-crossing rate are PHI2 [Andrieud-Renaud
et al., 2004] , PHI2+ [Sudret, 2008], JUR/FORM [Hu and Du, 2013a], TRPD [Jiang et al., 2014],
iTRPD [Jiang et al., 2018] and NEWREL [Gong and Frangopol, 2019], among others. The dif-
ference between these methods concerns mainly how the up-crossing rate v+(t) is evaluated. In
fact, very efficient approaches can be conceived by employment of FORM (First Order Reliability
Method) [Madsen et al., 1986, Ditlevsen and Madsen, 1996b, Melchers and Beck, 2018] concepts
and similar reasoning.

The time-dependent probability of failure can also be estimated using sampling-based schemes.
This approach will be covered in detail in the next section.
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5 Monte Carlo Simulation

5.1 Time-independent Reliability Analysis

The probability of failure from Eq. (5) can be estimated by MCS as [Madsen et al., 1986, Melchers
and Beck, 2018]:

Pf ≈ P̃f =
1

N

N∑
i=1

I(g(xi)) =
nf

N
, (22)

where N is the sample size and nf is the number of failures observed in the sample. In other
words, the probability of failure can be estimated as the ratio between the number of failures
observed and the sample size.

The variance and the coefficient of variation of the estimate p̃f are given by [Madsen et al.,
1986, Melchers and Beck, 2018]

V ar[P̃f ] =
P̃f (1− P̃f )

N
(23)

CV [P̃f ] =

√
V ar[P̃f ]

E[P̃f ]
=

1√
N

√
1− P̃f

P̃f

. (24)

The coefficient of variation CV [P̃f ] is a measure of the relative error of the estimate. Note
that this relative error depends on the probability of failure and the sample size N . In particular,
small probabilities of failure will lead to large errors unless large samples are employed.

5.2 Time-dependent Reliability Analysis

The time-dependent probability of failure from Eq. (17) can be estimated with MCS as

Pf (t1, t2) ≈ P̃f (t1, t2) =
1

N

N∑
i=1

I(g∗(xi(t))) (25)

with

g∗(xi(t)) = min
t∈[t1,t2]

g(xi(t)). (26)

Note that in this case the indicator function considers the minimum value of the limit state
function g in the time interval [t1, t2], for a given realization xi(t) of the stochastic process. This
is equivalent to checking if failure occurs for the worst situation observed in the time interval
[t1, t2].

However, in order to estimate the probability of failure we first need to obtain an ensemble
for the stochastic process, composed by several possible paths x1(t), x2(t), ..., xN (t). Two ap-
proaches that can be employed for this purpose will be described in the next sections.

6 Expansion of the Optimal Linear Estimation (EOLE)

In the context of time-dependent reliability analysis, the most popular approach for obtaining
an ensemble for the stochastic process is based on the EOLE (Expansion of the Optimal Linear
Expansion), proposed by Li and Kiureghian [1993]. The EOLE is an expansion technique, i.e.,
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the stochastic process X(t) is represented as a series expansion. Assuming the time interval of
analysis is meshed into Nt time instants {t1, t2, ..., tNt}, the EOLE representation of X(t) is
written as

X̂(t) = µ(t) +
N∑
i=1

ξi√
λi

ϕT
i Σ(t), (27)

where µ(t) is the expected value of X(t), ξi are independent standard Normal random variables,
ϕi and λi are the eigenvectors and eigenvalues of the autocovariance matrix Σ, with components

Σij = Cov [X(ti), X(tj)] (28)

and Σ(t) is a vector with components

Σ(t)i = Cov [X(t), X(ti)] . (29)

Note that Σ is a matrix of covariances among time instants {t1, t2, ..., tNt}, while Σ(t) is a vector
of covariances between time instant t and time instants {t1, t2, ..., tNt}. Also note that we can
write

Σij = σ(ti)σ(tj)ρ [X(ti), X(tj)] (30)

and

Σ(t)i = σ(t)σ(ti)ρ [X(t), X(ti)] , (31)

where σ(t) is the standard deviation of X(t).
As occurs in expansion schemes, the number of terms of the series can be truncated. Thus, in

general we take

EOLE : X̂(t) = µ(t) +

r∑
i=1

ξi√
λi

ϕT
i Σ(t), (32)

where r ≤ N is the number of terms kept in the expansion.
From Eq. (32) we observe that the stochastic process is represented as a series of eigenvec-

tors/eigenvalues and independent standard normal random variables ξi. Thus, by sampling values
for the random variables ξi it is possible to generate several paths for the stochastic process, i.e.
to generate an ensemble for X(t). This is an important characteristic of EOLE (and other expan-
sion techniques such as Karhunen-Loève), the stochastic process is written as a series of random
variables. This allows sampling of the stochastic process by sampling the random variables with
standard schemes.

6.1 Numerical Adjustments

In practice, the autocovariance matrix Σ can become ill conditioned, particularly when Nt in-
creases. When this happens, the eigenvalues λi evaluated numerically can become negative, block-
ing the EOLE algorithm from running (note that EOLE equations assume that all eigenvalues are
non-negative, otherwise we get imaginary values). In practice this means that the EOLE equations
only hold when Σ is positive semi-definite, i.e. when all eigenvalues satisfy λi ≥ 0. It turns out
that for numerical reasons Σ may become indefinite in practice, i.e. there may exist some negative
eigenvalues arising from numerical errors.

In order to avoid this issue, here we consider a relaxed autocovariance matrix
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Σ̂ = Σ+ εI, (33)

where ε > 0 is a small relaxation parameter and I is the identity matrix. By summing non-negative
ε to the diagonal of Σ we ensure that it will be positive definite. This is the procedure employed
in this chapter.

7 Auto-Regressive (AR) Model

A stochastic process X(t) can also be represented using Time Series Models. The most com-
mon models are: Auto-Regressive (AR), Moving Average (MA), Auto-Regressive with Moving
Average (ARMA) and Auto-Regressive Integrated Moving Average (ARIMA). Note that the AR,
the MA and the ARMA models are appropriate to represent stationary stochastic processes, while
ARIMA can be used to model non-stationary processes. See Cryer and Chan [2008], Box and
Jenkins [1978] for a detailed discussion on Time Series.

Consider a stationary stochastic process X(t) with expected value µ. We first define

Y (t) = X(t)− µ, (34)

i.e., Y (t) is the deviation from the expected value. Assuming the time interval of analysis is
meshed into Nt time instants {t1, t2, ..., tNt} uniformly spaced with

∆t = ti − ti−1. (35)

The AR model can be written as

Ŷi = φ1Ŷi−1 + φ2Ŷi−2 + · · ·+ φpŶi−p + ϵi, (36)

where Ŷi = Y (ti), {φ1, φ2, ..., φp} are the parameters of the model, p is the order of the model
and ϵi is a gaussian white noise with null expected value and standard deviation σϵ. Note that the
AR model is a linear combination of the past p values of Y plus a white noise. This is the reason
why the model is called Auto-regressive: it explicitly depends on it’s own past values.

Consider the autocorrelation between time instants t, t+ n∆ (i.e. the lag n autocorrelation)

ρn = ρ(n∆t), (37)

where ρ is as defined in Eq. (13). It can be demonstrated that ρn satisfy [Cryer and Chan, 2008]
ρ1 = ϕ1 +ϕ2ρ1 +ϕ3ρ2 +... +ϕpρp−1

ρ2 = ϕ1ρ1 +ϕ2 +ϕ3ρ1 +... +ϕpρp−2
...

ρp = ϕ1ρp−1 +ϕ2ρp−2 +ϕ3ρp−3 +... +ϕp

, (38)

that are known as Yule-Walker equations.
The Yule-Walker equations are generally employed to predict the discrete autocorrelation of

the AR model Ŷ as a function of the parameters ϕ1, ϕ2, ..., ϕp. Here we employ the Yule-Walker
equations to obtain these parameters assuming the autocorrelation function is known. For this
purpose, note that we can write the Yule-Walker equations as

Rϕ = r, (39)

with
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r = {ρ1, ρ2, ...ρp}T (40)

ϕ = {ϕ1, ϕ2, ...ϕp}T (41)

R =


1 ρ1 ρ2 ρ3 ... ρp−1

ρ1 1 ρ1 ρ2 ... ρp−2

ρ2 ρ1 1 ρ1 ... ρp−2
...

...
... 1

. . .
...

ρp−1 ρp−2 ρp−3 ρp−4 ... 1

 . (42)

Besides, the components of R can be written as

Rij = ρj−i, (43)

since ρ0 = 1 and ρn = ρ−n.
Both R and r can be evaluated if the autocorrelation function of the stochastic process is

known. In this case, by solving the system of linear equations from Eq. (39) we are able to obtain
the parameters ϕ of the AR(p) model directly from the autocorrelation of the stochastic process.
Finally, the standard deviation of the white noise can be evaluated from [Cryer and Chan, 2008]

σ2
e = σ

(
1−

p∑
i=1

ϕiρi

)
, (44)

where σ is the standard deviation of the stationary stochastic process.

7.1 Stationarity of Auto-Regressive (AR) Model

The AR model only results in a stationary time series if the roots of the characteristic equation

1− ϕ1x− ϕ2x
2 − ...− ϕpx

p = 0 (45)

are all larger than unity in magnitude (note that some roots may be imaginary) [Cryer and Chan,
2008]. Dividing by −ϕp we can write the above equation as

− 1

ϕp
+

ϕ1

ϕp
x+

ϕ2

ϕp
x2 + ...+ xp = 0. (46)

The roots of the above polynomial equation can be obtained from the eigenvalues of the com-
panion matrix [Tismenetsky, 1992]

ĈL =


0 0 ... 0 1/ϕp

1 0 ... 0 −ϕ1/ϕp

0 1 ... 0 −ϕ2/ϕp
...

...
. . .

...
...

0 0 ... 1 −ϕp−1/ϕp

 . (47)

Thus, the AR model will be stationary if

|λi| > 1, i = 1, 2, ..., p, (48)

where λi are the eigenvalues of
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ĈLv = λv. (49)

Tismenetsky [1992] demonstrates that the condition from Eq. (48) is satisfied if R is positive
definite. It is known that the correlation matrix is always positive semi-definite, otherwise negative
variance should occur. However, R is a Toeplitz matrix that can become singular when its order
is increased. Thus, in order to ensure that the Yule-Walker equations always consider a positive
definite matrix some numerical adjustment can be employed.

In order to ensure stationarity of the AR models, in this work we obtain the coefficients of the
AR models from the relaxed system of linear equations

(R+ εI)ϕ = r, (50)

where ε > 0 is a small relaxation parameter and I is the identity matrix. By summing non-negative
ε to the diagonal of R we ensure that it will be positive definite. Thus, the resulting AR model
will be stationary.

It is interesting to note that both the AR models and the EOLE expansion require some kind
of relaxation in order to be numerically robust in practice. Besides, in both cases we observe that
the relaxation employed must ensure positive definiteness of the autocovariance/autocorrelation
matrix. Here we do not pursue this interesting idea further.

8 Numerical Examples

We now present two numerical examples in order to compare the results obtained using EOLE
and the AR model to represent the stochastic processes in the context of time-dependent reliability
analysis. In the examples, the autocorrelation function is assumed to be of the form

ρ(τ) = exp

[
−
(
∆t

α

)2
]
, (51)

where α is known as the correlation length. The autocorrelation function from Eq. (51) was
chosen because it is widely employed in the literature in the context of time-dependent reliability
analysis.

The relative difference between the results obtained with the AR model and EOLE was eval-
uated as

e(%) =

∣∣∣∣P f − PREF

PREF

∣∣∣∣ 100%, (52)

where PREF is a reference value for the probability of failure and P f an estimate.
In both the EOLE and the AR approaches we employed a relaxation parameter equal to ε =

10−12, that was observed to make the algorithms numerically stable without affecting accuracy
of the results. It is highlighted that if no relaxation parameter is employed, both EOLE and AR
become unstable if the order of the models increases too much.

8.1 Example 1: Constant Barrier

In the first example we consider a stationary Gaussian process X(t) with expected value µ = 2
and standard deviation σ = 0.4. The autocorrelation is given by Eq. (51) with correlation length
α = 1.0. The limit state function is given by

g = 3−X(t), (53)
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i.e. failure is assumed to occur if X(t) > 3. The cumulative probability of failure was evaluated
for the time interval [0, 10], using a discretization ∆t = 0.1 (i.e. 101 uniformly spaced time
instants).

The reference solution Pf = 0.099799 was obtained using EOLE with all terms in the expan-
sion (i.e. r = 101 in Eq. (32)) and a sample size N = 106. The results obtained using AR and
EOLE models of different orders and a sample size N = 105 are presented in Tables 1 and 2.

Table 1: Results obtained with AR models (Example 1)

AR Pf e(%)
p = 2 0.08604 0.13786711289692
p = 4 0.09261 0.07203478992775
p = 8 0.09809 0.01712442008437
p = 16 0.09819 0.01612240603613
p = 32 0.10027 0.00471948616719
p = 64 0.10025 0.00451908335754
p = 100 0.09942 0.00379763324281

Table 2: Results obtained with EOLE models (Example 1)

EOLE Pf e(%)
r = 2 0.00252 0.97474924598442
r = 4 0.01856 0.81402619264722
r = 8 0.06916 0.30700708423932
r = 16 0.09842 0.01381777372518
r = 32 0.10040 0.00602210442990
r = 64 0.10062 0.00822653533602
r = 100 0.10023 0.00431868054790

The relative differences to the reference solution e(%) versus the order of the models employed
is plotted in Figure 2 in log-log scale. We observe that EOLE gives very poor results with less
than 8 terms in the expansion. The AR, on the other hand, is able to obtain consistent results even
with models of order p = 2 and 4. As the order of the model is increased, both the EOLE and the
AR converge to similar values.

8.2 Example 2: Beam Subject to Corrosion

In this example, adapted from Andrieud-Renaud et al. [2004], we consider a steel beam subject to
corrosion. The limit state function is taken as

g =
(b0 − 2κt)(h0 − 2κt)2σy

4
−
(
F (t)L

4
+

ρstb0h0L
2

8

)
, (54)

where b0 and h0 are the initial cross section dimensions, L is the beam length, κ is the corrosion
rate t is the time measured in years, σy is the yielding stress, ρst is the density of the material. It
is assumed that the corrosion depth evolves in time as

dc(t) = κt. (55)
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Figure 2: Convergence of AR and EOLE models (Example 1)

The random variables are as defined in Table 3. The correlation length of the Stochastic Process
(i.e. applied force) is α = 1/12 years.

Table 3: Parameters of Example 2

Parameter Distribution Expected value CV*
Applied force F (kN) Gaussian Stochastic Process 5000 20%

Yielding stress σy (MPa) Lognormal 240 10%
Initial cross section width b0 (m) Lognormal 0.20 5%
Initial cross section height h0(m) Lognormal 0.04 10%

Corrosion rate κ (mm/ano) Deterministic 0.03 -
Beam length L (m) Deterministic 5.00 -

Steel density ρst (kN/m3) Deterministic 78.50 -
* CV: coefficient of variation

The time interval of analysis was taken as [0, 20] years. This interval was divided into 200
uniformly spaced sub-intervals with ∆t = 0.1 years. The reference solution Pf = 0.022138 was
obtained using EOLE with all terms in the expansion (i.e. r = 201 in Eq. (32)) and a sample size
N = 106. The results obtained using AR and EOLE models of different orders and a sample size
N = 105 are presented in Tables 4 and 5.

The relative differences to the reference solution e(%) versus the order of the models employed
is plotted in Figure 3 in log-log scale. We observe that EOLE gives very poor results unless almost
all terms are included in the expansion (i.e. r = 200). The AR, on the other hand, is able to obtain
consistent results even with models of order p = 2 and 4. For this reason, it is not possible to
identify advantages of employing high order AR models in this example.

Torii, André J., et al. (2022) Time Series & Optimal Estimation Time-Dependent Reliability Analysis pp. 459-478

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 473



Table 4: Results obtained with AR models (Example 2)

AR Pf e(%)
p = 2 0.02178 0.01617128918601
p = 4 0.02172 0.01888156111663
p = 8 0.02197 0.00758876140572
p = 16 0.02242 0.01273827807390
p = 32 0.02119 0.04282229650374
p = 64 0.02115 0.04462914445749
p = 128 0.02123 0.04101544855000
p = 200 0.02185 0.01300930526696

Table 5: Results obtained with EOLE models (Example 2)

EOLE Pf e(%)
p = 2 2.60E-04 0.98825548830066
p = 4 2.30E-04 0.98961062426596
p = 8 4.00E-04 0.98193152046255
p = 16 7.50E-04 0.96612160086728
p = 32 0.00177 0.92004697804679
p = 64 0.00534 0.75878579817508
p = 128 0.01385 0.37437889601590
p = 200 0.02188 0.01165416930165

1 10 100 1000
0,001

0,01

0,1

1

AR
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n
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Figure 3: Convergence of AR and EOLE models (Example 2)

9 Concluding Remarks

We presented a conceptual and computational comparison between EOLE (Expansion Optimal
Linear Estimation) and AR (Auto-Regressive) models to represent stochastic processes in the

Torii, André J., et al. (2022) Time Series & Optimal Estimation Time-Dependent Reliability Analysis pp. 459-478

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 474



context of time-dependent reliability analysis. Although EOLE is by far the most widespread
technique to represent stochastic process in this context, it can be applied only if the properties
of the stochastic process are explicitly known. However, such information is rarely available in
practice. Times Series Models such as AR, on the other hand, are efficient to represent existing
data obtained from real time monitoring or available historical databases. For this reason, in this
chapter we investigated if it is possible to obtain similar results using EOLE and AR models in the
context of time-dependent reliability analysis.

The results obtained here demonstrated that EOLE and AR models are able to provide similar
results for time-dependent reliability analysis. This is an important conclusion, since AR (and
other Time Series Models) are widely employed in practice. However, some questions should
be further investigated in future works. First, it is necessary to investigate if the conclusions
obtained here also hold when non-stationary stochastic processes are considered. Besides, it is
also interesting to study which Time Series Models (AR, ARMA, ARIMA, among others) are
more fit for reliability analysis problems.
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Abstract

Experiments are of fundamental importance both in academic sciences and the
industry. In many cases, performing experiments is an expensive task requiring re-
sources and time. Therefore, it is essential to design experiments as best as possible
to obtain the most information. However, in many cases, the optimal design of an
experiment is not obvious, being even counter-intuitive in some situations. The goal
of optimal experimental design is to formalize the statistical information obtained by
experiments as an objective function to be maximized using optimization methods.
Here, we focus on the Bayesian setting, using a discrepancy between the information
before and after an experiment as its quality. Specifically, we use the Shannon’s Ex-
pected Information Gain (SEIG), the mutual information between the experimental
observations and the parameters of interest, to measure the quality of experiments.

Keywords: Optimal Experimental Design; Expected Information Gain; Uncertainty Quantifica-
tion; Bayesian Inference; Monte Carlo Sampling

1 Introduction

Many fields of science heavily rely on information obtained by experiments. Statistics about
quantities of interest are inferred from data resulting from experiment observations. Hence, it is
important that experiments provide informative data. For example, in structural engineering, it is
useful to have statistical information about the material properties, such as the Young modulus,
Poisson modulus, yield stress, so that the engineer can take informative decisions. However, to
obtain statistically relevant data, experiments must have large enough samples. For example, if
a three-point flexural test is performed on concrete beams to evaluate the fracture toughness of
concrete, a significant number of beams must be built beforehand and let to cure for 28 days. Even

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 480



if a hundred beams are built, cured, and tested, the standard error in the fracture toughness estimate
is still the standard deviation of one of the samples divided by ten. To reduce the standard error
of the mean by one digit requires increasing the sample size by a hundred times. A three-point
bending experiment for fracture toughness determination and its design parameters are presented
in Figure 1. Properly defining design parameters can reduce dispersion of the quantity of interest

Figure 1: Example of fracture toughness testing. Source: Wikimedia commons
Commons [2011]

estimation or reduce the cost required to achieve the same precision.
Another example of practical interest is the one of verifying the quality of composite lami-

nates. Some composite materials can have improved mechanical properties in some directions by
alternating plies of orthotropic materials with some specific angles between them. One way of
testing these laminates is by electrical impedance tomography (EIT). However, the information
obtained depends heavily on the currents imposed on the electrodes, as can be seen in the results
obtained by Beck et al. [2018]. The set-up of an EIT experiment is presented in Figure 2, where
the electrodes are illustrated in black, the first ply in blue and the second ply in red. We optimize
the currents in an EIT experiment in Section ??.

Figure 2: Electrical impedance tomography example. Source: adapted from Beck
et al. [2018]

Given the difficulties and the costs involved in the experimental process, it might be interesting
to optimally tune experiments parameters to maximize their efficiency, which is the main concern
of optimal experimental design (OED). Thus, in OED, we seek the optimum design parameters
that maximize some measure of efficiency of an experiment.

The classical optimality criteria for experiments are known as the alphabetic optimality crite-
ria. However, they require the model to be linear with respect to the random parameters. The al-
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phabetic optimality criteria use the Fisher information matrix, a measure of information inversely
proportional to the covariance matrix, to qualify an experiment. The better known of these cri-
teria, D-optimality, consists in minimizing the determinant of the Fisher information matrix, as
presented in Chaloner and Verdinelli [1995].

In this chapter, we aim at presenting an OED framework that can optimize experiments with
nonlinear black-box forward models. Thus, we opt to measure the performance of an experiment
by its Shannon’s expected information gain (EIG) [Shannon, 1948]. The EIG is related to the
relative entropy of information and, in the OED context, is a measure on how much information
an experiment provides [Huan and Marzouk, 2013]. Lindley [1956] was the first to use EIG as
an utility function for OED. However, for a general experiment with nonlinear model, estimating
EIG is cumbersome.

Ryan [2003] develop an EIG estimator based on Monte Carlo integration (MCI), however,
his estimator requires the evaluation of two nested integrals. We refer to Ryan’s estimator as the
double-loop Monte Carlo (DLMC). The DLMC estimator has the disadvantages of being expen-
sive to evaluate and numerically unstable. The evaluation of the two nested MCI requires a large
number of experiment simulations.Indeed, if the two outer and inner MCI have sample size of,
respectively, N and M , the DLMC estimator requires N(M + 1) forward model evaluations to
approximate the EIG. Moreover, for some cases, M needs to be large to avoid numerical under-
flow [Beck et al., 2018]. Long et al. [2013] propose a method to estimate the EIG using a Laplace
approximation, furnishing the Monte Carlo with Laplace approximation (MCLA) estimator. The
MCLA estimator does not require the evaluation of one of the two nested integrals, thus, being
less expensive. The disadvantage of MCLA is that the Laplace approximation introduces a bias
that might not be acceptable depending on the situation. Beck et al. [2018] propose an importance
sampling for DLMC that uses Laplace approximation to draw more informative samples, reducing
the cost of DLMC without adding the bias of MCLA. The DLMC with the importance sampling
is called double-loop Monte Carlo with importance sampling (DLMCIS).

The main goal of this chapter is to present the DLMC, MCLA and DLMCIS estimators for the
SEIG in a didactic manner. To achieve this goal, we first present the basis of Bayesian inference
and how to measure information using the SEIG. Then, the procedure for the numerical evaluation
of the DLMC, MCLA and DLMCIS estimators is presented, together with their the pseudocodes.

2 Optimal Experimental Design (OED)

The goal of OED is to find the best experimental setup [Chaloner and Verdinelli, 1995]. From
the perspective of optimization, it is important to define a criterion to measure the efficiency of
experiments: the objective function to be maximized. Here, we use the Shannon’s SEIG [Shannon,
1948] of an experiment to evaluate its performance. Thus, on the next section, we introduce SEIG
and other concepts related to it.

2.1 Experiment model

We model the evaluation of Ne repetitive experiments as

yi(ξ,θt, ϵi) = g(ξ,θt) + ϵi, i = 1, . . . , Ne, (1)

where yi ∈ Rq is the vector of experiment observations, θt ∈ Rd is the vector of parameters
of interest to be recovered, ξ is the vector with experiment parameters to be optimized, g is the
experiment model, and ϵ is the additive noise from measurements. For Ne experiments performed
with the same setup ξ, the set of observed data is gathered in a set Y = {yi}Ne

i=1. Since we cannot
observe θt directly, we use the random variable θ: Θ → Rm with prior distribution π(θ) instead
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of θt. Thus, through observations Y , we calculate statistics about θ. Here, our goal is to find the
optimal experimental design ξ ∈ Ξ ⊂ Rn that provides more information about θ, where Ξ is the
space of experiment designs. Moreover, we consider ϵ ∼ N (0,Σϵ) to be an additive noise, i.e.
independent of g, ξ and θ, for some positive-definite and symmetric covariance matrix Σϵ. This
model for experiments is the same used in [Long et al., 2013, Beck et al., 2018].

For example, consider the case of a single three-point test where the stiffness modulus (E) of
some material is estimated, as illustrated in Figure 3. In this case, the parameter of interest (θ) is

Figure 3: Example of the setup for a three-point flexural test.

E, the measurement y is the observed deflection in mm, and ϵ is the error in the observation of y.
The design parameter of the experiment to be optimized is ξ = x, the position where the point load
q is applied, and where the deflection is measured. The model relating E and x to the observation
y is g(x,E) = qx

6LeEIe
(2Le − x), where Ie is the moment of inertia of the cross-section of the

beam. This simple problem is used to illustrate the concepts introduced in the present chapter; the
proof that the optimum is at x∗ = Le/2 is trivial.

2.2 Bayesian Inference

To evaluate the quality of experiments, we use a Bayesian framework of analysis. Thus, in this
section, we introduce essential concepts of Bayesian inference. The main idea behind Bayesian in-
ference is to use new data to update some previously known probability distribution of a parameter.
This update is done using Bayes’ theorem:

π(θ|Y , ξ) =
p(Y |θ, ξ)π(θ)

p(Y |ξ) , (2)

where π(θ|Y , ξ) is the posterior distribution, the updated probability density function (pdf) of
some random variable θ given observations Y ; π(θ) is the prior distribution, the pdf of θ before
the experiment; p(Y |θ, ξ) is the likelihood, the probability of observing Y given the previously
known prior π(θ); and p(Y |ξ) is the evidence, the probability of Y being observed.

On the context of experiments, Bayesian inference is used to estimate a posterior pdf of a
parameter of interest given a prior pdf and some observations Y provided by the experiment. For
example, consider the previously mentioned three-point flexural test; in Figure 4 we present the
pdf for the stiffness both before and after the flexural experiment, i.e., the prior and posterior
pdfs of (2). It can be seen that the dispersion is reduced after the experiment, meaning that the
experiment provided useful information about the parameters of interest.

In this example, we modeled the prior knowledge about the parameter of interest as being
Gaussian-distributed; however, other distributions can be used as well. Using the Bayes’ theorem
in (2), the posterior can be obtained by multiplying the prior by the division between the likelihood
and the evidence. For the experiment model with additive noise in (1), the likelihood of observing
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Figure 4: Prior and posterior pdfs for the three-point flexural experiment.

Y given θ and ξ is a multivariate Gaussian with mean g(ξ,θ) and covariance matrix Σϵ,

p(Y |θ, ξ) = det (2πΣϵ)
−Ne

2 exp

(
−1

2

Ne∑
i=1

∥yi − g(ξ,θ)∥2Σϵ
−1

)
, (3)

where θ is not necessarily the same used to calculate Y . Using (3), the likelihood in (2) can be
evaluated, yet, the evidence p(Y |ξ) is not known. To estimate the evidence, we follow the same
procedure as Ryan [2003]. We introduce a new variable θ∗ that is independent and identically
distributed with respect to θ and marginalize its likelihood with respect to θ∗ as

p(Y |ξ) =
∫
Θ
p(Y |θ∗, ξ)π(θ∗)dθ∗. (4)

The likelihood in (4) can be calculated from (3) as

p(Y |θ∗, ξ) = det (2πΣϵ)
−Ne

2 exp

(
−1

2

Ne∑
i=1

∥yi − g(ξ,θ∗)∥2Σϵ
−1

)
. (5)

Thus, substituting in the Bayes’ equation in (2) the likelihood and the evidence respectively pre-
sented in (3) and (4), one can obtain the posterior distribution of the experiment, i.e., the probabil-
ity distribution for the parameter of interest after the experiment.

To estimate how much information an experiment provides, we use the Kullback–Leibler di-
vergence (DKL) between the prior and posterior pdfs.

2.3 Kullback–Leibler Divergence

According to Cover and Thomas [2012], entropy is a measure of uncertainty of a random variable.
Cover and Thomas define the differential entropy of a random variable θ with pdf fθ as

−
∫
Θ
fθ(θ) log fθ(θ)dθ. (6)
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The larger the entropy of π(θ) is, the larger its uncertainty with respect to θ is. The DKL is the
entropy of a probability measure with respect to another [Kullback and Leibler, 1951], and, for
two probability measures fθ and gθ on θ with the same support Θ, the DKL is defined as

DKL(fθ(θ)∥gθ(θ)) = −
∫
Θ
fθ(θ) log gθ(θ)dθ +

∫
Θ
fθ(θ) log fθ(θ)dθ

= −
∫
Θ
fθ(θ) log

(
gθ(θ)

fθ(θ)

)
dθ

=

∫
Θ
log

(
fθ(θ)

gθ(θ)

)
fθ(θ)dθ.

(7)

The larger the DKL of fθ(θ) with respect to gθ(θ) is, the more different is fθ(θ) with respect to
gθ(θ); the DKL between two distributions is a measure of the discrepancy between them. As a
way of measuring the efficiency of an experiment, we use the DKL of the posterior with respect
of the prior:

DKL(π(θ|Y , ξ)∥π(θ)) =
∫
Θ
log

(
π(θ|Y , ξ)

π(θ)

)
π(θ|Y , ξ)dθ. (8)

For the sake of simplicity, the Kullback–Leibler divergence between the prior and posterior
pdfs is referred simply as Kullback–Leibler divergence and denoted as DKL. In Figure 5, at the
left, we present the prior and posterior pdf of the three-point flexural test. The regions where the
probability density of the posterior distribution is greater than the one of the prior are shaded in
green, whereas the regions where the posterior pdf is less than the prior pdf are shaded in red.
In Figure 5, at the right, we present the integrand in (8) over the domain of θ for the three-point
flexural test. The regions where the integrand is positive are shaded in green, and the regions
where the integrand is negative are shaded in red. The more informative an experiment is, the

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

E (MPa)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

ba
bi

lit
y

de
ns

it
y

Prior

Posterior

(a)

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

E (MPa)

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

de
ns

it
y

log
(
π(θ|y,ξ)
π(θ)

)
π(θ|y, ξ)

(b)

Figure 5: For the three-point flexural test: prior and posterior distributions (a), and
the integrand of the DKL (b).

larger is the integral of the function in Figure 5 (b). Thus, we aim to find the ξ∗ that provides the
more informative observations Y ∗; the Y ∗ that maximize difference between the green area and
the red area in Figure 5 (b).

In Figure 6, we present a comparison between the optimized and non-optimized cases for the
three-point flexural test. The non-optimized case is evaluated with x = Le/4, whereas, in the
optimized case, the load and the measurement are in the middle of the beam, i.e., x = x∗ = Le/2.
In the left plot of Figure 6, it can be observed that the posterior pdf for the optimized configuration
is more concentrated than the posterior pdf before before optimization. In the right plot of Figure 6,
the integrand of the DKL is presented for both the optimized and non-optimized configurations. It
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Figure 6: The pdfs for prior, posterior, and optimized posterior (a) and the DKL

integrand for the non-optimized and for the optimized cases (b).

can be observed that the DKL for the optimized case is greater than the DKL for the non-optimized
configuration, as can be inferred from the areas under the integrands.

When modeling a real experiment, one might need to consider the noise inherent to experiment
observations. To estimate the information gain considering the noise in observations, we use the
SEIG [Shannon, 1948].

2.4 Shannon’s Expected Information Gain

The DKL does not consider the noise in observations due to measurement uncertainties. To es-
timate the information gain on this context, we need to marginalize the DKL with respect to Y ,
thus, obtaining the Shannon’s expected information gain [Shannon, 1948] as

I =

∫
Y

∫
Θ

log
(
π(θ|Y , ξ)

π(θ)

)
π(θ|Y , ξ)dθp(Y |ξ)dY . (9)

Lindley [1956] is the first to use SEIG as an utility function for optimal experimental design. An
example of the integrand in (9) with respect to both the parameter of interest and the observations
for the three-point flexural test is presented in Figure 7. Estimating I requires the solution of a
double integral over the sample space of the parameters of interest (Θ), and the observations (Y).

Using the Bayes’ equation presented in (2), we can rewrite (9) as

I =

∫
Θ

∫
Y

log
(
p(Y |θ, ξ)
p(Y |ξ)

)
p(Y |θ, ξ)dY π(θ)dθ. (10)

Presenting SEIG as in (10) has the advantage that, for our experiment model, the likelihood can
be calculated directly using (3). Moreover, using Eq.4 to estimate the evidence results in

I =

∫
Θ

∫
Y

log

 p(Y |θ, ξ)∫
Θ
p(Y |θ∗, ξ)π(θ∗)dθ∗

 p(Y |θ, ξ)dY π(θ)dθ. (11)

Here, we use (11) to calculate the SEIG.
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Figure 7: The SEIG integrand.

3 Shannon’s Expected Information Gain Estimators

Evaluating I in (11) requires the solution of the double integral over θ and Y , moreover, it re-
quires the solution of the integral used to marginalize the evidence. In most cases, these integrals
do not have closed form, thus, numerical methods are needed to approximate them. When the
number of random parameters is small, quadrature methods can be used to approximate the inte-
grals in (11), however, as pointed out by Robert and Casella [2013], these methods suffer from the
curse of dimensionality. Hamada et al. [2001] note that using deterministic integration methods to
approximate (11) becomes unfeasible if the dimensionality of θ exceeds three.

3.1 Error analysis

We focus on the case where the integrals in (11) do not have closed form solution and Monte Carlo
integration (MCI) is needed to approximate them. In this section, we introduce Monte Carlo-based
estimators for SEIG that can deal with high dimensional parameter spaces. We present the error
analysis and complexity of the SEIG estimators with respect to the evaluation of g by FEM with a
mesh discretization parameter h. As h→ 0, the discretization bias asymptotically converges as

E [∥g(ξ,θ)− gh(ξ,θ)∥2] = O (hη) , (12)

where gh is the FEM approximation of g using h, and η > 0 is the rate of convergence of the
discretization error. For the computational effort analysis, we assume that the cost of evaluating
gh isO(h−ϱ), for the constant ϱ > 0. Both η and ϱ are constants that depend only on the numerical
approach used in approximating g by gh.

In the present case, the error of estimators can be decomposed in two terms: their bias and vari-
ances. The variance of the estimator is a measure of the dispersion from different and independent
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estimations of the same quantity, e.g., for an estimator I, its variance is V[I] def
= E

[
(I − E[I])2

]
.

The bias of an estimator is the difference between its expected value and the true value that is being
estimated, e.g., for an estimator I of a quantity I , the bias of I is |I − E[I]|. Figure 8 illustrates
the bias and variance of an hypothetical estimator of I , where the curve in blue is the probability
density that a value of I is estimated. Moreover, the distance between the expected value of I
and I , i.e., the bias, is presented, as is the square root of the variance, σ, the standard error of the
estimator. The bias of the estimator includes the bias from numerical approximation of the model.
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Figure 8: Bias and variance of an estimator

For further information about the bias and variance of each SEIG estimator, the reader is referred
to Beck et al. [2018].

3.2 Monte Carlo integration

The MCI is a method for approximating integrals by sampling the integrand and averaging the
samples. For example, let θ ∈ Θ ⊂ Rn, and f : θ → R with θ with probability π(θ). In this case,
the expectation of f(θ) can be approximated as

E[f(θ)] =
∫
Θ
f(θ)π(θ)dθ ≈ 1

N

N∑
i=1

f(θi), (13)

where θ is sampled from π(θ). From the strong law of large numbers, the Monte Carlo estimator
converges to the real value of the integral as N → ∞ [Rubinstein and Kroese, 2016]. More-
over, from the central limit theorem, as N → ∞, the error in approximating an integral by MCI
converges to zero with rate 1/

√
N [Rubinstein and Kroese, 2016].

3.3 Double-loop Monte Carlo estimator

The double integral in (10) can be approximated using MCI by sampling θ from the prior pdf and
Y from the likelihood (the measures that the integrands are being integrated over in (10)). Then,
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for N samples, the Monte Carlo estimator for OED is defined as

IMC(ξ)
def
=

1

N

N∑
n=1

log

(
p(Y n|θn, ξ)

p(Y n|ξ)

)
. (14)

Also, we use (4) and approximate the evidence integral by a MCI as∫
Θ
p(Y |θ∗, ξ)π(θ∗)dθ∗ ≈ 1

M

M∑
m=1

p(Y |θ∗
m, ξ). (15)

Thus, the DLMC estimator for SEIG is defined as

IDLMC(ξ)
def
=

1

N

N∑
n=1

log

(
p(Y n|θn, ξ)

1
M

∑M
m=1 p(Y n|θ∗

m, ξ)

)
. (16)

The first to use DLMC in OED is Ryan [2003].
Monte Carlo estimators are generally not biased, however, the DLMC estimator has a bias

resulting from the logarithm of the inner loop. However, DLMC is a consistent estimator because
the bias goes to zero as the number of inner loop samples M goes to infinity. The DLMC estimator
has bias and variance respectively given by

|I − E[IDLMC ]| ≤ CDL,1h
η +

CDL,2

M
+ o(hη) +O

(
1

M2

)
, and (17)

V[IDLMC ] =
CDL,3

N
+

CDL,4

NM
+O

(
1

NM2

)
(18)

for the constants CDL,1, CDL,2, CDL,3, and CDL,4 (cf. [Beck et al., 2018]).
To evaluate the DLMC estimator in (16), one needs the likelihood of observing Y n given

θn and the likelihoods of observing Y n given each θ∗
m. Using (3) to estimate the likelihood of

observing Y n given θn furnishes

p(Y n|θn, ξ) = det (2πΣϵ)
−Ne

2 exp

(
−1

2

Ne∑
i=1

∥∥∥y(n)
i (ξ)− g(ξ,θn)

∥∥∥2
Σϵ

−1

)
, (19)

= det (2πΣϵ)
−Ne

2 exp

(
−1

2

Ne∑
i=1

∥g(ξ,θn) + ϵi − g(ξ,θn)∥2Σϵ
−1

)
, (20)

= det (2πΣϵ)
−Ne

2 exp

(
−1

2

Ne∑
i=1

∥ϵi∥2Σϵ
−1

)
. (21)

Since Y and g are evaluated using the same θ, the model evaluation g in (20) cancels out. Thus,
evaluating the likelihood of observing Y n given θn does not require any model evaluation. How-
ever, for the evidence evaluation, we must evaluate the model g. For example, consider the likeli-
hood in (3), where Y n is evaluated from θn and ϵ (sampled in the outer loop), and θ∗

m is sampled
in the inner loop (independently from θn),

p(Y n|θ∗
m, ξ) = det (2πΣϵ)

−Ne
2 exp

(
−1

2

Ne∑
i=1

∥∥∥y(n)
i (ξ)− g(ξ,θ∗

m)
∥∥∥2
Σϵ

−1

)
. (22)

Each observation of p(Y n|θ∗
m, ξ) requires an evaluation of g(ξ,θ∗

m).
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Algorithm 1 Pseudocode for the DLMC estimator for SEIG.
1: function DLMC(ξ, N,M )
2: for n = 1, 2, ..., N do ▷ Outer loop
3: Sample θn from π(θ)
4: Evaluate g(ξ,θn)
5: for i = 1, 2, .., .Ne do
6: Sample ϵi from N (0,Σϵ)
7: yi ← g(ξ,θn) + ϵi
8: end for
9: Y n ← {yi}Ne

i=1

10: p(Y n|θn, ξ)← det (2πΣϵ)
−Ne

2 exp
(
−1

2

∑Ne

i=1 ∥ϵi∥
2
Σϵ

−1

)
11: for m = 1, 2, ...,M do ▷ Inner loop
12: Sample θ∗

m from π(θ)
13: Evaluate g(ξ,θ∗

m)

14: p(Y n|θ∗
m, ξ)← det (2πΣϵ)

−Ne
2 exp

(
−1

2

∑Ne

i=1

∥∥∥y(n)
i (ξ)− g(ξ,θ∗

m)
∥∥∥2
Σϵ

−1

)
15: end for
16: p(Y n|ξ)← 1

M

∑M
m=1 p(Y n|θ∗

m, ξ)
17: end for
18: IDLMC(ξ)← 1

N

∑N
n=1 log

(
p(Y n|θn,ξ)
p(Y n|ξ)

)
19: return IDLMC(ξ)
20: end function

In Algorithm 1, we present the pseudocode for DLMC, where the inputs are the experiment
setup, ξ, the sample-size for the outer loop, N , and the sample-size for the inner loop, M . Problem
parameters, e.g., Σϵ, π(θ), g, Ne, are considered to be known. The DLMC returns the estimation
of I , IDLMC .

From Algorithm 1, it can be seen that the cost of evaluating the DLMC estimator is N(M+1)
forward model evaluations. Considering that each model evaluation requires the solution of a PDE
using FEM with a mesh of size h, the computational cost of evaluating the DLMC estimator is of
order N(M + 1)h−ϱ.

The DLMC estimator can suffer from numerical instabilities, namely, numerical underflow
[Beck et al., 2018]. The marginalization of the likelihood of observing Y (evaluated using θ∗

sampled in the outer loop) given θ sampled in the inner loop can result in numerical underflow. If
the likelihood is zero for all the M inner samples, the evidence also becomes zero. If g(ξ,θ∗

m)
is too distant to each y(n), or if Σϵ has small eigenvalues, the likelihood can get smaller than
floating-point precision. Thus, to avoid numerical underflow, M needs to be large enough as
to guarantee that at least one of the M likelihoods is not numerically evaluated to zero. If the
evidence is evaluated to zero, then (14) cannot be evaluated. Figure 9 illustrates the numerical
underflow for the flexural test for five inner loop samples; for each loop the model is evaluated and
the likelihood of y being observed is drawn in red. It can be observed that, for all g evaluated at
each inner loop, the likelihood of observing the y(n) evaluated at the outer loop is near to zero. In
the next sections we present two estimators of SEIG that are able to overcome the high cost and
numerical instabilities of DLMC.
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Figure 9: Numerical underflow illustrated for the three-point flexural test.

3.4 Monte Carlo estimator with Laplace approximation

The cost of solving the two-loop Monte Carlo required for DLMC can be large. Since MCI is a
method for approximating integrals, one might think of alternative methods to approximate one
of the integrals. Long et al. [2013] propose the use of the Laplace method to approximate the
the logarithm of the posterior distribution by a second-order Taylor expansion, thus, avoiding the
evaluation of the evidence. We follow the same approach as Long et al. [2013] to devise the
Monte Carlo with Laplace method (MCLA) estimator. One advantage of the MCLA is that the
approximated posterior pdf is a Gaussian function

π(θ|Y , ξ) ≈ det(2πΣ(ξ, θ̂))−
1
2 exp

(
−1

2
∥θ − θ̂(ξ,Y )∥2

Σ−1(ξ,θ̂)

)
, (23)

where θ̂ is the maximum a posteriori (MAP) of θ, and Σ(ξ, θ̂) is the covariance matrix of the
posterior at the MAP. The MAP is the θ that maximizes the posterior pdf, i.e., the θ more likely
to be θt after the experiment data is considered. Thus, θ̂ is the θ that solves

θ̂(ξ,Y )
def
= argmin

θ∈Θ

[
1

2

Ne∑
i=1

∥yi − g(ξ,θ)∥2Σϵ
−1 − log(π(θ))

]
. (24)

Long et al. [2013] show that

θ̂ = θt +OP

(
1√
Ne

)
. (25)

The covariance matrix of the posterior Σ(ξ, θ̂) is the Hessian matrix of the negative logarithm of
the posterior pdf evaluated at ξ and θ̂,

Σ−1(ξ, θ̂) = Ne∇θ(g(ξ, θ̂))
TΣϵ

−1∇θg(ξ, θ̂)−∇θ∇θ log(π(θ̂)) +OP

(√
Ne

)
. (26)

A detailed deduction of θ̂ and Σ(ξ, θ̂) is presented in Beck et al. [2018].
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According to Long et al. [2013], using the approximation θ̂ ≈ θt yields the Laplace-approximated
SEIG as

I(ξ) =

∫
Θ

[
−1

2
log(det(2πΣ(ξ,θt)))−

dim(θ)

2
− log(π(θt))

]
π(θt)dθt +O

(
1

Ne

)
. (27)

Compared to (9), the approximated SEIG in (27) has only one integral, not requiring the integra-
tion over Y nor the integral to calculate the evidence. This SEIG with Laplace approximation is
consistent with Chaloner and Verdinelli [1995], according to whom, maximizing SEIG is equiva-
lent to minimizing the determinant of the posterior covariance matrix.

Estimating I in (27) by MCI results in the MCLA:

IMCLA(ξ)
def
=

1

N

N∑
n=1

[
−1

2
log(det(2πΣ(ξ,θn)))−

dim(θ)

2
− log(π(θn))

]
. (28)

According to Beck et al. [2018], the bias and variance of the MCLA estimator are, respectively,

|I − E[IMCLA ]| ≤ CLA,1h
η +

CLA,2

Ne
+ o(hη), and (29)

V[IMCLA ] =
CLA,3

N
(30)

for the constants CLA,1, CLA,2, and CLA,3. Although DLMC is a consistent estimator, MCLA is
not, because the bias from the Laplace approximation does not vanish as the number of samples
increases, being dependent on the number of repetitive experiments Ne.

Algorithm 2 presents the pseudocode for the MCLA estimator. Since MCLA does not have an
inner loop, it only needs the outer loop sample-size, N . The evaluation of (26) requires a Jacobian
of the model g with respect to the parameters θ; the main cost of MCLA evaluation.

Algorithm 2 Pseudocode for the MCLA estimator for SEIG.
1: function MCLA(ξ, N )
2: for n = 1, 2, ..., N do ▷ Outer loop
3: Sample θn from π(θ)
4: Evaluate∇θg(ξ,θn)
5: Use ∇θg(ξ,θn) to evaluate Σ(ξ,θn) using (26)
6: end for
7: IMCLA(ξ)← 1

N

∑N
n=1

[
−1

2
log(det(2πΣ(ξ,θn)))− dim(θ)

2
− log(π(θn))

]
8: return IMCLA(ξ)
9: end function

If forward-Euler is used for the estimation of the Jacobian in (26), the evaluation of the MCLA
estimator cost has order N(dim(θ) + 1)h−ϱ. Thus, in comparison to DLMC, MCLA requires
lower computational effort if dim(θ) is less than M . For most cases, the M required to achieve
a certain precision with DLMC is large, therefore, for these cases, MCLA is is computationally
more efficient than DLMC.

3.5 Double-loop Monte Carlo estimator with Laplace-based importance sampling

Based on the method proposed by Beck et al. [2018], we use an importance sampling in the
MCI of the evidence. Instead of sampling θ∗ from π(θ), we sample θ∗ from π̃(θ), where
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π̃(θ) ∼ N (θ̂,Σ(θ̂)), and θ̂ and Σ are given in (24) and (26). Therefore, we are using a Gaussian
approximation of the posterior at its MAP to draw more informative samples for the inner loop.
The advantage of using the importance sampling is that it avoids the approximation error from
the Laplace approximation and the numerical underflow problem from DLMC with the drawback
of requiring, for each outer loop, to solve the sub-problem of finding the MAP θ̂. The DLMCIS
estimator is defined as

IDLMCIS(ξ)
def
=

1

N

N∑
n=1

log

(
p(Y n|θn, ξ)

1
M

∑M
m=1 L(Y n; ξ;θ

∗
m)

)
, (31)

where

L(Y ; ξ;θ) =
p(Y |θ, ξ)π(θ)

π̃(θ)
. (32)

The bias and variance of the DLMCIS estimator are deduced on the original paper by Beck et al.
[2018] and are proven to be the same as of DLMC for a given tolerance, thus the DLMCIS estima-
tor is also consistent. However, to achieve the desired tolerance, the inner loop sample-size M is
significantly smaller for DLMCIS than for DLMC. Like in MCLA, the evaluation of (26) requires
a Jacobian of the model g with respect to the parameters θ, moreover, finding θ̂ requires solving
the optimization problem in (24). We use a steepest descent search to find θ̂. For that we use the
gradient of the function to be minimized in (24),

∇̂θ
def
= −(∇θg(ξ, θ̂))

TΣϵ(Y − g(ξ, θ̂))−∇θ log π(θ̂). (33)

Algorithm 3 Pseudocode for finding MAP using steepest descent.
1: function FINDMAP(ξ,θ,Y , αθ,TOL)
2: θ̂ ← θ
3: for j = 1, 2, 3.. do
4: ∇̂θ ← −(∇θg(ξ, θ̂))

TΣϵ(Y − g(ξ, θ̂))−∇θ log π(θ̂)
5: θ̂ ← θ̂ − αθ∇̂θ

6: if ∥∇̂θ∥2 < TOL then
7: Break
8: end if
9: end for

10: return θ̂
11: end function

If forward-Euler is used for the estimation of the Jacobians in (26) and Algorithm 3, the
evaluation of the DLMCIS estimator costs N((CMAP +1)(dim(θ)+ 1)+M)h−ϱ, where CMAP

is the number of iterations to estimate θ̂ in Eq. in Algorithm 3.
Besides the advantage of reducing the number of samples of the inner loop, M , the DLMCIS

estimator is more robust to numerical underflow than the DLMC estimator. The change of measure
in the sampling of θ∗ guarantees that g(ξ,θ∗) is close to Y , evaluated using the θ sampled in the
outer loop. Thus, it is not likely that, for all inner loops, the likelihood of observing Y given θ∗

is numerically evaluated to zero. Figure 10 illustrates how the importance sampling mitigates the
numerical underflow problem for the three-point flexural point; the likelihoods of observing y(n)

for each g are larger than zero.
A pseudocode for the DLMCIS is presented in Algorithm 4, where the line where importance

sampling happens is shaded in gray.
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Algorithm 4 Pseudocode for the DLMCIS estimator for SEIG.
1: function DLMCIS(ξ, N,M )
2: for n = 1, 2, ..., N do ▷ Outer loop
3: Sample θn from π(θ)
4: for i = 1, 2, .., .Ne do
5: Sample ϵi from N (0,Σϵ)
6: yi ← g(ξ,θn) + ϵi
7: end for
8: Y n ← {yi}Ne

i=1

9: p(Y n|θn, ξ)← det (2πΣϵ)
−Ne

2 exp
(
−1

2

∑Ne

i=1 ∥ϵi∥
2
Σϵ

−1

)
10: Find θ̂n(ξ,Y n) using Algorithm 3
11: Evaluate∇θg(ξ, θ̂n)
12: Use∇θg(ξ, θ̂n) to evaluate Σ(ξ, θ̂n) using (26)
13: for m = 1, 2, ...,M do ▷ Inner loop
14: Sample θ∗

m from π̃(θ) ∼ N (θ̂n,Σ(ξ, θ̂n)) ▷ Importance sampling
15: Evaluate g(ξ,θ∗

m)

16: p(Y n|θ∗
m, ξ)← det (2πΣϵ)

−Ne
2 exp

(
−1

2

∑Ne

i=1

∥∥∥y(n)
i (ξ)− g(ξ,θ∗

m)
∥∥∥2
Σϵ

−1

)
17: L(Y n; ξ;θ

∗
m)← p(Y n|θ∗

m, ξ)π(θ
∗
m)/π̃(θ

∗
m)

18: end for
19: p(Y n|ξ)← 1

M

∑M
m=1 L(Y n; ξ;θ

∗
m)

20: end for
21: IDLMCIS(ξ)← 1

N

∑N
n=1 log

(
p(Y n|θn,ξ)
p(Y n|ξ)

)
22: return IDLMCIS(ξ)
23: end function
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Figure 10: Avoiding numerical underflow using importance sampling illustrated for
the three-point flexural test.

4 Numerical example

This numerical example addresses the problem of positioning a strain gauge on a beam modeled
following Timoshenko theory for estimating the beam’s mechanical properties. Its purpose is to
show that the proposed OED framework can reproduce the engineer’s intuition. In other words,
the optimized design found is consistent with what an engineer would intuitively expect.

4.1 Strain gauge positioning on Timoshenko beam

The OED problem here consists in finding the optimal placement of a strain-gauge on a beam to
estimate the material’s Young and shear deformation moduli. It is opted to employ the MCLA
estimator of the EIG, given its lower cost in comparison to DLMC and DLMCIS.

It is assumed that the strain-gauges provide (noisy) strains observations in the vertical and
longitudinal axes for a given point of the domain of the beam. The beam mechanical properties to
be estimated are the the Young modulus E and the shear modulus G, given measurements obtained
from the strain gauge using the Timoshenko beam model. The beam’s length, height and width
are, respectively, Le = 10 m, H = 2 m and b = 0.1 m. Although the beam’s geometry is not
consistent with engineering practice, it is devised to furnish an interesting OED problem: we want
an optimization problem where the optimum is not in a vertex of the beam. A uniform load qo
of 1.00 kN/mm is imposed on the beam’s vertical axis and distributed along its main axis. The
geometry of the beam, the load, and the position of the strain gauge are illustrated in Figure 11.

We aim to locate a strain gauge on the beam that maximizes the information on E and G.
W employ the Timoshenko’s theory Timoshenko [1921] as the forward model of the problem, a
mechanical model that captures the strains resulting from both normal and shear stresses. Such a
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Figure 11: (Example 3) Geometry of the Timoshenko beam.

model is defined as {
KsGArε12 =

qoLe

2 − qox1,

EInε11 =
qox1(Le−x1)

2 x2,
(34)

where ε11 is the normal strain, ε12 is the shear strain, x1 and x2 are the positions of the strain
gauge on the horizontal and vertical axes respectively, qo is the uniform load, Le is the length of
the beam, In is the inertia moment of the cross section, Ks is the Timoshenko constant (Ks = 5/6
in all test cases), and Ar is the cross-section area.

4.2 Bayesian formulation

The optimal position for the strain gauge that provides the maximum information about E and G
is denoted by ξ∗ = (x∗1, x

∗
2). The longitudinal strain on the main axis of the beam, denoted by

ε11, together with the transverse strain ε12, compose the output of the forward model. Therefore,
based on (34), we find that

g(ξ,θ) = (ε11(ξ,θ), ε12(ξ,θ))

=

(
ξ2
(
qoLeξ1 − qoξ

2
1

)
2θ1In

,
Le
2 qo − qoξ1

Ksθ2Ar

)
, (35)

where (x1, x2) and (E,G) are replaced by (ξ1, ξ2) and (θ1, θ2), respectively. The additive er-
ror of the measurement is Gaussian ϵ ∼ N (0,Σϵ), where the noise covariance matrix is Σϵ =
diag

{
σ2
ϵ1 , σ

2
ϵ2

}
.

4.3 Test cases

We investigate the EIG of this problem in four test cases, in which we attempt to locate the optimal
strain-gauge placement on a beam. We test all the different cases, changing the variance of the
prior pdf of θ, the dispersion of the measurement noise, and the number of experiments. The prior
pdf of θ is Gaussian with the distribution π(θ) ∼ N

(
(µE

pr, µ
G
pr)

T , diag
{
(σG

pr)
2, (σE

pr)
2
})

, where
µE
pr = 30.00 GPa and µG

pr = 11.54 GPa.
Table 1 presents the parameters used in each of the four cases.
We devised the parameters of the four cases with the intention of having four different OED

problems. In the first two cases, both E and G have standard deviation of, respectively, 30% and
20% of their means. Also, case 1 has larger observation noise than case 2, and more experiments,
3. The third and fourth cases are exactly like case 2, except that case 3 has significantly less
dispersion in G, a coefficient of variation of 4%, and case 4 has the same coefficient of variation
for E.
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Table 1: Parameters for the Timoshenko beam problem (Example 3).

Parameter Ne σE
pr(GPa) σG

pr(GPa) σϵ1(×10−4) σϵ2(×10−4)

Case 1 3 9.00 3.46 6.25 1.30
Case 2 1 6.00 2.31 3.75 0.78
Case 3 1 6.00 0.46 3.75 0.78
Case 4 1 1.20 2.31 3.75 0.78

We evaluate the EIG of each case using a grid of uniformly distributed points, which pro-
vides contour plots of the expected information gain across the beam’s domain. These plots are
illustrated in Figure 12.

In cases 1 and 2, the optima are similarly located near the bottom of the beam, between the
middle and the end. In case 3, the optimum is located in the bottom-middle of the beam; in case
4, the optimum is located on the supports. These placements are expected, as the Young modulus
depends on the bending moment (that is maximum at the middle of the beam (x1 = Le/2)), and
the shear modulus depends on the shear stress (that is maximum at the beam supports (x1 = 0 and
x1 = Le)). In case 3, the prior information about G is more accurate; consequently, the optimum
is at the middle of the beam where more information about E can be collected. Conversely, in
case 4, the optimum is at the supports, where data is more informative about G.

In Table 2, we present the non-optimized points randomly chosen on the design domain (Non-
Opt.), the optimized setups (Opt.), the respective expected information gains in relation to the
prior, and the standard deviations of the posterior pdfs of the parameters E and G for the four
cases. The posteriors are evaluated at θ̂ = (µE

pr, µ
G
pr) for the four cases are presented in Figure 13.

We observe a reduced variance in the optimized experiment, compared to the original, reflect-
ing the importance of an informative experiment. In cases 3 and 4, no information is acquired
about G and E, respectively, since the variances in the axes are not reduced, compared to the
prior.

Table 2: Results from the Timoshenko beam problem (Example 3).

x∗
1(mm) x∗

2(mm) IMCLA σE
post (GPa) σG

post (GPa)

Case 1
Non-Opt. 5500.00 -100 0.14 8.00 2.40

Opt. 8022.59 -1000.00 2.43 2.48 0.54

Case 2
Non-Opt. 5500.00 -100 0.23 2.38 1.38

Opt. 7962.77 -1000.00 3.35 1.60 0.74

Case 3
Non-Opt. 5500.00 -100 0.06 5.70 0.46

Opt. 5004.47 -1000.00 1.28 1.72 0.46

Case 4
Non-Opt. 5500.00 -100 0.22 1.20 1.93

Opt. 10000.00 -1000.00 1.94 1.20 0.33

Because we use the biased and inconsistent MCLA estimator of the gradient, as a sanity check,
we evaluate the gradient at the optima we found (the first two cases) using the full gradient of the
DLMCIS estimator with N = 103 and M = 102. In both cases, the gradient norm is below
10−3, meaning that the bias of the Laplace approximation is considerably small at the optima. We
conclude that the biased solutions found are not significantly distant to the real optima.
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Figure 12: From top to bottom, cases 1 to 4 (summarized in Table 2). Expected
information gain contours computed with MCLA.

The main goal of this example is to visualize how the optimum results are consistent with the
input data given.

5 Chapter summary

In this chapter, we introduced key concepts related to Bayesian inference and OED. In Section
2.1, we presented the model of experiments with additive noise. Also, in Section 2.1, we defined
a measure of efficiency of experiments: DKL between the prior and posterior pdfs. Moreover, we
presented, from an experiment with additive noise, the SEIG, the quantity we want to maximize.

In Section 3, we presented SEIG estimators based in MCI. Applying MCI in SEIG furnishes
the DLMC estimator, introduced by Ryan [2003]. The DLMC estimator is consistent and can
estimate SEIG for any general case, however, depending on the problem it can be expensive and
unstable [Beck et al., 2018]. As an alternative to DLMC, we presented the MCLA estimator pro-
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Figure 13: Prior, posterior, and optimized posterior pdfs for the Young modulus E
and the shear modulus G for cases 1 (a), 2 (b), 3 (c), and 4 (d).
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posed by Long et al. [2013] in Section 3. This estimator uses the Laplace approximation of the
posterior, thus, avoiding the inner-loop in DLMC. The resulting algorithm, MCLA, is an inexpen-
sive estimator for SEIG, with the drawback of introducing bias due to the Laplace approximation
of the posterior distribution. This bias resulting from the Laplace approximation does not vanish
as sample-sizes go to infinity, thus, MCLA is an inconsistent estimator. This fact is then investi-
gated in the numerical example section. For the cases where the bias of MCLA is not acceptable,
we introduced an importance sampling based on the Laplace approximation, proposed by Beck
et al. [2018], resulting in the DLMCIS estimator.
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Abstract 

The present work describes an airliner design platform that has been developed over 

several years and its application to design airliners based on an efficiency index 

developed by the authors of the present work. Among other characteristics, the design 

tool can handle airplane geometries with detail and count on a unique and accurate 

neural network system to predict aerodynamic coefficients. A new feature for product 

classification was incorporated into the framework. It is based on entropy statistics and 

was calibrated for jet transport airplanes and the results of classification are analyzed 

in the present work. The design of a Middle of Market airplane was then carried out 

with the classification provided by entropy statistics set as a constraint. Middle of the 

Market is a term that was established to address the commercial aircraft market 

segment that encompasses long-haul sectors from 3500 nm to 5000 nm, and airplanes 

with single-class passenger capacity between 220 and 250. Until now, this segment was 

not extensively explored, and some airlines have been showing interest to purchase 

airplanes better suited to it = this category. Multi-objective optimizations were carried 

out to determine the best aircraft design that fits into this concept's range and capacity 

specifications. The unsupervised learning algorithm based on entropy statistics was 

applied for airplane classification into four labels, classic, niche, failure, and 

breakthrough designs. A higher fidelity engine model optimization task was also 

carried out to search for optimal classic designs. In addition, a robust optimization 

considering a fuel price variation on Direct Operating Cost was carried out. All results 

raised an important discussion about the benefits and drawbacks of a trijet 

configuration for transport airplanes with a capacity of over 200 passengers. 

Keywords: Commercial aviation, conceptual aircraft design, artificial neural network, multi-

disciplinary design, and optimization, entropy statistics 
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Symbols and abbreviations 

AAT Airplane Analysis Tool 

ANN Artificial neural network 

AR Aspect ratio 

ATC Air Traffic Controller 

BEW Basic Empty Weight 

BPR Engine by-pass ratio 

CAD Computer-Aided Design 

CAE Computer Aided Engineering 

CFD Computational fluid dynamics 

DOC Direct operating cost [US$/nm] 

DE Engine external diameter 

EI Efficiency index for airliners 

EIBJ Efficiency index for business jets 

ETOPS Extended-range Twin-engine Operations Performance Standards 

FPR Fan pressure ratio 

HT Horizontal tail 

L/D Lift-to-drag ratio 

Lf Fuselage length [m] 

MDO Multi-disciplinary design and optimization 

MMA Middle of the market aircraft 

MMO Maximum operating Mach number 

MTOW Maximum takeoff weight [kg] 

ne Number of engines 

NPAX Passenger capacity in 2-class configuration (10% in business class) 

OEW Operating empty weight [kg] 

OPR Engine overall pressure ratio 

PAX Passenger or passengers 

T Overall takeoff thrust of an airplane [kN] 

TBO The time between overhaul for engines [h] 

TFL Takeoff field length 

TS The thrust of an engine @ takeoff [kN] 

TSFC Thrust specific fuel consumption [kg/h/kg] 

TW Thrust-to-weight ratio 

VT Vertical tail 

wAR Wing aspect ratio 

wS Wing area [m2] 

wTR Wing taper ratio 

wSw14 Wing quarter-chord sweepback angle 
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1. Introduction  

Aviation experienced a huge sprung when jet airplanes were introduced into 

commercial service in the late 1950s. Since then, worldwide passenger transportation has 

steadily increased at an exponential pace [1] thanks to more efficient airliners and to the 

Deregulation Act of 1978, which provided a boost for low-cost/low-fare airlines. Indeed, 

aviation is steadily evolving and is currently characterized by acute competition between 

two giant aircraft manufacturers in the medium and high-capacity market segment. Both 

companies introduced airliners to fulfill passenger and cargo demands in the 150-220 

passenger capacity segment, airplanes that compose the fleet of most airlines around the 

world, especially those labeled as low-cost/low-fare airlines. In the high-capacity 

segment, high-performance airplanes enabled the establishment of new long-range routes 

[2].  

As propulsion, material, and avionics technologies evolved, as well as computational 

tools (such as CFD, MDO, and electronic mockups) manufacturers could develop more 

fuel-efficient, long-range aircraft with a larger payload. Today, airplanes like Boeing 787 

and Airbus A350 are 70% more fuel-efficient, in terms of kilograms of fuel burned per 

passenger, than the first-generation jet transports [3]. 

Figure 1 shows a range capacity graph where a gap between the short- and middle-

range exists for single-aisle airliners. More specifically, there is an unfulfilled region for 

passenger capacity between 230 and 310 seats and a range above 3700 nm. In fact, until 

now there are no models available on the market that could accommodate 250 passengers 

into a single-class cabin layout offering a range beyond 4500 nm for shot/medium-haul 

operations. The MMA gap could be filled with airplanes ranging from 3700 to 5000 nm, 

capable of transporting 220-270 passengers. Originally this market was serviced by the 

Boeing 757 Series, which was designed to replace the venerable Boeing 707 for cross-

country routes in the United States. The production of this airplane was discontinued, and 

its design was outclassed by newer, more fuel-efficient aircraft.  

 
Figure 1: The middle of the market aircraft is waiting for a new airliner [4] 
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It is important to specify the kind of city pairs that are being considered for MMA 

operations. A non-stop concept for long-range direct routes was introduced by the new 

high-efficient wide-body designs like Boeing 787 and Airbus A350. This was due to the 

emergence of some markets that could be serviced by those ultra-long-range airliners. 

With the expansion of low-cost carriers into more distant destinations, using improved 

engine and airframe technologies present in current narrow-body airplanes, it could be 

possible to reach such markets with lower seating capacity and with narrow-body 

operating costs. Routes such as Honolulu-Seattle, Los Angeles-New York, New York-

Manchester, London-Berlin, Dubai-Mumbai, and Beijing-Hong Kong could be served 

this way. These routes as well as some others would be feasible with such new, more 

efficient airliners, as shown in Figure 2 [5]. 

 

Figure 2: Potential routes with new generation narrow bodies [5] 

Multi-disciplinary optimization tools are part of the everyday activities of aircraft 

manufacturers, whatever size they are. Thanks to the increase of computational power 

and research on algorithms and optimization methods, aircraft conceptual design is 

nowadays carried out by aircraft manufacturers using Multidisciplinary Design 

Optimization frameworks and sophisticated CAD/CAE software. Currently, many design 

variables (and types) may be employed, and advanced optimization algorithms that enable 

complex models of the aeronautical disciplines may be considered. Empirical formulae 

like the Class-I and -II methodologies proposed by Torenbeek [6] and Loftin [7] for drag 

and weight estimation are still used because they provide faster results [8]. Because of 

the increased complexity of such kind of methodology, significant efforts of 

computational analysis are required to obtain optimum configurations that satisfy many 

objectives and design constraints.  

The extensive investigation of efficient airliners in the 150-250 seating capacity class 

is the objective of the present work by using an advanced MDO platform, encompassing 

aircraft which fit into the MMA market segment and their economic feasibility. The 

optimization tasks properly incorporated an entropy statistics tool for aircraft 

classification [9] [10]. This tool is based on an unsupervised machine learning algorithm 

that classifies products into four categories: scaled trajectories (classic); niche; 

breakthrough, and failure. This criterium was envisaged by Frtenken in his Ph.D. thesis 

[11]. Aircraft classification was then used as a constraint in the simulations. The multi-

objective gamultiobj algorithm from MATLAB® was employed in all simulations that 

were carried out in the present work [12]. Two objectives were considered here: direct 

operating cost per nautical mile and an efficiency index for the configuration that was 

elaborated by the authors and will be discussed later in the following sections. 
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2. Methodology 

This Section describes the MDO framework used in the present computations for the 

tasks to design airliners in the 150-240 seating capacity range. An airplane calculator 

module is an essential part of this computational tool; therefore, it will be addressed in 

some level detail. Initially, a description of the entropy statistics module, an important 

part of the present study, is described. 

2.1  Entropy statistics 

Historic development and description 

German physicist Rudolf Clausius created the entropy concept in 1850 as a 

thermodynamic property that predicts the irreversibility or impossibility of certain 

spontaneous processes [13]. In statistical mechanics, entropy is formulated as a statistical 

property using probability theory. Statistical entropy or entropy statistics (ES) was 

introduced in 1870 by Ludwig Boltzmann, i.e., the statistical interpretation of the second 

law of thermodynamics. ES provides a linkage between the macroscopic observation of 

nature and the microscopic view based on the rigorous treatment of a large ensemble of 

microstates that constitute thermodynamic systems [13]. 

Entropy is a physic quantity that measures the degree of system diversity. An 

important parameter, relative entropy, was introduced by Kullback in 1951 [14]. 

According to Cover [15], relative entropy is a measure of the distance between two 

distributions. In statistics, it arises as an expected logarithm of the likelihood ratio. The 

relative entropy or Kullback-Leiber distance between two probability mass functions p(x) 

and q(x) is defined by: 

𝐼(𝑝|𝑞) = ∑ 𝑝(𝑥) log (
𝑝(𝑥)

𝑞(𝑥)
)

𝑥∈𝑋
    (1) 

Indeed, the relative entropy 𝐼(𝑝|𝑞), also known as Kullback–Leibler divergence is a 

special case of a broader class of divergences called f-divergences, considered a class of 

Bregman divergences [16]. It is the only such divergence over probabilities that belongs 

to both classes. Although it is often intuited as a way of measuring the distance between 

probability distributions, the Kullback–Leibler divergence is not a true metric for this 

purpose. It does not obey the triangle inequality, and therefore 𝐼(𝑝|𝑞) does not equal 
𝐼(𝑞|𝑝). Nonetheless, it is often useful to consider the relative entropy index as a 

“distance” between distributions [15]. In its infinitesimal form, specifically its Hessian 

form, the relative entropy gives a metric tensor known as the Fisher information metric. 

The relative entropy is always non-negative, and it becomes zero if and only if p = q. For 

applications in the evaluation of product evolution, in Eq. 3, p is a posteriori distribution 

and q is a priori one. Based on this, two important parameters can be derived, which are 

important for product categorization. These parameters are called convergence and 

diffusion. Convergence is obtained when we consider an individual p and look at a certain 

period in the past and consider the characteristics of another individual q in the same 

timeframe. For the computation of the diffusion coefficient of a design that appeared in a 

determined time, designs that appeared after it in a determined timeframe must be selected 

[9]. Here, we consider the service entry of the aircraft as a time variable. The diffusion of 

a reference product can then be measured by its distance calculated by Eq. 3 to all the 

members of the technological population that were selected before. The final I-values are 

then obtained by dividing the sum of I-values for each product pair by the number of 

comparisons in the timeframe of observation [14].  
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The combination of diffusion and convergence indexes is useful for product 

classification. According to Frenken [9], industrial products can be classified as 

innovations, scaled trajectories, niches, and failures.  

Innovative products can be recognized if they present new, redesigned, or substantially 

improved characteristics that are well distinguished from their predecessors. Innovative 

products influence their successors and introduce dominant designs. They are categorized 

by a low value of diffusion and a high value of convergence indexes. Scaled trajectories 

or classical designs follow patterns defined by previous concepts and influence their 

successors. Scaled trajectories are characterized by a low diffusion value as well as a low 

convergence value.  

Products classified as “failures” may even be a market success, as will be shown by 

the application of the ES tool developed by Ref. [17]. This just means that they did not 

inherit major characteristics of their predecessors in a stipulated timeframe, and they did 

not transmit their ones to successors. 

 Products that fit into market niches are those complying with standards defined by 

previous designs and do not exert a profound influence on designs that come after them. 

They may be characterized by the combination of high diffusion and low convergence 

indexes. Failures are concepts that differ from their predecessors and do not influence 

their successors, characterized by a high value of its diffusion coefficient and a high value 

of the convergence index. The kind of design classification of industrial products 

described before was introduced by Frenken [9]. Figure 3 provides a compilation of this 

classification. Frenken originally designated designs in the Northeast quadrant as failures. 

Niche products are in the Southeast quadrant, and the scaled trajectories are in the 

Southwest one. An ellipse with a center at the confluence of the quadrants defines a region 

where the configurations are undefined, denominated here fuzzy designs (Figure 3). In 

the present work, scaled trajectories are referred to as classic airplanes. 

Breakthrough products usually feature advanced technology. Sometimes, the 

creativity employed to define these products rather than technology provides them with 

unique characteristics. Breakthrough products are intended to fulfill consumer needs to 

an extended or greater degree than existing products, while most of the time featuring 

more advanced technology and innovation. These products enjoy the advantage of being 

the first movers on the market and can establish an early market share lead or a higher 

market share by outperforming existing products. Although all breakthrough products are 

first movers, they may not succeed in the marketplace in the long run. 

 

Figure 3: Product classification according to diffusion and convergence indexes 
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Application to jet airliners market 

An Excel worksheet containing data for 123 jet airliners was compiled to feed the code 

with all data it needs. The first column of the worksheet was filled with airplane names; 

the second one contains the year of service entry of the airliners. The remaining columns 

contain the parameters employed for airplane description which are shown in Table 1. 

Note that the number of airplanes of each type that were delivered is not a variable. 

Table 1: Variable stored in the airplane databank for entropy statistics analysis 

1) MTOW [kg] 

2) Maximum Zero-Fuel Weight [kg] 

3) Operating empty weight [kg] 

4) Fuel capacity [kg] 

5) Wing reference area [m2] 

6) Wing aspect ratio 

7) Wing taper ratio 

8) Wing quarter-chord sweepback angle 

[degrees] 

9) Passenger cabin external width [m] 

10) Fuselage length [m] 

11) Vertical tail aspect ratio 

12) Vertical tail taper ratio 

13) Vertical tail quarter-chord sweepback 

angle 

14) Horizontal tail aspect ratio 

15) Horizontal tail taper ratio 

16) Horizontal tail sweepback angle 

17) Takeoff thrust-to-MTOW ratio 

18) Maximum operating Mach number 

19) Maximum range with typical passenger payload [nm] 

20) Service ceiling [ft] 

21) Engine configuration (1= two underwing; 2= two at rear 

fuselage; 3=three at rear; 4= four underwing; 5= four at 

rear fuselage, 6= two overwing;7=two underwing + one 

at rear;8=two buried in wing;9=four buried in wing) 

22) Typical two-class passenger capacity at 32" pitch in the 

economy class 

23) Seating abreast in the economy class 

24) Wing position (1= low; 2=high) 

25) Tail configuration (1=conventional; 2= “T” tail; 

3=Cruciform tail) 

26) Number of decks 

27) Number of corridors in passenger main cabin 

Mattos et al. implemented the entropy statistics methodology for product classification 

[17]. Table 2 contains the classification results for some airliners. Market data for each 

airplane is also shown in Table 2  to help to evaluate to some extent the degree of success 

of the airplanes. Most airplanes were properly classified. With the addition of some 

airliners and the incorporation of more accurate data regarding others, a new classification 

diagram was generated (Figure 4). 

Table 2 – Airliner classification by entropy statistics [17] [18] 

Airplane Year of introduction* Classification Units delivered or built* 

Boeing 747-400ER 2002 Failure 6 

Boeing 767-300ER 1988 Scaled trajectory 583 

Boeing 777-200LR 2006 Failure 59 

Boeing 777-300 1998 Niche 60 

Boeing 777-300ER 2004 Failure 839 

Airbus A340-600 2002 Breakthrough 97 

Boeing 737-800 1998 Scaled trajectory 4991 

Boeing 737-900 2001 Scaled trajectory 52 

Boeing 787-8 2012 Scaled trajectory 378 

Caravelle VI 1955 Scaled trajectory 109 

CRJ-100ER 1992 Failure 47 

CRJ-200LR 1996 Breakthrough 298 

ERJ145EP/ER/EU/MP 1997 Failure 146 

ERJ145LR/LU 1998 Breakthrough 423 

ERJ145XR 2002 Niche 110 

ERJ135ER 1999 Failure 31 

ERJ135LR/LU 2000 Failure/Niche? 94 

ERJ140LR 1998 Niche 74 

VFW-614 1975 Failure 19 

 * Data from Wikipedia and Aifleets.net  
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Figure 4: Classification diagram of jet airliners by entropy statistics 
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The twinjet for 45 passengers EMB-145 found development in the late 1980s. The 

first concept outlined engines mounted over the wing, which was inherited from the twin-

turboprop Brasília. Due to performance issues and a financial collapse of the Brazilian 

company, the development of the regional jet was lengthened, and the type entered service 

only in April 1997. By this time the airplane featured rear-mounted engines and the 

capacity was increased to 50 passengers. Later the type was redesignated ERJ145. 

The entropy statistics provided the following results for the three ERJ-145 versions: 

• ERJ145ER was positioned in the breakthrough region but remarkably close to that 

belonging to the failure one. Indeed, this seems to be correct due to the shorter range of 

this version. The ER was the first ERJ145 version and entered service in 1997. Embraer 

soon perceived this shortcoming and quickly developed and offered the LR version with 

a greater range, already in 1998. 

• ERJ145LR. This version was labeled as a breakthrough design which also seems to be 

correct. Its direct competitor, the CRJ100 twinjet, entered service considerably earlier, in 

1992.  The CRJ 100 presents a range of 1,000 nm with a payload of 50 passengers; while 

the CRJ 100ER had its range increased to 1,650 nm with the same payload [19]. Why the 

Canadian CRJ 100 was not also categorized as a breakthrough? This can be possibly 

credited to its shorter range and heavier MTOW (23,133 kg). Probably in this category, 

the ERJ145LR seems to present the right characteristics to be classified as a breakthrough. 

Bombardier introduced the CRJ-200LR in 1996 [20], which features a 1,800-nm range 

(50 PAX) and better airfield performance when compared to the -100ER version. 

Alongside the ERJ145LR, the CRJ-200LR airliner appears in the classification box as a 

breakthrough concept. 

• ERJ 145XR. This airplane seems to have been designed to fulfill a market niche. This 

version of the ERJ 145 presenting improved performance was purchased by ExpressJet 

(former Continental Express) only, a subsidiary of Continental Airlines. The Newark 

airport was the main operational base for this type. Thanks to the better performance when 

compared to the LR version, the ERJ 145XR enabled ExpressJet to service more distant 

cities from Newark. 

For the high-capacity market, the classification that resulted for the B777-300ER and 

the A340-600 provides good stuff for discussion. Boeing B777-300. 

• The long-haul A340-600 airliner can transport 361 passengers for a 7,540 nm stage length. 

This performance is comparable with that of B777-300ER when accommodating 339 

passengers in a typical two-class layout (Figure 5). The A340-600 entered service in 2002 

and the B777-300ER two years later [21]. Although with a poor sales record, the A340-

600 was categorized as a breakthrough and its direct competitor as a failure. According to 

Table 2, the B777-300ER presents an outstanding sales record. It is worth mentioning that 

a breakthrough design is not a synonym for a successful product, therefore it could be a 

failure. On the other hand, regarding the B777-300ER airplane, based on the fundaments 

of ES its classification makes sense because, in the timeframe of 5 years (and even longer), 

there is no other similar airplane to the B777-300ER. Thus, it received the “failure” label. 

The question that could be placed here is why the A340-600 was not as successful as the 

Boeing airplane. This probably resides in the number of engines; airlines prefer twin-

engine airplanes for easy maintenance and maintainability. 

• Launched in June 1995, the Boeing 777-300 major assembly started in March 1997, and 

it was rolled out on September 8 and made its first flight in October. The B777-300 was 

designed to be stretched accommodating 451 passengers in two classes, or up to 550 in an 

all-economy like the 747SR. Contrary to the extended range version, its sales record is not 

successful, indicating that airlines preferred the range instead of the larger capacity. It was 

classified as a niche by the ES application. 
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Figure 5: Payload-range diagrams for A340-600 and B777-300ER [22] [23] 

Classification tree 

The Classification Tree Method is a method for test design, as it is used in different 

areas of product development. It was elaborated by Grimm and Grochtmann in 1993 [24]. 

Classification Trees in terms of methodology cannot be confused with decision trees.  

Classification tree methods greatly enhance the analysis capability the way of 

considering survey data and other information into it. There are three methods for 

producing classification trees: AID (automatic interaction detection), CHAID (chi-

squared automatic interaction detection), and CHAID/CART (CHAID and classification 

and regression tree). 

The classification tree method consists of two major steps: 

• Identification of test-relevant aspects (so-called classifications) and their 

corresponding values (called classes) as well as 

• Combination of different classes from all classifications into test cases. 

The identification of test-relevant aspects usually follows a functional specification of 

the system under evaluation. These aspects form the input and output data space of the 

test object. The second step of test design follows combinatorial test design principles. 

The chi-square automatic interaction detection (CHAID) is currently the most popular 

classification tree method. CHAID is much broader in scope than AID and can also be 

applied when the dependent variable is categorical. The algorithm that is used in the 

CHAID model splits records into groups with the same probability of the outcome, based 

on values of independent variables. Branching may be binary, ternary, or more. 

When the relationship between a set of predictor variables and a response variable is 

linear, methods like multiple linear regression can produce accurate predictive models. 

However, for a system highly non-linear and complex, methods to handle non-linear 

behavior is a must. One such example of a non-linear method is classification and 

regression trees, often abbreviated as CART.  As the name implies, CART models use a 

set of predictor variables to build decision trees that predict the value of a response 

variable. 
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Regarding node splitting rules, the MATLAB® command fitctree uses these processes 

to determine how to split node t [25]. For standard CART and for all predictors 𝑥𝑖 =
1, … , 𝑝: 

• fitctree computes the weighted impurity of node t, 𝑖𝑡.  

• fitctree estimates the probability that an observation is in node t using 

𝑃(𝑇) = ∑ 𝑤𝑗

𝑗∈𝑇

 (2) 

with 𝑤𝑗 being the weight of observation j, and T is the set of all observation indices in 

node t. If you do not specify prior or weights, then 𝑤𝑗 = 1
𝑛⁄ , where n is the sample size. 

There are additional important rules that are available in Ref. [25]. 

 

Figure 6: Decision tree classification based on ES 

 

Figure 7: Convergence log of the Bayesian optimization task 

The fitctree MATLAB® command was used to construct the tree seen in Figure 6. The 

convergence process with a Bayesian optimizer can be seen in Fig. Y. fitctree generates 

a classification tree model that can be an input for a predictor algorithm that delivers a 

label. Data of some airplanes already classified by ES were input into the predictor 

algorithm. Their labels of the classification tree were the same as those provided by ES. 

It was expected that the configuration variables (see Table 1) would be part of the tree 

in Figure 6, mainly related to engine configuration. On the other hand, the appearance of 

the VT sweepback angle could be an indication that the classification tree of Figure 6 

needs great improvements and is not ready to be employed in simulations, as a surrogate 

of the ES method. This utilization would be very interesting, considering that saving in 

computational cost will be considerable and the surrogate would deliver a classification 

independent of the time of aircraft service entry. 
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Dendrogram 

Dendrograms are a good tool for group products, and they fit into the hierarchical clustering 

category [26]. MATLAB® has some algorithms that are easily able to compose a dendrogram. 

Considering the information shown in Table 1 and normalizing it, the Euclidian distance is 

calculated between all airliners from the databank, and then the Dendrogram is built (Fig. 4). This 

figure reveals the 10 closest configurations to the 767-200 high-gross sub-version (MTOW of 

115,650 kg [27]). The cluster analysis using the Dendrogram approach correctly identified the 

larger 757-300 version as the closest configuration to the Boeing 757-200 airplane. Airbus A321-

200 and a variant A321LR were placed in a group that is remarkably close to Boeing’s airplane. 

Thus, this tool was then certified to be used for finding out individuals in the Pareto front closest 

to any reference airplane of choice, such as the Boeing 757-200. 

 

Figure 8: Dendrogram plot of the closest airplanes to Boeing 757-200 

2.2  Optimization approaches 

Thanks to the increase in computational power and advanced algorithms, and 

optimization methods, aircraft conceptual design is nowadays carried out by aircraft 

manufacturers using multi-disciplinary design and optimization frameworks and 

sophisticated CAD/CAE equipment.  A great deal of computational analysis is required 

to obtain optimum configurations to satisfy many objectives and design constraints. 

Disciplines such as aerodynamics, propulsion, flight mechanics, structures, and 

aeroelasticity, among others, are frequently considered in the optimization framework to 

obtain more realistic geometries of flight vehicles and, recently, the addition of flight 

profiles and mission analysis [28]. Nowadays, many design variables (and types) may be 

employed, and advanced optimization algorithms that enable complex models of the 

aeronautical disciplines may be considered. Empirical formulae like the Class-I and -II 

methodologies proposed by Torenbeek [6] and Loftin [7] for drag and weight estimation 

are still used because they provide faster results [8]. Because of the increased complexity 

of such kind of methodology, significant efforts of computational analysis are required to 

obtain optimum configurations that satisfy many objectives and design constraints.  
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CFD analysis of complex aircraft configurations is still time-consuming, thus 

hampering in part its application in aircraft conceptual and preliminary design. 

Aerodynamic analysis requires considerable computational resources and labor work for 

the construction of complex 3D computational meshes, necessary to produce credible 

results. The case is even worse for multi-disciplinary optimizations, which deal with high-

dimension problems that may reach thousands of design variables and their relationships. 

However, surrogate techniques have been increasingly adopted to model the physics with 

enough precision and at the same time reduce the computational time of complex and 

heavy calculations in MDO frameworks [28] [29]. 

The use of gradient-based optimization algorithms associated with adjoint methods is 

an alternative to cut considerably the processing time of optimization problems since their 

computational cost does not strongly scale up with the number of design variables 

compared to evolutionary algorithms [30]. “There are two approaches for the adjoint 

method: continuous adjoint, by deriving the exact adjoint equation and then linearizing 

it; or the discrete adjoint, by directly deriving it from the discretized flow equations” [30]. 

“Both approaches compute the adjoint variables by an additional linear system of 

equations. Afterward, together with the mesh sensitivities, the final sensitivities, or 

gradients, are evaluated and transferred to an optimizer” [30].  

On other hand, there are some limitations of the adjoint methodology: 

• Huge and long tasks must be carried out in preparation for several third-party codes 

to be used for automatic differentiation algorithms (Their source codes sometimes are 

not available). 

• Usually, mono-objective optimization for aircraft conceptual design is possible. For 

objectives encompassing several disciplines, the approach employed by adjoint 

optimization frameworks is to proceed with a weighted sum of objectives. 

• It is challenging to consider optimization problems with discrete variables. 

• It is characterized by low flexibility in changing constraints and objectives. 

• Adjoint methods can handle tens of thousands of variables to define a wing geometry. 

However, airfoil geometry can be defined by ten or a few more variables by using 

parametrization like PARSEC [31]. Fig. 12 illustrates the excellent modeling 

capability performed for the NACA21010 airfoil by a PARSEC parametrization with 

just 12 parameters.  

Genetic algorithms, an evolutionary approach based on their metaheuristic of 

reproduction of the fittest, have widespread and effective use in the optimization of 

aircraft configuration [32] [33]. The procedure of reproduction of the fittest is repeated 

until some established criterium to close the process is reached. Evolutionary algorithms 

solve both constrained and unconstrained optimization problems its great advantage lies 

in the absence of the necessity of gradient calculation of the objective function with 

regards to the design variables. Opposed to this, is that this necessity is present in classic 

gradient optimization methods such as gradient descent and quasi-newton methods. 
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Figure 9: PARSEC representation of NACA21010 airfoil 

Bayesian optimization is another approach that offers advantages over the adjoint and 

heuristics methods. It employs a sequential design strategy for global optimization of 

black-box functions that does not assume any functional forms. Bayesian optimization is 

usually employed to optimize expensive-to-evaluate functions [34] [35]. Since the 

objective function is unknown, the Bayesian strategy is to treat it as a random function 

and place a prior over it. The prior captures confidence about the behavior of the function. 

After gathering the function evaluations, which are treated as data, the prior is updated to 

form the posterior distribution over the objective function. The posterior distribution, in 

turn, is used to construct an acquisition function (often also referred to as infill sampling 

criteria) that determines the next query point. 

Priem et al. [34] employed Bayesian optimization for the optimal design of a business 

jet (BJ) designated Bombardier Research Aircraft. Conceptual and preliminary design 

thee addressed with the Bayesian optimization approach. For the conceptual design, 11 

design variables were selected, with 6 of them related to rear spar chordwise location and 

airfoil maximum relative thickness along definition stations along the wingspan. 

The constrained Bayesian optimization procedure is summarized below:  

Problem setup: objective and 

constraints functions, starting 

D0E and setting the maximum 

number of iterations 

Loop i=1 to max iterations 

Build the surrogate models 

using Gaussian Process 

Find 𝑥𝑖+1 a solution to the 

enrichment maximation sub-

problem 

Evaluate objectives and 

constraints 

Update de DoE 

End loop 

Final solution: the optimal point 

from DoE 
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2.3 Robust Optimization 

Robust optimization (RO) has undoubtedly become an effective method of choice for 

optimization under uncertainty in process systems engineering with practical applications 

ranging from production scheduling to airfoil and wing design. RO does not presume that 

probability distributions are known, but instead, data uncertainty ordinarily resides in a 

user-specified set of uncertain parameter values, called the uncertainty set [36]. In RO the 

modeler aims to find decisions that are optimal for the worst-case realization of the 

uncertainties within a given set. Typically, the original uncertain optimization problem is 

converted into an equivalent deterministic form, called the robust counterpart, using 

strong duality arguments and then solved with standard optimization algorithms. 

However, robust optimization methodologies have an important drawback. By the 

very nature of the methodology, robust optimal solutions are highly conservative, aiming 

to hedge against all possible worst-case realizations of the uncertainty. In some cases, this 

can lead to solutions that are too conservative. For example, if a chemical plant or 

biorefinery is designed too conservatively, then the project may be too expensive or 

needlessly complex. Researchers have looked for methods to control the robustness or 

conservativeness of robust optimization techniques, and some promising methods, such 

as adaptive or adjustable robust optimization have recently surfaced. 

The main techniques of robustness used to solve optimization problems with 

uncertainty are summarized as follows [37]: 

• Strict robustness or static robustness. Static RO intends to find solutions that are 

resistant to all perturbations of the data in a so-called uncertainty set.  First, consider 

that 𝑥 ∈ 𝑆 is a solution to the optimization problem with uncertainty P(ξ), with ξ ∈ U. 

The solution is strict if x is feasible for all possible scenarios of U, that is if 𝐹(𝑥, 𝜉) ≤
0 for all ξ ∈ U. This technique is very intuitive to solve the optimization problem 

robustly.  

• Cardinality constrained robustness. One approach to relaxing the strict robustness is 

to restrict the space of uncertainty. This way, it allows for accounting for a certain 

degree of uncertainty with a reasonable computational effort, providing a trade-off 

between computational time and robustness. In addition, it can be tuned to consider 

the specific degree of risk the decision maker accepts [38]. 

• Light robustness. A completely different way of relaxing the concept of strict 

robustness corresponds to instead of reducing the space of uncertainty, we can relax 

the constraints in favor of the quality of the solution. 

• Adjustable robustness. Another way to relax the space of uncertainty of strict 

robustness is to split the space into groups of variables. In this technique. some of the 

decision variables are adjusted after some portion of the uncertain data reveals itself 

[36]. 

• Recoverable robustness. Recoverable robustness uses the concept of a recovery 

algorithm, and, like adjustable robustness, it obtains the solution in two stages. Give 

a family of algorithms A. A solution x is recovery robust concerning A if it exists for 

every scenario ξ ∈ U, an algorithm A applied to the solution x, and a scenario ξ allows 

you to build a solution 𝐴(𝑥, 𝜉)  ∈ 𝐹(𝜉) [37]. 

  

Mattos, Bento S., et al. (2022) Airplane Optimal Robust Design Entropy-Statistics Learning Class. pp. 502-551

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 517



2.4 Airplane analysis tool 

Introduction 

The airplane analysis tool (AAT) is the masterpiece of the present design framework. 

It provides an embracing description and characterization of the airplane. Many levels of 

fidelity for discipline representation are available.  AAT also calculates the noise and 

emissions footprint. Detailed mission performance and range evaluations are derived 

from flight profiles set by the user and obeying air traffic constraints, all based on the 

aerodynamics, mass, and engine characteristics of the airplane. It is possible to examine 

any design mission or off-design missions corresponding to specific takeoff weights or 

required block distances. 

The airplane mission setup is highly detailed with a flight profile that makes accurate 

calculations of major airplane masses possible like MTOW, OEW, and MZFW. Air 

traffic constraints can be incorporated into the calculation, if required [39]. Several 

aerodynamic methods are available in the framework with different levels of fidelity, 

including an artificial neural network surrogate model, which is the object of the present 

work. An in-house generic turbofan engine model is also part of the MDO framework 

[40]. It is possible to analyze the performance, emissions, and operational costs for 

missions inside a complex airline network with different takeoff weights or block 

distances [41]. The fuel storage capacity is precisely calculated considering the actual 

airplane geometry and structural layout. 

All mission segments are analyzed, and optimal and transitional climb altitudes are 

calculated considering buffet margins, available engine thrust, rate of climb, and accurate 

airplane lift-to-drag ratio. Alternate airport, hold and descent patterns, reserve and 

maneuvering fuels, and weight allowances are additional parameters. Typically, after the 

second segment climb, the in-route climb uses airspeed schedules, namely, a calibrated 

airspeed (CAS) segment followed by a constant previously stipulated Mach number until 

the initial cruise altitude. The cruise phase can be flown at a constant altitude or following 

a step-increasing altitude pattern. There are two cruise speed profiles, one with a constant 

Mach number, the other being a long-range pattern. 

Fuel storage 

Fuel is stored in the wingbox and there is a routine that computes the available volume, 

and therefore it requires information on wing spar location. Depending on user choice, 

fuel can also be stored in a fuel tank located inside the fuselage close to the position where 

the wing-fuselage junction is. 

  

Figure 10: Fuel storage in actual aircraft (on the left) and for the model of the present 

work (on the right) 
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For purposes of illustration, the fuel storage approach of Embraer E-jets is depicted in 

Fig. 5. Besides the storage inside the wing, another region where the fuel can optionally 

be stored is a place inside the fuselage. It is worth mentioning that the boundary of the 

wing outboard tank is close to the wingtip [42]. According to the manufacturer, the E170 

has a usable fuel capacity of 9,428 kg. The airplane analysis tool offers two options 

already outlined before: the first one considers that the fuel is stored only in the wings 

and the tanks extend until 90% of the wingspan (Fig. 5). In this case, for the E170, the 

resulting fuel capacity is 9,178 kg. As the airfoil geometry for this twinjet is not available, 

this figure is just an approximate value; the other possibility in the design framework is 

to consider a fuel tank inside the fuselage. Its capacity is then dependent on the cabin's 

central fuselage dimensions and the location of the cabin floor. 

Maximum lift coefficient 

High-lift characteristics have a huge impact on the sizing, economics, and safety of an 

airplane. Airplanes featuring lower approach speed are safer and complex high-lift 

systems increase manufacturing costs and reduce flight dispatchability. It is important to 

achieve the highest possible maximum lift coefficient at takeoff and landing to avoid the 

necessity of higher wing areas. 

Applied analysis of the Navier-Stokes equations is very time-consuming due to the 

complex nature of the flow in combination with complex geometries. In addition, 

considering regions of highly separated flow convergence of the solution poses an 

immense difficulty for the code. Several analytical methods that both account for stall 

effects and enable the prediction of the maximum lift coefficient were discussed and a 

trade-off between the methods was conducted in Ref [43]. From this trade-off, it was 

found that both the pressure difference rule and the so-called Critical Section Method are 

good options in terms of accuracy and versatility. 

The pressure difference rule, on the other hand, determines wing stall by implementing 

an empirical chordwise pressure difference criterion. Thus, wing stall is established when 

the wing section’s chordwise pressure difference, at an angle of attack, equals the critical 

pressure difference which is empirically derived and depends on both the Mach- and 

Reynolds number. 

The critical section method utilizes a two-dimensional airfoil analysis code for the 

maximum lift coefficient calculation at many prescribed wing sections. By using three-

dimensional wing-fuselage combinations CL0 and CLα coefficients for the wing sections 

are obtained. After a sweeping procedure, a stall is reached when the lift coefficient 

distribution along the semispan is locally equal to the wing section’s maximum lift 

coefficient.  

Singh [43] validated both the pressure difference rule and critical section method 

against wind-tunnel experiments, both for wing-only samples and wing-fuselage 

configurations. The approximation of the clean maximum lift coefficient showed to be in 

good agreement, with about a 3% error margin, which is a particularly good figure.  

For the present computations, a MATLAB® code was elaborated to automatically run 

the panel code XFOIL [44] for the calculation of section maximum lift coefficient. A full 

potential code for wing-fuselage combinations then calculates the lift coefficient 

distribution along the wingspan at two conditions with different angles of attack. After 

the clean wing configuration is calculated, the Datcom method [45] is used to estimate 

the maximum lift coefficient at takeoff and landing from flap configuration and some 

wing geometric parameters. 

Mattos, Bento S., et al. (2022) Airplane Optimal Robust Design Entropy-Statistics Learning Class. pp. 502-551

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 519



Empty weight calculation 

For the calculation of the maximum takeoff weight (MTOW), the estimation of the 

empty weight is needed, which can be supplied according to the MTOW (class I weight 

method) itself or it can be calculated by the sum of the individual structural weights and 

aircraft systems (class II method). Within the Class I methodology, the following 

relationship between MTOW and OEW was developed by the authors: 

𝑂𝐸𝑊

𝑀𝑇𝑂𝑊

= [𝑎 + 𝑏 (𝑀𝑇𝑂�̂� 𝐴𝑅 ̂ 𝑇𝑊 𝑆�̂� 𝑀𝑀𝑂 �̂�𝑓 𝐹𝑤Ψ̂ 𝑆�̂̂�)
𝐶0

+ 𝑐(𝑀𝑇𝑂�̂�)
𝐶1

(𝐴�̂�)
𝐶2

 (𝑇𝑊)𝐶3 (𝑆�̂�)
𝐶4

 (𝑀𝑀𝑂)𝐶5 (�̂�𝑓)𝐶6 (𝐹𝑤)𝐶7(Ψ)𝐶8(𝑆�̂�)𝐶9] 

(3) 

Eq. 3 was tailored for a mix of units of the international and English systems. The 

MMO, TW, and Fw symbols refer to the maximum Mach of operation, the thrust-to-weight 

ratio, and the diameter of the cross-section of the passenger cabin, respectively.  

Normalizations that were considered in Eq. 3, are given in Table 3.  

Table 3: Variable normalization for Eq. 3 

𝑀𝑇𝑂�̂� =
𝑀𝑇𝑂𝑊

50000
 MTOW = Maximum Takeoff Weight [kg] 

𝐴�̂� =
𝐴𝑅

8
 AR = Wing aspect ratio 

𝑊�̂� =
𝑊𝐿

100
 WL = Wing loading [kg/m2] 

�̂�𝑓 =
𝐿𝑓

30
 Lf = Fuselage length [m] 

Ψ̂ =
Ψ

20
 Ψ = Quarter-chord sweepback angle [degree] 

𝑆�̂� =
𝑆𝐶

40000
 SC = Service Ceiling [ft] 

Table 4: Values of the coefficients present in Eq. 3 

a b c C1 C2 C3 C4 C5 C6 C7 C8 C9 

-0.2359 -0.3065 0.8900 -0.1731 0.0871 0.0857 0.1050 -0.0931 0.1220 0.2232 0.0857 0.0418 

To obtain the exponents and multipliers of the terms of Eq. 3, the authors used a 

database of line aircraft containing information from 123 models, with entry into service 

from the 1950s to others with commercial operation expected in 2020. Fig. 6 shows the 

relationship between the MTOW and the reference area of the wings for the aircraft in 

the database. An optimization algorithm was elaborated for the minimization of the mean 

quadratic error between the OEW/MTOW estimated by Eq. 3 and the actual values of the 

airplanes in the database. The exponents and coefficients of Eq. 3 are the design variables. 

The mono-objective genetic algorithm of MATLAB® 2019a was used in optimization 

simulations and after 5500 generations the simulation was stopped. Table 4 shows the 

coefficients and exponents that the optimization run provided. Table 5 contains some 

estimation errors for the weight fraction. 
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Table 5: Estimation error of weight fraction for some jet airliners 

Airplane 
Actual 

OEW/MTOW 

Calculated 

OEW/MTOW 
Percent error 

Boeing 737-700 0.54157 0.53548 1.12 

Airbus A320-200 0.54494 0.53829 1.22 

B747-400 0.49077 0.4976 1.39 

Boeing 757-300 0.53874 0.49639 7.86 

Boeing 767-300 0.55681 0.55400 0.505 

CRJ200ER 0.59806 0.59552 0.425 

EMBRAER E170LR 0.55645 0.56798 2.07 

Fokker 100 0.57074 0.55416 2.90 

Tupolev Tu-104A 0.54737 0.56043 2.39 

VFW 614 0.61048 0.60329 1.18 

 

Figure 11: MTOW plotted against wing reference area considering airplanes utilized for 

the elaboration of Eq. 2. The different symbols in the graph reflect the different engine 

configurations 

Engine weight calculation 

There are some simple methods as well as some more sophisticated methods for the 

estimation of turbofan engine weight [46]. But for WATE++, all of them are not accurate 

enough to be used in the optimization framework for airplane design. Thus, a 

methodology developed by the authors was adopted for turbofan engine weight 

estimation. This approach utilizes a formulation based on some engine geometric and 

thermodynamic parameters (Eq. 4). 

𝑊𝐸 =
𝑇1 ∗ (𝐵𝑃𝑅 𝐵𝑃𝑅̅̅ ̅̅ ̅̅⁄ )𝑎(𝑂𝑃𝑅 𝑂𝑃𝑅̅̅ ̅̅ ̅̅⁄ )𝑏(𝑇𝑠 �̅�⁄ )𝑐(𝐷𝐸 𝐷𝐸

̅̅̅̅⁄ )𝑑(𝐿𝐸 𝐿𝐸
̅̅ ̅⁄ )𝑒(�̇� �̅̇�⁄ )𝑓 +

𝑇2 ∗ (𝐵𝑃𝑅 𝐵𝑃𝑅̅̅ ̅̅ ̅̅⁄ )(𝑂𝑃𝑅 𝑂𝑃𝑅̅̅ ̅̅ ̅̅⁄ )(𝑇𝑠 �̅�⁄ )(𝐷𝐸 𝐷𝐸
̅̅̅̅⁄ )(𝐿𝐸 𝐿𝐸

̅̅ ̅⁄ )(�̇� �̅̇�⁄ ) + 𝑇3
 (4) 
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The coefficients and exponents of Eq. 3 were obtained by optimization using a genetic 

algorithm [47].  The objective was the minimization of the square mean error of known 

engine weights. A database, comprised of 20 engines, was elaborated which embraced a 

large variety of turbofan engines [48]. Table 6 shows the coefficients and A, B, and C 

parameters obtained with the optimization process. Table 7 shows the average parameters 

used for normalization in Eq. 4. 

Table 6 - Obtained exponents and coefficients for Eq. 4 

Coefficient/exponent Value 

T1 2587.2461 

T2 50.1920 

T3 154.6179 

a -0.1965 

b -0.0718 

c 1.0435 

d 0.2493 

e -0.3444 

f -0.1455 

Table 7: Parameters used for normalization in Eq. 4 

Parameter Value 

𝐵𝑃𝑅̅̅ ̅̅ ̅̅  4.6911 

𝑂𝑃𝑅̅̅ ̅̅ ̅̅  25.4000 

�̅�𝐸 [m] 1.7906 

�̅�𝐸 [m] 3.3276 

�̅� [kN] 148.1217 

�̅̇�  [kg/s] 464.7333 

Table 8 contains weight estimation errors for some known turbofan engines. 

Table 8: Weight error estimation for some known engines 

Engine Percent error 

AE3007A1P 10.94 

CF6-50C 2.55 

JT8D-219 0.74  

GE CF-34-10A 6.48   

R&R RB211-535C 0.97 

Trent 800-875 3.12 

Williams FJ-44 4.29 

Pratt & Whitney PW2040 0.44 

GE-90/77B 0.31 

R&R Tay 620 2.65 
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Workflow of the airplane analysis tool 

The airplane calculator workflow is shown in Figure 12. From airplane geometry and 

topology an iterative process for MTOW calculation is performed. The formulation for 

the OEW/MTOW weight fraction of Eq. 3 and the methodology outlined in Eq. 4 for the 

estimation of the engine weight is employed in this process. To evaluate the accuracy of 

the present design workflow three airliners of different categories were analyzed and 

Tables VIII-XI contain their characteristics and those estimated by the airplane 

calculator tool. 

 

Figure 12: Workflow of the airplane analysis tool 

Calculating the A320 airliner 

The A320 twinjet presents a six-abreast cross-section and is powered by either CFM56 

or IAE V2500 turbofans. The A320 family, which includes the A318 and A321, pioneered 

the use of digital fly-by-wire and side-stick flight controls in airliners. Variants offer 

maximum take-off weights from 68 to 93.5 t, to cover a 5,740–6,940 km (3,100–3,750 

nm) range [49]. Some of the A320 main characteristics are presented in Table 9 and the 

MTOW and OEW calculated by the present methodology are given in Table 10. 

Table 9: Characteristics of A320-200 

Design 

Range  
Lf wAR wS wSw14 BPR 

Engine 

Dry 

Weight 

DE 

2,350α nm 37.57 m 10.33 122.4 m2 25o 4.8:1 2,400 kg 1.75 m 

MTOW OEW 
Usable 

fuel  
T 

Aisle 

Width  

Y-class 

MMO  

73,500θ kg 42,600Ψ kg 21,005β kg 220 kN 0.48 m 0.82  

α @ FL370, a payload of 15,000 kg, ISA+0 oC, takeoff with MTOW, IAE V2500-A5 

β Includes one fuselage tank 

θ Airbus A320-200 WV015 [50] 

Ψ Ref. [51] 
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Table 10: Estimated values for the A320-200 airliner by the present design framework 

MTOW OEW Fuel Capacity Range Categorized as 

73,440 kg 41,371α kg 19,795α kg 2,350 nm α Classic 

α @ FL370, a payload of 15,000 kg, ISA+0 oC, takeoff with MTOW, IAE V2527-A5, 200 nm to an alternate 

airport 

The B757 has a six-abreast cross-section and is powered by either RB211 or PW2030 

and PW2040 Series turbofans. The B757-200 is the basic version, which entered service 

in 1983.  

In August of 1978, Eastern Airlines and British Airways announced orders for the 

B757 and chose the RB211-535 to equip the airplane [52]. Designated RB211-535C, the 

3-spool engine entered service in January of 1983 when the first B757-200 was delivered 

to Eastern Airlines. The engine has a nominal thrust of 37,400 lbf (166.36 kN) and an 

OPR of 21.2:1 [53]. In 1979, Pratt & Whitney launched its PW2000 engine, claiming 8% 

better fuel efficiency than the -535C for the PW2037 version [52]. The English engine 

manufacturer reacted and using the -524 core as a basis, the company developed the 

40,100 lbf (178 kN) thrust RB211-535E4, which entered service in October of 1984. 

There are differences in appearance between the two versions like a mixed exhaust nozzle 

and a bigger fan cone for the RB211-535E4. BPR was slightly reduced to 4.40:1 from 

4.46 for the 535C [53]. There is another version of the Rolls&Royce engine designated 

RB-211E4B, which has a takeoff thrust of 43,500 lb [54]. The 535E4 engine was also the 

first to use the wide chord fan which increased efficiency, reduced noise, and gave 

increased protection against damage from foreign object ingestion [52]. As a result, a 

relatively small number of -535Cs was installed on production aircraft in May of 1988. 

American Airlines ordered 50 B757s powered by the -535E4 emphasizing the engine's 

low noise as an important factor in their choice. The stretched version B757-300 entered 

service with Condor Flugdienst in 1999. With a length of 54.5 m, the type is the longest 

single-aisle twinjet ever built.  

According to Ref. [27], The B757-200 has several sub-versions presenting different 

MTOW, OEW, and MZFW. Two configurations fitted with RB211-535E4B engines 

were selected as references for the present work, and their payload-range diagrams are 

shown in Figure 13 and some characteristics are given in Table 11 [54]. Two ranges 

signaled by the dashed lines in the payload-range diagrams are related to a mission with 

a payload of 192 passengers. 

 

Figure 13: Payload-range diagram for some sub-versions of B757-200 [54] 
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Table 11: Characteristics of two B757-200 sub-versions fitted with RB211-535E4B 

engines [22] [54] [53] [52] 

Sub-version MTOW OEW MZFW Usable fuel 
Takeoff 

Thrust 
TFL 

1 99,790 kg 58,570 kg 83,460 kg 42,680 kg 37,400 lbf 1,660 m 

2 115,650 kg 58,570 kg 84,360 kg 43,490 kg 43,500 lbf 2,070 m 

Lf wAR wS wSw14 MMO Aisle width of Y-class 

46.97 m 7.82 185.25 m2 25o 0.86 0.508 m 

Some of the B757-200 main characteristics calculated by the present methodology are 

given in Table 12. Again, the agreement between actual and estimated weights is 

particularly good. The year 1984 was set for the year of service entry. As expected, the 

airplane was categorized as a classic design (scaled trajectory). However, just for testing, 

if the year 1981 were adopted for that parameter, the airplane would be labeled by the 

entropy statistics classification program as a breakthrough, as also is expected. The reason 

behind this is simple: this way the configuration being analyzed passes its unique 

characteristics to the actual airplanes that entered service in 1983 and 1984, which are 

part of the database. 

Table 12: Characteristics of  B757-200 model fitted with RB211-535E4 

MTOW OEW Fuel Capacity Range Categorized as 

115,100 kg 58,495α kg 41,138β kg 3,272 nm α Classic 

α @ FL370 and FL390, Mach of 0.80, payload of 19,200 kg, ISA+0 oC, takeoff with MTOW, RB211-535E4, 200 

nm to an alternate, 30 min loiter @ 1,500 ft 

β wing capacity of 30,918 kg / ε Jet A1 price of US$ 2.387 US$/gal 

2.5 Multi-disciplinary and multi-objective optimization 

Introduction 

Thanks to the increase of computational power and research on algorithms and 

optimization methods, aircraft conceptual design is nowadays carried out by aircraft 

manufacturers using MDO frameworks and sophisticated CAD/CAE equipment.  A great 

deal of computational analysis is required to obtain optimum configurations to satisfy 

many objectives and design constraints. Disciplines such as aerodynamics, propulsion, 

flight mechanics, structures, and aeroelasticity, among others, are frequently considered 

in the optimization framework to obtain more realistic geometries of flight vehicles and, 

recently, the addition of flight profile and mission analysis has been added [28]. 

Nowadays, many design variables (and types) may be employed, and advanced 

optimization algorithms that enable complex models of the aeronautical disciplines may 

be considered. Empirical formulae like the Class-I and -II methodologies proposed by 

Torenbeek [6] and Loftin [7] for drag and weight estimation are still used because they 

provide faster results [8]. 

Despite the rapid computer development and computational techniques, CFD analysis 

of complex aircraft configurations is still time-consuming, thus hampering in part its 

application in aircraft conceptual and preliminary design. Aerodynamic analysis requires 

considerable computational resources and labor work for the construction of complex 3D 

computational meshes, necessary to produce credible results. The case is even worse for 

multi-disciplinary optimizations, which deal with high-dimension problems that may 

reach thousands of design variables and their relationships. However, surrogate 

techniques have been increasingly adopted to model the physics with enough precision 

while at the same time reducing the computational time of complex and heavy 

calculations in MDO frameworks [28] [29]. 
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The use of gradient-based optimization algorithms associated with adjoint methods is 

an alternative to considerably cut the processing time of optimization problems since their 

computational cost does not strongly scale up with the number of design variables 

compared to evolutionary algorithms [30]. There are two approaches for the adjoint 

method: continuous adjoint, by deriving the exact adjoint equation and then linearizing 

it; or the discrete adjoint, by directly deriving it from the discretized flow equations [30]. 

Both approaches compute the adjoint variables by an additional linear system of 

equations. Afterward, together with the mesh sensitivities, the final sensitivities, or 

gradients, are evaluated and transferred to an optimizer. On the other hand, there are some 

disadvantages to the adjoint methodology: 

• Huge and long tasks must be carried out in preparation for several third-party codes 

to be used for automatic differentiation algorithms (Their source codes sometimes are 

not available). 

• Usually, only mono-objective optimization for aircraft conceptual design is possible. 

For objectives encompassing several disciplines, the approach employed by adjoint 

optimization frameworks is to proceed with a weighted sum of objectives. 

• It is challenging to consider optimization problems with discrete variables. 

• It is characterized by low flexibility in changing constraints and objectives. 

• Adjoint methods can handle tens of thousands of variables to define a wing geometry. 

However, airfoil geometry can be defined by ten or a few more variables by using 

parametrization like PARSEC [55].  

Genetic algorithms, an evolutionary approach based on their metaheuristic of 

reproduction of the fittest, have widespread and effective use in the optimization of 

aircraft configuration [32] [33]. The procedure of reproduction of the fittest is repeated 

until some established criterium to close the process is reached. Evolutionary algorithms 

solve both constrained and unconstrained optimization problems whose great advantage 

lies in the absence of the necessity of gradient calculation of the objective function 

concerning the design variables. Opposed to this, is that this necessity is present in classic 

gradient optimization methods such as gradient descent and quasi-newton methods. 

 

Figure 14: The MDO platform workflow of the present methodology 
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The workflow of the airplane design framework of the present work is shown in Figure 

14. There are many possibilities in terms of fidelity of the discipline modeling that is used 

for airplane sizing. For example, lift-drag characteristics can be calculated by Class-I 

formulations as well as CFD codes, or even by surrogate ANN models [29]. In the present 

work, multi-objective genetic algorithms were chosen to perform the optimization runs. 

Important design requirements must be considered because when satisfied, they will 

generate a feasible airplane configuration. Certification requirements such as climb 

gradient in 2nd segment, cruise and missed approach thrust requirements, rate of climb at 

service ceiling, and balanced takeoff field length are some of them. 

The airplane classification provided by the entropy statistics approach was 

incorporated into the MDO platform. For the optimization runs carried out in the present 

work a category among the four shown in Figure 3 was set as a constraint. The service 

entry is a time variable used by the entropy statistics algorithm to perform the calculation 

of the convergence and diffusion indexes required for product classification. The year 

2017 was selected as a reference year for all airplane configurations handled by the 

genetic algorithm to perform the classification procedure. The algorithm searches the 

airplanes in a database consisting of 123 jet airliners and selects configurations with 

service entry before and after the reference year within a prescribed timeframe (5 years 

in the present work).  

Objectives 

Objective 1: efficiency index 

The authors elaborated a parameter that synthesizes the value of an airliner and that 

was designated here as the efficiency index: 

𝐸𝐼𝐿𝑖𝑛𝑒𝑟 =
𝑅𝑛�̂� × 𝑀𝑀𝑂 × 𝑁𝑃𝐴�̂�

(𝑇𝑊 × 𝑂𝐸�̂�)
 (5) 

The symbols in Eq. 4 are: 

𝑁𝑃𝐴�̂� =
𝑁𝑃𝐴𝑋

150
𝑅𝑛�̂� =

𝑅𝑛𝑚

2500
𝑂𝐸�̂� =

𝑂𝐸𝑊

40000
 

A low-efficiency index may be an indication of a low range, low cruise speed, or a 

high OEW for the mission it was conceived for. A low speed may appear not to be 

important, but it can be translated into a longer block time that impacts DOC. Besides, 

slower airplanes are obligated by air traffic control to fly at lower altitudes to avoid 

spoiling faster airplanes, causing in general higher fuel consumption. For business jet, 

which presents a different mission profile than that for airliners, the following efficiency 

index is proposed: 

𝐸𝐼𝐵𝐽 =
𝑅𝑛�̂� × 𝑀𝑀𝑂 × 𝐶�̂�

(𝑇𝑊 × 𝑂𝐸�̂�)
 (6) 

In Eq. 5, 𝐶�̂� is the passenger cabin volume, given in m3, divided by a normalization 

parameter. This figure excludes the baggage compartment. The value for the 

normalization of this parameter adopted here is 30 m3. This parameter replaces the 

passenger capacity used in the composition of the EILiner. 
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The efficiency index for three ultra-long-range airplanes was calculated to verify if 

there is some degree of dependency of the index with the number the engines. The 

airplanes are the Boeing 747-400, the McDonnell Douglas DC-10-30, and the Boeing 

777-200. Table 13 shows the results of the EI calculations and testifies that a three-engine 

configuration here presents a higher value than a two-engine airplane. An efficiency index 

comparison for some business jets was performed (Table 14).  

Table 13: Efficiency index calculated for long-range airplanes with different 

motorizations 

Airplane ne MTOW [kg] 
Single engine 

thrust [lb] 

Two-class 

seating 

Rangeβ 

[nm] 
EI 

B747-400 [56] 4 362,874 57,000 358α 6,100 1.436 

McDonnell Douglas 

DC-10-30 [57] 
3 251,774 51,000 270 5,200 1.212 

Boeing 757-200γ [58] 2 115,650 43,500 192 3,272 0.862 

B777-200 [22] 2 229,500 71,200 375 3,750 1.050 

Boeing 767-300 [59] 2 159,700 57,000 261 3,900 0.996 

α The-class configuration: 24 first, 74 business, 302 in economy β Typical seating, MTOW, γ High-gross option 

Table 14: Efficiency index calculated for long-range airplanes with different 

motorizations 

Airplane ne MTOW [kg] 
Single engine 

thrust [lb] 
Range [nm]/pax EIBJ 

Falcon 900 LX [60] 3 22,225 4,750 4000/8 6.99 

G550 [61] 2 41,314 15,385 6750/8 6.10 

Falcon 6X [62] 2 35,135 13,460 4900/8 4.26 

Legacy 650E [63] 2 24,100 9,020 3800/8 4.85 

Most airlines in current operation are fitted with turbofan engines due to some airline 

requirements. A third central engine like the one from McDonnell Douglas DC-10-30 is 

difficult to remove for overhaul. Besides, crews during pre-flight inspections must inspect 

the engines to assure that there are no problems like instance oil or fuel leaks and no 

visible debris. For an engine located in the vertical tail root, this presents a formidable 

task. However, another drawback of the trijet transport airplanes is that the wings must 

be located further aft on the fuselage due to the weight of the central engine that moves 

the center of gravity afterward. This, compared to twin jets and quad jets with all wing-

mounted engines, will require vertical and horizontal tails of larger areas. On the other 

hand, a factor for sizing the vertical tail is the failure of an engine at takeoff. Considering 

that the thrust asymmetry of a trijet is lower than that of a twinjet, this will contribute to 

a smaller vertical tail. 

Engines are priced according to the thrust they deliver established by contract clauses. 

If a trijet configuration could demand a lower overall thrust for a given set of 

requirements, this would contribute to lowering the manufacturing cost of such 

configurations. Besides, there is the important benefit of reduced emissions. However, 

the integration cost for assembling the central engine at the vertical tail root could nullify 

those benefits. 

Unlike transport airplanes fitted with two engines, trijets are not required to land 

immediately at the nearest suitable airport if one engine fails. This is advantageous if the 

aircraft is not near one of the operator's maintenance bases, as the pilots may then proceed 

Mattos, Bento S., et al. (2022) Airplane Optimal Robust Design Entropy-Statistics Learning Class. pp. 502-551

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 528



with the flight and land at an airport where there are more resources for maintenance. 

Additionally, trijets on the ground with one engine inoperative can be allowed to perform 

two-engine ferry flights. Before the introduction of ETOPS, only trijets and quad jets 

were able to perform long-range international flights over areas without any diversion 

airports. However, this advantage has largely disappeared since two-engine aircraft were 

certified for such operations.  

Dassault claims that trijet design enhances comfort and performance and allows for a 

large cabin within a compact fuselage. The tri-engine airplanes present lower critical 

speeds for safer landings and superior short-field agility. Besides, the French 

manufacturer adds that trijets are more maneuverable on the tarmac, require less hangar 

space – and provide greater peace of mind and more direct routing on long routes over 

water. 

Objective 2: direct operating cost 

Although it is widely discussed which cost elements do belong to Direct Operating 

Costs and which do not, it is generally accepted that DOC includes those cost elements 

which depend on the equipment (aircraft) and crew that are necessary to perform a 

determined flight. Indirect Operating Costs (IOC), in contrast, are dependent on the way 

an airline is administrated [64]. The ATA 67 DOC method [65], a good reference, 

considers aircraft-dependent and hence part of DOC: 

• cockpit crew costs, 

• fuel costs, 

• maintenance costs, 

• depreciation, 

• insurance (against hull loss). 

Cockpit crew cost is heavily dependent on MTOW, and it is calculated in terms of 

flight hours. Training costs for the crew or maintenance personnel traditionally are 

considered as a percentage of the crew's fixed cost. For the engine, it is necessary to 

provide to the DOC calculation routine the number of engines, the engine weight, and the 

time between overhauls that are considered. 

Figure 15 displays the result of a direct operating cost estimation performed for the 

hypothetical 76-seat ITA76ADV airliner with a design range of 2100 nm. The calculation 

considered two jet-fuel prices, US$ 1.70 and US$ 2.389, a 40.6% increase. The 

contribution to DOC increased from 25% to 31%, surpassing the crew slice related to that 

cost. Thus, as expected, the DOC is indeed sensitive to fuel price. 

The values here calculated for the DOC have estimated values and no comparison to 

actual values practiced by airlines is possible, because they handle this information as 

strategical and confidential. Nevertheless, it offers a relatively good basis for comparison 

among the airplanes that are an object of investigation. It is worth mentioning, that 

changing the fuel price will, as shown in Figure 15, significantly alter the way the 

airplanes are evaluated, and eventually it could be part of a Pareto front. Ref. [66] 

provides graph information about the annual variation in jet fuel price. 
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DOC: US$ 10.82/nm 

Jet A1: US$ 2.387/gallon 

DOC: US$7.85/nm 

Jet A1: US$ 1.70/gallon 

Figure 15: DOC breakdown for the ITA76ADV considering two Jet A1 fuel prices 

Optimization tasks 

Optimization algorithms are employed for the following tasks: 

• To find the weights for airfoil geometries, so that they can be described by an airfoil 

database. The purpose of this task lies in providing wing geometry input for aerodynamic 

coefficient calculation by a neural network. 

• To obtain the intersection surface between a high wing configuration and the fuselage. 

• For optimization of the wing structural layout. 

• For sizing of the vertical tail. 

For wing airfoil optimization when required by the user. 

For all multidisciplinary optimization runs of the present work two objectives were set 

and will be detailed later. The optimizations can be categorized into two profiles: 

Type I. Here, the maximum takeoff thrust is one of 13 design variables. Engine diameter 

and overall pressure ratio are fixed parameters provided to the airplane calculator 

program. The variation of thrust and altitude were modeled according to Howe’s 

approach [67]. Four runs were performed. Each one of them had a different 

classification constraint for the airplane configuration: classic, breakthrough, failure, 

and niche. 

Type II. This is an improvement for airplane modeling when compared to the previous 

simulations. An engine deck was introduced as part of the aircraft analysis tool 

package. There are five definition variables plus some additional parameters for 

engine characterization. Thus, the engine is designed jointly with the airframe. A total 

of 17 design variables are considered in this simulation. 
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The boundaries of the variables for the Type I optimization problems are shown in 

Table 15. The second optimization type utilizes another approach for engine modeling, 

and it is an improvement for airplane representation when compared to the simple engine 

model used in the previous type. It is important to emphasize the fact that, all engines in 

Type I simulations made use of a hypothetical turbofan whose reference TSFC at cruise 

is 0.55 lb/h/lb. Now, a generic turbofan engine deck was introduced as part of the aircraft 

analysis tool package to improve aircraft modeling. Its theoretical approach and 

validation are given in Ref. [40]. A map for compressor efficiency calculation and other 

improvements and features were added such as engine noise and emission estimation 

[10]. The present modeling does not contemplate new engine concepts like geared 

turbofans. There are five variables for the engine and additional parameters for engine 

characterization, such as the Mach number and altitude of the design point. Thus, the 

engine is designed jointly with the airframe. A total of 17 design variables were 

considered in this simulation. The variables and their boundaries of the present 

optimization problem are depicted in Table 16 

Table 15: Boundaries of variables of the optimization problem considering overall 

maximum thrust as a design variable 

Variable Lower boundary 
Upper 

boundary 

Wing reference area [m2] 120 300 

Wing aspect ratio 8.0 10.9 

Wing taper ratio 0.240 0.450 

Wing quarter-chord sweepback angle 22o 32o 

Fuselage length [m] 36 60 

Number of seating rows 6 7 

Range with typical passenger payload (ISA, no 

winds) 2100 3700 

Height/width of central fuselage [m] 0.90 1.10 

Number of enginesα 2 3 

MMO 0.78 0.83 

Overall engine thrust @ takeoff [kN] 220 500 

Service ceiling [ft] 35,000 42,000 

Number of corridors in the passenger cabin 1 2 

α the trijet configurations have two underwing engines and a third one located on the vertical tail root 
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Table 16: Boundaries of variables for Type II optimization problem 

Variable Lower boundary 
Upper 

boundary 

Wing reference area [m2] 120 300 

Wing aspect ratio 8. 10.9 

Wing taper ratio 0.240 0.450 

Wing quarter-chord sweepback angle 22o 32o 

Two-class passenger accommodation 150 280 

Number of seating rows 6 7 

Range with typical passenger payload (ISA, no 

winds) 
2300 4000 

Height/width of central fuselage [m] 0.90 1.10 

Number of engines 2 2 

Service ceiling [ft] 35,000 42,000 

Number of corridors in the passenger cabin 1 2 

Engine by-pass ratio 4.4 6.2 

Engine diameter [m] 1.50 2.80 

OPR 26:1 33:1 

FPR 1.20 1.83 

Turbine inlet temperature [K] 1250 1455 

Some aircraft parameters that were set for all simulations simulation are: 

• Year of service entry: 2017. 

• Engine TBO of 3000 h. 

• Container to be accommodated in cargo compartment: LD3-45W. 

• The relative maximum thickness of root airfoil: 15.5%. 

• The relative maximum thickness of root airfoil: 11.0%. 

• Passenger cabin height of 2 m. 

• Y-class seat width of 0.46 m. 

• Y-class seat pitch of 0.8128 m. 

• Business-class seat pitch of 0.9144 m. 

• Aisle width of 0.48 m. 

• Vertical tail volume coefficient of 0.09. 

• Horizontal tail volume coefficient of 1. 

• Fuselage tank in front of the wing leading-edge extension. 

• Takeoff field length lower than 2400 m (MTOW, ISA, sea level). 

• Must comply with FAR requirements for 2nd segment climb. 

• Must comply with FAR121 requirements for balked landing. 

• Must comply with FAR119 requirements. 

• Enough thrust to cruise at the prescribed altitude. 

• Jet A1 fuel price US$ 2.387 US$/gal. 

• Location of the aft wing spar at 72% of chord. 

• Takeoff flap deflection of 25o. 

• Landing flap deflection of 40o. 

• Long-range cruise profile. 

• No emissions or noise constraints. 
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3. Entropy-statistics classification as a constraint in an optimization 

problem 

Type I and II optimization runs were carried out here. For Type II, the classification 

constraint classic was the only one used just to compare its results with the related Type 

I simulation. 

The Type I simulation additional parameters are: 

• Three types of product classification: classic, niche, and failure. 

• Engine by-pass ratio of 6. 

• Engine external diameter of 1.715 m. 

• Engine overall pressure ratio of 32.2. 

• TSFC at long-range cruise of 0.55 lb/h/lb. 

Although attempted, no feasible configuration emerged from the Type I simulation 

with the airplane classification set as a breakthrough. As already explained in the 

preceding paragraphs, this result is due to the year of service entry chosen for the present 

simulations, namely 2017, the airplanes present in the database, and the limitations of the 

aircraft modeling employed here. 

No engine deck was employed in the simulations where the overall thrust was 

provided. The engine parameters here were used to estimate the engine length, and 

therefore the engine weight, which is necessary for the DOC calculation, and the wetted 

area, which is important for drag calculation. 

3.1 Multi-objective optimization with overall thrust as a design variable 

Classic designs 

A multi-objective optimization design run was carried out where the constraint for 

airplane classification by entropy statistics was set as classic. After 50 generations with 

the MATLAB® multi-objective genetic algorithm, the number of feasible individuals is 

1980 – which is the number that does not violate any constraint (Figure 16). Some 

configurations with two aisles and presenting six or seven seating rows emerged in the 

computation and were categorized as classic but none with seven rows or two corridors 

are part of the Pareto front. In addition, all feasible airplanes that emerged from the 

simulation are fitted with two engines. The configurations with two aisles are the heaviest 

and are expected to present a higher DOC. The main advantage of this configuration is to 

propitiate more comfort to the passenger. However, the present simulation also allows for 

more fuel capacity of the tank located in the fuselage. 

This is mainly due to the engine characteristics that were chosen for the optimization 

tasks. Those characteristics are closer to modern and fuel-efficient engines in the category 

of the A320 and B737 airplanes. The engine that was then selected, presents a fuel 

consumption at long-range cruise conditions approximately 8% lower than the one of IAE 

V2500-A5. The departure of the A320 basic design was minimal among the airplanes 

with the same range and capacity as of A320-200. 
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Figure 16: Pareto front for classic designs. Calculated values by the present design 

framework for B757 and A320 are plotted for comparison purposes, only 

As was performed for A320-200, the efficiency index and DOC values for B757-200 

are displayed in Figure 16 for comparison purposes, only. Table 17 contains some 

featured individuals from the Pareto front, characterized for EI varying from 0.856 to 

1.102. For the same efficiency index, the B757-200 airliner has a DOC US$ 5.1/nm higher 

than the one from ID 1845C, featuring the highest DOC from the configuration shown in 

Table 17. 

 Figure 17 shows some fuselage cross-sections from the individuals presenting the 

lowest and the highest DOCs and now a significant difference between them becomes 

evident. Figure 18 shows the top view for two individuals from the Pareto front featuring 

the lowest and highest DOCs. The geometric characteristics of ID 1031C are remarkably 

like those from A320-200 but with the exception that they present a design range of 3,005 

nm which is considerably higher. 

Table 17: Some individuals belonging to the Pareto front of the classic aircraft 

optimization 

ID 
MTOW 

[kg] 

OEW 

[kg] 

Design range 

[nm] 

Total thrust 

[kN] 
NPAX Aisle 

Seating 

rows 
DOC EI 

1031C 74,000 42,092 3,005 225 140 1 6 15.74 0.856 

1963C 73,975 41,666 3,006 225 140 1 6 15.80 0.872 

1138C 82,222 45,843 3,124 242 162 1 6 16.97 0.984 

1704C 85,997 47,983 3,177 245 172 1 6 17.56 1.019 

1868C 90,380 50,153 3,274 263 180 1 6 18.19 1.053 

1738C 95,759 52,637 3,392 279 192 1 6 19.17 1.089 

1845C 96,576 52,867 3,415 281 192 1 6 19.31 1.102 

  
ID 1031C ID 1845C 

Figure 17: Cross-sections of some individuals in the Pareto front from the optimization 

run for classic airplanes 
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ID 1031C ID 1845C 

Figure 18: Top view of some individuals in the Pareto front of classic design simulation 

(not on the same scale) 

Figure 19 shows the DOC divided by passenger accommodation for all individuals 

from the simulation. There is an almost linear relationship between the efficiency and the 

DOC per passenger. All individuals in the Pareto front present the DOC per passenger 

lower than that registered by the B757-200. 

 

Figure 19: DOC per passenger two-class capacity plotted against efficiency index for all 

feasible airplanes from the optimization run 

To verify which individuals from the Pareto front are closer to B757-200, a 

Dendrogram approach was elaborated. This time the variables used to build up the 

distance matrix are related to configuration geometric characteristics and performance 

parameters, but not to weights and engines. The reason for this is because the point of 

interest is to find out an airplane with higher efficiency index and lower DOC that is 

related to a configuration with lower MTOW and OEW.  
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The variables that were used to compose the dendrogram are the following: 

• Wing area 

• Wing aspect ratio 

• Wing quarter-chord sweepback angle 

• Lf 

• Design range 

• Fuselage height-to-width ratio 

• MMO 

• TW 

• Wing taper ratio 

• Service ceiling 

• Two-class passenger accommodation 

• Number of aisles 

• Engine configuration 

• Seating rows in Y-class 

Figure 20 shows the resulting Dendrogram for the four closest individuals to the B757-

200 configuration.  

Table 18 contains a comparison among some characteristics of the closest individuals 

to B757-200. The configuration of ID 1785C (Figure 21) was found to be the most 

resemblance to the B757-200. It surpasses the veteran airliner in all aspects: lower DOC, 

20 t lower MTOW, and considerably lower OEW for the same passenger capacity and 

almost the same range.  MMO of 0.82 is lower than that of B757-200. 

 

Figure 20: Dendrogram of the closest configurations to B757-200 

 

Table 18: Closest individuals to B757-200 

ID 
wS 

[m2] 
wAR 

MTOW 

[kg] 

OEW 

[kg] 

Design range 

[nm] 

Thrust 

[kN] 
NPAX 

DOC 

[US$/nm] 
EI 

1740C 167.4 
10.5

3 
96,067 52,754 3,397 279 192 19.22 1.094 

1880C 168.6 
10.3

2 
95,743 52,486 3,399 279 192 19.19 1.092 

1785C 167.4 
10.3

5 
95,253 52,276 3,387 277 190 19.11 1.088 

B757-200 185.25 7.8 115,650 58,570 3,476 351 192 24.41 1.014 
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ID 1785C B757-200 

Figure 21: Top view of B757-200 and its closest potential replacement that emerged from 

optimization run for classic airliners (not on the same scale). 

Niche designs 

The optimization run with a constraint stipulating that the airplanes must obey the 

classification as the niche was carried out and was stopped after 25 generations. Each 

generation was populated with 55 individuals. Just 693 individuals were revealed to be 

feasible, and 40 of them are part of the resulting Pareto front. Some characteristics of 

airplanes found in the Pareto front are: 

• All are fitted with 3 engines. 

• All feature 2 aisles and a T-tail. 

• Two-class passenger capacity in the 177-236 range. 

• DOC is equal to or higher than 17.88 US$/nm. 

Figure 22 shows the objective values of the feasible individuals from the optimization 

run for niche airplanes. The niche airplanes belong to the Pareto front individuals from 

the optimization with the classification constraint niche. Table 19 contains characteristics 

of some individuals from the Pareto front sorted by ascending DOC. Considerably higher 

EI was found than those that emerged from the classic airplane simulation. 

 

Figure 22: Optimization considering niche airplanes 
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Table 19: Individuals belonging to Pareto front of optimization for niche aircraft 

ID 
MTOW 

[kg] 

OEW 

[kg] 

Range 

[nm] 

T 

[kN] 
NPAX Rows 

DOC 

[US$/nm] 
EI 

1393N 81,676 48,715 2,708 238 150 6 17.88 0.713 

1025N 89,217 49,269 3,632 286 148 6 18.14 0.887 

1356N 90,155 49,269 3,632 286 150 6 18.16 0.896 

1321N 116,630 63,679 3897 286 216 6 21.65 1.405 

986N 116,450 62,165 3,897 286 216 6 21.86 1.437 

1132N 129,020 63,045 3,897 286 228 6 22.46 1.542 

1074N 129,540 68,579 3,897 286 252 7 23.71 1.698 

1332N 138,400 74,557 3,897 286 273 7 24.89 1.787 

Boeing 757-200 

[27] 
115,650 58,570 3,272 387 192 6  

Boeing 767-200 

[59] 
136,078 80,286 2,750 454 216 7  

Figure 23 shows the DOC divided by passenger accommodation for all individuals 

from the simulation. Contrary to the previous simulation, there is not a direct relationship 

between the efficiency index and the DOC per passenger. All individuals in the Pareto 

front present the DOC per passenger lower than the one registered by the B757-200. 

However, the individuals from the Pareto front with EI higher than 1.4 present better 

figures and should be chosen for further analysis by a decision-making team. 

 

Figure 23: DOC per passenger two-class capacity plotted against efficiency index for all 

feasible airplanes from the optimization run with niche constraint 

In terms of capacity, the ID 1321N configuration is the one closer to B757-200 with 

the lowest DOC. The range with 216 passengers is 3,897 nm and for the reference 

capacity of 192 passengers, it will fly farther than 4,000 nm. Its maximum engine thrust 

is also considerably lower than that of B757-200 fitted with RB2111-535E4 engines 

(Table 11), but the wing reference area is higher, 228.41 m2. Cross-sections of three 

individuals from the Pareto front are compared in Figure 24 and Figure 25 displays their 

top views. It is important to stress that airplane classification by entropy statistics depends 

on the year of the aircraft's entry into service. Considering the airplanes present in the 

database, there are no three-engine aircraft in the timeframe of 5 years around 2017. For 

this reason, airplanes with this configuration will be considered anything other than 

classic. No breakthrough design emerged from the optimization simulation with this 

constraint. Thus, there are only three simulations with optimal configurations: classic, 

niche, and failure. 
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ID 1393N ID 986N ID 1332N 

Figure 24 – Cross-sections of some individuals in the Pareto front from the optimization 

run for niche airplanes 

  

  

 
ID 1393N ID 986N   ID 1332N 

Figure 25: Top view of some individuals in the Pareto front of niche design simulation 

(not on the same scale) 

Failure aircraft 

All failure designs that emerged in the simulation in the Pareto front (Figure 26) 

share the following characteristics: 

• Six rows of seats 

• Single aisle. 

• Three engines and a T-tail. 

 

Figure 26: Optimization considering failure airplanes 
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For the same EI, Airbus A320-200 presents a DOC lower than its counterpart in the 

Pareto front. Table 20 contains some characteristics of selected individuals from the 

Pareto front. There are airplanes in the 148-234 range. The airplane with the same 

capacity as the B757-200 reference aircraft, carrying the ID 241F, presents higher 

efficiency and lower DOC in comparison. The top view of some optimal configurations 

is shown in Figure 27. 

Table 20 – Individuals belonging to Pareto front of optimization for failure aircraft 

ID ne 
MTOW 

[kg] 

OEW 

[kg] 

Range 

[nm] 

T 

[kN] 
NPAX Aisle Rows 

DOC 

[US$/nm] 
EI 

320F 3 78,552 45,879 2,817 286 144 1 6 17.59 0.624 

290F 3 90,944 50,070 3,473 289 168 1 6 18.64 0.42 

163F 3 91,703 49,928 3,713 262 162 1 6 18.65 0.951 

200F 3 97,035 52,718 3,714 293 180 1 6 19.29 1.072 

241F 3 100,000 53,201 3,714 294 192 1 6 19.94 1.139 

362F 3 116,900 63,593 3,713 262 234 1 6 22.01 1.530 

   
ID 320F ID 290F ID 362F 

Figure 27: Top view of some individuals in the Pareto front of failure design simulation 

(not on the same scale) 

3.2 Optimization of airframe engine design concomitantly 

The Pareto front is shown in Figure 28, with the EI and DOC of reference airplanes 

for comparison purposes. Table 21 contains the characteristics of some relevant 

individuals in the Pareto front. Further selections of individuals of Pareto front that 

present passenger capacity like the one of Boeing 757-200 is given in Table 22. All of 

them are fitted with engines featuring by-pass ratios of 6:1, presenting ranges slightly 

longer than the Boeing-757-200, with considerably lower MTOW, as well as lower 

engine maximum thrust. Figure 29 displays some top views of three configurations from 

the Pareto front. 

 

Figure 28: Optimization run considering a turbofan engine generic deck 
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Table 21: Individuals belonging to Pareto front of optimization (Engine deck) 

ID ne 
MTOW 

[kg] 

OEW 

[kg] 

Range 

[nm] 

T 

[kN] 
NPAX Aisle Rows 

DOC 

[US$/nm] 
EI 

470CE 2 75,872 43,119 3,027 215.74 142 1 6 16.26 0.868 

727CE 2 79,055 44,514 3,090 225.93 150 1 6 16.70 0.914 

662CE 2 86,236 47,504 3,171 247.40 168 1 6 17.92 0.993 

755CE 2 90,113 49,332 3,282 261.41 174 1 6 18.44 1.020 

744CE 2 93,752 50,838 3,360 271.33 180 1 6 19.05 1.063 

725CE 2 96,040 51,836 3,403 278.95 186 1 6 19.37 1.080 

435CE 2 98,125 52,729 3,421 285.67 192 1 6 19.66 1.107 

731CE 2 98,600 52,934 3,431 287.22 192 1 6 19.73 1.112 

Table 22: Optimal designs with passenger capacity and range similar to B757-200 

ID 
wS 

[m2] 
wAR wTR 

MTOW 

[kg] 

OEW 

[kg] 

Design range 

[nm] 

Thrust 

[kN] 
NPAX 

DOC 

[US$/nm] 
EI 

731CE 176.4 9.94 0.295 98,600 52,934 3,431 287.2 192 19.73 1.112 

726CE 170.85 10.08 0.309 95,657 51,799 3.351 275.9 186 19.29 1.080 

303CE 175.5 9.97 0.296 98,124 52,729 3,420 285.6 192 19.67 1.107 

B757-200 185.25 7.8 0.243 115,650 58,570 3,476 387 192 24.41 1.014 

ID wSw14 OPR BPR 
Engine  

Diameter [m] 
 

731CE 22.26 32.18:1 6.02:1 1.93  

726CE 23.14 32.42:1 5.96:1 1.89  

303CE 22.29 32.21:1 6.00:1 1.93  

B757-200 25.0 25:1 4.40:1 2.20  

   
ID 470CE ID 303CE ID 435CE 

Figure 29: Top view of some individuals in the Pareto front of classic design simulation 

(not on the same scale) 

3.3 Featured choices 

The main difference between classic and failure configurations concerns their number 

of engines, both present configurations with 6 seating rows. The niche and failure designs 

share the same number of engines, which is three. The characteristic that distinguishes 

the two groups is the number of corridors: two for the niche airplanes; one for those 

considered a failure. The Airbus A350 is present in the airplane database in the timeframe 

considered and this airplane has two corridors in its cabin layout. This characteristic was 

transmitted to some aircraft, and they could then be classified as niche. No airplane in the 

database, in the timeframe around 2017 that was set for the optimization runs, has three 

engines combined with a single corridor and this was enough to characterize the failure 

airplanes. 

 Figure 30 on the left contains all Pareto fronts of the four optimization runs. The 

Pareto front of the failure aircraft does not intercept any of the classic ones, intercepting 

the niche aircraft at approximately an EI of 1.42. The two optimizations for the classic 

airplanes are remarkably close to one another. The result observed here is that the niche 
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configuration 1332N has the best efficiency index among the individuals of the three 

Pareto fronts. Due to this and its reasonable DOC for its category, it deserves a deeper 

analysis. This airplane is fitted with three engines. It was classified as a niche because 

there were no tri-engine airplanes before and after it, considering the timeframe of 5 years 

utilized by the classifier algorithm. The DOC takes into consideration the number of 

engines and their thrust. The 2nd segment climb requirement is very stringent for two-

engine airplanes. Thus, depending on aerodynamics and weight, a three-engine airplane 

may present a lower thrust-to-weight ratio. The tradeoff between TW and the number of 

engines seems to be more favorable to configurations with three engines in some cases. 

 

Figure 30: Plot combining all Pareto fronts from the present simulations 

According to the simulation results, there are two choices for the possible fulfillment 

of MMA: 

• Classic design: the ID 303CE is an extraordinarily strong candidate due to its 

considerably lower MTOW, OEW, and lower maximum takeoff thrust when 

compared to the B757-200 reference airplane. Its configuration is like the one of 

ID1845C. 

• Niche design: 1332N is also a strong candidate due to its impressive efficiency index 

enabling a great range and passenger capacity. It will fulfill another part of the market 

for MMA. Niche candidates with EI above 1.4 present a better Doc per passenger (Fig. 

25). 

4. Robust optimization of a chosen individual of a previous optimization 

This optimization task considers the fuel price ranging from 0.887 to 4.387 US$/nm 

and its impact on DOC for a mission of 3420 nm with 192 pax. The objectives are just 

the average DOC and its standard deviation. The intent is to evaluate whether an airplane 

configuration resilient to fuel price variation can be derived. An improved ANN system 

based on full potential formulation with viscous correction was employed in this 

simulation [68]. This time, the root, and the break station airfoils are part of the design 

effort. Table 23 presents the design variables and their boundaries for the present design 

task. 
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Table 23: Design variables and their boundaries 

Variable Lower boundary 
Upper 

boundary 

Wing reference area [m2] 165 195 

Wing aspect ratio 9 9.90 

Wing taper ratio 0.240 0.380 

Wing quarter-chord sweepback angle 22o 28o 

Engine diameter [m] 1.62 2.20 

Engine by-pass ratio 5.0 6.2 

OPR 25:1 33:1 

FPR 1.25 1.80 

Turbine inlet temperature [K] 1250 1455 

Root airfoil weights (14 in total)  0 1 

Break station airfoil weights (14 in total) 0 1 

By a slight reduction of the wing aspect ratio of the Design ID 303CE (Table 22), 

keeping the remained parameters but the root airfoil section of the wing unchanged, a 

baseline airplane was created for this last optimization task (Table 24). Mattos et al. [69] 

applied a flutter speed constraint to an MDO framework for airliner conceptual design. 

As optimization results, a noticeable reduction of wing aspect ratio was observed when 

compared with an optimization where no flutter speed constraint was applied. 

Table 24: Baseline airplane for the robust optimization 

MTOW [kg] 99277 

OEW [kg] 53282 

Fuel capacity [kg] 31121 

wS [m2] 175.45 

wAR 9.90 

wSw14 22.29o 

BPR 6.00 

OPR 32.21 

Avg DOC [US$/nm] 20.960 

Range with 192 pax at FL390 [nm] 3,420 

DOC Standard deviation 

[US$/nm] 
2.9986 

The optimization task was stopped after 35 generations and slightly over 1300 feasible 

configurations emerged from the simulation. Figure 31 shows the relationship between 

MTOW and DOC for all feasible individuals. A linear correlation between the two 

variables can easily be recognized. Figure 32 shows the objective diagram containing 

optimal airplanes, feasible individuals, the baseline airplane, and the figures obtained in 

the present work for the B757-200 airliner. There are two individuals in the Pareto front 

with similar characteristics. This means a high degree of dependence on the two 

objectives chosen for this optimization task. Table 25 contains major information 

regarding one of the optimal airplanes. Its MTOW is 1,760 kg lower than that of the 

baseline airplane. This represents slightly over 18 t less than the Boeing 757-200 MTOW. 

All this was achieved thanks to the airfoil design and an engine featuring a higher by-pass 

ratio, with no “advanced” technology being incorporated into the configuration. 
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Regarding the baseline aircraft, the average DOC was decreased by 0.473 US$/nm. For a 

fleet comprised of 10 airplanes performing two flights a day operating 300 days/year, this 

will represent a cost saving of US$ 9.7 million. A direct comparison between the optimal 

and reference airfoil for the tip station is shown in Figure 33. Figure 34 shows the 

probability density function that resulted from all feasible airplanes analyzed in the robust 

optimization simulation. 

 

Figure 31: Linear dependence between DOC and MTOW 

 

Figure 32: Objectives and feasible individuals 

Table 25: Optimal airplane characteristics 

MTOW [kg] 97517 

OEW [kg] 52637 

Fuel capacity [kg] 32118 

wS [m2] 175.51 

wAR 9.886 

wSw14 22.04o 

Engine diameter [m] 1.925 

BPR 6.19 

OPR 32.60 

Avg DOC [US$/nm] 20.487 

DOC Standard deviation [US$/nm] 2.8724 
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Figure 33: Comparison between optimal and reference airfoil of the wing tip station 

 

Figure 34: Probability density function of the average DOC 
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5. Conclusions 

An unsupervised learning classification computational tool based on entropy statistics 

was implemented. It was applied to jet airliners that saw service since the 1950s and 

proved to be reasonable in most cases. Although correct according to the fundamentals 

of diffusion and convergence coefficients, the resulting classification of the Boeing 777-

300ER airliner indicates that the classification provided by that tool must be confronted 

with other methodologies of different nature to provide an ultimate label for a product.  

The entropy statistics variables that were employed here for a product definition are a 

considerable improvement from those utilized by Frenken in his inspirational work. The 

variables of the present work are related to propulsion, airplane size and capacity, airplane 

performance, and some configuration topology. Certainly, additional variables are needed 

to map the technological evolution of airplanes, variables linked to navigation, structures, 

and hydraulics systems, among many others. Another important observation refers to the 

importance to represent all airplanes that entered service in the database. The omission of 

a single airplane or its versions may lead to incorrect labeling of other aircraft, noticeably 

those that saw service short before and after it. 

Optimization tasks were successfully carried out to find out high-efficiency airliners 

presenting lower DOC than the ones related to existing airplanes, some of them being 

best sellers but whose basic designs are dated back decades ago. The task was focused on 

the middle of the market segment. An unsupervised learning algorithm based on entropy 

statistics was utilized for product classification, comprising four categories, classic, niche, 

failure, and breakthrough designs. 

A classic and a niche design were selected for an MMA, with 192 and 273 passengers 

accommodated into two classes, respectively.  

The classic optimal airplane selected is closer to Boeing 757-200 fitted with RB211-

535E4B engines and the passenger cabin layout with a single aisle and 6 seating rows. Its 

engine by-pass ratio of 6:1 is considerably higher than the one for the B757. For the same 

mission of the out-of-production MMA airliner, the classic design has an MTOW of 

approximately 17,500 kg lower than B757-200. The present work does not consider 

advanced technology such as geared turbofan engines, laminar flow, advanced wing 

airfoils, and others. Thus, the potential for further improvement is huge. 

The niche aircraft features 7 seating rows and three engines. It is closer to a B767-300 

configuration in terms of capacity and performance. An analysis of the advantages of a 

three-engine transport airplane was carried out in the present work. 

Future work will consider tail-surface sizing by utilizing stability and controllability 

criteria, turbofan engines with water injection for lower fuel consumption and NOx 

emission, and fuselage sizing incorporation ditching regulations. Considering that the 

DOC will be demanding even more computational effort, Bayesian optimization becomes 

a more efficient way to handle the optimization problems that were carried out in the 

present work with genetic algorithms. 
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Abstract
Fatigue life prediction under multiaxial loading has become a fundamental part

of product development for industries in areas such as aeronautics, offshore, auto-
motive, and power generation, among others. Among the reasons can be mentioned
the need to increase the safety and performance levels of structural components, to-
gether with the popularization of the use of computational tools capable of allowing
the modeling of complex component geometries under any type of load. Although the
computational packages used in these analyzes have several fatigue models, research
is still needed to improve their life prediction capacity and computational efficiency,
especially in the presence of random multiaxial loads. This is mainly because fa-
tigue analysis under multiaxial random loading is still a task that is erroneously
considered to be extremely complex. In this sense, this monograph is dedicated to
presenting a comprehensive review of the concepts needed to understand the mul-
tiaxial random fatigue criteria available in the literature. Such a review is mainly
devoted to stress-based criteria for the evaluation of fatigue life in high-cycle regime
using the Maximum Variance Method. Time and frequency domain approaches are
examined. To level the knowledge necessary to use the methodologies, a detailed
review of the literature is presented on i) stochastic processes and characterization
of loading histories (sections 1 and 2), ii) Material Fatigue and Uniaxial Random
Fatigue Analysis (sections 3 to 5), iii) Fatigue multiaxial and Maximum Variance
Methods using the Critical Plane approach (sections 6 to 8) iv) Fatigue multiaxial
and Projection-by-Projection criteria (PbP) (section 9)

Keywords: life prediction; multiaxial loading; multiaxial random fatigue criteria; stochastic pro-
cesses; characterization of loading histories; maximum variance method; Projections-by-Projection
critical planes.

1 Introduction

Many mechanical and civil structures are subject to loads that vary essentially randomly through-
out their lifetime. These loadings are, in general, caused by the most diverse sources (such as:

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 553



sea waves, winds, earthquakes, vehicle traffic, etc.). Fig. 1 are exemplified some of the possible
loading histories observed in real situations.

These loading histories can be induce a mode of structural failure known as fatigue. Roughly
speaking, fatigue can be defined as a process of localized damage and the cumulative one consist-
ing of the beginning of the crack, the propagation, and the final fracture of a component. Typi-
cally, the final fracture occurs without notice, which makes the prevention of fatigue fractures a
vital aspect of the design of machines, vehicles and structures that are subject to repeated loads or
vibrations.

Figure 1: Some typical loading stories acting on structural components.

Fatigue life prediction models of components subjected to random loading are divided into
time domain methods and the frequency domain methods. Life prediction methods in the time do-
main are generally based on identification and cycle counting algorithms associated with a damage
accumulation rule. The frequency domain methods, on the other hand, use the spectral density of
the loading to estimate the amplitude distribution of the cycles present in the history. In particular,
in this work will be discussed and presented the approaches of modeling of fa say that consider
that the phenomenon of fatigue is controlled only by stress, that is, characterized by the presence
of plastic deformations only at the level of grain (minimum level).

2 Loadings histories and their classifications

In general, loading histories can be classified as deterministic and non deterministic or random
loadings. Deterministic loading histories are those that can be described by an explicit mathe-
matical relationship. A classic example is the oscillation of a mass-spring system composed of an
ideal spring, of elastic constant, attached to a mass body (see Fig. 2).
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If the body is moved from its equilibrium position by a distance X and released at time t = 0,
from basic laws of mechanics or through repeated observations, it can be established that the
following relationship between the body’s position and the time t.

x(t) = X cos

(√
k

m

)
(1)

Figure 2: Single spring mass system.

Thus, once the initial offset is X defined, the Eq. (1)Sets the exact location of the body at any
time in the future. Therefore, the information representing the mass movement is deterministic.

In other physical systems, there is no functional relationship that allows explaining the behav-
ior of the data that characterizes the behavior of the system (There is no way to predict the exact
value of the parameter in a future instant). In these situations, the system is called nondeterminis-
tic. In such cases the data are random in nature and should be described in terms of probability of
occurrence and/or statistical means, rather than explicit equations. Examples of non-deterministic
systems are i) the height of waves in a sea, ii) the dynamic pressure applied on a structure at a spe-
cific time instant, iii) the displacement of an automotive suspension system subject to the iterations
between the tire and the tread.

2.1 Deterministic histories

Deterministic histories can be classified as periodic or non-periodic. Periodic histories can be
further classified as:

• Sinusoidal;

• Complex periodic;

• Quasi-periodic;

• Transients.

2.1.1 Sinusoidal Histories

The histories sinusoidal are histories that can be described by a mathematical function that de-
scribes a smooth repetitive oscillation, defined to mathematically by a variable function in the
time of the form:

x(t) = X sin (2πft+ θ) (2)

where X , f and θ represents, respectively, the amplitude of history, frequency (in Hertz), and the
initial phase angle in relation to the origin of time (in radians).
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Note that the sinusoidal function belongs to a class of functions called periodic. Periodic
functions are those in which the values of the function (x(t) = y) are repeated for certain values
of the variable t, that is, for each given period, T, we will obtain repeated values for the function,
such that:y = x(t) = x(t+ T ) = x(t+ 2T ) = x(t+ nT ) (where T is the repetition period of y
and n is an integer).

2.1.2 Complex Periodic Histories

There are per-iodic loading histories that need to be defined mathematically by a variable function
in time more complex than that presented in Eq. (2). With few exceptions, these histories (called
complex periodic histories) can be expanded into a Fourier series according to the following for-
mula:

x(t) =
a0
2

+
∞∑

(n=1)

(an cos (ωnt) + bn sin (ωnt)) (3)

where a0, an and bn are called Fourier coefficients, obtained by the expressions:

a0 =
1

T

∫ T

0
x(t)dt (4)

an =
2

T

∫ T

0
x(t) cos (ωnt)dt (5)

bn =
2

T

∫ T

0
x(t) sin (ωnt)dt (6)

where n = 1, 2, 3, 4, . . .

where ωn = 2πfn for n = 1, fn = f is a fundamental frequency.
Considering that x(t) is real, the Eq. (3) can be written as follows:

x(t) = X0 +
∞∑

(n=1)

(Xn cos (ωnt+ θn)) (7)

where:

X0 =
a0
2

(8)

Xn =

√
an2 + bn

2 (9)

θn = tan−1

(
−bn
an

)
(10)

The identification of harmonic components present in complex periodic histories is very con-
venient because it allows the graphic representation of these histories through a graph, called
frequency spectrum, which correlates the frequencies, and the respective amplitudes present in the
loading history.

Example 2.1 Determine the coefficients of the Periodic Signal Fourier Series, x(t), and present
the loading history and frequency spectrum of the signal

x(t) = x1 sin(2πf1t) + x2 sin(2πf2t) + x3 sin(2πf3t)
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where [x1, x2, x3] = [10, 5, 2]e[f1, f2, f3] = [
√
3, 18, 25].

Solution:

Assuming f = 1,T = 1s and solving the equations Eq. (5) and Eq. (6) for n ranging from 1 to
30, we found the values represented in Figure 2. 2(a) pp ara the coefficients an and bn. The graphs
describing the loading history and frequency spectrum of the signal are shown in figures Fig. 3(b)
and Fig. 3(c), respectively.

Figure 3: (a) Coefficients and the Fourier series an and bn, (b) representation of
history x(t), and (c) representation of the frequency spectrum of history

2.1.3 Quasi-periodic Histories

The sum of two or more sine waves is periodic only when the ratio between all possible frequency
pairs are rational numbers. This indicates that there is a fundamental period that will satisfy the
periodicity requirement, i.e x(t) = (t + nT ). For example, considering the frequencies used
in Example 2.1, ([f1, f2, f3] = [

√
3, 18, 25]), it is observed that the ratios f2⁄f1 and f3⁄f1 are

rational numbers (indicating that the story is periodic!!). However, in some situations the loading
history can be composed of frequency components that belong to the set of irrational numbers (i.e.,
numbers that cannot be represented as a fraction). In these specific situations, the fundamental
period is infinitely long and, as a consequence, the resulting time history will not meet the basic
requirement of periodicity. When we analyze quasi-periodic histories using the Fourier series,
the differences are observed: a a) the frequencies of the components are not related by rational
numbers (i.e., the frequencies observed in the frequency spectrum are approximations of the real
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values), and b) spurious frequency components may appear around frequencies present in the
signal, as illustrated in Fig. 4.

Figure 4: Representation of the frequency spectrum of history of Example 1.

2.1.4 Transient Histories

Determinist histories to transients usually reflect unique events that do not have apparent period-
icity, that is, they have no characteristic period. The vibratory response of a mass-spring-damper
system resulting from an initial condition v(t = 0) = v0 ̸= 0 ou x(t,= 0) = X0 ̸= 0, can be
given by the expression:

x(t) = X0e
−αt cos (2πft+ θ) (11)

2.2 Stochastic Histories

Stochastic (or random) stories represent physical phenomena that vary to some degree, unpre-
dictably, as time passes, and cannot be described by explicit mathematical relationships because
each observation of the phenomenon will be unique. Thus, one can understand a random history
as a random variable sequence defined in a probability space. Thus, one can understand a random
history as a random variable sequence defined in a probability space. Thus, a single sample rep-
resenting the observed record over a finite time interval of a random phenomenon is defined as a
sample function (represented by each graph of Fig. 5). The collection of all possible sample func-
tions that the random phenomenon may have produced is called a random process or stochastic
process (represented by all graphs of Fig. 5). Thus, we can admit that a record observed in a finite
time interval of a random phenomenon can be considered as a physical realization of a random
process.

Similar to what was observed for deterministic histories, random histories also show differ-
ences in terms of their behavior in terms of time. In this sense, the random histories can be
classified as stationary or nonstationary.

Conceptually, a time series is said to be stationary when its statistical characteristics (mean,
variance, autocorrelation, probability distribution, statistical moments, etc.) are constant over time.
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That is, it is a series that develops randomly in time, around a constant mean, reflecting that the
probability laws that act in the process do not change over time. Note that for the characterization
of a history as stationary is extremely restrictive. For this reason, the definition of this concept
takes two forms, namely: a) stationary in the strict sense and b) stationary in the wide sense.

2.2.1 Stationarity in the strict sense (or strongly stationary)

The stochastic process x(t) is said stationary in the strict sense if its statistical properties are
invariant to any translation of the origin of the times. This means that processes X(t) and X(t+τ)
have the same statistics whatever the time shift ∆τ . Formally this means that the joint distribution
function obeys equality when it k tends to infinity:

FX(t1),X(t2),...,X(tk)(X1, X2, . . . , Xk) = FX(t1+τ),X(t2+τ),...,X(tk)+τ (X1, X2, . . . , Xk) (12)

for any temporal translation, any and all instant choice t1 < t2 < . . . < tk.

Figure 5: Representation of sample functions of a random process (collection of all
possible sample functions).

Figure 2.5 illustrates a set with n sample functions that form a random process. In this figure
can be observed the set formed by the realization observed in the moments t([X1

t , X
2
t , . . . , X

k
t ])

and t+ τ([X1
t+τ , X

2
t+τ , . . . , X

k
t+τ ]).
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Figure 6: Schematic representation of the acquisition process of the points used to
estimate the function of joint distribution of the history observed in two distinct

moments of time.

From these two sets of points, you can infer about the behavior of these set of points. For
example, the mean value (first-order statistical moment) of the random process at some time t can
be calculated by estimating the instantaneous value of each sample function of the ensemble at that
particular instant (i.e., the realizations at t), summing the values and dividing by the number of
sample functions. Similarly, a correlation (set moment) between the values of the random process
in the moments t and t + τ , called the autocorrelation function, Rxx(t1, t1+τ ) can be estimated
considering the equation Eq. (13):

Rxx(t, t+ τ) = lim
N→∞

1

N

N∑
n=1

Xn
t X

n
t+τ (13)

where τ represents the time interval separating the time series realizations.
When the history is discretized, τ it is calculated as r∆t where ∆t represents the time interval

used to sample the history realizations, and r is called lag and represents the number of time
periods separating the time series data (The maximum number of lags, as suggested by Box and
Jenkins, is approximately N/4 for a history with less than 240 realizations or the largest integer
greater than

√
N + 45 for a series of more than 240 observations, where N is the number of

realizations). Note that when τ it equals zero to Eq. (13) takes the form of the variance estimator.

2.2.2 Stationarity in the wide sense (or weakly stationary)

A less rigorous way of defining the concept of stationarity is known as weak stationarity, stationar-
ity in the wide sense, or covariance stationarity. The random histories that fall as weakly stationary
require only that the first moment (i.e., the mean) be constant over time and that the function of
autocorrelation, Rxx(t1, t1 + τ), (estimated according to the Eq. (13) depends only on τ .

Ferreira, Jorge L. A., et al. (2022) Random Fatigue Under Uniaxial and Multiaxial Loading pp. 552-612

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 560



2.2.3 Stationarity of n-order

In some practical situations (for example in fatigue analysis), ensuring that a history is stationary
in a wide sense is not enough to perform an adequate modeling of the problem. In these cases, it
is interesting to check which moments. In these cases, it is interesting to verify which statistical
moments do not change over time, that is, to evaluate the value n of which the Equation satisfies
Eq. (12)). In summary, we can conclude that for any random process X(t) where the mean, µ(t1),
and the autocorrelation function, Rxx(t1, t1 + τ), vary with time t1, the random process X(t) is
said to be nonstationary. For the special case where µ(t1) and Rxx(t1, t1 + τ) do not vary as time
t1 varies, the random process X(t) is said to be weakly stationary or stationary in the wide sense.
For weakly stationary random processes, the mean value is a constant, and the autocorrelation
function depends only on the lag, τ . That is, (t1) = µx and Rxx(t1, t1 + τ) = Rxx(τ).

Example 2.2 Determine the auto-correlation functions of the sample functions presented in Fig. 7

Development:

For the history, the outputs of the sample functions were organized in the form of a data matrix
DADOS(IxJ) with 1379 (3/0.002175) rows and 17 columns.

Considering that the data are discretized, the estimation of the autocorrelation function is
performed using the routine presented in Table 1.
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For each history, 17 sample functions of the recorded for 3s are available at a 0.002175s
sampling rate.

The routine has as output parameters the vectors tlag (which contains the time intervals that
separate the achievements from the time series) and R (which contains the estimate of the history
self-correlation function), and as input parameter: a) the data matrix (DATA), b) maximum number
of lags (LAG), and the sampling rate (delta_t). As a result of data processing, the auto-correlation
functions presented in Fig. 8 are estimated.

Figure 7: Histories (a) sinusoidal, (b) Narrowband and (c) Noise.

Looking at the charts of Fig. 8 It is verified that the function of autocorrelation of sine history
is also a sinusoidal function, which indicates that the correlation between achievements varies
cyclically as a function of lag. The function of autocorrelation of the narrow band history (to
be defined in following topics) presents a large peak Lag 0 (Rxx(τ = 0) = V ar[S(t)]) in the
followed by a decreasing wave that alternates between positive and negative values, indicating
that the correlation between achievements is very strong for when they are very close and weaken
as they move away. On the other hand, the function of noise autocorrelation also has a high value
in the first or second lag, followed by correlations that are not significant, indicating a strong
statistical independence between the achievements of the process.

Figure 8: Function of Autocorrelation of histories (a) sine. (b) Complex Periodic,
(c) Noisy
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Ergodicity

Ergodicity is an important property of a stochastic process, related to stationarity. A process is
defined as ergodic in relation to a statistical parameter, if the parameter characterized over time
considering a randomly selected sample function is equivalent to the same parameter characterized
in the whole set of sample functions in a given period of time. For example, a process is said to be
ergodic on the mean if the mean of a randomly selected sample function is equal to the mean of
the process over the entire set at any time t or, in other words, if the time mean is the same as the
mean of the sample function. Certain statistical conditions must be satisfied to determine whether
a process has the property of ergodicity. For example, considering measurements taken over a
period T of various sample functions of the process X(t) and assuming that N represents the total
number of sample functions, M total number of realizations taken on each sample function over
of a period T , and x

(
m(n)) is the value of the mth realization of the N-th sample function, we can

define:

A - Process Ergodic on Average (or ergodic for the First Moment)
If the mean of the sample function (Ensemble average) approaching the mean over time (time

average), we characterize this random process as “process ergodic in the mean”.
Where the mean of the sample functions at time ti, µ̂(X(ti)), is estimated by averaging the n

points of the sample functions, that is:

µ̂X(tm) =
1

N

N∑
n=1

xmi (14)

and the mean over time is called the time average and is estimated by Eq. (15):

µ̂n
m =

1

M

M∑
m=1

xnm (15)

B - Ergodic Process in relation to Autocorrelation Function (or Ergodic for the Second Mo-
ment)

A process is ergodic in relation to the autocorrelation function if the autocorrelation function of
the sample function (Ensemble autocorrelation), calculated using Eq. (13) approach the temporal
autocorrelation function Rj

X(τ), estimated using Eq. (16).

µ̂n
m =

1

M

M∑
m=1

xnm (16)

In more general situations, one is not interested in all the ensemble statistics of a random
process. Typically, it is only necessary to guarantee the mean and autocorrelation function (which
represents the definition of ergodicity in a more limited sense). In fatigue analysis, to the best
of our knowledge, we are also not interested in all ensemble statistics, but in order to be able to
use a single sample function to predict fatigue life, we need to ensure that there is ergodicity with
respect to the 4th statistical moment.

Example 2.3 Evaluate whether the random process representing a random phase sine wave, repre-
sented by the function presented in Eq. (17), is ergodic in relation to the autocorrelation function.

s(t) = A sin (2πft+ ϕ) (17)
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where A is the amplitude of the wave (A = 10), f is the frequency, t is the time, and ϕ is the
random phase with uniform distribution between 0 and 2π.

Solution:
To answer this question, we will generate a set of sample functions using the routine presented

in Table 2. The Fig. 9 shows a set of sample functions generated from the routine described in
Table 2.

Figure 9: Sine wave sampling functions with random phase.

Once the matrix containing the sample functions is generated, the AUTO_CORR_M function
is used to estimate both the autocorrelation function of the sample function (vector R) and the
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estimates for the temporal autocorrelation function (vector Rt). As a result, the graphs presented
in Fig. 10 showed the evolution of the autocorrelation function with the lag time were obtained.

Comparing the estimates of the autocorrelation function of the sample function and the tem-
poral autocorrelation function, it is verified that both have the same behavior. This indicates that
random phase sine waves present the characteristic of and ergodicity in relation to the autocorre-
lation function.
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Figure 10: Graphs showing the estimates of (a) autocorrelation function of sample
functions and (b) temporal autocorrelation functions.

2.2.4 Non-Stationary Loadings

When random processes cannot be framed as stationary, we say that they are nonstationary. For-
mally a process is assumed to be nonstationary when the mean and/or variance vary with time.
Nonstationary behavior is characterized by the exclusive or combined presence of the following
components:

• Trend: The trend of a random process indicates its "long-term" behavior, that is, whether it
grows, decreases or remains stable, and how fast these changes are. For example, increased
vibratory response of a system due to increased unbalance, or loss of effectiveness of a
damper, etc.

• Cycles: Cycles are characterized by the oscillations of ascent and fall in the series, smoothly
and repeatedly, along the trend component. For example, tidal cycles, winds, operational
cycles of equipment.

• Random walking: The random walk is a statistical phenomenon in which a variable does
not follow a discernible trend and apparently moves randomly. The Brownian movement is
a classic example of random walking.

In aerospace, automotive and offshore structures, for example, a strategy widely used in the
characterization of the loadings (typically non-stationary), consists of modeling tais process s as
a sequence of independent modes of operation that occur during a certain period of time. That is,
the loads acting on these structures can be described as a sequence of stationary processes. For
example, when analyzing the forces acting on an aircraft, it is common to divide the flight stages
into a sequence of loading histories related to the flight phases/conditions/aircraft type (e.g. taxi,
takeoff, gusts, cruise, maneuver , landing). Fig. 11 shows a sketch illustrating a typical loading
history of aircraft transport aircraft.

Figure 11: Schematic representation of a typical history of carrying aircraft
loading.
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3 Fatigue of Materials: Introduction to Stress-Based Approach

As discussed in the previous chapter, during their useful lives it is very likely that structural com-
ponents are subject to cyclic loads. These loads can have a constant amplitude or amplitude that
varies over time. Regardless of the type of load applied, there are three main approaches to an-
alyze and project against fatigue failures. The traditional stress-based approach was developed
essentially to its current form in 1955. In this approach, the analysis is based on nominal stresses
working at the critical points of the component. The nominal stress that can be applied under
cyclic load is determined considering the average stresses and adjusting the effects of stress in-
creases (due to the presence of stress concentrators). Another approach is the deformation-based
approach, which involves a more detailed analysis of localized flow that can occur at critical points
during cyclic loading. Finally, there is the approach of fracture mechanics, which specifically
treats the increasing cracks by the methods of fracture mechanics.

Whereas the service lives of real structures are relatively long (High number of cycles to fail-
ure),that the stress levels are lower than the material flow stress (little plastic deformation due to
cyclic loading), and due to the ease of implementation, the stress-based approach is the most tra-
ditional and most frequently used in applications involving fatigue under random conditions. This
approach assumes that the amplitude of the stress acting at the critical point is responsible for the
process of initiation and propagation of fatigue cracks and that fatigue life, expressed in terms of
the number of load cycles, is a direct function of the intensity of the stress amplitude.

The stress-based method has its origins in the investigations carried out by August Wöhler in
1858 and resulted in the widely known Wöhler curve, or S-N curve (i.e. stress, S, versus number
of cycles for failure, N ).

The simplest way to characterize the fatigue behavior of a material is to subject standardized
specimens to efforts with sinusoidal characteristics with prescribed amplitudes (with zero mean)
and count the number of cycles or stress inversions necessary for complete rupture of the spec-
imen. From the experimental results, one S-N diagram (called diagram or Wöhler diagram) is
constructed, which displays very conveniently the basic fatigue data in the elastic stress range (fa-
tigue under high cycle conditions) on a graph that correlates the amplitude of the actuating stress
(Sa) versus number of cycles until failure (N ).

The S-N diagram covers a life range ranging from 1 cycle to a very high number of cycles. Due
to the different physical phenomena that may be related to the fatigue process, it is observed that
the relationship between stress and life presents different behaviors for different life ranges. For
this reason, as illustrated in Fig. 12, the S-N diagram is usually divided into three regions: (i) low-
cycle fatigue (LCF) for life lower than 103 cycles, (ii) high cycle fatigue (HCF) for life up to 107
cycles, and (iii) very high cycle fatigue (VHCF) for cycles greater than 107 (the VHCF region is
also called the Giga cycle fatigue region (GCF) for life upper to 109 cycles). In general, the region
of high-cycle fatigue is located between the two knees observed and the region known as the
finite life region begins at the end of the 1st knee and ends at the beginning of the 2nd and then, as
shown in Fig. 12. Typically, fatigue analyses using the stress-based approach adopt the relationship
between stress and life in the finite life region based on describing fatigue behavior. The analytical
representation that describes the behavior of material fatigue in this region is commonly expressed
in the form:

S = AN−b (18)

NS
1
b
a = k =

(
1

A

) 1
b

(19)

where b, k and A are material parameters estimated from test data obtained using identical samples.
The basic methodology for characterizing the statistical behavior of these parameters can be found
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in ASTM E739-10 [2015] - Standard Practice for Statistical Analysis of Linear or Linearized
Stress-Life (S-N) and Strain-Life (ϵ-N) Fatigue Data.

For ferrous materials in general, it is often adopted a threshold stress amplitude (endurance
limit, Se), below which it is assumed that the material does not fail by fatigue (has infinite life).
For engineering purposes, this infinite life is generally regarded as cycles. 106 Assuming the
existence of endurance limit, the relationship S-N takes the following form:

N =

{
N = AS−b, Sa > Se

∞, Sa ≤ Se

(20)

Figure 12: Schematic representation of the S-N diagram.

3.1 Mean Stress Effect

Stress amplitude strongly influences the fatigue behavior of a structural component. However, the
presence of an average component in the loading history is also important, as a secondary way) in
the characterization of fatigue behavior.

In general, the characterization of the mean stress effect on fatigue behavior, the S-N diagrams
should be constructed considering that the experimental points are performed under constant mean
stress conditions. Another procedure often used in the construction of the S-N diagram that rep-
resents the effect of the mean stress is to use test results performed under stress ratio conditions,
constant R = σmin/σmax.

A very usual way of representing the effect of the mean stress on the fatigue behavior is
through the Haigh diagram (or constant life diagram). This diagram allows the identification of
alternating stress pairs, Sa, and mean, Sm, responsible for fatigue failure after the application of N
load cycles. The ordinate of the Haigh diagram represents the stress amplitude, Sa, normalized by
the fatigue limit, Se, and the abscissa represents the mean stress normalized by the ultimate tensile
strength, Su (see Fig. 13). In theory, the curve that best fits the experimental data represents the
combinations between Sa and Sm responsible for fatigue failure after N cycles. Since the tests
required to generate a Haigh diagram is expensive and do not allow one to obtain a curve that
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represents the typical behavior of the material (since the fitted curve will always depend on the
quality of the experimental data), several empirical relations have been developed to generate the
curve that defines the failure condition for a given life (typically this procedure is used to define the
curve that represents the design conditions for infinite life). These methods use various curves to
connect the endurance limit on the alternating stress axis to either the yield strength, Sy, ultimate
strength, Su, or true fracture stress, σf , on the mean stress axis.

The curve that connects these two points in each of the coordinate axes hypothetically repre-
sents the combinations Sa between Sm and responsible for fatigue failure after the application N
of loading cycles. Eq. (21) presents a generalized expression to represent empirical relationships
widely used to evaluate the effect of mean stress on fatigue behavior:(

Sa

σf (N)

)n

+

(
f
Sm

Su

)m

= 1 (21)

where f , n and m are constants that assume different values according to the empirical relationship
considered and Su represents the tensile strength limit of the material. Without further details, the
most adopted criteria can be derived considering the constants presented in Table 3.1.

Table 1: Constants that characterize the empirical relationships used to evaluate the
effect of mean stress on fatigue behavior.

Relation Parameter
m n f

Geber 2 1 1
Goodman 1 1 1
Morrow 1 1 Su/σ̃fB

Sailor 2 2 1
Dietmann 1 2 1

Figure 13: Schematic representation of the Constant-life diagram (Haigh diagram).

3.2 Accumulated Damage Concept and Miner Rule

The fatigue failure process in ductile metals is intrinsically related, at a first stage, to the nucleation
of microcracks resulting from the movement of disagreements during cyclic loading. This cyclic
movement leads to the appearance of thin steps on the surface (intrusions and extrusions) that
act as stress amplifiers where micro cracks start. In a second step of the fatigue process, micro-
cracks coalesce and begin to propagate through the material. With the continued cyclic loading,
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the growth of the cracks progresses until the still intact section of the material can no longer
withstand the imposed load and experiences a rapid fracture. All this process of degradation
structural can only be monitored and measured in highly controlled laboratory environments. And
in practical applications, the estimation of component lifes subject to random loadings is made
based on data from fatigue studies performed for constant amplitude loads, and the law of linear
damage accumulation proposed by Miner.

In the formulation of the law of accumulation of Miner damage, it is considered that the
damage, dinduced by a cycle, nof the stress amplitude Sa is estimated by the following expression:

d =
n

Nf
(22)

where Nf it represents the number of cycles required for a periodic load with a constant amplitude
equal Sa to induce component failure in the structure.

Considering the history of stresses is composed K of stress amplitude classes, each being
applied times nk , the Miner rule is written as:

d =
K∑
k=1

dk =
K∑
k=1

nk

Nfk

≤ Dc (23)

where D it represents the accumulated damage Dc and represents critical damage and must be
determined experimentally.

In the absence of further information, it should be assumed that the failure will occur when
the critical damage reaches a nominal value of 1,0. However, and all these studies show that the
median values of damage observed in specimens at certain loading conditions vary from 0,15 to
1,6.

Example 3.1 A mechanical component was manufactured with steel that has a tensile strength
limit, Su, equal to 755 MPa and a fatigue behavior described by the following Wöhler function
Sa = 1440N (−0.096). Under operating conditions, the stresses at the critical point of this compo-
nent are applied in the form of a sequence of loading blocks with constant amplitudes, as shown
in Fig. 14. Considering this information, time out the number of load blocks that can be applied
until the component fails.

Figure 14: Sequences of block loading.
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Solution:

Characteristics of the sinusoidal loading sequence Sm,Sa,n):

(1) (400, 250, 300);

(2) (300, 400, 30);

(3) (0, 420, 50);

(4) (400, 200, 30).

The estimate of the damage accumulated by this loading block will be performed considering
Eq. (23). For this particular case, the sum of the damage increments will take the following form:

Dblock =
300

Nf (250, 400)
+

30

Nf (400, 300)
+

50

Nf (420, 0)
+

30

Nf (200, 400)
(24)

where Nf (Sa,Sm) represents the number of cycles that could be applied if the pair of alternat-
ing stresses, Sa, and average, Sm were applied continuously until the failure of the mechanical
component.

Considering, for example, the Goodman ratio the value of Nf will be calculated through the
following equation:

Nf (Sa, Sm) =

 Sa

A
(
1− Sm

Su

)
 1

b

=

[
Sa

1440
(
1− Sm

755

)] 1
−0.0961

(25)

where Su is the limit of tensile strength, and A and b represent the constant and exponent of the
curve of Wöhler.

Substituting the mean and alternating stresses into Eq. (25), one arrives at the results presented
in Table 2.

Table 2: Estimation of the damage produced by each constant amplitude load
present in the loading block shown in Fig. 14

Event Sm Sa n Nf (Sm, Sa) d
1 400 250 300 3,18E+04 9,43E-03
2 300 400 30 3,16E+03 9,48E-03
3 0 420 50 3,70E+05 1,35E-04
4 400 200 30 3,24E+05 9,25E-05

As a consequence of the application of a loading block, it is verified that the damage accumu-
lated with each application of this load sequence is equal to 1.91E-3. Assuming that the number
of blocks that can be applied is equal to:

Num.blocks =
Dc

Dblocks
=

1

1.91 · 10−3
= 52 (26)
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4 Random Fatigue Analysis in the time domain

As commented in Section 1 to Section 3, over their useful life, many structural components are
subjected to cyclic loads. These loads can be applied under constant amplitude conditions or
under amplitude conditions that vary over time. We also show that in situations where structural
components are subjected to constant amplitude loads (with or without average component) or in
conditions of application of loading blocks with varying amplitudes, the determination of fatigue
life is a relatively simple task. However, if the loading amplitude varies at random over time, it
is more difficult to characterize a loading cycle and its corresponding amplitude. This difficulty
forced fatigue researchers to develop cycle identification and counting methodologies to reduce a
complicated loading history in a series of simple and discrete constant amplitude loading events.
These methods were initially developed for the study of fatigue damage generated in aeronautical
structures and, over the last decades, several counting methods have been proposed, leading to
different results and, therefore, to erroneous predictions of fatigue life. However, there was a
consensus that the best approach is the procedure called Rainflow, introduced by Endo in the late
1960s, being the first article in English by Matsuichi and Endo [1968]. The procedures for using
the Rainflow cycle counting method were standardized together with other counting methods in
ASTM ASTM-E1049-85 [2017] Standard Practices for Cycle Counting in Fatigue Analysis.

For the implementation of the rainflow method, it is necessary to initially transform the history
of stresses into a sequence of peaks1 and valleys 2, which represent the points at which the first
derivative of the stress history changes sign (note that peaks and valleys are specific definitions for
reversals), as illustrated in Fig. 15.

Figure 15: Identification of the basic parameters of a history used by the Rainflow
method for the identification and counting of cycles.

From empirical observations of the stress-strain curve estimated from tests under variable
amplitude conditions, it is verified that when the material is subjected to a history of stresses or
deformations, small load reversals occur appear in the σ − ϵ diagram, but without affecting the
large reversals and the response of the material. This behavior is represented in Fig. 16, in which it
is observed that the loading sequence 2-3-4 generates the 2-3-2’ cycle that does not interfere with

1The point at which the first derivative of the load-time history changes from a positive to a negative
sign; the point of maximum load in constant amplitude loading.

2The point at which the first derivative of the load-time history changes from a negative to a positive
sign (also known as trough); the point of minimum load in constant amplitude loading.
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the evolution of the 4-5 section. By analogy, the rainflow technique treats the same way the closed
stress-strain curves (hysteresis cycles), in which the small reversals of load in a fatigue cycle with
greater amplitude will also not interfere with the accumulated damage by fatigue.

Figure 16: Example of the behavior of the stress-strain curve for a given stress
history.

In essence, the Rainflow method identifies reversals and not loading cycles, but as can be seen
in Fig. 15 and 16, two segments of equal amplitudes that have a common reversal represent a
loading cycle.

A series of rules are used to identify load cycles in the Rainflow method. However, the core of
the method of identifying the reversals present in history consists of comparing the bands formed
by three consecutive reversals (Si,Sj ,Sk), see Fig. 17. Thus, the three consecutive reversions
(Si,Sj ,Sk) are used to define the stress ranges: Rl = |Si − Sj | (left track) and Rr = |Sj − Sk|
(right track). If the left band Rl, is less than or equal to the right band, the Rr material shall be
considered to have been subjected to 1 or 1/2 loading cycles with alternating stress, Sa, and mean
stress, Sm, calculated by the following expressions:

Sa =
Rl

2
(27)

Sm =
Si + Sj

2
(28)

If the condition Rl ≤ Rr is not met, it is assumed that the loading (Si,Sj ,Sk) run does not
induce loading cycles in the material.

Figure 17: Primal criteria for the identification of a reversal according to the
rainflow method.
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From the comparison between Rl and Rr, a few more rules are required to implement the
Rainflow method.

1. Turn the loading history into a sequence of peaks and valleys, quantify the number of peaks
and valleys present in the sequence, L, and set the counter l (at the beginning of the counting
process l = 1).

2. Define an I×3 matrix in which each row will be stored the information about the alternating
stress, Sa, the mean stress, Sm, and the number of reversals, n, identified during the cycle
counting process.

3. The count is performed initially from the first position of the peak sequence or valley present
in history.

4. If L > 2, form the first triple (Si, Sj , Sk) = (Sl, S(l+1), S(l+2)), l = 1.

5. Calculate the tracks Rl and Rr using the reversals (Si,Sj ,Sk) and compare tracks Rl and
Rr.

5.1. If Rl ≤ Rr:

5.1.1. If the reversal Si is in the first position of the sequence of peaks and valleys
(l = 1):

5.1.1.1. Calculating Sa and Sm using Eq. (27) and Eq. (28) and transport Sa, Sm

and n = 1 to the rainflow matrix.
5.1.1.2. Delete point S(l=1) from the sequence of peaks and valleys, rearrange it,

and make L = L− 1.
5.1.1.3. If L > 2:
5.1.1.3.1. Form the term (Si, Sj , Sk )=(S1, S2, S3) and go to Step 5.

5.1.1.4. If L = 2:
5.1.1.4.1. Calculating Sa and Sm using Eq. (27) and Eq. (28) and transport Sa, Sm

and n = 1 reversion to the rainflow matrix.
5.1.1.4.2. End counting process.

5.1.2. If the reversal Si is not in the first position of the sequence of peaks and valleys
(l ̸= 1):

5.1.2.1. Calculate Sa and Sm using Eq. (27) e Eq. (28) and transport the values of
Sa, Sm, n = 2 and reversals to the rainflow matrix

5.1.2.2. Delete points Si and Sj from the sequence, rearrange the sequence, make
L = L− 2, l = l − 1.

5.1.2.3. Form the triple (Si, Sj , Sk )=(Sl, S(l + 1), S(l + 2)) and go to Step 5.

5.2. If Rl > Rr

5.2.1. If l ≤ L− 3.
5.2.1.1. l = l + 1

5.2.1.2. Form the triple (Si, Sj , Sk) = (S1, S2, S3) and go to Step 4
5.2.2. If l > L− 3.

5.2.2.1. Calculate for each remaining range (Si, Sj) Sa and Sm and transport the
values to Sa, Sm and n = 1 to the rainflow matrix

5.2.2.2. Finish the counting process.
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Example 4.1 Identify the carga cycles present in the stretch of the loading section shown in Fig. 18

Solution:

The Fig. 19 presents the sequence of steps required to implement rainflow count of the history
illustrated in Fig. 18, that presents the result of the cycle count by applying the rainflow algorithm
to loading.

Figure 18: Example of a service load-time history and the results of the cycle
counting

Figure 19: Example 1 of the rainflow counting method using the rules presented in
this chapter.
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Figure 20: Example 2 of the rainflow counting method using the rules presented in
this chapter.
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5 Random Fatigue Analysis in the Frequency Domain

5.1 Spectral Properties

Fatigue analysis is often performed in the time domain, where all input and output loading, stress
response or strain, are time-based signals. In some situations, however, the stress response and
input loading are preferably expressed as frequency-based signals, usually in the form of a power
spectral density (PSD) graph. In this case, a system function is required to relate a loading input
PSD to the response output PSD Lee [2005].

For linear systems, fatigue calculations performed entirely in the frequency domain can shorten
the calculation time considerably, which corresponds to the so-called frequency domain approach
(Dirlik and Benasciutti [2021])

The PSD represents the energy of the time signal at different frequencies and is another way
to denote the charging signal in the time domain. The Fast Fourier Transform (FFT) of a signal in
time can be used to obtain the loading PSD, while the Inverse Fourier Transform (IFT) can be used
to transform the frequency-based signal for time-based loading. The transformation of the load-
ing history between the time domain and the frequency domain is subject to certain requirements,
according to which the signal must be stationary, random, and Gaussian, i.e., not varying its statis-
tical properties over time and presenting normal distribution (Lee [2005]). An ergodic process is a
stationary process whose expected value (envelope) statistics are identical to time statistics (Dirlik
[1985]).

In practice, a one-sided spectral density, G(f), is often used, limited only to the positive
frequency range of the two-sided spectral density, S(f), as negative frequencies have no physical
meaning (Bishop [1988]). A random signal can be classified based on its frequency content, i.e.,
the shape of its PSD. The signal is called narrowband if the PSD peaks around a single frequency,
usually the resonant frequency of a vibrating system. In all other cases where the PSD covers a
wider range of frequencies, the random signal is termed broadband (Dirlik and Benasciutti [2021]).

Fig. 21 compares sample histories representative of two distinct types of random processes,
showing the differences between the time histories based on their corresponding PSD. Power spec-
tra with rectangular blocks were considered which are just idealizations of the smoother spectra
typically found in practical applications.

Figure 21: a) Time history samples b) Narrowband and broadband PSD of the
history samples.

The narrowband or broadband process is defined by means of several spectral parameters,
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among them we define the spectral moments of n-order, λn, as:

λn =

∫ +∞

−∞
|f |nS(f)df =

∫ +∞

−∞
fnG(f)df , n = 0, 1, 2, · · · (29)

The zero-order moment, λ0, can be used as an alternative method of calculating the root mean
square (RMS) value, which is a good indication of the intensity of a loading history.

RMS = σS =
√

λ0 (30)

and also represents an important feature in the time domain, which is the uniaxial loading history
variance s(t):

λ0 =

∫ +∞

−∞
G(f)df = V ar(s(t)) (31)

From the spectral moments, some spectral characteristics can be calculated, such as the ex-
pected rate of zero upcrossings v0 per unit of time.

vo =

√
λ2

λ0
(32)

and the expected level upcrossing rate vp per unit of time.

vp =

√
λ4

λ2
(33)

The irregularity factor will essentially measure how many peaks a signal has for each time the
signal crosses at zero stress level (Lee [2005]). The ratio between the zero-crossing rate and the
peak-crossing rate is known as the irregularity factor α.

When the irregularity factor tends to one, it means that for each peak, there will be approxi-
mately one zero level crossing and the process will have a narrow bandwidth, that is, v0 is equal
to vp. However, when the bandwidth is wide, it is said that the irregularity factor will tend to zero,
thus there will be infinite peaks for each zero-level crossing, characterized by a more irregular
process (Lee [2005]).

The irregularity factor, which varies between 0 and 1, can be used to characterize the shape
and geometric distribution of the frequency of a given spectrum as a function of spectral moments
(Benasciutti and Tovo [2005]). In general, it can be calculated as:

αn =
λn√
λ0λ2n

(34)

The process is considered narrowband if its spectral density has only a narrow range of fre-
quencies. In contrast, a broadband process is one whose spectral density covers a wide band of
frequencies, this bandwidth is called the width parameter (Lee [2005]). The spectral width param-
eter, γ, is introduced as:

γ =
√

1− α2 (35)

Thus, narrowband processes must have an irregularity factor equal to 1 and a width parameter
equal to 0, while wideband processes must have an irregularity factor approaching 0 and a spectral
width parameter approaching 1 (Lee [2005]).
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5.2 Fatigue Damage Based on Power Spectral

For the fatigue life of gaussian and stationary processes, the Miner rule will be used to estimate
the fatigue damage per unit time from the amplitude distribution of the stress cycles present in the
loading history, f(Sa)(Sa). This is achieved by following the following procedures:

Assume a history of stresses whose amplitudes vary over time, S(t). Through the rainflow
counting technique, for example, this variable-amplitude load is transformed into a sequence of
constant-amplitude blocks, Sai . So, using the Palmgren-Miner, the damage D can be estimated
through the following equation:

D =

K∑
i=1

ni

Nfi

(36)

where ni is the total number of cycles in the ith block of constant-stress amplitude σa,i, Nfi

is the number of cycles to failure under σa,i, and I is the total number of blocks. Recall that the
relationship between constant stress amplitude σa,i (or constant stress range σr,i) and the fatigue
life Nfi has the following expression:

σa,i = AN−b
fi

(37)

Nfiσ
m
a,i = k (38)

where A is the fatigue strength coefficient and b is the fatigue strength exponent. If m = 1/b,
k = Am.

The amplitude distribution of the stress amplitude present in the loading history, fσa(σa) can
be established performing the rainflow cycle counting technique (see Fig. 22).

Figure 22: Basic strategy for obtaining the histogram representative of the
distribution of stress amplitudes present in a random loading history.

Assuming that the total number of stress cycles σa,i present in the process S(t) is calculated
as Ntotal =

∑I
i=1 ni, the probability fi that a stress amplitude, σa,i, occur will be approximated

by the relation:
fi =

ni

Ntotal
(39)
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So, substituting Eq. (39) in Eq. (36), an approximation for the total fatigue damage can be
written as:

D =
I∑

i=1

fiNtotal

Nfi

(40)

By using the linear S–N model (Eq. (37) and Eq. (38)), the expression for fatigue damage is:

D =
Ntotal

k

I∑
i=1

σm
aifi (41)

Recalling the concept of n-order statistical moment, we can express the sum of Eq. (41) as:

E(σm
ai) =

I∑
i=1

σm
aifi (42)

As a result, the Eq. (41) will take the following form:

D =
Ntotal

k
E(σm

ai) (43)

Assume that the PSD of stress amplitude σa can be treated as a continuous random variable,
the expected value of σa is:

E(σm
ai) =

∫ ∞

0
σm
a fσa(σa)dσa (44)

That is, the total accumulated damage can be calculated using the following general equation:

D =
Ntotal

k

∫ ∞

0
σm
a fσa(σa)dσa (45)

5.2.1 Fatigue damage under narrowband Gaussian loading

If the loading history is stationary narrowband Gaussian, the probability density function of the
stress amplitude, fσa(σa), follows a Rayleigh distribution. Consequently, the total accumulated
damage will be calculated using the following equation:

D =
Ntotal

K
E(σm

ai) =
Ntotal

K
(
√
2λ0)

m Γ
(m
2

+ 1
)

(46)

where, Γ(.) is the gamma function, and λ0 is the variance of S(t). For narrowband histories, Ntotal

can be obtained as the product of the zero-crossing rate, v0, and T is the total lifetime.
Finally, the damage caused by the history of narrowband loading and the expected life of the

component can be obtained through the equations:

DNB =
v0T

K
(
√
2λ0)

m Γ
(m
2

+ 1
)

(47)

TNB =
KDNB

v0(
√
2λ0)m Γ

(
m
2 + 1

) (48)
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5.2.2 Fatigue damage under broadband Gaussian loading

When the spectral characteristics of the stress history do not have characteristics of a narrow-
band Gaussian process, the probability density function of the stress amplitudes,fσa(σa), does not
follow a Rayleigh distribution.

In such situations, the function fσa(σa) tends to be dependent on the irregularity factor, α, as
illustrated in Figure 5.3. This Figure presents 3 Gaussian histories with their respective probability
density functions, f(S(t)) and fσa(σa), and spectral density function, G(f). Looking at this
figure, it can be noted that only the functions fσa(σa) and G(f) vary with the irregularity factor, α.
This implies that for a broadband process the relation of the peak distribution and cycle amplitudes
is much more complex. For this reason, several empirical solutions have been proposed. Below
we present some of the many models available in the literature.

Wirsching–Light method
Wirsching and Light [1980] used an additional spectral width parameter α2 (see Eq. (34)) to

correct the narrow-band approximation with the empirical factor ζ:

DBB = γDNB (49)

where DBB is the damage accumulated due to the application of a broadband process (our wide-
band process), DNB is the damage accumulated is the accumulated damage calculated through
Eq. (47) and ζ is the correction factor, calculated using the following equation:

Figure 23: Characteristics of the Gaussian loading as a function of the irregularity
factor.
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ζ = a+ [1− a](1− γ)b (50)

a = 0, 926− 0, 033k (51)

b = (−1) · (2.323) + 1.587k (52)

where γ is the spectral width parameter, γ =
√
1− α2, and a (Eq. (51)) and b (Eq. (52)) are the

best fitting parameters dependent on the slope of the S–N curve, k (see Eq. (19)).

Tovo–Benasciutti method
Benasciutti and Tovo [2005] first proposed an approach where the fatigue life is calculated as

a linear combination of the upper and lower fatigue-damage intensity limits. The final expression
for the estimated fatigue-damage intensity is:

DTB = ηNBDNB (53)

where ηTB = w + (1 − w)α
(k−1)
2 considered as a narrowband damage correction factor. The

weighting factor w is conditioned to the power spectrum through the parameters of the irregularity
factor as follows:

w =
(α1 − α2)

[
1, 112(1 + α1α2 − (α1 + α2))e

2,11α2 + (α1 − α2)
]

(α2 − 1)2
(54)

The analysis of Eq. (53) indicates that, indicates that, according to the model of Tovo and
Benasciutti, the damage estimate is linked to four spectral moments through parameters α1 and
α2, showing a clear dependence of the spectral properties.

Dirlik method
Dirlik [1985] based on extensive Monte Carlo simulations of load histories, it developed a

closed form empirical expression from the approximation of the probability density function of
the "rainflow amplitude" as the sum of an Exponential distribution and two Rayleigh distributions.
That is, the Dirlik damage model for a time period studied T is shown by the equation:

E[D] = DDK =
vpT

C

∫ ∞

0
Sk
afSa(Sa)dSa (55)

where the probability density function, fSa(Sa), takes the following form:

fDK(Sa) =
1

σs

(
D1

Q
e

(
−Z
Q

)
+ Z

D2

R2
e

(
−z2

2R2

)
+ ZD3e

(
−Z2

2

))
(56)

where the function parameters are defined as:

Z =
Sa√
M0

(57)

Xm =
M1

M0

√
M2

M4
(58)

D1 =
2(Xm − γ2)

1 + γ2
(59)

R =
γ −Xm −D2

1

1− γ −D1 +D2
1

(60)
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where Z is the normalized stress amplitude (Sa) and Xm, D1, D2, D3, R and Q are best-fitting pa-
rameters. Substituting these parameters in Eq. (53), the expected value of the cumulative damage
over a time T is estimated by Eq. (61) - The steps necessary to obtain this formula are presented
in Appendix B.

DDK =
NDK

C
σk
S

[
D1Q

kΓ(1 + k) + 2(
k
2
)Γ

(
1 +

k

2

)
(D2|R|k +D3)

]
(61)

in which NDK is the total number of cycles in S(t) over a period of time T (NDK = vPT ).

Zhao and Baker method
With the objective to describe the stress range distribution, Zhao and Baker [1992] have pro-

posed that the peak distribution function can be approximated by a linear combination between
the distribution functions of Weibull and Rayleigh, with parameters directly estimated from the
power spectral density function, PSD, of the process.

fZB(Z) = ωβλZβ−1e−λZβ
+ (1− ω)Z

Z2

2 (62)

where Z is the normalized amplitude defined above, ω is a weighting factor (0 ≤ ω ≤ 1), and b, λ
are the Weibull parameters (b > 0, λ > 0). As commented, previous parameters depended on the
spectral density of process S(t) and are approximated on the basis of both simulation results and
theoretical arguments. Specifically, β, λ, and ω, are defined as:

β =

{
1.1, if γ ≤ 0.9

1.1 + 9(γ − 0.9), if γ > 0.9
(63)

λ = 8− 7γ (64)

ω =
1− γ

1− Γ(1 + 1
β )λ

−1
β

√
2
π

(65)

Thereby, considering this hypothesis, a Gaussian process, S(t), with average zero, the ex-
pected value of the cumulative damage over a time T is estimated by Eq. (66).

E[D] = DZB =
NZB

A
σm
s

[
ωλ

−m
β Γ

(
1 +

m

β

)
+ (1− ω)2

m
2 Γ
(
1 +

m

2

)]
(66)

in which NZB is the total number of cycles in S(t) over a period of time T (NZB = vPT ).

Example 5.1 A hot-rolled component made of 1045 steel Q&T (BHN=410) is subjected to random
loading process. The fatigue strength coefficient, Sf , and the fatigue strength exponent, b, are 3906
MPa and -0.167, respectively. The stress response at a critical location is calculated in terms of the
PSD in Fig. 24. The PSD has a frequency band varying between 2 and 6 Hz with G(f) = 12,500
and another one varying between 10 and 20 Hz with G(f) = 5,000. Determine the fatigue life of
this component using fatigue prediction models under wide-band Gaussian loading.
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Figure 24: PSD of the stress response of a component.

Development:

We will first calculate the component fatigue damage in the frequency domain and then we
will make the life estimation considering the time domain method (Rainflow) that we will use
as a reference standard to compare the spectral methods.For each model we will calculate the
cumulative damage per second, ∆( ∗ ∗), and then calculate the total lifetime of the component,
T( ∗ ∗).

Definition of S-N curve parameters used in spectral models:

The parameters of the S–N curve of the material presented in the test follow Eq 5.10a:

σai = AN−b
fi

(67)

Whereas the material S–N curve for vibration fatigue usually follows the following expression:

Nfiσ
m
ai = k (68)

where A is the fatigue strength coefficient and b is the fatigue strength exponent. And:

m =
1

b
(69)

k = Am (70)

Thus, from these considerations we will find the following values for the constants C and k:

k = 5, 988 (71)

C = 3, 1216 · 1021 [cycle · MPak] (72)

Determination of spectral moments of n-order, Mn:

The parameters used in the methods based on the frequency domain are obtained from the
spectral moments extracted from the PSD of the load history acting on the component. Such
moments are easily calculated using the following expressions:
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where L1i = 2Hz, L1f = 4Hz, L2i = 20Hz, L2f = 22Hz, G1(f) = 2, 500 and G2(f) =
1, 000MPa2/Hz.

Determination of spectral Parameters:

Applying the Methods:

1. Narrowband Method

2. Wirsching and Light Method
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3. Tovo–Benasciutti Method

4. Zhao and Baker Method

5. Dirlik Method

Applying the time domain method:

A basic routine for predicting fatigue life using the time domain method is presented in Ap-
pendix 1. This routine uses together the rainflow counting technique and Miner’s rule. White
noise filtering was used to generate the load history. As a result of using this methodology, the
following results were found: ∆TD=2.8649e−08 and TTD = 404 dias.

Results Comparison:

Ferreira, Jorge L. A., et al. (2022) Random Fatigue Under Uniaxial and Multiaxial Loading pp. 552-612

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 586



Table 3: Table of Results Comparison.

Frequency Domain
Method

∆( ∗ ∗) T( ∗ ∗) Error in relation to the
time domain method (%)

NarrowBand 5.53E-08 209 -48,3
Wirsching and Light 5.51E-08 257 -36,4
Tovo–Benasciutti 2.73E-08 425 5,2
Zhao and Baker 4.36E-08 265 -34,4
Dirlik 2.74E-08 422 4,5

Comparing the results of the frequency-based life prediction models with the result obtained
using the time-based life prediction model (gold standard), it is verified that the methods of Dirlik
and of Tovo and Benasciutti are the methods that present results very close to those obtained by
the methodology considered gold standard.

6 Introduction: Multiaxial fatigue e Maximum Variance Method (MVM)

The life prediction for mechanical components subject to the phenomenon of fatigue has evolved
with new fatigue models to ensure reliability and safety in mechanical system designs. According
to Papadopoulos [2001], it is of greater interest to industries to build projects that ensure high cycle
fatigue strength and, consequently, a finite fatigue life around thousands or millions of loading
cycles.

Multiaxial fatigue is a general term that can be used to describe a structural failure process
associated with mechanical component loads and geometry that are responsible for generating
complex states of stress and strain in preferred planes, which induce the initiation and propagation
of cracks. Therefore, evaluating mechanical components against fatigue is a complex problem
that must be handled in an appropriate manner during a mechanical design in order to avoid catas-
trophic failures.

There are several examples of engineering scenarios that induce the multiaxial fatigue pro-
cess, such as mechanical structures subject to cyclic loads (aircraft in flight, wind regime in wind
turbines, wave action in offshores, liquid flow and vibrations in industrial pipes, etc. ..) and the
presence of a notch in the component geometry that can change the stress state to multiaxial.

Over the years, in order to understand the multiaxial fatigue failure mechanism, three main
types of approach have been developed: Critical Plane Method, Dissipated Energy Method and
Mesoscopic Deformation Models. In this chapter, the multiaxial fatigue models will be discussed,
which are based on the critical plane approach and consider that the cracks, originated due to
material fatigue, originate in certain material planes where the combination of normal and shear
stresses or strains are extremely severe. .

Among the varieties of experimentally validated solutions for mechanical problems involving
multiaxial fatigue, the Maximum Variance Method (MVM) hypothesizes that the critical plane
coincides with the material plane that experiences the maximum variance of a given driving force,
such as the maximum normal stress and the maximum amplitude of resolved shear stress in a
given direction. This simplification allows to work with one-dimensional quantities if the problem
is treated in terms of the shear stress in the direction of maximum variance τMV (t) and the stress
normal σn(t) . Based on modern studies of variable amplitude cyclic loading, the next topics will
present MVM-based multiaxial fatigue criteria:

• MVM based on equivalent normal stress and power density function of equivalent nor-
mal stress: consists in the analysis of load history in the time domain and spectral analysis
in the frequency domain in order to compare the critical planes and obtain the equivalent

Ferreira, Jorge L. A., et al. (2022) Random Fatigue Under Uniaxial and Multiaxial Loading pp. 552-612

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 587



normal stress and the power spectral density function equivalent, as shown in Table 4. In
addition, it also has the application of the cycle counting method such as Rainflow for the
time domain and, using the spectral parameters, the spectral method with correction, as
Wirsching and Light [1980] for example, for the frequency domain. The driving force that
induces the failure process for the time and frequency domains are respectively the equiv-
alent normal stress and the equivalent power spectral density function, as presented in the
references Łagoda et al. [2005], Nieslony and Macha [2007] and Niesłony et al. [2020].

Table 4: Approaches used by MVM based on equivalent normal stress and power
density function of equivalent normal stress.

Task Variable
Material Plane ϕ and θ
Maximum Variance Method (MVM) σeq and Geq

Damage Accumulation Rainflow and Palmgren-Miner Rule

• MVM based on shear stress resolved in the direction of maximum variance: consists of
a reformulation of the Maximum Variance Method (MMV) to make it suitable in multiaxial
fatigue evaluations by numerical post-processing of loading histories as complex as those
that damage mechanical components real, as shown in the references Susmel and Lazzarin
[2002], Susmel [2010], Susmel and Taylor [2012] and Luo et al. [2020]. The methodology
presents an addition of a third orientation angle to a generic vector q, following the Taylor
nomenclature, and the driving force that induces fatigue failure is the shear stress, as shown
in Table 5. The cycle counting method is maintained, again using the Rainflow method and
Miner’s Rule. The results will be compared with a time domain model and life prediction
against failure proposed by Lagoda.

Table 5: Approaches used by MVM based on shear stress resolved in the direction
of maximum variance.

Task Variable
Material Plane ϕ, θ and α
Maximum Variance Method (MVM) τq
Damage Accumulation Rainflow, Modified Wöhler Curves

Method and Palmgren-Miner Rule

The advantage of MVM is that, once the variance and covariance are known, the computational
time required to determine the direction that has the maximum variance of the shear stress doesn’t
depend strictly on the full size of the load history, but a sufficient amount of load history is required
to have a stability of statistical parameters such as variance and covariance.

7 Multiaxial Fatigue - Maximum Variance Method Approach based on equivalent
normal stress and power density function of equivalent normal stress

7.1 Time Domain

The stresses acting on a given plane can be deduced as long as the necessary stresses are known
so that the balance of external forces belonging to the infinitesimal tetrahedron of the material
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body is maintained. Assuming a material point O on the inclined cutting plane as the origin of the
X’-Y’-Z’ coordinate system as shown in Figure 25. This point could be interpreted as the critical
point in relation to fatigue strength depending on the magnitude, direction and direction of the
stress vector in which it is oriented at that point. The cutting plane ∆ contains perpendicularly
a unit normal vector n or (nx, ny, nz), being possible to determine the normal stress σx′ and the
shear components τx′y′ and τx′z′ . This plane can be referenced by its spherical coordinates θ and
ϕ between 0 a 2π, however, due to the property of symmetry, the variation θ, ϕ is adopted in [0, π]
(Socie and Marquis [2000]).

Figure 25: Stresses acting in a plane with a three-dimensional coordinate system.

Suppose a multiaxial state of stress, given by σ(t):

σ(t) =

σxx(t) τxy(t) τxz(t)
τyx(t) σyy(t) τyz(t)
τzx(t) τzy(t) σzz(t)

 (73)

To represent the normal stress σx′ , the director cosines in function of θ and ϕ that are given
according to the relations below:

a11 = cos(ϕ) sin(θ) (74)

a12 = sin(ϕ) sin(θ) (75)

a13 = cos(θ) (76)

a21 = − sin(ϕ) (77)

a22 = cos(ϕ) (78)

a23 = 0 (79)

a31 = − cos(ϕ) cos(θ) (80)

a32 = − sin(ϕ) cos(θ) (81)

a33 = sin(θ) (82)
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While, the normal vector can be given by Eq. (83):

n = a11i+ a12j + a13k (83)

Therefore, the transformation equation for normal stress in any plane is given by:

σx′ = σxa
2
11 + σya

2
12 + σza

2
13 + 2 (τxya11a12 + τxza11a13 + τyza13a12) (84)

where a11 , a12 and a13 are the cosines of the angles between the axes x and x′, x and y′ and x
and z′, respectively.

The Eq. (84) can be rewritten as a linear combination of the stress tensor multiplied by director
cosines in the direction normal to the plane, given by Eqs. (74) to (76). Rearranging the terms:

σx′ = σ · a (85)

where σ is the stochastic process stress vector and a is the vector of the direction cosines:

a =
[
a211 , a

2
12 , a

2
13 , 2a11a12 , 2a11a13 , 2a13a12

]
(86)

σ(t) = [σxx(t), σyy(t), σzz(t), τxy(t), τxz(t), τyz(t)] (87)

Applying the maximum normal stress criterion in the critical plane, it is stated that fatigue
failure is caused by the maximum normal stress acting on the critical plane and that the critical
plane is perpendicular to the mean direction of the maximum principal stress σ1, according to the
bibliographic reference Macha [1989]. In this way, the critical plane is defined by the direction of
the normal vector n, which coincides with the direction of the maximum principal stress σ1, and,
with the application of the MMV, the identification of the critical plane will be the material plane
in which the variance of the equivalent stress reaches its maximum value.

Based on the normal stress transformation equation in any plane, Eq. (85) can be rewritten as a
linear combination of the components of the vector a, represented by ak in the crefeq:top7vector_a
and modified with the directions of the normal vector n:

σeq(t) =

6∑
k=1

akσk(t) (k = 1, .., 6) (88)

With the application of the maximum normal stress criterion, the Maximum Variance Method
(MVM) allows determining the plane in which the equivalent stress variance reaches its maximum
value, and this plane will be considered as a critical plane and will be subject to fatigue failure:

var[σeq(t)] = max

∑
i

∑
j

aiajCov [σi(t), σj(t)]

 = max

∑
i

∑
j

aiaj [C]

 (89)

where:

[C] =



Cxx,xx Cxx,yy Cxx,zz Cxx,xy Cxx,xz Cxx,yz

Cyy,xx Cyy,yy Cyy,zz Cyy,xy Cyy,xz Cyy,yz

Czz,xx Czz,yy Czz,zz Czz,xy Czz,xz Czz,yz

Cxy,xx Cxy,yy Cxy,zz Cxy,xy Cxy,xz Cxy,yz

Cxz,xx Cxz,yy Cxz,zz Cxz,xy Cxz,xz Cxz,yz

Cyz,xx Cyz,yy Cyz,zz Cyz,xy Cyz,xz Cyz,yz

 (90)

where the covariance of two equal components of the tension tensor vector, in other words, with
the same subindex (m = n), is equal to the variance of the component itself. Therefore, the
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covariance matrix can be redefined as follows:

[C] =



Vxx Cxx,yy Cx,zz Cxx,xy Cxx,xz Cxx,yz

Cyy,xx Vyy Cyy,zz Cyy,xy Cyy,xz Cyy,yz

Czz,xx Czz,yy Vzz Czz,xy Czz,xz Czz,yz

Cxy,xx Cxy,yy Cxy,zz Vxy Cxy,xz Cxy,yz

Cxz,xx Cxz,yy Cxz,zz Cxz,xy Vxz Cxz,yz

Cyz,xx Cyz,yy Cyz,zz Cyz,xy Cyz,xz Vyz

 (91)

Critical angles are determined from the critical plane, where the variance of σeq(t) has reached
its maximum value as seen in Eq. (92).

θc, ϕc = max[varσeq(θ, ϕ)] (92)

7.2 Frequency Domain

In the frequency domain, from spectral methods, there is application of spectral power density
functions (PSD) to evaluate the characteristics of frequencies in the history of stress. In this way,
the multiaxial stress states are described by the power spectral density function matrix G(f):

G(f) =



G11(f) G12(f) G13(f) G14(f) G15(f) G16(f)
G21(f) G22(f) G23(f) G24(f) G25(f) G26(f)
G31(f) G32(f) G33(f) G34(f) G35(f) G36(f)
G41(f) G42(f) G43(f) G44(f) G45(f) G46(f)
G51(f) G52(f) G53(f) G54(f) G55(f) G56(f)
G61(t) G62(f) G63(f) G64(f) G65(f) G66(f)

 (93)

As shown in the bibliographic reference Nieslony and Macha [2007], from the power spectral
density matrix G(f), Geq(f) can be obtained by Eq. (94):

Geq(f) = aG(f)aT (94)

Solving the inner product, Eq. (94) will be represented as follows:

Geq = a21G11 + a1a4G41 + a1a4G14 + a24G44 = a21G11 + a24G44 + (a1a4)(G41 +G14) (95)

Geq = a21G11 + a24G44 + 2a1a4Re(G41) (96)

The application of the MMV in the frequency domain occurs in a similar way to the time
domain, with identification of the maximum value of variance of power density function of equiv-
alent normal stress, proposed in Eq. (97), in which the vector of the coefficients coincides with the
a vector of the linear combination:

var[Geq(f)] =
∑
i

∑
j

aiajvar(Gkl) (97)

var(Gkl) = Re

[ ∫ ∞

0
Gkl(f)df

]
(k,l=1,...,6) (98)

The power spectral density matrix is given by real parts of zero-order spectral moments of
power spectral density functions. By MMV method, identifying the critical angles where the
variance has its maximum value:

θc, ϕc = max[varGeq(θ, ϕ)] (99)
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It is worth mentioning that the variance obtained is also the spectral moment of the equivalent
power spectral density function as shown by Eq. (100):

var(Geq) = mo,Geq = Re

[ ∫ ∞

0
Geq(f)df

]
(100)

Therefore, the number of oscillations, also known as crossover rate, and the number of local
peaks are given respectively by Eq. (101) and Eq. (102). While the number of oscillations and
local peaks of the equivalent spectral density function is given by Eq. (103) and Eq. (104).

N+
o =

√
m2

m0
(101)

M+ =

√
m4

m2
(102)

N+
o =

√
m2,Geq

m0,Geq

(103)

M+ =

√
m4,Geq

m2,Geq

(104)

8 Multiaxial Fatigue - Maximum Variance Method Approach based on shear stress
resolved in the direction of maximum variance

To formalize the theory, we consider a body in a frame of reference Oxyz subjected to a complex
system of forces and moments that result in a three-dimensional state of stress that varies over
time. The generic material plane, as shown in Fig. 26, can be oriented by the angles θ and ϕ
through a normal vector n, while the second frame of reference Oeaebn, a local coordinate system
belonging to a generic material plane where the normal vector passes through the point of origin,
has its orientation defined by other unit vectors ea and eb whose cross product of these vectors
results in the normal vector, as shown in Fig. 26. Using the critical plane method, it is possible to
identify the orientation of a generic plane in the form of the previous coordinate system, xyz.

According to Figure Fig. 26, Fig. 27 and Fig. 28, the unit vectors that define the orientation of
the axes n, ea e eb

3 plane can be expressed as follows:

n =

nx

ny

nz

 =

sin θ cosϕsin θ sinϕ
cos θ

 (105)

ea =

eaxeay
eaz

 =

 sinϕ
− cosϕ

0

 (106)

eb =

ebxeby
ebz

 =

cos θ cosϕcos θ sinϕ
− sin θ

 (107)

3eb: to project this unit vector it is necessary to project in the plane zbθ for later decompose it into the
xy.
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Figure 26: Stresses acting in a plane with a three-dimensional coordinate system
(Courtesy of Lima [2021])

Figure 27: Projection of unit vector n (Courtesy of Lima [2021]).

Figure 28: Projection of unit vector ea and eb (Courtesy of Lima [2021]).
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Based on Fig. 28, Susmel assumed a generic direction m for the unit vector q in a given
material plane situated in the new coordinate system and oriented by the angle α between unit
vector a and unit vector q. As Fig. 29, the components of q vector can be written in the following
vector form:

q = qea + qeb (108)

q = ea cosα+ eb sinα (109)

q =

 cosα sinϕ+ sinα cos θ cosϕ
− cosα cosϕ+ sinα cos θ sinϕ

− sinα sin θ

 (110)

Figure 29: Projection of vector q in vector ea and eb (Courtesy of Lima [2021]).

σn(t) =
[
nx ny nz

] σxx(t) τxy(t) τxz(t)
τyx(t) σyy(t) τyz(t)
τzx(t) τzy(t) σzz(t)

nx

ny

nz

 (111)

τq(t) =
[
qx qy qz

] σxx(t) τxy(t) τxz(t)
τyx(t) σyy(t) τyz(t)
τzx(t) τzy(t) σzz(t)

nx

ny

nz

 (112)

Developing Eq. (112), the instantaneous value of the resolved shear stress along the m direc-
tion:

τq(t) = qT σ(t) n (113)

τq(t) = nx · (qz · τxz + qy · τxy + qx · σxx) + ny · (qz · τyz + qx · τxy + qy · σyy)
+ nz · (qy · τyz + qx · τxz + qz · σzz) (114)

Rearranging Eq. (114), isolating the stress terms:

τq(t) = σx · (nx · qx) + σyy · (ny · qy) + σzz · (nz · qzz) + τxy · (nx · qy + ny · qx)
+ τxz · (nx · qz + nz · qx) + τyz · (ny · qz + nz · qy) (115)
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Rewriting tensor in Voigt’s Notation, the representation of σ(t) would be a six-dimensional
vector process and, therefore, the shear stress can be expressed as:

τq(t) = d · s(t) (116)

Where the tensor in Voigt notation is given as follows:

s(t) = σT (t) =
[
σxx(t) σyy(t) σzz(t) τxy(t) σxz(t) σyz(t)

]
(117)

Where d is known as the vector of director cosines, being expressed according to Eq. (118):

d =



d1
d2
d3
d4
d5
d6

 =



nx · qx
ny · qy
nz · qz

nx · qy + ny qx
nx · qz + nz qx
ny · qz + nz qy

 =



1
2

[
sin (θ) sin (2ϕ) cos (α) + sin (α) sin (2θ) cos (ϕ)2

]
1
2

[
− sin (θ) sin (2ϕ) cos (α) + sin (α) sin (2θ) sin (ϕ)2

]
−1

2 sin (α) sin (2θ)
1
2 sin (α) sin (2ϕ) sin (2θ)− cos (α) cos (2ϕ) sin (θ)
sin (α) cos (ϕ) cos (2θ) + cos (α) sin (ϕ) cos (θ)
sin (α) sin (ϕ) cos (2θ)− cos (α) cos (ϕ) cos (θ)


(118)

The model formulation is based on the assumption that fatigue damage maximizes in a plane
that experiences the maximum amplitude of shear stress. From shear stress of a generic direction
m, τq, the MVM identifies the critical plane from the variance of the resolved shear stress history
in the direction in which it reaches its maximum value. With this, the variance of shear stress,
τq(t), resolved along the direction m can then be calculated directly as:

var[τq(t)] = dT [C]d (119)

var[τq(t)] =
[
d1 d2 d3 d4 d5 d6

]


Cxx,xx Cxx,yy Cxx,zz Cxx,xy Cxx,xz Cxx,yz

Cyy,xx Cyy,yy Cyy,zz Cyy,xy Cyy,xz Cyy,yz

Czz,xx Czz,yy Czz,zz Czz,xy Czz,xz Czz,yz

Cxy,xx Cxy,yy Cxy,zz Cxy,xy Cxy,xz Cxy,yz

Cxz,xx Cxz,yy Cxz,zz Cxz,xy Cxz,xz Cxz,yz

Cyz,xx Cyz,yy Cyz,zz Cyz,xy Cyz,xz Cyz,yz





d1
d2
d3
d4
d5
d6


(120)

Or by Taylor series expansion as:

var[τq(t)] = var

[∑
k

dkσk

]
=
∑
i

∑
j

didjCov [σi, σj ] (121)

Another way to simplify of Eq. (119) would be to consider the product of the covariance
matrix and the vector d as a column matrix [M ].

[M ] =



M1

M2

M3

M4

M5

M6

 =



Cxx,xx Cxx,yy Cxx,zz Cxx,xy Cxx,xz Cxx,yz

Cyy,xx Cyy,yy Cyy,zz Cyy,xy Cyy,xz Cyy,yz

Czz,xx Czz,yy Czz,zz Czz,xy Czz,xz Czz,yz

Cxy,xx Cxy,yy Cxy,zz Cxy,xy Cxy,xz Cxy,yz

Cxz,xx Cxz,yy Cxz,zz Cxz,xy Cxz,xz Cxz,yz

Cyz,xx Cyz,yy Cyz,zz Cyz,xy Cyz,xz Cyz,yz





d1
d2
d3
d4
d5
d6

 (122)

And in the form of Taylor series expansion, the variance can be expressed as:

var[τq(t)] =

6∑
i=1

diMi (123)
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In this way, the variance of shear stress in the direction of vector q of Eq. (119) can be repre-
sented as follows:

var[τq(t)] =
[
d1 d2 d3 d4 d5 d6

]


M1

M2

M3

M4

M5

M6

 (124)

Critical angles are determined from the critical plane, where the variance of τq(t) has reached
its maximum value as seen in Eq. (125).

θc, ϕc, αc = max[varτq(θ, ϕ, α)] (125)

9 Multiaxial Fatigue - Maximum Variance Method Approach as a function of the
invariants of deviatoric stress tensor: Projection-by-Projection (PbP)

Among the stress invariant-based methods to estimate fatigue life, the approach called “Projection
by Projection – Projection-by-Projection (PbP)" is suitable for multiaxial fatigue analysis. The
proposed criterion is particularly useful for the evaluation of the durability of complex structures
under random loading. The advantages of the PbP method can be obtained in the time domain, as
well as for applications in the frequency domain (Benasciutti et al. [2013])

In 2008, the first works published with the PbP method were developed by Cristofori, Sus-
mel and Tovo (Cristofori et al. [2008]), who described the time domain methodology to estimate
fatigue damage in the presence of complex multiaxial loads. In 2011, Cristofori, Benasciutti and
Tovo (Cristofori et al. [2011]) continued the development of the method and published the for-
mulation for the frequency domain, which can be applied to stationary multiaxial random loads.
In 2014, a numerical example for analyzing a steel beam excited by a random input acceleration
was proposed by Cristofori and Benasciutti (Cristofori and Benasciutti [2014]), who performed
a finite element analysis to calculate the PSD stress matrix at the nodes of the structure and ap-
plied the spectral model of the PbP method to estimate the fatigue damage. A practical guide for
implementing the method in the frequency domain was presented by Benasciutti, Zanellati and
Cristofori in 2019 (Benasciutti et al. [2019]), which detailed all the steps of the method. These are
the most relevant works developed so far for the PbP method, which include numerical examples
and/or procedures for implementing the method.

9.1 Projection-by-Projection (PbP)

This method makes use of the amplitude of the second invariant of the deviator tensor
√
(J2a) and

the hydrostatic pressure σH(t) to evaluate the damage due to a generic fatigue loading. The fatigue
life of a real component is estimated considering the loading history described in 5-dimensional
Euclidean space, in which the damage related to a generic loading path can be determined from
the contributions calculated by the projection of the loading trajectory itself to the along the axes
of a chosen frame of reference based on Euclidean space (Cristofori et al. [2008]).

From a geometric point of view, the loading trajectory can be fully represented in terms of
its projections along the directions of maximum variance defined by the axes of the chosen frame
of reference and adopted based on the 5-dimensional deviator space. In this way, analysis of a
complex loading trajectory can be performed from its projections, such that the damage relative to
each projection can be calculated first, and then the overall damage from the loading history can
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be obtained as a function of the different contributions given by the projections (Cristofori et al.
[2008]).

The procedure adopted by the PbP method to estimate fatigue life consists of defining the
reference of the projection system, evaluating the damage along each projection and, finally, eval-
uating the total damage.

In this sense, considering that σ(t) represents the tensor of the time-varying stress components

σ(t) =

σxx(t) τxy(t) τxz(t)
τxy(t) σyy(t) τyz(t)
τxz(t) τyz(t) σzz(t)

 −→ σ(t) =



σxx(t)
σyy(t)
σzz(t)
τxy(t)
σxz(t)
σyz(t)

 (126)

The six non-redundant stress components of the σ(t) can be reordered into a stress vector
which, in the frequency domain, can be characterized by the PSD matrix, G(f)

G(f) =



G11(f) G12(f) G13(f) G14(f) G15(f) G16(f)
G21(f) G22(f) G23(f) G24(f) G25(f) G26(f)
G31(f) G32(f) G33(f) G34(f) G35(f) G36(f)
G41(f) G42(f) G43(f) G44(f) G45(f) G46(f)
G51(f) G52(f) G53(f) G54(f) G55(f) G56(f)
G61(t) G62(f) G63(f) G64(f) G65(f) G66(f)

 (127)

where G(f) is the matrix of autospectral and cross-spectral density functions of stress vector σ(t).
The set of zero-order spectral moments of the PSD matrix (G(f)) is represented in the covari-

ance matrix:

V ar(Gkl) = Re

[ ∫ ∞

0
Gkl(f)df

]
(k,l=1,...,6) (128)

C =



Vx Cxx,yy Cxx,zz Cxx,xy Cxx,xz Cxx,yz

Cyy,xx Vy Cyy,zz Cyy,xy Cyy,xz Cyy,yz

Czz,xx Czz,yy Vz Czz,xy Czz,xz Czz,yz

Cxy,xx Cxy,yy Cxy,zz Vxy Cxy,xz Cxy,yz

Cxz,xx Cxz,yy Cxz,zz Cxz,xy Vxz Cxz,yz

Cyz,xx Cyz,yy Cyz,zz Cyz,xy Cyz,xz Vyz

 (129)

where the diagonal elements are the variance terms of the stress xi(t), Cii = V ar(xi(t)), and
the off-diagonal elements are the covariance terms between the stress xi(t) and xj(t), Cij =
Cov(xi(t), xj(t)). The coefficient of correlation rij , rij = Cij/

√
(CiiCjj), represents, for mul-

tiaxial random loads, the degree of proportionality between xi(t) and xj(t). When rij = 1, the
processes are perfectly correlated, that is, proportional stresses, when rij = 0, they are uncorre-
lated processes, that is, non-proportional stresses (Cristofori et al. [2011], Benasciutti et al. [2019])

Fatigue damage from a multiaxial random stress is addressed by the PbP method in the de-
flector space. Thus, the vector of stresses in the deviator space, s(t), is related to the stress tensor
σ(t) by the following transformation rules:

s(t) =


s1(t)
s2(t)
s3(t)
s4(t)
s5(t)

 (130)
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where:

s1(t) =
1

2
√
3
(2σxx(t)− σyy(t)− σzz(t)) (131)

s2(t) =
1

2
(σyy(t)− σzz(t)) (132)

s3(t) = τxy(t) (133)

s4(t) = τzx(t) (134)

s5(t) = τyz(t) (135)

The stochastic vector s(t) that describes the stress components in the deviator space can be
characterized by the covariance matrix C’ and in the frequency domain by the PSD 5x5 matrix
G′(f) (Cristofori and Benasciutti [2014]). The axes of the projections are defined in the direction
of maximum variance of the deviator space, so from the eigenvectors U of the covariance matrix
C ′ the projections of the stress histories in time are described as:

Ω(t) = UTs(t) where Ω(t) = (Ω(p,1)(t),Ω(p,2)(t),Ω(p,3)(t),Ω(p,4)(t),Ω(p,5)(t)) (136)

C ′
p(t) = UTC ′(t)U (137)

where Ω(t) represents the projections in the direction of maximum variance and C ′
p(t) is a diag-

onal matrix of variance of the vector Ω(t):

C ′
p,ii = V ar[Ω(p,i)] i = 1, 2, . . . , 5. (138)

In the frequency domain, the diagonal PSD matrix G′
p(f) determines the power spectra in the

projections:
G′

p(f) = UTG′(t)U (139)

Therefore, the projections of random stresses Ω(p, i)(t) of the vector Ω(t) are totally uncor-
related, where each component represents an independent random stress, and its fatigue damage
can be estimated separately either in the time domain and frequency (Cristofori and Benasciutti
[2014]).

9.2 PbP Method for a Plane Stress State

In the plane or biaxial stress state, the stress tensor becomes three non-redundant stress compo-
nents:

σ(t) =

[
σxx(t) τxy(t)
τxy(t) σyy(t)

]
=

σxx(t)σyy(t)
τxy(t)

 (140)

where σ(t) can be represented as stress vector, where each stress is considered a stationary
random variable Benasciutti et al. [2019]. In the frequency domain, the PSD matrix is now repre-
sented as:

G(f) =

G11(f) G12(f) G13(f)
G21(f) G22(f) G23(f)
G31(f) G32(f) G33(f)

 =

 Gxx(f) Gxx,yy(f) Gxx,xy(f)
Gyy,xx(f) Gyy(f) Gyy,xy(f)
Gxy,xx(f) Gxy,yy(f) Gxy(f)

 (141)

Consequently, the covariance matrix will take the form:

C =

 Cxx Cxx,yy Cxx,zz

Cyy,xx Cyy Cyy,zz

Cxy,xx Cxy,yy Cxy

 =

 Vxx Cxx,yy Cxx,zz

Cyy,xx Vyy Cyy,zz

Cxy,xx Cxy,yy Vxy

 (142)
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The stress vector in the deviator space becomes three dimensional, s(t) = [s1(t), s2(t), s3(t)],
which can be determined as:

s(t) = A · x(t) (143)

where:

A =

 1√
3

− 1
2
√
3

0

0 1
2 0

0 0 1

 (144)

The covariance matrix and the PSD of s(t) can be obtained from the matrix A through the
following equations:

C′ = A ·C ·AT =

C ′
11 C ′

12 C ′
13

C ′
22 C ′

23

sim C ′
33

 (145)

G′(f) = A ·G(f) ·AT (146)

Thus, from the eigenvectors U of the covariance matrix C′, the loadings in the projections
with the direction of maximum variance are obtained:

Ω(t) = UTs(t) where Ω(t) = [Ω(p,1)(t),Ω(p,2)(t),Ω(p,3)(t)] (147)

The covariance matrix of the vector Ω(t) is determined as:

C′
p = UT ·C′ ·U =

C ′
p,11 0 0

0 C ′
p,22 0

0 0 C ′
p,33

 (148)

and in the frequency domain the PSD matrix is defined:

G′
p(f) = UTG′(t)U =

G′
p,11(f) 0 0

0 G′
p,22(f) 0

0 0 G′
p,33(f)

 (149)

The principle of the PbP method can be illustrated through Fig. 30, in which a random load-
ing history of bending and torsion [σxx(t), τxy(t)] is represented in the deviator space with two
non-zero components [s1(t), s3(t)] that generate a random loading path Ψ. To define the refer-
ence of the projection system [s1, 0, s3, 0] the direction of maximum variance of the loading Ψ is
considered, thus obtaining the projections of stress [Ω(p,1)(t),Ω(p,3)(t)].

For fatigue life estimation under multiaxial conditions, the Modified Wöhler Curve Method
(MWCM) proposed by Susmel and Lazzarin [2002]. The MWCM takes as its starting point the
assumption that crack initiation is Mode II dominated, and it holds true independently of both
stress concentration feature and degree of multiaxiality of the stress field damaging the fatigue
process zone (Susmel and Taylor [2003], Susmel [2004]). In more detail, the MWCM assumes
that fatigue damage depends on the shear stress amplitude, τa, and on the maximum normal stress,
σ(n,max), relative to the critical plane, which is defined as the plane experiencing the maximum
shear stress amplitude. From a practical point of view, the MWCM postulates that fatigue damage
depends on two stress parameters: τa and ρ . The latter parameter is defined as the ratio between
the maximum normal stress, σ(n,max), and the shear stress amplitude, τa, relative to the critical
plane (Araújo et al. [2007]).
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Figure 30: Example of a random loading path Ψ in the deflector space, generated
from flexural-torsional stresses, to determine the stresses in the reference frame of

the projection system

The modified Wöhler diagram used to define the parameters of the S-N curve in multiaxial
loading situations considers two fatigue curves that are generally available for materials: a normal
stress versus life curve obtained under fully reverse loading conditions, characterized by ρ = 1
(just normal stree and see Fig. 31), and a fatigue curve obtained under fully reverse torsional
conditions, characterized by ρ = 0 (just shear stress and see Fig. 31).

Figure 31: Modified Wöhler diagram for defining the reference S-N curve for a
generic multiaxial loading.
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Hypothetically, it is assumed that the reference S-N curve in the modified Wöhler diagram
for any given value of ρ is defined by linear interpolation of the fatigue parameters for axial and
torsional loading (Benasciutti et al. [2019]). From the definition of the multiaxiality degree in the
critical plane (ρcrit), the parameters that characterize the curve τa versus Nf respectively, Aρcrit

(coefficient of the τa-N curve) and bρcrit (curve exponent), can be estimated by means of Eq. (150)
and Eq. (151).

Aρcrit = [Aσ −Aτ ]ρcrit +Aτ (150)

bρcrit = [bσ − bτ ]ρcrit + bτ (151)

9.3 Life Prediction Strategies Using the PbP Method

Life prediction by the PbP method can be performed in both time and frequency domains, the
main difference between the two domains being the determination of the S-N reference curve in
the modified Wöhler diagram. Once the ρref parameter is defined, according to each domain,
the parameters of the S-N curve are defined by Equation (9.17) and then the damage estimate is
performed, which in time considers the rainflow technique associated with the Palmgren-Miner
rule and follows the development presented in Section 4, for the frequency domain, it analyzes the
power spectra as shown in Section 5.

9.3.1 Application of the Life Estimation in the Time Domain

The rainflow counting method can be applied to each projection of the loading history in the Ui

directions, where the amplitude of the cycles defined in terms of the deviator stress Jaij , and the
values of the maximum hydrostatic pressure σHij , are recorded for each cycle. counted (identified
by the subscript j) along each considered projection (identified by the subscript i = 1, 2, · · · , 5)
(Cristofori et al. [2008]). In order to estimate fatigue damage, the reference curve in the modified
Wöhler diagram can be located from the stress ratio ρref defined as:

ρref =
√
3

σ(Href )(∑
i(Jairef )

2
)1/2 (152)

where Jairef is the average value of the amplitude for the cycles counted in relation to the con-
sidered projection and σHref

the average value of the maximum hydrostatic stresses of the cycles,
defined by the following relations:

σHref
= meanij [σ(Hij)] (153)

Jairef = meanij [J(aij)] (154)

where σH = trace(σ)/3 is the hydrostatic stress.
The fatigue damage, Dij , due to each identified cycle can then be estimated using the following

equation:

Dij =

[
Jaij
Ja,ref

]kref 1

NA
(155)

and the total damage relative to the i-th projection Di, considering the linear cumulative rule pro-
posed by Palmgren-Miner, results in the estimation of the damage D(Ωp,i) related to the projected
loading Ωp,i:

D(Ωp,i) =
∑
j

Dij (156)
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Considering that the damage caused by the histories of multiaxial loads acting in the directions
of the deflector tensor is decoupled, Cristofori et al. [2008] proposed the following quadratic rule
to calculate the accumulated damage at the analyzed point:

D(Ω) =

[∑
i

(D (Ωp,i))
2

kref

]
=

∑
i

∑
j

Dij

 2
kref


kref

2

(157)

9.3.2 Application of the Life Estimation in the Frequency Domain

To take full advantage of a frequency domain approach, the definition of the stress ratio ρref
must be properly reformulated for stationary multiaxial random loading. This is accomplished by
considering the following equation:

ρref =
√
3

σH,m√
2

+
√

V ar(σH(t))√∑
i V ar(Ωp,i(t))

=
√
3
σH,m +

√
2λ0,H√

2
∑

i λ0,i

(158)

where σH(t) is the hydrostatic stress, a uniaxial stationary random process, with constant
mean σH,m and variance V ar(σH(t)) = λ0,H (which coincides with the zero-order moment
λ(0,H) of the power spectral density GH(f) of σH(t)). Likewise, every projection Ωp,i(t) is a
stationary random process, with variance V ar(Ω(p,i)(t)) = λ0,i (where λ0,i is the zero-order
moment of the power spectral density G′

p,i(f) of the loading history in each of the "i" projections,
which is an element of the matrix G′

p(f)) (Cristofori et al. [2011]). If the multiaxial loading has
stress components with an average value of zero, then σH,m = 0. In the case of sinusoidal loading
of constant amplitude, Eq. (158) reduces to the expression of Eq. (152).

In the frequency domain an estimate of the expected damage in a time interval can be provided
by spectral methods. If the random projection Ωp,i(t) is a narrow band process the damage is
defined as:

DNB(Ωp,i) =
v0,iT

Cref
(
√

2λ0,i)
krefΓ

(
1 +

kref
2

)
(159)

and the total damage of the multiaxial loading histories is defined from the quadratic accumu-
lation rule:

DPbP
NB =

T

Cref
Γ

(
1 +

kref
2

)[∑
i

(
2λ0,i(vo,i)

2
kref

)] kref
2

(160)

If the random projection Ωp,i(t) is a broadband process, the damage can be estimated by other
spectral methods, such as the Tovo-Benasciutti method (cited in Section 5.2.2).

DTB(Ωp,i) = ηTB,i
vo,iT

Cref
(
√
2λ0,i)

krefΓ

(
1 +

kref
2

)
(161)

so that the total damage is obtained from the consideration of all projections

DPbP
TB =

T

Cref
Γ

(
1 +

kref
2

)[∑
i

(
2λ0,i(ηTB,ivo,i)

2
kref

)] kref
2

(162)

Moreover, the theory of the PbP method can be easily extended to other spectral methods,
such as Dirlik’s method ((cited in section 5.2.2).). For this method the damage can be obtained as:

DDK(Ωp,i) =
vp,iTσ

kref
S,i

Cref

[
D1,iQ

kref
i Γ(kref + 1) + (

√
2)krefΓ

(
kref
2

+ 1

)
(D2,i|Ri|kref +D3,i)

]
(163)
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where the total damage of the loading story consists of:

DPbP
DK = T

Cref

∑
i

v

2
kref
p,i σ2

S,i

[
D1,iQ

kref
i Γ(kref+1)+(

√
2)

kref Γ
(

kref
2

+1
)
(D2,i|Ri|kref+D3,i)

]
kref

2

(164)

10 Final Remarks

This chapter sought to present a review of the state of art and the concepts necessary to understand
the criteria of multiaxial random fatigue using the Maximum Variance Method (MVM) in medium
and high cycle fatigue regimes. In this sense, approaches based on time domain and frequency do-
main were examined. We tried, as far as possible, to structure the material presented in a amicable
way and with easy-to-understand language so that it can contribute, especially for researchers who
wish to start studies on this topic.

Despite the theoretical review on the phenomenology of random fatigue under uniaxial and
multiaxial loading conditions and the deductions presented in the methodologies involved in this
chapter, we must emphasize that all the topics discussed are in continuous development and im-
provement - An example is the contribution recently published in the article Ferreira et al. [2022]
which presents an innovative and highly efficient strategy for the search for the critical plane based
on the maximum variance of resolved shear stress method. Comparative tests showed that the pro-
posed algorithm is, on average, 150 times faster than the search strategy based on the Gradient
Ascent Method and at least 230 times faster than the Direct Search Method of critical planes.
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APPENDIX A 

DEDUCTION OF THE DIRLIK DAMAGE EQUATION 

 

The expected total fatigue damage by Dirlik's method, 𝐷 

𝐷 =
𝜈 𝑇

𝐾
න 𝑆

 𝑃(𝑆) 𝑑𝑆

ஶ



 . 
(A1) 

where 𝑃 (𝑆) is the probability density function of rainflow intervals in terms of the 

auxiliary variable 𝑍 defined as 

𝑃(𝑆) =
𝐷ଵ

2𝜎ௌ 𝑄
𝑒

ି

ொ +

𝐷ଶ 𝑍

2𝜎ௌ 𝑅ଶ
𝑒

ି
మ

ଶோమ +
𝐷ଷ 𝑍

2𝜎ௌ

𝑒ି
మ

ଶ  , 
(A2) 

where 𝑍 =
ௌೝ

ଶఙೄ
=

ௌೌ

ఙೄ
. 

Therefore, we have the integral to be solved 

𝐼 = න 𝑆
 𝑃(𝑆) 𝑑𝑆

ஶ



= න ൬
𝑆

2
൰

ஶ




𝐷ଵ
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𝑒

ି
ௌೝ

ଶఙೄ ொ +
𝐷ଶ 𝑆

4𝜎ௌ
ଶ 𝑅ଶ

𝑒
ି

ௌೝ
మ

଼ఙೄ
మோమ

+
𝐷ଷ 𝑆

4𝜎ௌ
ଶ 𝑒

ି
ௌೝ

మ

଼ఙೄ
మ
൩ 𝑑𝑆 . 

(A3) 

Separating the integral into parts 

𝐼 = න ൬
𝑆
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൰
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2
൰
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ି
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଼ఙೄ
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(A4) 

so that 

𝐼ଵ = න ൬
𝑆

2
൰

ஶ



𝐷ଵ

2𝜎ௌ 𝑄
𝑒

ି
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2
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ஶ



𝐷ଶ 𝑆

4𝜎ௌ
ଶ 𝑅ଶ

𝑒
ି

ௌೝ
మ
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 𝑑𝑆; 

𝐼ଷ = න ൬
𝑆

2
൰

ஶ



𝐷ଷ 𝑆

4𝜎ௌ
ଶ 𝑒

ି
ௌೝ

మ

଼ఙೄ
మ
 𝑑𝑆  , 

(A5) 

that is, 

𝐼 = 𝐼ଵ + 𝐼ଶ + 𝐼ଷ . 
(A6) 

Solving the integral 𝐼ଵ 
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𝐼ଵ =
𝐷ଵ
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න ൬

𝑆

2
൰

ஶ



𝑒
ି
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(A7) 

Performing a change of variable 

𝑚 = 𝑎 − 1;   
𝑆

2𝜎ௌ 𝑄
= 𝑥   e   𝑑𝑆 = 2𝜎ௌ 𝑄 𝑑𝑥 . 

(A8) 

The integral 𝐼ଵ can be rewritten as 

𝐼ଵ =
𝐷ଵ

2𝜎ௌ 𝑄
න (𝜎ௌ 𝑄 𝑥)ିଵ

ஶ



𝑒ି௫ 2𝜎ௌ 𝑄 𝑑𝑥 =  𝐷ଵ (𝜎ௌ 𝑄)ିଵ න 𝑥ିଵ
ஶ



𝑒ି௫  𝑑𝑥 . 
(A9) 

Given that the gamma function is defined as 

𝛤(𝑎) = න 𝑥ିଵ
ஶ



𝑒ି௫  𝑑𝑥 , 
(A10) 

the integral 𝐼ଵ can be expressed based on the gamma function 

𝐼ଵ = 𝐷ଵ (𝜎ௌ 𝑄)ିଵ 𝛤(𝑎) . 
(A11) 

Returning from the variable change 

𝐼ଵ = 𝐷ଵ  (𝜎ௌ 𝑄)𝛤(𝑚 + 1) . 
(A12) 

The integral 𝐼ଶ has the following form 
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(A13) 

Again, performing a change of variable 

𝑚 + 1 = 𝑎 − 1;   
𝑆

ଶ

8𝜎ௌ
ଶ𝑅ଶ

= 𝑥   e   𝑑𝑆 =
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(A14) 

which allows you to write it as 
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(A15) 

Simplifying the expression 
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𝐼ଶ = 𝐷ଶ (2)
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Performing another variable change 

𝑎 = 2𝑏 , 
(A17) 

The  𝐼ଶ can be write as  

𝐼ଶ = 𝐷ଶ (2)ିଵ(𝜎ௌ 𝑅)ଶିଶ න (√𝑥)ଶିଶ
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Using the gamma function shown in Equation (A10) 

𝐼ଶ = 𝐷ଶ (2)ିଵ(𝜎ௌ 𝑅)ଶିଶ 𝛤(𝑏) . 
(A19) 

Returning from the variable change 

𝐼ଶ = 𝐷ଶ (2)
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Solving the integral 𝐼ଷ 
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Performing a change of variable 

𝑚 + 1 = 𝑎 − 1;   
𝑆
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the integral 𝐼ଷ can be rewritten as 
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Simplifying the expression 

𝐼ଷ = 𝐷ଷ (2)

ଶ

ିଵ(𝜎ௌ)ିଶ න (√𝑥)ିଶ
ஶ



𝑒ି௫ 𝑑𝑥 . 
(A24) 

Performing another variable change 

𝑎 = 2𝑏 , 
(A25) 
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the integral 𝐼ଷ can be rewritten as 

𝐼ଷ = 𝐷ଷ (2)ିଵ(𝜎ௌ)ଶିଶ න (√𝑥)ଶିଶ
ஶ



𝑒ି௫ 𝑑𝑥 =  𝐷ଷ (2)ିଵ(𝜎ௌ)ଶିଶ න 𝑥ିଵ
ஶ



𝑒ି௫ 𝑑𝑥 . 
(A26) 

Using the gamma function shown in Equation (A10) 

𝐼ଷ = 𝐷ଷ (2)ିଵ(𝜎ௌ)ଶିଶ 𝛤(𝑏) . 
(A27) 

Returning from variable change 

𝐼ଷ = 𝐷ଷ (2)

ଶ

ିଵ(𝜎ௌ)ିଶ 𝛤 ቀ
𝑎

2
ቁ = 𝐷ଷ (2)


ଶ (𝜎ௌ) 𝛤 ቀ

𝑚

2
+ 1ቁ . 

(A28) 

Adding all solved integrals together 

𝐼 = 𝐷ଵ (𝜎ௌ 𝑄)𝛤(𝑚 + 1) + 𝐷ଶ (2)

ଶ (𝜎ௌ 𝑅) 𝛤 ቀ

𝑚

2
+ 1ቁ + 𝐷ଷ (2)


ଶ (𝜎ௌ) 𝛤 ቀ

𝑚

2
+ 1ቁ . 

(A29) 

Simplifying the equation 

𝐼 = 𝜎ௌ
 ቂ𝐷ଵ 𝑄  𝛤(𝑚 + 1) + ൫√2൯


 𝛤 ቀ

𝑚

2
+ 1ቁ (𝐷ଶ |𝑅|) + 𝐷ଷቃ . 

(A30) 

Substituting the integral into Equation (A1), the Dirlik damage at a time interval T can 

be determined as 

𝐷 =
𝜈 𝑇

𝐾
𝜎ௌ

 ቂ𝐷ଵ 𝑄 𝛤(𝑚 + 1) + ൫√2൯


 𝛤 ቀ
𝑚

2
+ 1ቁ (𝐷ଶ|𝑅| + 𝐷ଷ)ቃ . 

(A31) 
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APPENDIX 2  

MATLAB ROUTINE FOR LIFE ESTIMATION BASED 

ON THE TIME DOMAIN METHOD 

clc 
clear 
close all 
  
% T = SIGNAL ACQUISITION WINDOW TIME 
% RMS_sigmap = RMS VALUE OF NORMAL STRESS COMPONENT 
% RMS_taup = RMS VALUE OF SHEAR STRESS COMPONENT 
% ro = CORRELATION COEFFICIENT BETWEEN SIGMA AND TAU STRESS HISTORIES 
% BANDA = SPECTRAL BANDWIDTH OF SIGNALS SIGNAL CENTRAL FREQUENCY 
% PT_PERIODO = NUMBER OF POINTS PER PERIOD 
% Fmin = LOWER LIMIT OF SIGNAL FREQUENCY BAND 
% Fmax = UPPER LIMIT OF SIGNAL FREQUENCY BAND 
% TAMANHO = SPECTRUM SIZE 
% PERCENTUAL = PERCENTAGE OF SPECTRUM OVERLAY FOR ESTIMATE WELCH PERIODOGRAM  
  
%MATERIAL 
k = 5.988; 
C = 3.216E21; 
  
% SAMPLING TIME SETTING  
PT_PERIODO = 2; 
  
Fmin1 = 2; 
Fmax1 = 4; 
G1 = 2500 
RMS_1 = sqrt(G1*(Fmax1-Fmin1)); 
  
Fmin2 = 20; 
Fmax2 = 22; 
G2 = 1000; 
RMS_2 =sqrt(G2*(Fmax2-Fmin2)); 
  
%DEFINITION OF SPECTRUM CHARACTERISTICS 
TAMANHO = 2^19; 
PERCENTUAL = 99; 
  
 F_INF = min(Fmin1, Fmin2); 
F_SUP = max(Fmax1, Fmax2); 
TAXA = F_SUP*2*PT_PERIODO; 
FC = (F_SUP+F_INF)/2; 
BANDA = (F_SUP-F_INF); 
TAXA = F_SUP*2*PT_PERIODO; 
 
SOBRE = round(TAMANHO*PERCENTUAL/100); 
  
T = TAMANHO/TAXA; 
TEMPO = T; 
  
[t,Saa] = FILTRA_SINAL_2(T,RMS_1,RMS_2,Fmin1,Fmax1,Fmin2,Fmax2,TAXA,TAMANHO); 
                         
  
media = mean(Saa) 
desv = std(Saa) 
kurt = kurtosis(Saa) 
  
pd_g = makedist('Normal','mu',media,'sigma',desv); 
  
[c,hist,edges,rmm,idx] = rainflow(Saa/2); 
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[LINHAS, COLUNAS] = size(hist); 
  
for i = 1:LINHAS 
    NSa(i) = sum(hist(i,:)); 
    Sa(i) = (edges(i)+edges(i+1))/2;  
    d(i,1) = (NSa(i)*Sa(i)^k)/C; 
end 
nsa = NSa; 
NSa = NSa/sum(NSa); 
  
figure(1) 
plot(Sa,NSa); 
  
figure(2) 
plot(t,Saa); 
  
figure(3) 
h = histogram(Saa,20) 
U = transpose(h.BinEdges); 
[LINHAS, COLUNAS] = size(U); 
  
for i = 1:LINHAS-1 
    St(i) = (U(i)+U(i+1))/2;  
    y(i) = pdf(pd_g,St(i)); 
end 
  
DELTA_St = St(2)-St(1); 
NSt = h.Values/(sum(h.Values)*DELTA_St); 
  
plot(St,y,St,NSt)  
   
   
V(:,1) = St; 
V(:,2) = y; 
V(:,3) = NSt; 
   
G(:,1) = Sa; 
G(:,2) = NSa/(G(2,1)-G(1,1)); 
  
figure(4) 
bar(G(:,1),G(:,2)) 
  
 [pxx,w]= pwelch(Saa,2048,32,2048,'onesided',1/t(2)); 
        
figure(5); 
bar(w,pxx); 
  
P(:,1) = w; 
P(:,2) = pxx; 
  
Saaa = Saa(10000:30000); 
Dac = sum(d) 
D = Dac/TEMPO 
Tf = 1/(24*3600*D) 

Function [t,Saa] = FILTRA_SINAL_2(T,RMS_1,RMS_2,Fmin1,Fmax1,Fmin2,Fmax2,TAXA,TAMANHO); 

function [t,Z] = FILTRA_SINAL(T,RMS_SINAL1,RMS_SINAL2,Fmin1,Fmax1,Fmin2,Fmax2,TAXA,TAMANHO) 

  
% T = SIGNAL ACQUISITION WINDOW TIME 
% RMS_SINAL = RMS VALUE OF THE SIGNAL TO BE GENERATED 
% Fmin = LOWER LIMIT OF SIGNAL FREQUENCY BAND 
% Fmax = UPPER LIMIT OF SIGNAL FREQUENCY BAND 
%TAXA = SIGNAL ACQUISITION RATE 
% TAMANHO = SPECTRUM SIZE 
% PERCENTUAL = PERCENTAGE OF SPECTRUM OVERLAY FOR WELCH PERIODOGRAM ESTIMATE 
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t = linspace(0,T,TAMANHO); 
  
R = rand(1); 
rng(R); 
X1 = randn(TAMANHO,1); 
Y1 = bandpass(X1,[Fmin1 Fmax1],TAXA,'Steepness',0.9999,'StopbandAttenuation',10); 
  
R = rand(1); 
rng(R); 
X2 = randn(TAMANHO,1); 
Y2 = bandpass(X2,[Fmin2 Fmax2],TAXA,'Steepness',0.9999,'StopbandAttenuation',10); 
 Z = RMS_SINAL2*Y2/std(Y2) + RMS_SINAL1*Y1/std(Y1); 
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Abstract
Stochastic finite element methods are used for structural reliability analysis. The

element properties and parameters in element equations may involve randomness.
One extra dimension is added to the deterministic finite element method to account
for the variability in the parameters. Discretization of the structure can be performed
and the distributed parameters can be modeled as random fields. Different meth-
ods of discretization of the random fields are reviewed in this work. Depending on
the discretization method, and on the particular problem being studied, the element
size will influence the accuracy and numerical stability of the results. A correlation
model is assumed for the random variables that represent the random field in the
discretized problem. The correlation models adopted in this work are the triangular
and the exponential ones. These models depend on specific parameters: the scale of
fluctuation (θ/L) and the correlation length (λ). The type of correlation model and
the value of these parameters also influence the reliability index results. Depending
on the correlation model adopted, a simple error indicator for the reliability index
(β) can be used, by taking, for a specific mesh, the difference between the solution for
two different discretization models, one that is known to overestimate the covariance
matrix, and another that underestimates this matrix. For the numerical example, the
reliability index results showed that both error indicators pointed out to the same
range of values, for the parameter in the discretization model, in which bigger errors
are expected, or in which the reliability index practically does not change. Values
for the correlation model parameter that minimize the differences in the reliability
index, for the various discretization models and meshes, are convenient, because, for
these values, the model would be more robust and less dependent on external factors,
such as the element size of the random field.

Keywords: SFEM - Stochastic Finite Element Methods, random fields, structural reliability, error
estimators.
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1 Stochastic Finite Elements: Introduction

Stochastic Finite Elements are structural models represented by finite elements, the properties of
which involve randomness [Schueller,, 1997]. These properties are parameters or variables in
the element equations. Examples are the stiffness matrix in static analysis, shape imperfection
in buckling analysis, damping and mass properties in structural dynamics. One extra dimension
is added to the deterministic finite element method (FEM) to account for the variability in the
parameters.

Two categories of Stochastic Finite Elements procedures can be distinguished [Schueller,,
1997].The first category is the representation of Stochastic Finite Elements and their global as-
semblage as random structural matrices. Several representations or methods of discretization have
been developed to describe spatial random fluctuations within the element. Some of these repre-
sentations are the midpoint method [Hisada and Nakagiri,, 1985], the nodal point method [Hisada
and Nakagiri,, 1981], the interpolation method [Liu et al.,, 1986], the local average method [Van-
marcke and Grigoriu,, 1983] and the weighted integral method [Takada,, 1990, Deodatis,, 1991].
As a tendency [Schueller,, 1997], the mid-point methods leads to an overestimation of the variance
of the response, the local average method to an underestimation and the weighted integral method
leads to the most accurate results. The random field may also be discretized by expansion into a
series using basis random variables [Lawrence,, 1986], Karhunen-Loeve expansion [Ghanem and
Spanos,, 1991, Spanos and Ghanem,, 1988], or Neumann expansion [Spanos and Ghanem,, 1988,
Shinozuka and Deodatis,, 1988]. The discretization of the random field can be different from the
geometric discretization of the deterministic FEM. Depending on the discretization method, and
on the particular problem being studied, the element size will influence the accuracy and might
lead to singular matrices and numerical instability of the results.

The second category is the evaluation of the stochastic response of the Finite Elements model
due to its randomness. The most widely used procedure [Schueller,, 1997] for evaluating the
stochastic response is the perturbation approach [Hisada and Nakagiri,, 1985, Liu et al.,, 1986,
Haldar,, 1997]. It is well adapted to the finite element formulation and capable to evaluate first
and second moment properties of the response in an efficient manner, for small deviation from the
center value. For an accurate reliability assessment, importance sampling and the response surface
method might be employed, where the perturbation procedure might be utilized to estimate the
response in the neighborhood of some specified center value (design point). Perturbation algorithm
is used in this way for the establishment of the sampling distribution in an adaptive procedure.

2 Random Field Discretization Aspects: Introduction

The choice of the random field discretization and of the solution refinement approaches depend
on various aspects.The first aspect is what is the problem to be solved and what stochastic finite
element formulation will be used. Section 4 describes some existing formulations. The choice
will have to consider if the problem is linear or nonlinear, if it is static or time-dependent, if it has
or not a closed-form solution, what are the random fields to be considered, if some hypothesis can
be done, like assuming Gaussian variables or assuming known covariances or assuming known
moments of the distributions. The choice of the formulation may depend also on what information
is wanted as a response of the system, and on the available CPU-time to solve the problem.

The second aspect is what kind of discretization will be done for the random fields and to what
extent mesh refinement can be done. Section 3 describes some representations of random fields
and some existing discretization methods. Depending on the stochastic finite element formulation
being used, discretization may be intrinsic to the method, like when using numerical integration.
Depending on the assumed or known types of random variables, certain types of discretization may
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fit better, or give more accurate results, or demand less CPU-time. Depending on the discretization
method adopted, some parameters may be influent in the problem, like the correlation length, or
give rise to numerical instabilities, leading to upper and lower bounds for the mesh element size.

A third aspect that may be considered is the influence of the random fields in the response of
the system. A sensitivity analysis may be performed [Mahadevan and Haldar,, 1991, Mahadevan,,
1997] to evaluate this influence. Section 5 describes the sensitivity analysis approach. Depending
on the problem, a sensitivity index may be defined so that the relative influence of the various
random fields in the response of the system can be assessed. If this index is very small compared
to the other random fields, the corresponding random field could be approximated by a single
random variable, without much loss in accuracy. Further, if this sensitivity index is very low –
less than a cutoff value, say 0.05 – the stochasticity of the random field could be simply ignored,
and the field treated as a deterministic variable. This sensitivity analysis may be dependent on the
first two aspects, the SFEM formulation and the random field discretization method adopted. If
the assumptions behind a discretization method for one random field are not reasonably satisfied,
results may be inaccurate, and that may include also the sensitivity index. This means that a
decision to disregard a random field could be done based in inaccurate information, and maybe
with a different discretization method this decision would not be made.

3 Representation of Random Fields

3.1 Stochastic discretization

This review of the different discretization procedures follows Matthies [Matthies et al.,, 1997].
In deterministic finite elements, continuous functions are represented by a system of equations
written in terms of a finite set of nodal point parameters. In stochastic finite elements, random
fields or random processes are represented in terms of a set of discrete random variables. Their
statistical properties are expected to depend on the chosen finite element mesh. The discretization
of the random fields may be chosen independently of the one for the deterministic part. The
selection criteria for the mesh of the random fields and of the geometry are different.

3.2 Element size and mesh refinement in random field discretization

The discretization of the random fields depends on three factors [Liu,, 1990]:
The first factor is accuracy. In view of accuracy, the element size is controlled by a parameter,

the correlation length, that describes the rate of fluctuation of the random field. The correlation
length of a random field is a measure of the distance over which the correlation coefficient ap-
proaches a small value. Hence, smaller random field elements should be used if the correlation
length is large. If this correlation length is infinity, the random field is, in fact, a single ran-
dom variable. If the correlation length is small, the element size has to be short enough so that
a good approximation of the random field by the random variable in within the element is ob-
tained. According to Liu, [1990], an element size of one half of the correlation length suffices for
a satisfactory representation of the random field. Another parameter used byHisada and Nakagiri,
[1981] is λu, the largest wave number that cannot be disregarded in the power spectral density
SHH(λ). They concluded that the nodal interval should be taken to be less than 0.25λu. Any of
these parameters provide an upper bound for the distance between two adjacent random variables.

The second factor is the numerical stability of the transformation to the standard normal space.
An excessively fine mesh yields highly correlated random variables. Therefore, the correlation
matrix is nearly singular and, in cases where a transformation to the standard normal space is
required, this may cause numerical difficulties. Hence, this factor provides a lower bound on the
element size. In the local average method [Vanmarcke and Grigoriu,, 1983], it was observed that
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the reduction of the point variance under local averaging was inversely proportional to T , the
averaging interval, for large values of T . This proportionality constant, the scale of fluctuation θ,
is the approximate length over which strong correlation persists in the random field. Element sizes
can be chosen larger than the scale of fluctuation to avoid numerical difficulties.

The third factor is the efficiency of the computational method. A smaller number of basic
variables would require less computation time, especially when partial derivatives of the functions
are to be computed. Thus, the elements should be as large as possible from this viewpoint. Matrix
condensation [Mahadevan,, 1997] can be done to reduce the computational effort in deterministic
analysis as well as in the computation of response sensitivity.

These controlling factors are different from the factor in the selection of the finite element
mesh, which is basically governed, in the static problem, by the gradient in the displacement field.

Der Kiureghian and Ke, [1988] suggested separate meshes for the finite element and for the
random fields. In general, it is appropriate to use a finite element mesh that satisfies the require-
ments based on the displacement gradient and the correlation lengths of all random fields, and
then for each random field choose a mesh that is coincident with or coarser than the finite element
mesh such that the corresponding probability transformation remains stable. In their work, the
influence of the size of the random field elements in the accuracy and stability of the results was
not explored.

Extra difficulties in investigating the effect of element size on the stability and accuracy of the
results may arise due to numerical errors dependent on the solution algorithm or in problems where
no exact solution is available. This is the case in reliability analysis, which does not incorporate
random fields. Hence, there is no exact solution that can be used to check the accuracy of the
analysis for a certain random field mesh, and only comparisons between results of a coarse mesh
and a refined mesh can be done.

An analysis of the error resulting from discretizing random fields in the SFEM was presented
by Spanos and Zeldin, [1997]. This error analysis is performed for the shift invariant subspace
discretization method which encompasses the midpoint method, the interpolation method and the
local averaging method, giving a simple criterion of estimating the accuracy of these random field
discretization schemes. Their work investigates the influence of the random field discretization on
the response variability of the stochastic mechanics problem, deriving an a-posteriori bound for
the response variability.

The kind of discretization method affects the quality and the properties of the representation.
For different random fields in a structural problem, optimal mesh sizes might be different. This
meshes might be different from the mesh of the deterministic problem. And for each random field
this optimal mesh size may also vary depending on the type of discretization method being used.
Upper and lower bounds for the element size for a certain random field may exist and be different
from one discretization method to another.

3.3 Point discretization methods

3.3.1 General

Point discretization methods represent the random field H(x) by its values at one or more points.
The random field evaluated at a certain point is a random variable. At point i the discretized value
is given by

Hi = H(xi) (1)

The mean, the variance and the marginal distribution of the random variable H(xi) correspond to
those of the random field at the point xi. Covariance (matrix) between two points is computed in
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terms of a given autocovariance function CHH(x, y):

CHiHj = CHH(xi, xj) (2)

All point discretization methods have advantages and disadvantages.
The advantages are:

i) the covariance matrix can be easily computed;
ii) the covariance matrix is positive definite;
iii) same distribution function in both the discretized and in the continuous case. Therefore,

there is no restriction of this method to Gaussian random fields only.
The disadvantages are:

i) The mesh size has to be small compared to the correlation length, so that random properties
could be considered as constant within the element;

ii) The shape and size of all the elements should be the same;
iii) A fine mesh requires much CPU-time. A coarse mesh will not fulfill the accuracy require-

ments. These methods will only fulfill accuracy requirements with coarse meshes for medium to
long correlation distances.

3.3.2 The midpoint method

The value at the center point of the element is used to represent the random field. The coordinates
of the centroid are given in terms of the nodal coordinates x(i)j of the ith element:

x∗i =
1

N

N∑
j=1

x(i)j (3)

where N denotes the number of nodes of the element. The midpoint method tends to over-represent
the variability of the random field within each element.

3.3.3 The nodal point method

In this method, the coordinates of the points used to represent the random field are given by

x∗i = xi (4)

where xi denotes the coordinate vector of the ith global node.

3.3.4 The integration point method

If numerical integration is applied to the problem, then the random field is implicitly discretized
by means of the integration points. This discretization is not done in the first step, but when inte-
gration is needed. An example is the evaluation of covariances and correlations when using local
averages. The coordinates of the points depend on the rules of the integration scheme adopted. A
common scheme is the Gauss quadrature. Also, this method has been used directly by Brenner,
[1993].

3.4 The local averaging method

The local averaging method [Vanmarcke and Grigoriu,, 1983] provides discretized values of the
random field given by

Hi =
1

vol(Ωi)

∫
Ωi

H(x)dx (5)
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where Ωi is the domain over which the integration has to be performed. The domain represents
an averaging time, in the case of a stochastic process, or the area of the ith element in the case of
stochastic finite elements. If only functions of space are involved, the method is called the spatial
averaging method. The spatial averaging method tends to underrepresent the variability within
each element, and yields accurate results even for rather coarse meshes [Der Kiureghian and Ke,,
1988]. This method is practically limited to cases where the field is Gaussian. For other fields, the
distribution function of the random variable Hi is difficult or even impossible to obtain.

3.5 The interpolation method

Liu et al., [1986] suggested an approximation of the random field H(x) by q nodal values using
shape functions Ni(x) by

H(x) =
q∑

i=1

Ni(x)Hi (6)

where Hi are the nodal values of H(x) at suitable nodes xi. The shape functions need not to
be the same from the finite element shape functions. Nodal points need not to coincide with the
ones of finite elements. The expected value and the variance of the random field written with this
discretization are, respectively:

E[H(x)] =
q∑

i=1

Ni(x)E[Hi] (7)

V ar[H(x)] =
q∑

i,j=1

Ni(x)Nj(x)CHH(xi, xj) (8)

where CHH(x, y) is the auto-covariance function of the random field. Depending on the shape
functions, good approximations are to be expected even for coarse meshes and elements of quite
different size. Choosing the nodes to be the centroids of the random field elements and the shape
functions to be unity inside each element and zero elsewhere, reduces the interpolation method to
the midpoint method.

3.6 The Kriging technique

The Kriging technique [Der Kiureghian et al.,, 1991] (optimum linear estimation method) can be
seen as the linear regression of the original random field onto some linear functionals of the field,
usually simple [Ditlevesen,, 1995], which make use of a discretizing mesh different from the one
from the deterministic part. The covariance function of the random field is then employed for an
interpolation. If the stochastic and deterministic meshes become identical, the method reduces to
the weighted integral method Deodatis, [1991]. This method is valid for Gaussian random fields
only, because this is one of the assumptions in linear regression.

3.7 Series expansion method

3.7.1 General

In the above methods the defining parameters of the discretization were linear functionals of the
random field. These methods are convenient if the covariance function of the random field is
known and if the random field itself is Gaussian. If either the random field is not Gaussian (thus,
the random field is modeled as a nonlinear function of a Gaussian field) or the deterministic quan-
tity of interest is a nonlinear function of other random variables (hence, the covariance function is
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not easy to compute), these methods are not directly applicable anymore. Nonlinear methods such
as the homogeneous chaos expansion method [Ghanem and Spanos,, 1991] and the perturbation
method [Hisada and Nakagiri,, 1985, Liu et al.,, 1986] may be used in this case.

3.7.2 The basis random variable method

Lawrence, [1986, 1987] represents the random field H(x), of which the first and second moment
functions are known, by a series

H(x) =
∞∑
j=1

h0jϕj(x) +
∞∑
i=1

∞∑
j=1

hijeiϕj(x) (9)

where the ϕj(x) are a set of linearly independent and preferably orthogonal deterministic func-
tions satisfying all the kinematic boundary conditions. The statistically independent basis random
variables ei have the properties

E[ei] = 0 for i = 1, 2, · · · , (10)

E[eiej ] = δij (11)

where δij is the Kronecker delta. The series is truncated by using only i = N basis random
variables (necessary to model the properties of the random field), and j =M linearly independent
deterministic functions. Approximating H(x) over the interval [a, b], the coefficients hij can be
determined by a least-square fit of the first and second moments of the truncated random field to
the first and second moments of H(x).

3.7.3 The kernel expansion method

The kernel expansion method, also known as Karhunen-Loeve expansion [Ghanem and Spanos,,
1991, Spanos and Ghanem,, 1988] is a type of spectral representation of the random field H(x, θ)
by

H(x, θ) =
∞∑
i=1

√
λiξi(θ)ϕi(x) (12)

where ξi(θ) denotes a denumerable set of random variables to be determined, λi is some constant
and ϕi(x) are orthonormal deterministic functions which can be related to the covariance kernel
of H(x, θ). The symbol θ denotes an element of the space of random events. After truncating the
series at N terms, the random field is expressed by

H(x, θ) = H(x) +
N∑
i=1

√
λiξi(θ)ϕi(x) (13)

where H(x) is the expected value of the random field and λi and ϕi(x) are the eigenvalues and
eigenfunctions of the covariance kernel, respectively, obtained as the solutions to the eigenvalue
problem: ∫

Ω
C(x1, x2)ϕi(x2)dx2 = λiϕi(x1) (14)

whereC(x1, x2) is the auto-covariance function of the stochastic field. The random variables ξi(θ)
have properties similar to those of the basis random variables:

E[ξi(θ)] = 0 (15)

E[ξi(θ)ξj(θ)] = δij (16)
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This expansion minimizes the mean-square error introduced by the truncation. For a decreasing
correlation length the number of terms has to grow for a certain required accuracy Ghanem and
Spanos, [1991], Spanos and Ghanem, [1988]. If the covariance function of the field to be ex-
panded is not known another kind of spectral representation can be done, the homogeneous chaos
expansion Ghanem and Red-Horse, [1999], Ghanem, [1999].

3.7.4 The homogeneous chaos expansion method

In this method the solution field can be expressed as

u = h[ξi(θ), x], (17)

where u denotes the solution field and h[. ] is a nonlinear functional of its arguments. First, the
random fields are replaced by their corresponding Karhunen-Loeve expansions. Next, a nonlinear
expansion of h[. ] is done using the set of all orthogonal polynomials Γp not exceeding order p,
called the polynomial chaos of order p, in terms of a set of orthogonal, uncorrelated, Gaussian
random variables {ξi(θ)}∞i=1. Assuming symmetry of the polynomials, which is always possible
[Ghanem and Spanos,, 1991], the random variables ξ(θ) of the random field, whose statistical
properties are not known, can be expressed as

χ(θ) = a0Γ0 +

∞∑
i1=1

ai1Γ1(ξi1(θ)) +

∞∑
i1=1

i1∑
i2=1

ai1i2Γ2(ξi1(θ), ξi2(θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(ξi1(θ), ξi2(θ), ξi3(θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ai1i2i3i4Γ4(ξi1(θ), ξi2(θ), ξi3(θ), ξi4(θ)) + · · · (18)

where Γp are successive polynomial chaoses of their arguments and ai1,··· ,ip are the deterministic
constants. The random variable series, truncating after the J th polynomial reads

χ(θ) =
J∑

i1=1

κiΨi[{ξr}] (19)

where κi and Ψi[{ξr}] are identical to ai1,··· ,ip and Γp(ξi1 , · · · , ξip), respectively. A computational
implementation of the method uses a finite set of random variables, the n-dimensional polynomial
chaos of order p, which is a subset out of the polynomial chaos of order p, function of only n of the
random variables ξi. The convergence properties of the representation depend on the choice of the
ξi out of the infinite set as well as on the number of random variables. This expansion is restricted
to multidimensional functions of Gaussian variables. For non-Gaussian fields, an approximation
via the polynomial chaos could be used.
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3.7.5 The perturbation method

A Taylor series representation [Ghanem and Spanos,, 1991] of a random field H(x) about the
mean value of the m random variables {hi(x)}mi=1 yields

H(x) = g(h1(x), · · · , hm(x))

= g(h1(x), · · · , hm(x)) +
m∑
i=1

∂g(h1(x), · · · , hm(x))
∂hi(x)

[hi(x)− hi(x)]

+
m∑
i=1

m∑
j=1

∂2g(h1(x), · · · , hm(x))
∂hi(x)∂hj(x)

[hi(x)− hi(x)][hj(x)− hj(x)] + · · ·

= g +
m∑
i=1

giϵi +
m∑
i=1

m∑
j=1

gijϵiϵj + · · · (20)

Evaluating all random fields and functions involved in the equation leads to a multidimensional
polynomial in ϵ. Equating polynomials of the same order on both sides yields a set of equations
to be solved. This method is well suited for small fluctuations (in comparison with the mean
value), in which a first-order perturbation analysis show good results. Second-order perturbation
analysis improves first-order results only little and may require a huge amount of CPU-time. The
perturbation method requires many terms for representing random fields with a large coefficient
of variation. But the use of higher order terms of the expansion may induce numerical rounding
error even for small coefficients of variation, affecting the accuracy of the representation [Ghanem
and Spanos,, 1991].

4 Stochastic Finite Element Formulations

This review of the different Stochastic finite element formulations follows Matthies et al., [1997].
The general matrix form of the equation of motion is

Mv̈(t) + Cv̇(t) + Kv(t) = f(t) (21)

with proper initial conditions. The matrices K, C and M and the force vector f may involve
randomness. In the case of static problems, this equation reduces to

Kv = f (22)

The stiffness matrix can be split into two parts, the non-fluctuating part K0 and the fluctuating part
K∗. To solve the static problem, several methods were proposed, as follows.

4.1 Stochastic global stiffness matrix expansions

4.1.1 The weighted integral method

The weighted integral method [Takada,, 1990, Deodatis,, 1991] does not require a separate dis-
cretization of the random field. There is no independent mesh for the stochastic part, but everything
is determined by the chosen mesh for the deterministic part. The stochastic field can be written as

α(x) = α0(x) · [1 + f∗(x)] (23)

where f∗(x) is a zero mean homogeneous isotropic Gaussian field with auto-covariance function
Cff and α0(x) is the mean of the random field at x. The fluctuating part of the element stiffened
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matrix can be written as

K(e)
∗ (i, j) = K(e)

∗,ij = aij

∫
Ωe

xrysztα0(x, y, z)dxdydz (24)

where the weighted integral is a random variable, X(e)
i , and the associate weight aij = ∆K(e) is

a deterministic constant matrix. Polynomial shape functions are used. The number of weighted
integrals Nw depends on the type of element used, which determines the shape function to use.
The random field is projected onto the space spanned by the shape functions. The fluctuating part
for element stiffness matrix is

K(e)
∗ =

Nw∑
i=1

X
(e)
i ∆K(e)

i (25)

and the random global stiffness matrix is

K =

Me∑
e=1

K(e) =

Me∑
e=1

(K(e)
0 +

Nw∑
i=1

X
(e)
i ∆K(e)

i ) (26)

The stochastic part of the stiffness matrix is described in terms of Nw ·Me weighted integrals.
The response statistics can be determined by a first-order Taylor series expansion of the response
vector v about E, where the mean values of the random variables are X(e)

i

v ≈ v0 +
Me∑
e=1

Nw∑
i=1

∂v

∂X
(e)
i

∣∣∣∣
E

(X
(e)
i −X

(e)
i ) (27)

Where ∂v
∂X

(e)
i

∣∣∣∣
E

is obtained by partially differentiating Eq. 22

∂v

∂X
(e)
i

∣∣∣∣
E

= −K−1
0

∂K

∂X
(e)
i

∣∣∣∣
E

v0 (28)

From Eq. 27 the statistics E[v] and Cov[v, v] can be obtained [Matthies et al.,, 1997]. The
major drawback of this method is the first order Taylor series expansion which partially ruins
the improvement in quality of representation of the method. This method yields good results in
the domain of short correlation distances, where the midpoint discretization method fails. For
correlation distance about equal or larger than the geometric size of the problem, both methods
approach each other. If numerical integration is applied, instead of analytical integration, then
there is an implicit discretization done by the integration points used in the quadrature.

4.1.2 The Neumann series expansion

In conjunction with stochastic finite elements, the expansion of the inverse of the stochastic
global stiffness matrix in a Neumann series can be done [Ghanem and Spanos,, 1991, Spanos
and Ghanem,, 1988, Shinozuka and Deodatis,, 1988]. The stochastic static problem Eq.22 can be
written

v = (K0 + K∗)
−1f = (I + K−1

0 K∗)
−1K−1

0 f = (I + J)−1K−1
0 f (29)

The term in parentheses can be expanded in a kind of geometric series, called the Neumann series

K−1 = (K0 + K∗)
−1 = (I − J + J2 − J3 + · · · )K−1

0 =
∞∑
k=0

(−K−1
0 K∗)

kK−1
0 (30)
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This expansion has the advantage that only the non-fluctuating part of the stiffness matrix has to
be inverted and this only once. The response vector is now represented by the series

v = (I − J + J2 − J3 + · · · )v0 = v0 − v1 + v2 − v3 + · · · (31)

This series solution is equivalent to the recursive formula

K0vi = K∗vi−1 i = 1, 2, · · · (32)

Once v0 is obtained from v0 = K−1
0 f, every subsequent vi is determined. Shinozuka and Deo-

datis, [1988] derived analytical formulas for the response variability using first-order Neumann
expansion, v = (I − J)v0. The improved Neumann expansion [Ghanem and Spanos,, 1991] is
obtained when the Karhunen-Loeve expansion is used to represent the stochastic field describing
the randomness of the stiffness matrix and then Neumann series expansion of the response vector
is written. The number of terms included in both Karhunen-Loeve and Neumann expansions will
dictate the cost in CPU-time and the accuracy of the model.

4.1.3 The Taylor series expansion

The perturbation method [Hisada and Nakagiri,, 1985, Liu et al.,, 1986] can be applied on the
stochastic stiffness matrix, where the random field α(x, y, z) = H(x) has to be discretized by a
set of N zero mean random variables {αi}Ni=1, as follows:

K = K0 +
N∑
i=1

KI
iαi +

1

2

N∑
i=1

N∑
j=1

KII
ij αiαj + · · · (33)

where K0 is the stiffness matrix evaluated at the mean value of the vector of random variables

α = 0, KI
i = ∂K

∂αi

∣∣∣∣
α=0

, KII
ij = ∂2K

∂αi∂αj

∣∣∣∣
α=0

and so on. This method can be applied to static

and dynamic problems, linear and nonlinear. The response vector v and the external force vector
f can be expanded in a similar way as the stiffness matrix [Matthies et al.,, 1997]. In comparison
with the Neumann series expansion, the Taylor series expansion has the severe disadvantage that
partial derivatives with respect to the random variables are required. Computational effort increase
dramatically when including higher-order terms. The results are in general quite satisfying for
small coefficients of variation of the underlying stochastic fields, using just first- and second-order
perturbation methods. For a wider range of fluctuations, a successive perturbation method [Hisada
and Nakagiri,, 1985] can be applied.

4.2 Monte-Carlo simulation

Monte Carlo simulation (MCS) can be used to generate samples of the global stiffness matrix and,
hence, by solving the linear equation system, samples of the response can be obtained. As the gen-
eration of random variables according to a specific distribution is an easy task in the uncorrelated
space, usually the covariance matrix of all random variables involved in the problem has to be
calculated [Matthies et al.,, 1997]. Integrals have to be performed to compute the covariance ma-
trix between two element stiffness matrix entries, with extensive need of computational time even
for small problems. The number of random variables has to be decreased by one of the methods
in Section 3, which involve a point discretization, or by the weighted integral method in Section
4.1.1. In this case, as the integrations would only be performed numerically, this method will also
involve a point discretization. The total number of random variables involved in a stochastic prob-
lem is at most equal to the total number of different integration points used. The distance between
two integration points has to be less than the upper bound discussed in Section 3.1.
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4.3 Implicit time integration with Hermite-Gauss quadrature

This method was developed by Liu et al., [1986] and applied to a stochastic finite element system
described by Eq. 21, where M and f(t) are deterministic, C = 0, and K is a stochastic stiffness
matrix involving a set of random variables {αi}Ni=1. The system is solved using a finite difference
recursive algorithm. Numerical integrations have to be performed at every time step. Accuracy
and the need of CPU-time are determined by the number of integration points used and also by the
observation time.

4.4 SFEM using the homogeneous chaos expansion

Homogeneous chaos expansion can be applied to stochastic finite elements [Ghanem and Spanos,,
1991]. In Eq. 22, the Karhunen-Loeve expansion is used to represent the random field involved in
the global stiffness matrix. The Karhunen-Loeve expansion is then applied to the solution vector
v. As the covariance Cvv of the response is not known, the homogeneous chaos expansion is
applied to the random variables χj describing the response v. Multiplying the obtained equation
by all the polynomial chaoses and requiring the mean-square representation error to be minimal
leads to an equation that, after imposing the kinematic boundary conditions will supply a set of
algebraic equations to be solved for the coefficients of the polynomial chaoses. Properties of these
chaoses, nominally, the zero mean and the orthogonality, are then used to evaluate the mean and
the covariance of the response.

4.5 Basis random variable-based SFEM

Considering a static finite element problem, the involved random functions can be replaced by a
series using basis random variables as described in Section 3.7.2. The first- and second- moments
of these functions are assumed to be known. The vector of random displacement functions v is
expanded as

v = NTd0 +
∑

NTdiei (34)

where Nt is the matrix of deterministic shape functions defined within the boundaries of the respec-
tive element, d0 is the mean nodal displacement vector and the di comprise the second-moment
properties of the nodal displacement vector. In the case of linear elasticity, the material stiffness is
a linear operator represented by the constitutive matrix D in Dϵ = σ. The basis random variable
expression of the matrix D and of the nodal force f give

D = D0 +
∑∑

Dijeiψj (35)

f = f0 +
∑

fiei (36)

where the matrix D0 is the mean constitutive matrix, Dij is a deterministic coefficient matrix,
where the coefficients are defined by the least-squares fit described in Section 3.7.2 and ψj is a
matrix of deterministic shape functions defined over the entire structure. The strain-displacement
relation is ϵ = Bv. The random strain energy density is 1

2ϵ
Tσ = 1

2ϵ
TDϵ. The random strain

energy of the element is the integral of the random strain energy density over the volume of the
element. Integrating over the volume of an element, taking the expected value and differentiating
with respect to the di yields the element stiffness matrix. For the integration, the function matrix
ψj can be evaluated at the center of the element (midpoint method) or at the Gauss points (integra-
tion point method). The assembled finite element equation system is similar to the deterministic
system, with an extra set of dimensions, included due to the random character of the problem. The
global stiffness matrix is sparse and can be solved by an iterative method.
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5 Sensitivity Analysis

The SFEM formulation and the discretization method may require huge computational effort. In
order to ensure efficiency of the computations, without loss of accuracy, some random fields re-
lated to some of the distributed parameters of the problem may be considered, as an approximation,
as random variables. A sensitivity analysis may be performed [Mahadevan and Haldar,, 1991, Ma-
hadevan,, 1997] to evaluate the influence of the random fields in the response of the system. In the
sensitivity analysis approach, depending on the problem, a sensitivity index may be defined so that
the relative influence of the various random fields in the response of the system can be assessed. If
this index is very small compared to the same index from other random fields, the corresponding
random field could be approximated by a single random variable, without much loss in accuracy of
the response. Further, if this sensitivity index is very low – less than a cutoff value, say 0.05 – the
stochasticity of the random field could be simply ignored, and the field treated as a deterministic
variable. This sensitivity analysis may be dependent on the SFEM formulation and on the random
field discretization method adopted. If the assumptions behind a discretization method for one
random field are not reasonably satisfied, results may be inaccurate, and that may include also the
sensitivity index. This means that a decision to disregard a random field could be done based in
inaccurate information, and maybe with a different discretization method this decision would not
be made.

Sensitivity analysis is not the only guideline to reduce the size of the problem without much
loss in accuracy. The representation of a distributed parameter by a single random variable implies
a perfectly correlated random field, i. e. , a random field with infinite correlation length. Therefore,
if a distributed parameter has a very large correlation length, it may be modeled as a random
variable, despite its having a high sensitivity index.

6 Error Indicators For the Random Field Discretization in Reliability Structural
Analysis

The previous sections review the existing stochastic finite element formulations, the discretization
methods proposed up to now and some aspects already discussed in the literature concerning
element sizes and mesh refinement.

Discretization has to be addressed even for the SFEM methods that does not require it explic-
itly if numerical integration is to be performed.

Upper and lower bounds of the error exist only for certain discretization methods. They were
obtained in the context of some specific problems, like static formulation (structures) or reliability
analysis, and they may be problem-specific.

Error estimates that could lead to an adaptive remeshing of the random field exist only for the
shift invariant subspace discretization method, which uses an spectral approach.

Depending on the discretization method, and on the particular problem being studied, the
element size will influence the accuracy and numerical stability of the results. A correlation model
is assumed for the random variables that represent the random field in the discretized problem. The
correlation models adopted in this work are the triangular and the exponential ones. These models
depend on specific parameters: the scale of fluctuation (θ/L) and the correlation length (λ). The
type of correlation model and the value of these parameters also influence the reliability index
results.

Two different error indicators for the reliability index (β) are proposed in this work. These
error indicators can be useful to evaluate the influence of the random field discretization model and
mesh for stochastic finite element methods (SFEM) as applied to structural reliability analysis.
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1. Depending on the correlation model adopted, a simple error indicator for the reliability
index (β) can be used, by taking, for a specific mesh, the difference between the solution
for two different discretization models, one that is known to overestimate the covariance
matrix, and another that underestimates this matrix. In this work, the methods used to over-
and under-estimate the covariance matrix are the midpoint method and the local average
method, respectively.

2. Another error indicator can be easily established by taking differences between two dif-
ferent random field meshes, for the same deterministic finite element mesh and the same
discretization model.

It has to be pointed out that it is necessary to first change some characteristic of the discretization
of the problem and then compare the solutions for the reliability index for both cases. In the
above error indicators, either the random field discretization model is changed, or the mesh is
refined. If Monte Carlo Simulation (MCS) for correlated variables were performed for a certain
discretization model / mesh, it will give the same results as in FORM method 1, because to
perform the correlated MCS, it is necessary to get the same set of uncorrelated reduced normal
variables Y as in FORM . This means that MCS will be simulating the very same limit state
equation then FORM , and the results for the reliability index will be the same. This means that
the comparison between FORM and MCS does not give any other error indicator that could be
used.

7 Numerical Example

A numerical example is performed to compare the two error indicator approaches. This example
is presented in Mahadevan and Haldar, [1991]. A cantilever beam made of structural steel, with
Young’s modulus E and moment of inertia I , has a uniform load W acting on it vertically down-
ward. For this example, the beam is discretized in one, two and four elements. The discretization
in four elements is shown if Fig. 1.

w

4 ft 4 ft 4 ft 4 ft

Figure 1: Numerical example: cantilever beam. Figure shows discretization with 4
elements: W1, W2, W3 & W4 - adapted from Jorge, [2004]

7.1 SFEM random field discretization for the beam

7.1.1 Beam considered as one element only

Assuming all parameters are deterministic, the solution for the vertical deflection at the free end
of the beam is ymax = WL4

8EI . The finite element solution for one element gives also the exact solu-
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Table 1: Reliability analysis of cantilever beam: W,E and I as random variables -
adapted from Jorge, [2004]
Quantity Units Sensitivity Index Initial Checking point Final checking point

W k/in -1.0000 0.040 0.048
E ksi 0.0000 29000.000 28396.361
I in4 0.0002 301.000 296.678

β=1.053
Number of iterations = 3

tion. This means that no improvement in the deterministic solution is obtained while subsequently
discretizing the beam. When considering the stochasticity off these parameters, the difference in
the reliability index results for the various random field meshes of for the different discretization
models is not affected by the deterministic FEM mesh. Any changes in the solution can be related
to the discretization of the random fields only.

The limit state considered is that the vertical deflection at the free end of the beam is less or
equal then length/200, with length in inches. Considering W , E and I as random variables, the
limit state equation is

g = R− S = EI(yadm − ymax) = EI
L

200
− WL4

8
(37)

Assuming the statistical description of the basic variables as

W ∼ N(0.04
K

in
; 0.008

K

in
)

E ∼ N(29000ksi; 1740ksi)

I ∼ N(301in3; 15.05in3)

A reliability analysis FORM Method 1 is performed as in Haldar and Mahadevan, [2000]. The
results are shown in Table 1.

The sensitivity indexes in Table 1 indicated that the random variables E and I could be con-
sidered as deterministic in Eq. 37. Reliability analysis results are, in this case:

Checking point: W = 0.049K
in

β = 1.166
Iterations: 2

7.1.2 Beam discretized in two elements

The parameters W , E and I are now random fields. Let’s assume E and I as deterministic
parameters. Let’s assume that the random fieldW has normal distribution at every point with same
mean, but different variance as a function of the longitudinal coordinate x, for 0 ≤ x ≤ L. Let’s
consider a linear variation of the coefficient of variation (δ) with respect to x: δ = 0.048+ x

L0.024
so that its average is δ = 0.06, which is the value that was used when considering W as a random
variable, previously.

The random field W is then discretized into two elements, W1 and W2, while parameters E
and I are considered as deterministic. A closed form for the vertical deflection at the free end of
the beam ymax can be obtained in terms of W1 and W2, so that limit state equation can be written
as

g = R− S = EI(yadm − ymax) = EI
L

200
− L4

6144
(112W1 + 656W2) (38)
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where the random variables W1 and W2 are correlated. A reliability analysis with correlated
variables is performed by rewriting the limit state equation with respect o a set of uncorrelated
reduced normal variables Y and then using FORM Method 1 [Haldar and Mahadevan,, 2000].

At this point, a model for the correlation of the random variables W1 and W2 has to be as-
sumed. The model expresses the decay of the variance function with the distance between two
points. Two models are used in this work: the triangular and the exponential [Mahadevan and
Haldar,, 1991].

In the triangular model, the approximation for the decay of the variance function is given by

γx(T ) = 1− T

3θx
, T < θx

γx(T ) =
θx
T
(1− θx

3T
), T > θx (39)

where γx(T ) is the variance function of the random field X , θx is the scale of fluctuation, and
T is the distance. Using this approximation, the correlation coefficient between two discretized
random variables in the ith and jth elements may be expressed as

ρ(xi, xj) =
1

2

{
(k − 1)2γx

[
(k − 1)L

N

]
− 2k2γx

[
kL

N

]
+ (k + 1)2γx

[
(k + 1)L

N

] }
(40)

in which k = |i− j|.
In the exponential model, the correlation coefficient between any two random variablesEi and

Ej obtained by the discretization of E is computed using

ρ(Ei, Ej) = exp

[
−

(
∆x

λxL

)2
]

(41)

where ∆x is the difference between the x coordinates of the midpoints of the elements i and j on
the random field discretization and λxL is the correlation length. λx is a dimensionless constant
that characterizes the length over which the autocorrelation function decays to a pre specified
value.

For each of these correlation functions, two random field discretization models are performed:
the midpoint method and the local average method. In the midpoint method, the correlation func-
tion is obtained directly from each of the correlation models Equations 40 and 41. In the local
average method, the correlation function is obtained as [Spanos and Zeldin,, 1997]

ρ(xi, xj)
∣∣
ave

=
1

|Ωi||Ωj |

∫
Ωi

∫
Ωj

ρ(xi, xj)dxidxj (42)

7.1.3 Beam discretized in four elements

Random field W is discretized into four elements, W1, W2, W3 and W4, while parameters E and
I are considered as deterministic. A closed form for the vertical deflection at the free end of the
beam ymax can be obtained in terms of W1, W2, W3 and W4, so that limit state equation can be
written as

g = R− S = EI(yadm − ymax) = EI
L

200
− L4

6144
(15W1 + 97W2 + 239W3 + 417W4) (43)

where the random variables W1 and W2 are correlated. Similarly to the previous case, a reliability
analysis with correlated variables is performed by rewriting the limit state equation with respect
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o a set of uncorrelated reduced normal variables Y and then using FORM Method 1 [Haldar
and Mahadevan,, 2000]. Triangular and exponential correlation models are performed, using the
midpoint method for the random field discretization.

7.2 Reliability index and error indicator results

Different values are assumed for the parameters θx (scale of fluctuation) and λxL (correlation
length) of the triangular and exponential models, respectively. Figure ?? shows the influence of
the mesh refinement when the random field is discretized using the midpoint method. The results
for the reliability index are plotted for the mesh with two elements and for the mesh with four
elements.

Figure 2: Influence of random field mesh refinement on reliability index for triangu-
lar and exponential correlation models (adapted from Jorge, [2004]).

Figure 3 shows the influence of the random field discretization method for a particular mesh.
The results for the reliability index are plotted for the mesh with two elements for the midpoint
method and for the local average method.

Figure 4 shows the error estimates obtained both from the change in the random field dis-
cretization method (for a particular mesh) and from the mesh refinement (for a particular random
field discretization method). The differences in the reliability index are obtained starting from
the mesh with two elements, with the midpoint method, and either changing the method to local
average (first error indicator) or keeping the midpoint method and refining the mesh (second error
indicator).

For the numerical example performed, the reliability index results for the error in Fig. 4
showed that both error indicators pointed out to the same range of values, for the parameter in the
discretization model, in which bigger errors are expected, or in which the reliability index practi-
cally does not change. Values for the correlation model parameter that minimize the differences
in the reliability index, for the various discretization models and meshes, are convenient, because,
for these values, the model would be more robust and less dependent on external factors, such as
the element size of the random field.

These error indicators are qualitatively comparable. although they do not shoe the same mag-
nitude for the error, they show big errors in the same locations. To locate the range of the pa-
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Figure 3: Influence of random field discretization method on reliability index for
triangular and exponential correlation models (adapted from Jorge, [2004]).

Figure 4: Error estimates (%) obtained by changing the discretization model or by
random field mesh refinement (adapted from Jorge, [2004]).

rameter values in which the error is small, both methods are equivalent. In this case, changing
the discretization method for a coarse mesh can be an option to its refinement. The change from
midpoint method to local average method gives, with less computational effort, the range of values
of the parameters of the correlation model in which this model is more robust with respect to the
random field mesh refinement. There is no need to make random field mesh refinements a−priori
to find the appropriate values for the corresponding parameters.

8 Concluding Remarks

This work reviews the existing stochastic finite element formulations, the discretization methods
proposed up to now and some aspects already discussed in the literature concerning element sizes
and mesh refinement.
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Discretization has to be addressed even for the SFEM methods that does not require it explic-
itly if numerical integration is to be performed.

Upper and lower bounds of the error exist only for certain discretization methods. They were
obtained in the context of some specific problems, like static formulation (structures) or reliability
analysis, and they may be problem-specific.

Error estimators for the reliability index (β) were proposed in which comparisons were done
between two methods of random field discretization (for the same random field mesh) and be-
tween two different random field meshes (for the same random field discretization method). It is
necessary to first change some characteristic of the discretization of the problem and then compare
the solutions for the reliability index for both cases. The comparison between FORM and Monte
Carlo Simulation MCS for correlated variables does not give any other error indicator that could
be used.

The reliability index results for the error showed that both error indicators pointed out to the
same range of values, for the parameter in the discretization model, in which bigger errors are
expected, or in which the reliability index practically does not change. These error indicators
pointed out the values for the correlation model parameter that minimize the differences in the
reliability index, for the various discretization models and meshes. These are the values of the
parameters to be used for the discretization model to be more robust and less dependent on the
chosen model or on the element size of the random field.

Also, as the error indicators were comparable, changing the discretization method for a coarse
mesh can be an option to its refinement. The change from midpoint method to local average
method gives, with less computational effort, the range of values of the parameters of the correla-
tion model in which this model is more robust with respect to the random field mesh refinement.
There is no need to make random field mesh refinements a− priori to find the appropriate values
for the corresponding parameters.

A safer design of a structure could include a study on the correlation parameters based on the
outlined error indicator approaches, and then the evaluation of the lowest value of the reliability
index for the appropriate range of the correlation parameters, which will give the biggest value of
the probability of failure of the structure. The approximation of the random field by a system of
random variables gives, using this approach, a conservative value for the reliability index.

9 Perspectives for Future Work in Random Field Discretization

Regarding random field discretization, there are some open fields of study, such as:

• A general study of what SFEM formulations are best adapted to a random field discretiza-
tion;

• A study of what method of random field discretization is well suited to each of the SFEM
formulations;

• A study on error bounds, error estimation and adaptivity for the various methods of random
field discretization;

• A study on computational efficiency of random field discretization methods and remeshing
approaches, including how different random field discretizations may interfere, modify or
interact with the sensitivity index.
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9.1 Perspectives for Application in Aerospace Structures

There are several potential applications of the random field approach discussed herein. A very
good example is the field of aerospace structures, which usually involves demanding design re-
quirements due to the challenging environmental and operational conditions. One interesting prob-
lem that has recently gained increased attention from researchers is the development of reliable
damage identification procedures for structural health monitoring for aerospace structures. This
is an application that involves stochasticity and uncertainties and could certainly benefit from the
topics covered in the present chapter.

As an example, consider the problem of detecting possible damaged areas in a metallic hon-
eycomb sandwich plate, such as the one illustrated in Figure 5 (a). One interesting approach is the
use of variations in the modal strain energy due to the presence of damage in order to detect and
locate regions with possible damage, such as delaminations, manufacturing imperfections due to
flawed curing process, etc. [Domingues, 2019a,b]. The developed method relies on a numerical
description of the stiffnes distribution over the panel and on the modal parameters of the pristine
and potentially damaged panels. A finite element model (FEM) is built in order to generate a
stiffness matrix required for the calculations. Domingues [2019b] developed detailed 3D FEM
models using shell shell elements, as depicted in Figure 5 (b), and also simplified, 2D models
using orthotropic plate elements, as shown in Figure 5 (c). In both cases, numerical models were
adjusted using the results obtained from experimental modal analysis. Figure 5 (d) is a represen-
tation of the 9 candidate regions for damage investigation. It is worth noting that, for the small
30cm by 30cm specimen used in the investigation, even the simplified, 2D model involved over
50,000 degrees of freedom (DOF), whereas the experimental model was based on 49 DOFs from
the measurement points. Therefore calculation of the damage index based on modal strain energy
demands a dynamic condensation procedure.

Figure 6 presents the results of a simulated damage identification for the described reduced
specimen.Damage was simulated as a 1% reduction of the elastic module in each region.The dam-
age index was calculated for all 9 regions for each case of damage. It can be noticed that the
largest calculated index value is clearly well correlated for every damage scenario, even for such
a small level of damage severity, successfully detecting and locating the damaged region. How-
ever, the implementation was based on a completely deterministic approach. It is expected that the
presence of uncertainties from a more realistic application will impact the methodÂ´s ability to
produce reliable results. An interesting possible extension of the method is to represent the strain
energy over the panel as a random field, where each region will have its strain energy described
by a random variable. The variables may be considered, in a first approximation, as uncorrelated,
rendering a diagonal covariance matrix. Different damage scenarios and sources of uncertainties
from both the numerical and the experimental data may result in more complex cases where the
covariance matrix could produce off-diagonal terms.

Jorge, Ariosto B., et al. (2022)Random Field Discretization SFEM:Size&Error Reliability Structural pp. 613-639

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 633



(a)

(d)

(b)

(c)

Figure 5: Models for damage detection in aerospace structures (a) Al-Al honey-
comb panel for aerospace application; (b) detailed 3D FEM model (c) equivalent
orthotropic 2D FEM model (d) Sub-regions for damage interrogation

9.2 Perspectives for Application in Aeronautical Composite Structures

Regarding the subject of random field, there is still a range of application possibilities, mainly in
relation to composite materials applied (or not) in the aeronautical industry. Such materials have a
high strength/weight ratio, however, they have greater complexity in relation to their manufacture
and failure modes.

Figure 7 shows, by way of example, some suggestions and application perspectives related to
the theme. Figure 7a and 7b show optimization studies of isogrid-type structures that are widely
applied in the aerospace sector. As it is known that boundary conditions can present substan-
tial variability, adopting adequate uncertainty models is imperative. Equally important, Figure 7c
shows a structural (multi-objective) optimization study of a composite aircraft wing. Once again,
uncertainties must be considered in the mood to obtain an effective and reliable final component.
Figure Xe also shows a case of structural optimization already in the field of additive manufactur-
ing of unconventional (auxetic) structures with negative Poisson ratio. Similarly, load variations
are also present and must be duly considered.

Figure 7d also provides an example of application in the field of damage identification. This
field is quite susceptible to noise (environmental, sensors, etc.). A field of study within Structural
Health Monitoring concerned sensor optimization. Figures 7f and 7h show examples of sensor
optimization application in aeronautical structures in order to obtain the highest quality of infor-
mation (modal or static) possible. Since data are noisy in in situ works, once again it is necessary
to use uncertainty studies for correct decision making.

Optimization under uncertainty is of paramount importance in the structural field. Figure 7g
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Figure 6: Modal strain energy damage index for honeycomb sandwich panel. Dam-
age in regions (a) 1,(b) 2, (c) 3,(d) 4,(e) 5 ,(f) 6,(g) 7,(h) 8,(i) 9

shows an application perspective in optimizing the manufacture of composites with interrupt layers
or simply drop-off ply.

Still on the subject of damage and vibration data, Figures 7i and 7j show two different perspec-
tives of application in methods that make use of signal processing techniques. Signal processing
techniques (e.g.: wavelet, short-term Fourier transform, etc.) are vital in order to extract the great-
est quantity and/or quality of information hidden in a given signal. The effectiveness of a given
technique directly depends on the clarity of a signal. Therefore, properly treating a vibration signal
is very important in order to obtain a robust and effective method of detecting, classifying and/or
identifying damage.
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(a) Isogrid optimization (Francisco, [2021]) (b) Isogrid optimization (Pereira, [2022])

(c) Aircraft wing optimization (Ricco,
[2021])

(d) Crack and delamination identification (de
Assis, [2021])

(e) Auxetic structure optimization (f) Sensor placement optimization (Pereira,
[2022])

(g) Ply drop-off optimization (Diniz, [2022]) (h) Sensor Placement Optimization (Gomes,
[2020])

(i) Wavelet Based Damage Identification
(Oliver, [2022])

Figure 7: Some examples in aeronautical composite structures.
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Chaves, João Artur Souza and Cunha Jr, Sebastião Simões and Gomes, Guilherme Ferreira.
Multi-objective sensor placement optimization of helicopter rotor blade based on Feature Se-
lection, Mechanical Systems and Signal Processing, 180, 2022.

Francisco, Matheus Brendon and Pereira, João Luiz Junho and Oliver, Guilherme Antonio and da
Silva, Fernando Helton Sanches and da Cunha Jr, Sebastiao Simoes and Gomes, Guilherme Fer-
reira. Multiobjective design optimization of CFRP isogrid tubes using sunflower optimization
based on metamodel, Computers & Structures, 249, 2021.

Ricco, Juan Tamassia and Coimbra, Rogerio Frauendorf Faria and Gomes, Guilherme Ferreira.
DMultiobjective optimization of the LASER aircraft wingâs composite structural design, Air-
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Abstract 

 This chapter presents an overview of computational models and formulations, a 

description of some error estimators in Boundary Element Methods (BEM) and in 

Finite Element Methods (FEM), and some perspectives of the use of these error 

estimators in Bayesian approaches for Model Validation. 

Keywords: Error Estimators, Finite Element Methods, Boundary Element Methods, 

Bayesian Approaches, Model Validation. 

1 Introduction 

Modeling and simulation is an important field in engineering and has been the object of 

relevant research and publications. To illustrate, a non-exhaustive list and overview of 

related research work in modeling, simulation, applications, etc. in this area may include, 

among others, (Chong et al., 2004) (Oberkampf & Trucano, 2002) (Oberkampf et al., 

2004) (Oberkampf & Trucano, 2006) (Oberkampf & Trucano, 2008) (Oberkampf, 

2009)(R. G. Hills & Trucano, 1999) (R. G. U. Y. Hills & Trucano, 2002) (Easterling, 

1998) (Sokolowski & Banks, 2010) (Kerns et al., 1992) (Oberkampf & Barone, 2006) 

(Roy & Oberkampf, 2010) (Oberkampf & Roy, 2010) (Swiler et al., 2017) (Inman et al., 

2005). 

This chapter presents an overview of computational models and formulations, a 

description of some error estimators in Boundary Element Methods (BEM) and in Finite 

Element Methods (FEM), and some perspectives of the use of these error estimators in 

Bayesian approaches for Model Validation. 
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Section 2 presents an overview of modeling of physical systems. 

Section 3 discusses some error estimators in computational / numerical methods, with 

focus in error estimators for Finite Element Methods (FEM) and for Boundary Element 

Methods (BEM). 

Section 4 discusses some aspects on model validation under uncertainty, with focus on a 

consistent error estimation strategy for model validation and on combining error 

estimators and Bayesian hypothesis testing in a model validation procedure. 

Section 5 discusses some perspectives for the use of Validation Techniques in FEM 

Condensation Models, and also some perspectives for aeronautical structures 

applications, such as modeling of structural damage detection/localization problems and 

modeling of damage detection/identification problems in structural fasteners / joints. 

Section 6 presents some concluding remarks. 

2 Modeling of Physical Systems: Overview 

This overview of the different mathematical models of physical systems and numerical 

formulations used in engineering problems follows (Basu, 2002) (Basu et al., 2003), 

(Basu, 2007), (Basu & Jorge, 2009). Current state of affairs and future of modeling and 

simulation in engineering design is discussed. Various modeling schemes and all the 

associated aspects like multiscale modeling, risk and reliability, multi-disciplinary 

modeling and optimization, and the role of digital computers are also discussed. 

2.1 Introduction 

Engineers and scientists routinely use mathematical models for physical systems to 

simulate the real behavior.  Such a model embodies the mathematical interpretation of a 

phenomenon based on well-defined physical laws of nature and is based on some 

conceptual description of the physical problem. Such models are normally ordinary or 

partial differential equations with spatial (in one-, two-, or three-dimensions) and/or 

temporal dependence.   For instance, the mathematical model of a bar under distributed 

axial traction is based on Hooke’s law and the concept of equilibrium of forces acting on 

the body.  For instance in the case of the bar shown in Fig. 1, the one-dimensional 

mathematical model can be shown to be 
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(1) 

Here: A = cross-sectional area of the bar, which may be function of x 

 E = Young’s modulus of bar material                                             

       (Hooke’s Law: σ = Eε, where σ = stress, and ε = strain)  

          ρ = mass density per unit volume 

          c = viscous damping coefficient per unit volume 

          u = displacement of a point in the bar in the positive x-direction 

          b = time and space dependent distributed axial force in the bar 
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Figure 1: axial bar problem - adapted from (Basu & Jorge, 2009) 

By applying the principle of conservation of energy and Fourier law, namely, 
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Figure 2: Two-dimensional heat transfer - adapted from (Basu & Jorge, 2009) 

In Eq. (2): 
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It is only in the simplest (or, trivial) cases a closed form analytical solution of such 

mathematical models is possible. In most real life situations, a theoretical solution of such 

models becomes overly complex, well-nigh impossible.  Complexities may be introduced 

by geometry, material characteristics, external influences, and other physical attributes.  

This calls for the use of discrete numerical methods, which essentially discretize the 

problem domain into small enough sub-regions on which the mathematical model is 

exercised using local attributes in space and time. 

Additional complexities affecting the model and the solution are the presence of 

multiphysics effects – namely, the interaction of electromagnetic, thermal and mechanical 

effects.  At the present time, there is an increased emphasis to depart from traditionally 

deterministic treatment of problems and use stochastic approach instead, accounting for 

the random nature of the problem parameters.  The above possibilities are summarized in 

the block chart shown in Fig. 3. 

 

 

 

 

 

 

Figure 3: Solution of science and engineering problems 

 - adapted from (Basu & Jorge, 2009) 

To successfully compete in this global economy, it is necessary to create safe and reliable 

products which are economic too, by using optimization methods in the design process. 
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Safety evaluation requires consideration of performance under service conditions as well 

as at limit states, when the behavior becomes highly nonlinear. 

2.1.1 Continuum vs. Multi-scale Modeling 

Traditionally, a mathematical model for modeling and simulation treats the problem 

domain as a continuum (or, uses a macro model) both under service conditions and at 

limit states. As the limit state is approached incrementally, the degradation in the 

continuum is reflected approximately in the problem parameters in the average sense by 

the smearing process. In reality, with the progress of the degradation process the response 

traverses through meso-, micro-, and nano-scale resolutions, as seen in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Multi-scale Modeling - adapted from (Basu & Jorge, 2009) 
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In other words, the material behavior is actually controlled by processes on wide range of 

length and time scales. At least in the critical (say, damaged) regions, this calls for 

multiscale modeling of the problem to capture the effect of highly localized behavior on 

problem parameters for  used in the macro scale. Micro-scale modeling requires 

accounting for the local behavior of the material in the presence of damage and then 

coming up with homogenized problem parameters for use in the continuum model. For 

instance, to accurately simulate the deterioration process in complex materials, multiscale 

modeling is very important. Also, in the case of problem of contaminant transport in 

groundwater, it is necessary to use multiscale modeling to capture the effect of highly 

inhomogeneous nature of the substrata.   

The need for using very high resolution (or, nano-scale) will be determined by the nature 

of the problem. Typical examples of such need are in the case of weathering resistance of 

cement mortar reinforced with carbon nanotubes, corrosion resistance of nano-crystalline 

coating on alloys, or material behavior near the interface of two bonded dissimilar 

materials. In nano-scale modeling, continuum physics is no more applicable and one 

needs to resort to molecular dynamics calculations considering the motion of atoms along 

with the application of Newtonian Mechanics to atomic systems. The  results  of  

molecular  dynamics  simulation  can  be  used  to  find material  properties at the 

continuum level by the application of statistical mechanics via Monte Carlo simulations. 

In most cases, however, damage characterization at the micro-scale leads to the desired 

level of accuracy in the predictions at the macro- or continuum scale.   

Apart from multiple spatial scales, many problems in nature involve multiple temporal 

scales. For instance, if we examine the temperature variations experienced by a bridge 

structure, we can notice hourly variations, daily variations, seasonal variations, and 

annual variations. Another example is that of chemical reactions that may take seconds 

or hours. On the other hand, the vibrations of chemical bonds may occur at a time scale 

of femtoseconds (10-15s). In the case of most of such problems, the problems are 

considered at the scale of interest, ignoring the influence of other scales. It is evident from 

Fig. 4 that the smaller the physical scale smaller is the associated time scale. 

2.1.2 Computational Tools 

Far reaching changes in modeling and simulation techniques have been fueled by 

spectacular advances in digital computational technology, which has radically changed 

the way we do engineering. In developing new and more powerful techniques for 

modeling and simulation, the analysts and designers have always played the catch-up 

game with advances in digital technology. Meaningful molecular dynamics simulations 

would not have been possible without the power of today’s massively parallel machines.  

Moore’s law shows that computer speed (FLOPS) and memory increase approximately 

by a factor of 2 per 1.5 years. Consequently, the boundary between the power of personal 

computer and workstation and between network of workstations and powerful 

supercomputer has become blurred. As of June 2009, the No. 1 position as the fastest 

computer in the world with 129,600 processors belonged to IBM’s Roadrunner System 

located at DOE’s Los Alamos National Laboratory, California. It has reached the speed 

of 1.059 petaflops/s (quadrillions of floating point calculations per second) and continues 

to be the only system ever to break the petaflop/s. Linpack barrier. Many of these high 

powered systems consist of PC clusters. As PC is getting more powerful so are the new 

clusters. New PCs with Intel’s Core i7 or AMD’s  Phenom II processor with speed 
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exceeding 3GHz are proving to be significantly more powerful than the high-powered 

workstations of just a few years before. 

2.2 Discrete Numerical Methods 

Discrete numerical methods are being almost exclusively used in the numerical solution 

of mathematical models of the continua expressed as initial and/or boundary value 

problems of differential calculus. The associated partial differential equations are 

formulated in space, either in the Lagrangian reference frame, or Eulerian reference 

frame. 

In the first case, the selected reference points change with the continuum and hence more 

suited for solids; whereas, in the latter case, the selected reference points in the continua 

remain stationary and are more suited for fluids. The finite difference and Ritz type 

methods of the pre-computer era have largely been replaced in the computer era by finite 

element, boundary element, mesh-free, finite volume, and other evolving methods. 

The first two of these methods were available to the general users in the seventies of the 

last century; whereas, the mesh-free methods became known during the early nineties. 

Finite volume method is specially used in fluid dynamics simulation or forms the basis  

of, what is termed as, hydro code. Wavelet and a host of other less known methods have 

appeared in the scene more recently. 

As a matter of fact, all the new developments, in one way or other, involved modifying 

the first three mentioned methods.  In all these methods the problem is reduced into one 

of finding numerical values at a discrete number of points covering the problem domain. 

An essential difference between the boundary element method and other methods is that 

in this method the discrete points need to be selected at the boundary of the domain only; 

whereas, in the remaining methods the points are selected in the volume of the domain. 

For instance, in the case of three-dimensional problems, the boundary is a surface and 

hence the sub-regions selected on this bounding surface are two-dimensional. This fact 

introduces the possibility of higher computational efficiency in the boundary element 

method, especially, when the volume of the problem domain becomes significantly large 

compared to the area of the enclosing surface. In this method, an additional requirement 

is to append the fundamental solution of the problem, which is essentially the 

homogeneous solution of the differential equation due to a source term.  

In the case of mesh-free method, the approximating function is not confined within a sub-

region. For each integration point, it is defined over a predefined region of influence for 

that point. A more recent method, the wavelet method can be viewed as a method in which 

the approximating function is defined using multi-resolution technique based on the use 

of wavelets, similar to those used in signal processing. 

In general, discrete numerical methods involve global discretization in space as well as 

time, coupled with the spatial approximation of the unknown function in terms of its 

values at discrete points within a sub-region, or in the neighborhood of a point of interest, 

and piecewise temporal approximation of the unknown function in terms of values at 

discrete instants of time in a temporal window. 

As the spatial variation of the approximating function is represented by polynomial 

functions, difficulties associated with all the methods in modeling singular behavior is 

avoided in the boundary element method by introducing it through the fundamental 
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solution.  In all other cases, the use of special functions near the singular point becomes 

necessary.   

The ability to predict solution quality through a posteriori analysis and adaptive mesh 

refinement has assumed great importance in recent times and significant efforts are being 

put to advance in this area. 

2.2.1 Finite Element Method (FEM) 

After discretization of the problem domain into finite elements (Fig. 5) and appropriately 

defining the piecewise polynomial approximation over each finite element, a set of linear 

or nonlinear simultaneous equations is arrived at by applying the weighted residual 

method, if differential equations are used or, by applying the stationary condition to the 

functional for the problem, where applicable. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Multi-scale Modeling - adapted from (Basu & Jorge, 2009) 

Sometimes, other approaches, like least squares method, are found to be more 

appropriate. The quality of the resulting approximate solution is controlled by the 

closeness of the finite element model to that represented by the mathematical model.  

Solution can be improved by selective spatial refinement in the case of elliptic problems 

and local refinement in the case of hyperbolic problems, as the present may not affect the 

future. 

In elements bordering a singular point, the polynomial basis can be appended by singular 

terms as shown below (Basu & Shah, 2000). In recent times, some investigators are 

terming it as x-FEM (Chessa & Belytschko, 2004). This is also conceptually similar to 

the, so-called, generalized finite element (Ivo Babuška et al., 2003) in which the choice 

of type of shape function is controlled by the nature of the problem to be solved. 

Quality of the solution obtained can be assessed in a posteriori sense on the basis of the 

extent of violation of natural boundary conditions, and continuity requirements of 

functional derivatives at inter-element boundaries. 

A number of schemes have been proposed to estimate the solution error in different 

norms, as discussed in subsequent sections.  

Discrepancies between raw and improved estimates are accounted for through model 

refinement, with strategies such as h-, p-, hp-, etc, refinements. 
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2.2.2 Boundary Element Method (BEM) 

In the case of boundary-element method (BEM), the governing partial differential 

equations are transformed to a set of integral equations which are numerically solved for 

the unknown boundary variables by discretizing the boundary of the element, as shown 

in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Boundary element method - adapted from (Basu & Jorge, 2009) 

Apart from fewer unknown variables to be handled during the global solution, BEM 

handles singular problems, like those in linear fracture mechanics calculations, quite 

efficiently giving accurate point wise results close to the singular points; whereas, FEM 

gives damped global solution valid in the sense of energy norm. 

Also, BEM is adept in handling problems of half-plane, or far-field problems. FEM is, 

however, better suited to handle complex domains and the presence of material 

nonlinearities. 

In BEM, the system of equations are arrived at through the discretization of an integral 

identity, like Green’s second identity in potential theory, or Somigliana’s stress identity 

in elasticity theory, which is an exact representation of the original boundary-value 

problem. The system of equations in BEM arises from the discretization of integral 

identities, which are an exact representation of the original boundary-value problem. 

A number of different BEM formulations have been proposed, for potential, elastostatics, 

fracture mechanics, acoustics, etc. problems, in 2D and in 3D. One can cite, for example, 

self-regular BEM formulation for potential problems (Jorge, Ribeiro, Cruse, et al., 2001), 

near-crack contour behaviour and extraction of log-singular stress terms of the self-

regular traction boundary integral equation (Jorge, Cruse, & Fisher, 2003), variational 

self-regular traction-BEM formulation (Jorge, Cruse, Fisher, et al., 2003), variational self-

regular flux-BEM formulation (Porto et al., 2005), non-singular BEM algorithms for 

potential problems (Ribeiro et al., 2009). 

2.2.3 Mesh-Free Methods 

In real-life large scale computations, generation, adaptation, and upgrading of finite 

element mesh is the costliest part of computational effort, especially, in situations 

involving crack propagation, penetration, large deformations causing significant mesh 

distortions, complex geometries, advanced materials, material degradation leading to 

discontinuities, etc. 
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In such situations, a group of methods called mesh-free methods may be the answer. In 

such methods, instead of associating the nodal points, to finite or boundary elements, the 

problem domain is covered by a network of nodal points, or, reference points of 

unknowns of the problem, with no fixed connectivity between them, as shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Element-Free Galerkin Method - adapted from (Basu & Jorge, 2009) 

(Duarte, 1995) gives a comprehensive review of this method. The method can be applied 

either as a volume integral scheme, or as a boundary integral scheme. In both cases, the 

weak form of the governing differential equation can be satisfied at selected sampling or 

quadrature points based on weighted nodal values within a predefined sub-domain of 

influence assigned to the sampling point or, alternatively, the collocation method can be 

used. 

The main idea of point collocation approach is to satisfy the governing differential 

equation at each of the nodal points covering the problem domain.  At boundary points, 

as needed, the Dirichlet or Neumann boundary conditions are satisfied instead. 

Depending upon the way the functional approximation is defined for the point of interest, 

a number of methods can be identified. According to the way this functional 

approximated is defined one may follow one of the three schemes – (a) Shepard’s scheme 

(Shepard, 1968) which has a consistency of first order only, (b) Moving Least Squares 

Scheme (Lancaster & Salkauskas, 1981) which generalizes the Shepard’s scheme, and (c) 

Partition of Unity p-version scheme (I. Babuška & Melenk, 1997), which generalizes 

Shepard’s approach to higher consistency orders. A few of the methods based on these 

are: 

(a) Diffuse Element Method (DEM) (Nayroles et al., 1992); 

(b) Element-Free Galerkin Method (EFGM) (Belytschko et al., 1994); 

(c) Natural Element Method (NEM) (Sukumar et al., 1998); 

(d) Material Point Method (MPM) (Sulsky et al., 1995); 

(e) hp-Clouds Method (HPCM) (Armando Duarte & Tinsley Oden, 1996); 

(f) Finite Cloud Method (FCM) (Aluru & Li, 2001); 

(g) Boundary Node Method (BNM) (Xie Mukherjee & Mukherjee, 1997); 

(h) Boundary Cloud Method (BCM) (G. Li & Aluru, 2002), etc. 
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In the moving least squares method (MLS), the best interpolation in terms of nodal values 

is defined in a (moving) weighted least-squares sense. Diffuse element method uses the 

MLS approximation in the context of Galerkin method (Nayroles et al., 1992). 

The EFG method is an extension of DEM (Belytschko et al., 1994). The primary 

differences between the two are that the EFG method (Fig. 7) includes certain extra terms 

in the derivatives of the approximating function that are not present in DEM. In addition, 

the EFG method uses Lagrange multipliers to enforce the essential boundary conditions. 

In the Natural Element Method, natural neighbor interpolants are used to construct the 

trial and test functions. Such a multivariate data interpolation scheme is primarily used in 

data interpolation and modeling of geophysical phenomena (Sukumar et al., 1998). 

In the Material Point Method (MPM) a solid continua is defined in terms of a collection 

of material points (Sulsky et al., 1995). Each material point is contained in a sub-domain 

assigned to it and carries information like mass, volume, velocity, strain, etc. of its sub-

domain. Unlike the regular mesh-free method, MPM has a computational mesh of sub-

domains associated with it. In this method, the material points do not interact with each 

other directly, rather the material point information is interpolated on to the mesh as the 

equation of motion is allowed to march in the time-domain. At any instant of time, the 

information on the new position of the mesh can be translated back onto the material 

points. 

The hp-clouds method (Armando Duarte & Tinsley Oden, 1996) uses partition of unity 

scheme to construct radial basis functions of varying size of supports as circular patches 

(Fig. 8) or spherical volumes attached to each point and with polynomial reproducing 

properties of arbitrary order. The resulting basis functions are used in a Galerkin or 

collocation sense setting up a linear system of equations. The union of patches or volumes 

forms an open covering of the problem domain. 

 

 
(a) Circular patches centered at the nodes (b) A typical patch 

Figure 8: hp-clouds method - adapted from (Basu, 2007) 

The finite cloud method (Aluru & Li, 2001) is a point collocation method based on 

reproducing kernel approximation with inherent multiresolution capability for error 

estimation and adaptivity. The basic idea of reproducing kernel approximation theory is 

to define the approximate function as the convolution of the original function with a 

kernel function, where the kernel function is sometimes called as the weighting function 

or the smoothing function. 
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The boundary node method (Xie Mukherjee & Mukherjee, 1997) is a boundary-only 

mesh-free method which combines MLSM interpolation scheme with the standard 

Boundary Integral Equations for a boundary value problem. Curvilinear boundary co-

ordinates were originally proposed and used in this method for both two- and three-

dimensional problems. 

The boundary cloud method (BCM) was introduced by (G. Li & Aluru, 2002) as an 

improvement of BNM. Further improvements to BCM have also been proposed leading 

to the Extended Boundary Node Method (EBNM). 

Variations of the mesh-free / meshless methods are in constant evolution, and can be used 

as tools for modeling and simulation of challenging problems of the continua, noting that 

they are suitable in multiscale modeling as well as in handling multiphysics problems. 

2.2.4 Finite Volume Method 

This method is an extension of the classical finite difference method. Here also the 

problem space is covered by a mesh of discrete number of points where the unknown 

function is supposed to be determined. 

As a small volume is assumed to surround each such point in the mesh, it is termed as the 

finite volume method. The method is characterized by the conversion of divergence terms 

in the governing partial differential equation to surface integrals. The method is highly 

suited for unstructured meshes and is very popular for computational fluid dynamics 

computations. 

2.2.5 Wavelet Method 

An important aspect of discrete numerical solution of differential equations of the 

continua is the characterization of the variation of the unknown function over a sub-

domain of the problem space. Like Fourier series expansion but without its restrictions, a 

wavelet is based on a series of scaled linear combination of a set of approximating 

functions (Burrus et al., 1998) (Dahmen, 1997) (Cohen et al., 1992) (Cohen & Masson, 

1999). 

Wavelets allow accurate representation of functions with rapid oscillations, or, possibly, 

with discontinuities, in localized regions. Although, initially wavelets found primary 

application in signal and image processing, its unique properties makes it a worthwhile 

candidate for the numerical solution of the partial differential equations of the continua 

having different kinds of irregularities (Basu & Shah, 1998) (Basu et al., 2003). 

Wavelets based discrete numerical method for the solution of such equations may offer 

some unique advantages not available in other established discrete numerical methods, 

like those described above. In these methods, the presence of irregularities (or 

discontinuities) requires proper attention in spatial discretization, and, sometimes, 

requires the use of special approximating functions. But it is expected that the use of 

approximating functions based on wavelets will eliminate or reduce such restrictions. 

In the finite element model, the element boundaries have to be located at the internal 

points of discontinuity. On the other hand, in the mesh-free method, the sub-domain 

boundaries cannot cross the same points. In the case of boundary element method applied 

to two-dimensional problems, similar consideration as in the case of finite element 

method is necessary. In view of positive experiences with wavelets in modeling localized 
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behavior related to signal and image processing, it is expected that traditional modeling 

restrictions in the case of problems of the continua can be relaxed. This is possible 

because this approach is so designed that it adapts itself to the local nature of the problem 

by retaining the finer wavelet components in the vicinity of an irregular point (say, near 

a singular point) whereas, the coarser components are retained in the smooth regions. The 

unknown function can be approximated by a series expansion and Galerkin method can 

be applied to the weighted residual of the equation. The equation expression for the 

unknown variable includes scaling functions, wavelet functions, coefficients, scaling 

parameters, translation. Of the many available scaling functions, two most commonly 

used ones in signal and image processing are the Haar functions, and the Hat functions. 

Hat wavelets are continuous and form orthonormal basis and can be obtained by 

integrating the Haar wavelets with proper scaling. Typical Hat scaling and wavelet 

functions are shown in Fig. 9. 

 

Figure 9: Typical Hat scaling and wavelet functions - adapted from (Basu et al., 2003) 

A recent class of wavelets, known as multiwavelets (Aldroubi & Unser, 1993) (Aldroubi 

& Papadakis, 1998) are able to combine many of the properties of orthogonal wavelets, 

such as the famous Daubechies wavelets (Daubechies, 1988) (Daubechies, 1992) (Cohen 

et al., 1992) with the advantages of piecewise polynomial wavelets (such as the Hat 

wavelet). In particular, in (Donovan et al., 1996), families of orthogonal, smooth 

(continuous, and continuously differentiable), piecewise polynomial multi-wavelets are 

constructed. 

 

 
(a) Hat Basic Scaling Function (b) Hat Wavelet Function – Case 1 

 

 

(c) Hat Wavelet Function – Case 2 (d) Hat Wavelet Function – Case 3 
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2.2.6 Cellular Automata Inspired Modeling of Systems 

In modeling and simulation of complex fluid systems as found in contaminant transport 

process in ground water, in slurry wall construction, in the use of fluid slurry during 

drilling for oil, industrial processes involving thermal variations, particular interactions, 

and colloidal mixtures, it is difficult to capture the mesoscopic features embedded in 

macroscopic phenomena of such fluids by using computational fluid dynamics (CFD). 

In the CFD based continuum model, the macroscopic characteristics of fluids is based on 

Navier-Stokes type equations satisfying conservation of mass, energy, and momentum as 

well as continuity of flow and are discretized in space and time by finite element and 

finite difference methods. 

In the other extreme, one may get most accurate simulation by using molecular dynamics 

requiring numerical solution of a set of ordinary differential equations in time for each 

molecule. While marching along time, the locations and velocities of each molecule are 

updated. The property values for a system of particles are arrived at by averaging in space 

and time the molecular positions and velocities and also by evaluating the moments and 

correlations. 

However, one practical problem is that using even some of the most massively parallel 

computer only a few thousand molecules can be modeled at a time to get the results in 

reasonable time. So, in order to understand interactions between microscopic structure 

and macroscopic flows, it is necessary to use mesoscopic model, which is significantly 

less compute intensive than full blown molecular level modeling. At mesoscale an 

assemblage of fluid molecules termed as particle is used as discrete elements of the model. 

Complex fluids exhibiting significant irregularity at molecular level appear homogeneous 

at the continuum level but exhibit an ordered structure at mesoscopic scale. In recent 

times it has been shown that such characterization can be effectively handled by using 

Lattice-Boltzman method (LBM) and Dissipative Particle method (DPM). The primary 

difference between LBM and DPM is that the latter includes thermal fluctuations but the 

former does not. 

Lattice-Boltzman method (LBM) is essentially an extension of the concepts of cellular 

automata (Wolf-Gladrow, 2000). In 1940, Neuman and Ulam put forward the concepts 

of cellular automata. In this method the problem domain is represented by an array of 

cells. Each cell can be in one of the few possible states. At an instant of time, the state of 

each cell is determined by the prevailing state of the cells in its immediate neighborhood 

as well as its previous state. The process is repeated across all the cells in an array 

repeatedly in successive instants of time. In updating the state of the cells in the array, the 

same rule is applied to all. In other words, the model is homogeneous with respect to the 

rules. Updating of all the cells in the array leads to a new generation. 

Cellular automata are best used to model situations where local interactions are 

predominant. This modeling technique has found applications in many areas of physical 

science, biology, engineering, mathematics, and social science. A popular example is 

lattice gas modeling (LGM). In this model (Frisch et al., 1986) (Chopard & Droz, 1998), 

the fluid ‘particles’ (a conglomerate of large number of molecules but is significantly 

smaller than the length scale of the simulation) are restricted to move on the links of the 

array of cells and the motion evolves in discrete time-steps. 
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LBM resulted from modifications made to LGM by removing the shortcomings. In LBM, 

instead of considering single particle occupation variables, particle distribution functions 

are used, linearization of the collision operator and the use of a single time relaxation 

approximation. As a result of these improvements, it was possible to eliminate statistical 

noise, and achieve enhanced computational efficiency. LBM, similar to LGA, however, 

is restricted to uniform lattice structures (Fig. 10), which severely limits its potential 

application to many practical problems, namely, flow through a porous media, where 

representations of complex pore geometry require a very fine uniform lattice, leading to 

computational inefficiency. 

 

 

Figure 10: Uniform lattice structure for LBM - adapted from (Basu, 2007) 

Least-squares finite element (LSFE) method (Y. Li et al., 2005), on the other hand, was 

recently shown to be a robust and efficient way to solve non-self-adjoint equations where 

convection operators are of first order (Jiang, 2000), always leading to symmetric, 

positive definite linear systems of equations without eliminating the need to use 

upwinding, staggered grids and operator splitting techniques (Ding & Tsang, 2001). 

Compared with Taylor-Galerkin-based FE methods, LSFE method possesses improved 

stability. Furthermore, for more complex systems, Taylor-Galerkin-based FE method 

may promote oscillations at discontinuities (Jiang, 2000) or at solid-liquid interfaces. 

Those oscillations may be suppressed by artificially adding dissipation terms like those 

in 'upwind' and 'artificial vioscosity' schemes, which, however, are dependent on the 

specific parameters of the problem. The model includes a statistical parameter (called as 

distribution function, from which the macroscopic properties of the fluid can be 

extracted), the particle velocity distribution (the nine possible velocity directions are 

shown in Fig. 11), the body force per unit mass, and a collision function. The collision 

operator is commonly approximated by the Bhatnagar-Gross-Krook (BGK) model 

(Bhatnagar et al., 1954). 
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Figure 11: Nine possible directional velocities - adapted from (Basu, 2007) 

An application for flow in a porous media is presented in (Y. Li et al., 2005), in which 

the porous media is considered as a statistical distribution of non-overlapping circular 

disks representing soil particles distributed in a rectangular two-dimensional uniform 

continuum representing the pore space through which a fluid flows. Simulation was 

conducted for randomly generated particle diameters, for both traditional LBM with 

uniform mesh and LSFE-LBM with unstructured mesh. Fig. 12 shows an irregular 

triangular mesh used for LSFE-LBM (Y. Li et al., 2005). 

 

 

Figure 12: LSFE-LBM mesh used in permeability problem - adapted from (Basu, 2007) 

2.2.7 Molecular Dynamics-Based Modeling 

Modern materials, especially the complex composites, have hierarchical property in the 

sense that such materials have constituents which span across different length scales. The 

failure of such materials is controlled by the behavior at different length scales as well as 

the process of property transfer between different length-scales. Composite structures are 
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hierarchical in nature and are made up of substructures distributed across several length 

scales. The present day technology allows detection of single molecules. 

The molecular scale (with nano scale as its subset) is the smallest scale at which modeling 

can be undertaken realistically. Nano-scale modeling has received further boost due to 

the recent advances in the synthesis of high-performance materials (like high performance 

concrete) using nanoscale material constituents. This development will eventually 

remove the knowledge gap on the interplay of molecular characteristics and continuum 

characteristics of engineering materials. 

At nano scale, modeling can be undertaken by applying either the principles of molecular 

mechanics (Tomlinson, 1929) (Kontorova & Frenkel, 1938) or molecular dynamics. In 

molecular mechanics the molecule are treated as rigid balls connected by springs and 

depends strongly on concepts of bonding and involves energy minimization. Molecular 

dynamics involves deriving a set of equations of motion and solving these equations by 

discretization in time. 

The equations of molecular (or atomic) motion are based on Newton’s laws of motion, 

and the use of Lennard-Jones 6-12 Potential (Carey, 1999) (Liu et al., 2006). In other 

words, it shows how the molecules (or, atoms) in a system move with time in the 

nanosecond timescale (say, 10-15s).  

If the coupled behavior of electrons and nucleus are considered, one needs to use complex 

quantum laws, such as Schrodinger equation. But as per Born-Oppenheimer 

approximation, the effect of electrons can be reasonably neglected. Thus, the movement 

of atoms involves the motion of nucleus only, and classical Newton’s laws can be applied. 

As in many practical applications, it is necessary to consider the interaction of nanoscale 

behavior with the macro-scale behavior, multiscale modeling becomes necessary. 

In Molecular Dynamics modeling, it is first necessary to determine the initial 

configuration of molecules (or atoms) through NMR spectroscopy, or X-ray 

crystallography. Initial molecular (or atomic) velocities are then assigned assuming 

random Gaussian distribution with zero mean and determine force F(xi) on individual 

molecule (or atom) (Fig. 13). 

 

Figure 13: molecular velocities and forces - adapted from (Basu, 2007) 

Newton’s second law of motion is then applied to each molecule (or atom). The system 

is now advanced by a small time step during which the molecular forces are assumed to 

remain constant. The time steps may sometimes be of the order of femtosecond (1 fs =10-

15sec). The molecular velocities and forces can now be calculated. In this manner the 

process can be repeated, as the simulation marches along time. 
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A typical plot of the Lennard-Jones potential VLJ is shown in Fig. 14. Here the Lennard-

Jones parameters σ and ε represent the collision diameter (the distance at which VLJ = 0) 

and the distortion energy, respectively. These parameters are different for different 

interacting molecules. As for example, for water molecules, σ=0.316555 nm and 

ε=0.6501696 kJ/ml. The attraction results from induced dipole-dipole moment interaction 

between the particles. 

 

Figure 14: Lennard-Jones potential VLJ - adapted from (Basu, 2007) 

The steps involved in MD simulation are 

1. Initialize values (Choose initial position and velocities of atoms) 

2. Update molecular forces (Calculate forces from positions and potentials) 

3. Set up equations of motion and solve for the selected time step, Δt (Calculate 

positions and velocities after time step Δt) 

4. For t=t+Δt, compute physical quantities of interest (Calculate new forces) 

5. Repeat step 2 onwards till maximum simulation time is reached (As the system 

evolves compute the average quantities of interest, like stresses, strains, pressure, 

volume, temperature, energy, etc.) 

6. Compute the final results. 

In problems of mechanics, the results of MD simulation can be used to compute stresses 

averaged over the N molecules using virial theorem (Tsai, 1979) (Zimmerman et al., 

2004) and therefrom the mechanical properties. 

2.2.8 Multiscale Modeling 

A close examination of modern engineering materials will reveal different characteristics 

at different length scales. The objective of multiscale analysis is to qualify the load 

transfer between different length scales. 

As for example, we can consider the case of laminated composites used in aircraft 

structures. In the macro-scale the property of the laminate as a whole is of interest. The 

next level is individual lamina, which in turn consists of high-strength fibers embedded 

in a lower strength matrix material. As long as the lamina is perfect, that is the fibers are 

straight, parallel, uniformly spaced, continuous (or unbroken), perfectly bonded with the 

matrix material,  and are of uniform diameter and strength, the lamina properties are not 

difficult to define. The problem arises when one or more of these conditions are violated 

requiring further refinement of scale to account for the flaws which often cause 

geometrical singularities in the system. 
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Similar situation exists in the case of high performance concrete used in modern bridge 

structures because of the constituents used in such concrete. In the case of subsurface 

contaminant transport phenomenon, one needs to account for the effect of grossly 

inhomogeneous character and complex material structure of the substrata on the large 

scale flow characteristics through multiscale modeling. So, it is necessary to develop 

methods to define load transfer processes between length scales in deterministic sense 

and in statistical sense for systems with uncertainties. This will allow the definition of 

accurate macro-scale properties reflecting the behavior in finer scale, say, at the 

microstructure scale. 

First, this will involve up scaling of the microscale characteristics to the macroscale 

through homogenization process. Very often engineering materials have a periodic 

microstructure which can be taken advantage of in the multiscaling process. The 

homogenization process enables the computation of average stresses and strains in the 

limit as the size of the periodic cell goes to zero. Next it will involve down scaling of the 

average response at the macroscale to the microscale to predict behavior at the micro scale 

so that damage initiation or propagation can be monitored. 

Apart from multiple spatial scales, multiple temporal scales may also need to be 

considered. For instance, in the case of fatigue and fracture problems, multiple temporal 

scales coexist multiple spatial scales due to the wide difference between the period of a 

single load cycle acting on a structural component, which may be in the order of seconds, 

and the overall design life, which may span years. The multiple spatial scales exist in such 

problems, due to the presence of micro- size cracks or inclusions with respect to the large 

size of a structural component. 

As the behavior of many modern engineering materials is controlled by processes subject 

to wide range of length and time scales, the objective of multiscale modeling is to capture 

relevant physics from all the scales by coupling the computations at different scales. This 

can be undertaken by adopting one of the following two schemes. 

a) Hierarchic (or sequential) scheme: Undertake separate simulations at each 

selected scale passing on the results to the neighboring scale – this can happen 

from coarse to fine scale, or vice versa (Fig. 15). In this approach the 

computational simulations are undertaken at one scale and quantities that can be 

used to define parameters of the model applicable on a longer scale are extracted. 

b) Undertake simultaneous coupled simulations with different scale resolutions in 

different regions of the problem domain (or discrete patches covering it), as 

needed. The patches are overlapped at the boundaries with each other applying 

the boundary values of one patch as the boundary condition of the other patch and 

vice-versa. This approach is considered to be more efficient. 
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Figure 15: Hierarchic Scheme for Mechanics Problems - adapted from (Basu, 2007) 

In analyzing heterogeneous medium, the mathematical homogenization theory 

(Bensoussan et al., 1979) (Sanchez-Palencia & Zaoui, 1985) has normally been used. The 

hierarchic scheme uses the assumption of microstructural periodicity and uniformity of 

macroscopic field within a unit cell domain, and the homogenization process decomposes 

the heterogeneous medium problem into the cell problem in the micro scale, and the 

continuum problem in the macro scale (Aboudi, 1991) (Aboudi, 1996). As shown in Fig. 

18, the computational steps at an instant of time consist of 

• Identification the representative volume element (RVE) and discretization into a 

regular grid of cells. 

• Calculation of the cell problem 

• Determination of the homogenized material properties 

• Calculation of the continuum problem 

• Evaluation of the results in the micro-scale 

• Repetition of the above steps till convergence 

In the case of composites, the constitutive properties of the matrix material, tye fibers, 

and fiber-matrix interface needs to be considered. For the interface, (Aboudi, 1991) used 

a bilinear model but more recently a model based on cohesion due to Needleman 

(Needleman, 1987) (Needleman, 1990b) (Needleman, 1990a) has become more popular. 

Accuracy of the above simulation scheme is largely dependent upon the validity of the 

assumptions of periodicity and uniformity. For instance, near steep stress gradient 

regions, the assumption of local uniform stress field in a unit cell is no more valid 

requiring the use of higher norms of local stress field. In general, these can be effectively 

addressed in the context of risk and reliability analysis. 

2.2.9 Multiphysics Modeling 

In engineering design it is necessary to allow for simultaneous influence of multiple 

physical and chemical phenomena, sometimes, requiring consideration of mutual 

interactions between them. The interactions may need to be considered at governing 

equations level, or at the constitutive laws level. 
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An example of the latter is diffusion process controlled by temperature. The solutions 

from an individual discipline may act as input for another discipline. This approach may 

be acceptable in the case of weakly coupled systems, but in the case tightly coupled 

systems this may not be acceptable. Typical examples of multidisciplinary coupling in 

modeling and simulation in science/engineering are given below (Basu, 2002). 

• Structural-thermal: Thermal stress analysis of Highway Bridge structure allowing 

for coupling between stress analysis and heat transfer. 

• Fluid-structure: Aeroelastic analysis of airplane structure allowing for interaction 

between airflow and structural response; or, action of waves on maritime 

structures or ships. 

• Fluid-structure-thermal: Welded joint analysis beginning with weld metal 

deposition to cooling down to ambient temperature. 

• Magneto-thermal: Induction heating analysis of, say, annealing process of 

electrically conducting material allowing for coupling between electromagnetic 

field and heat transfer. 

• Acoustic-structure: Acoustic response of aeronautical structures and automotive 

structures. 

• Magneto-structure: Structural response caused by transient magnetic field such as 

in the case of a speaker. 

• Electro-structure: Piezoelectric sensor modeling allowing coupling between 

deformation and voltage distribution. 

• Advection-diffusion-dispersion: Modeling of groundwater flow associated with 

pollution transport and remediation. 

• MD-DD-CM: Multiphysics/multiscale modeling and simulation of radiation 

damage to nuclear reactor pressure vessel steel by using coupled molecular 

dynamics, damage dynamics, and continuum models. 

• QM-MD-CM: Coupling of quantum mechanics, molecular dynamics and 

continuum modeling and simulation of carbon nano-tube devices. 

The groundwater pollution transport problem mentioned above is a multiphysics, 

multiscale, and multiphase inhomogeneous porous media problem. The processes 

involved are advection, dispersion, adsorption, and decay requiring hierarchic modeling 

from pore-throat scale to the pore scale, to the core scale and beyond culminating at the 

field scale. 

The problem involves three phases – fluid, solid, and vapor. During the remediation 

process, other physics components may be involved wrought by thermal enhancement, 

intrinsic bioremediation, electro-kinetics, etc. Number of, so called; grand challenge 

problems are also highly complex multiphysics/multiscale problems. For instance, the 

modeling of earth’s crust primarily involves coupling between rock mechanics (elastic-

plastic rheology), fluid flow (Darcy’s law), thermal transport (Fourier’s law), and 

chemical processes. 

Another example is the weld cooling problem at a structural joint. This in fact is a coupled 

fluid-thermal-structural interaction problem. The fluid flow phenomenon during the weld 

deposition process is usually ignored, and the problem is traditionally treated as a two-

stage process involving phase change in weld metal from liquid to solid. In the first stage, 

the heat transfer problem is solved to determine the temperature distribution. In the 
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second stage, thermal stress analysis is undertaken using the temperature distribution 

disclosed in the first as input. 

If the governing equations are tightly coupled, the equations for all the disciplines are 

considered simultaneously, often, require allowing for nonlinearities. This approach may 

also be used in the case of loosely coupled system, if a large amount of data needs to be 

exchanged between different disciplines. 

Other reasons for doing so in the case of loosely coupled and moderately coupled systems 

are:  

a) difficulty in properly synchronizing the discipline modules; 

b) proper mapping of transferred results from one module to another; 

c) difficulties in monitoring of error and convergence characteristics of the results. 

A big advantage favoring loose coupling is the existence of codes for individual 

disciplines. A major disadvantage of tightly coupled systems is that the code is very 

difficult to implement, especially, in the case of highly complex systems. Whereas, in the 

case of a moderately coupled system, the dominant disciplines is treated as primary, and 

the effect of other disciplines are added on after introducing some simplifications. 

For instance, in the case of fluid-structure interaction simulation of a submarine, 

computational fluid dynamics (CFD) is the dominant feature and the simplified structural 

aspects of the problem will be added to CFD code. In the simplest model, the submarine 

can be treated as a rigid body and interaction with deformations is not accounted for. 

2.2.10 Integrated Systems 

The global economy of this millennium requires the development of superior products 

cheaply and quickly. Also, for instance, in the case of civil infrastructure, apart from 

safety and functionality, the emphasis is on life-cycle cost reflecting factors like projected 

life, risks, first cost, maintenance cost, replacement cost at the end of useful life, etc. In a 

nutshell, the driving force is the development of an optimal solution allowing for all the 

factors involved in the multi-disciplinary environment. 

Another interesting example is that of a commercial aircraft design, which requires 

accurate prediction of its flight characteristics controlled by the interaction of disciplines 

like aerodynamics, structural dynamics, solid mechanics, acoustics, propulsion, 

thermodynamics, controls, and manufacturing processes, and the involvement of 

stakeholders like owners, pilots, flight attendants, maintenance people, passengers, 

environmental agencies, etc. 

In designing Model 777, and its, decedent Model 787, commercial aircraft, Boeing fully 

exploited the interdisciplinary approach when 238 cross-functional design-build teams 

produced a paperless design that allowed engineers to design every component, 

electronically simulate the assembly process to eliminate errors in fitness and assembly 

process. 

In the process, alternative designs could be evaluated as single integrated units before 

actual assemble and test flights. This eased the transition from the design stage to 

production for actual commercial introduction.  Boeing has used similar concept design-

build concept to the International Space Station with a mass of about one-half million 
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kilogram representing one of the largest and, perhaps, the most complex engineering 

project in history involving interdisciplinary effort of international scope. 

It is obvious from above that in the global market place, in undertaking a new project, 

time-consuming trial-error approach require to be minimized. It is important that all 

aspects of realization of a new project (or product) – design, manufacture or construction, 

cost, reliability, and support process, be considered at the earliest stage. 

To avoid unforeseen problems late in the design process, it is important to undertake 

design evaluations throughout the design process accounting for all possible interactions. 

It may be emphasized that the design process in many modern projects is prone to 

complex multidisciplinary interactions of a number of physical disciplines over several 

length and time scales. This no doubt is in sharp contrast to the conventional practice of 

using one discipline at a time. 

As for example, in the case of a highly complex structure like high-speed airplane, the 

practice has been to simulate for each discipline, as stated earlier, individually and the 

effects of mutual interaction sorted out mostly through numerous expensive prototype 

tests over a considerable length of time. In opposition to this approach, modeling and 

simulation allowing for interaction amongst these disciplines will lead to significant 

savings in cost and development time can be achieved (Basu, 2002).  For example, in the 

coupled dynamic stability analysis of an airplane, the interaction between aerodynamics, 

elastodynamics, and control theory are used (Crisfield, 2001).  In addition, if piezoelectric 

controls are used, electromechanical coupling will also need to be considered. 

2.2.11 Risk and Reliability 

Engineering design is based on mathematical models, which are driven by all kinds of 

information based on experiments, observations, intuition, experience, assumptions, etc. 

which cannot by any stretch of imagination be considered as highly accurate. The 

response of the system being designed is predicted by exercising (or making simulation 

runs) on the mathematical model will have a degree of uncertainty due to inaccuracies in 

the information supplied. 

Additional uncertainties are introduced during the execution of a project due to poor 

workmanship due to deficiencies in materials and methods used, errors, etc. Under these 

circumstances, it is not possible to predict the performance of a designed and built system 

in absolute terms or deterministically. 

In order to account for the uncertainty of the parameters controlling the response of a 

system, it is necessary to undertake probabilistic simulation assuming that the sensitive 

parameters of the system are random in nature. In order for this to be possible, it is 

necessary to have enough information about the random nature (or distribution 

characteristics) of a parameter of interest. In the absence of adequate experimental data 

for a random variable, one of the available standard distributions based on qualitative 

judgment is used. 

In reliability-based design, the objective is to proportion a structure so that the probability 

of failure, Pf, does not exceed certain threshold value. In structural engineering terms, the 

common formal procedures of reliability analysis are first order reliability methods 

(FORM), second order reliability methods (SORM), and Monte Carlo method (Ang & 

Tang, 1984) (Haldar & Mahadevan, 1999) (Shinozuka, 1983). 
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Of these, the last method is very compute intensive and essentially is a brute force method. 

In this method, once the probability function is defined, random sampling is followed by 

Monte Carlo simulation. After large enough number of such simulations, statistical 

analysis of the outputs of interest is undertaken to obtain quantities like expected value 

and standard deviation. This can be followed by the computation of reliability index β 

given by 
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Risk and reliability methods have lately matured lately. Component level reliability 

evaluations are being extended to systems level. Significant efforts are being made 

towards reliability-based optimization of systems, including multidisciplinary problems. 

Uncertainties introduced by the choice of mathematical model as well as the discrete 

numerical technique used in predicting the response are also being looked at. 

In civil engineering design, purely deterministic design approach based on the use of 

safety factors have been replaced by load and resistance factor design (LRFD) which uses 

different uncertainty factors (load factors) with different external effects representing the 

demands on the system, and another set of uncertainty factors (resistance factors) applied 

to capacity measures (limit states) of the system. 

These factors indirectly allow for the randomness of various design parameters without 

the need for undertaking formal risk and reliability (or probabilistic) analysis (Ellingwood 

& Galambos, 1982) (Thoft-Christensen & Baker, 1982). In railroad and automotive 

industries there is some interest to use probabilistic methods mainly for investigative 

purposes. In the aerospace industry also there is an ongoing effort to look at the possibility 

of adopting some of the risk and reliability methods in aerospace vehicle design, 

primarily, prompted by the US Department of Defense. 

A number of reliability analysis, methods, formulations and applications have been 

proposed, for different types of problems. One can cite, for example, a study on 

formulations of the discretization of random fields in reliability structural analysis (Jorge, 

2004), and a study of an application of reliability analysis for the design of a helicopter 

composite armor, with correlated design variables (Santos et al., 2016). 

2.2.12 Optimization 

Designing a system is an iterative process in which the design variables are adjusted to 

reach the levels which will lead to the best possible outcome. In other words, the final 

objective is to improve an existing design or replace an unacceptable design by one that 

meets the given requirements, that is, choosing the best possible design that satisfies all 

the special constraints. 
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This is called optimum design, which can be arrived at intuitively (that is, indirectly) or 

logically (that is, directly). The intuitive approach is based on past engineering experience 

and involves random selection and evaluation. On the other hand, the formal design 

optimization follows a logical approach to arrive at the optimal design. 

The formalities include defining the behavioral constraints, the side constraints, and the 

objective function which is minimized or maximized. The objective may be weight 

minimization, cost minimization, quality maximization, or maximization of value, which 

is combination of cost and value. Other objectives can also be used, like minimizing 

vibrations in a vehicle (Wang et al., 2003) (Wang et al., 2004). The final objective is to 

achieve competitive advantage in today’s global economy.  

Mathematical programming algorithms include linear programming, nonlinear 

programming, geometric programming, dynamic programming, etc. (Rao, 2019) (Arora, 

2012). Lately, genetic algorithms and neural networks have been used quite efficiently 

for certain types of optimization problems. 

Genetic algorithms are evolutionary algorithms inspired by evolutionary biology and use 

techniques like mutation, selection, inheritance, and crossover in the abstract 

representation of candidate optimal solutions that evolve towards better solutions. 

Genetic algorithms are implemented as a computer simulation in which a population of 

abstract representations (called chromosomes or the genotype or the genome) of candidate 

solutions (called individuals, creatures, or phenotypes) to an optimization problem 

evolves toward better solutions. 

A neural network consists of a network of simple processing elements with complex 

global characteristics, determined by the connections between the processing elements 

and element parameters. The genetic algorithm technique has been found to be extremely 

effective for small to medium sized constrained optimization problems. 

However, in the case of more computational resource intensive complex problems, a 

combination of neural networks and genetic algorithm tend to improve the situation. In 

linear programming both objective function and the constraints are linear functions of 

design variables.   

In civil engineering design, the objective function and/or the constraints are mostly 

nonlinear functions of design variables. In most cases, linear programming cannot be 

used, except when the nonlinear programming problem can be transformed into an 

equivalent linear programming problem. 

A large number of software have been developed based on these algorithms and also 

encoded in many commercial modeling and simulation software. Also, software like 

GENESIS by VR&D was especially developed with the primary objective of design 

optimization.  In addition, software for optimal design search, such as DOT by VR&D 

(Ghosh & Vanderplaats, 1997), which can be integrated with regular modeling and 

simulation software, are also available. In view of the fact that much of the design 

variables are random in nature, there is a surge towards reliability-based optimum design. 

The objective is to arrive at the optimum values of the design variables with a certain 

specified level of reliability. Software undertaking such optimization should also be able 

to undertake design sensitivity analysis to identify the critical design variables. 

Another twist to optimization process appears when the objective functions and 

constraints represent a number of disciplines which may be coupled in some manner. In 
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this case, instead of a single objective function, multiple objective functions may need to 

be satisfied. Getting an optimal solution for such multidisciplinary problem is a more 

challenging proposition, especially when randomness of design variables is also 

considered. Another area of current interest allied to optimization process is the inverse 

problem in which for a given system response it is necessary to arrive at the design 

variables which will enable it.   

There is significant increase in research effort research in the field of structural 

optimization in recent decades. The increasing interest in this field has been strongly 

boosted by the advent of reliable discrete numerical modeling tools, advances in design 

sensitivity analysis, and methods of mathematical programming, along with the 

exponentially increasing speed and capacity of digital computers. 

2.3 Some Remarks in Modeling and Simulation Tools 

This probably is the most challenging time for those using modeling and simulation tools 

as part of the engineering design process to effectively respond to the strong technological 

competition, which demands reduced design time and cost of products with greater 

functionality and higher quality, coupled with present day emphasis on energy savings, 

material recycling, and sensitivity to environment. 

With ever-increasing power of digital computers coupled with continuous improvement 

of mathematical models and the significant advancement of numerical simulation 

techniques, the future for more accurate prediction of system behavior leading to optimal 

design of efficient systems meeting the global challenge seems to be bright. This section 

may be considered simply as an attempt to scratch the surface of this vast and expanding 

field. 

 

3 On Error Estimators in Computational / Numerical Methods 

The various discretized integral representations of Boundary Value Problems (BVP), 

including, for example, Finite Element Methods (FEM) and Boundary Element Methods 

(BEM) will produce results with some error with respect to the exact solution. 

Some possible sources of error are inherent to almost all formulations, when these 

formulations are applied to a non-trivial problem. Several sources of error may be present 

in the numerical model of a problem. Some sources of error may play an important role 

in specific formulations, or may be inherent to a certain formulation. What source of error 

is the most important in a particular problem may depend on the representation being 

adopted. The same applies to the sensitivity of the response error due to a specific source. 

The first source of error may be in the modeling of the problem. The importance of an 

error source in a certain representation depends on the problem being modeled. For 

example, corners may have different influences in the problem, depending if it is a 

potential problem or an elastostatics one, because corners will lead to discontinuous 

derivatives, and these discontinuous derivatives satisfy different relationships in each 

problem. 

The potential problem is modeled by a scalar formulation derived from Laplace’s 

equation. Normal and tangential derivatives will be discontinuous at these corners. The 

gradient of the potential is a continuous function in the interior domain. This gradient can 
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be written into components in two or three orthogonal directions, depending if it is a 2-D 

or 3-D problem. When taking the limit to the boundary, if the boundary is smooth, this 

gradient can be written in tangential and normal components, with the tangential and 

normal directions considered at the point in the boundary to where the limit was taken. 

The smoothness of the boundary guarantees that these directions are unique at some point 

in the boundary, so the decomposition of the unique gradient of the potential is also done 

in unique components. Now, if there is a corner, although the gradient could be considered 

as continuous in the limit process from an interior point to the boundary, its 

decomposition would be in different tangential and normal directions for the different 

elements sharing that point of the boundary. This circumstance leads to a different 

decomposition of the same gradient vector. Therefore, a relationship exists between 

tangent and normal components of the gradient vector in the two elements sharing the 

corner, by means of a simple rotation in the local coordinate system. 

In elastostatics, normal and tangential derivatives of the displacement are the tractions, 

and they will also be discontinuous at the corners. A different relationship exists between 

theses derivatives in the two boundary elements sharing the corner. Hooke’s law can be 

written for a small domain element having the two adjacent boundary elements as parts 

of its own boundary. As the stress in the interior of this domain element is continuous, a 

relationship appears between the tractions in the two boundary elements sharing the 

corner, to satisfy equilibrium in the domain element. 

The second source is the round-off error. The round-off error may be different for 

different integral representations of the same problem. The parameter that controls this 

error is the condition number of the matrices obtained for a certain formulation. The 

condition number is the ratio between the greatest and the lowest eigenvalue of the 

obtained matrix of the system of equations. If the magnitude of this number is written as 

a power of 10, say, 10m, then m is the number of digits that shall be discarded in the 

numerical solution, because these digits are not significant, and contain only the error. A 

comparison between the condition number of the matrices as obtained from two different 

BEM formulations may show, for instance, the formulation where more round-off error 

is introduced. 

The third source is errors in the evaluation of parameters that may be necessary in some 

formulations, like the tangential derivatives of the potential or the displacement. 

Tangential derivatives are obtained, in general, as a post-processed result, by taking local 

derivatives of the displacements in the tangential direction. For a 2-D element, the 

derivative in the tangential direction is the derivative with respect to the intrinsic 

coordinate ξ. Then the gradient is obtained combining the normal and the tangential 

derivatives. For isoparametric elements, the tangential derivative is, then, one degree less 

than the normal derivative. For example, if the element is quadratic, the displacement and 

the normal derivative are written in terms of quadratic shape functions, while the 

tangential derivative, which is the derivative of the displacement in the ξ direction, has 

linear shape functions. The gradient is, then, obtained in a somewhat ”unbalanced“ 

manner. The error introduced by the approximation in the tangential derivative is likely 

to be more significant in the regions of the boundary in which the tangential derivative is 

changing very fast, as its representation with shape functions that are one degree less is 

poorer than the representation of the normal derivative. 

Jorge, Ariosto B., et al. (2022)Error Estimators & Bayesian Approaches Comput. Model Validation pp. 640-743

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 667



The fourth source is the discretization error. Usually this discretization error can be global 

or local. When a local error estimator is used, then an adaptive procedure to mesh 

refinement can be adopted. 

Other sources are errors due to approximations of the boundary shape and errors due to 

simplifications or approximations on the intrinsic necessary hypothesis of a specific 

representation. For example, not all representations allow for discontinuities or non-

smoothness in the boundary. So, if corners are present, an error may be introduced in 

some representations. 

Besides the above-mentioned deterministic errors, the inherent randomness of the 

problem may be itself a source of additional stochastic error terms, which might appear 

due to uncertainties in the various parameters and variables of the problem, such as the 

material properties, the geometry, the boundary conditions, the loading, etc. These 

uncertainties may be treated through modeling these parameters and/or variables as: 

- random variables (mean and standard deviation are constant over time and over 

position); 

- random fields (mean and standard deviation are constant over time, but variable 

over position) 

- stochastic processes (mean and standard deviation varying over time, but constant 

over position) 

- a mixture of the above cases.  

3.1 Error Estimators in Finite Element Methods (FEM) 

3.1.1 Introduction 

This section presents a summary of the discussion as presented in (Huebner et al., 2008). 

If the exact 2-D solution for a problem  is known, then the error associated to the 

finite element solution for this problem  can be written as: 

 (5) 

One can note that the error varies over the solution domain.  

Global error estimation 

 Global error estimation procedures: 

• need to know a-priori the exact solution; 

• use some norm of the error over the domain. Example: 

 
(6) 

• evaluate this integral over each element and sum it over all elements. 

For elliptic boundary value problems: 

 (7) 

where: 

• C is a constant; 
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• h is a parameter that depends on mesh size. It is related to some characteristic 

element dimension; 

• p is an integer. It depends on the order of the interpolating functions. 

If the equation in vector form is 

 (8) 

Where [L] is an adjoint linear operator, then: 

 
(9) 

Possible refinements to make  are: 

• h- refinement. It is performed decreasing the element dimensions; 

• p- refinement. It is performed increasing the order of the interpolating functions; 

• r- refinement. Remeshing is done by repositioning the nodes, for same h and p.   

Local error estimation 

If the exact solution is not known a local error estimation procedure can be adopted. One 

example of this procedure is the local error estimation based on the interpolation error.  

One-dimensional problem 

 The following development is done, for simplicity, for a one-dimensional problem.  

Expansion in Taylor series about a point: 

 
(10) 

Where the higher order terms for x are neglected in a vicinity of . Take , the 

point in one element where error is a local maximum. Then . Figure 16 

illustrates the case. 

 

 

 

 

  

 

Figure 16: FEM solution error - adapted from (Huebner et al., 2008) 
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Assume that the FE solution is exact at the nodes. This is valid for  (and, in 

particular, for Laplace’s equation, which is this equation when Q = 0). But this is only 

approximate for other equations.  

For : 

0 = E(x  (11) 

  For : 

0 = E(x  (12) 

  Where either  or . This leads to 

2
2

2( )

1

8
M

e

x

d E
E h

dx
  

(13) 

which is an estimate for the interpolation error at element (e). As  is unknown, it 

is approximated by 

22

2 2

M

FE

x e

d Td E

dx dx
  

(14) 

This is not anymore an estimate of the error, but just an error indicator. If, in particular, 

T satisfies Laplace’s equation, then 

2 22 2

2 2 2 2

FE FEd T d Td E d T

dx dx dx dx
= − = −  

(15) 

 Because . In this case 
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(16) 

But even in this case, Equation 14 is still just an approximation as  is in this 

equation considered to be the same (constant) for the entire element (e).  

Two-dimensional problem 

Similarly, for a two-dimensional problem: 
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From the above equation, it can be seen that 2nd derivatives of FE solution have to be 

computed, for error estimation. A procedure to smooth the gradient to compute these 

derivatives with good accuracy is called gradient recovery.  
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Gradient recovery 

If FE solution is linear, then nodal 2nd derivatives are evaluated from a weighted average 

of element derivatives surrounding the node. The weighting factors are the element areas.  

From  it can be written: 
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e
eT N

T
x x

    
=       

 
(18) 

The derivatives are now written in an average sense 
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to find . It can now be written: 
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(20) 

This is a system of equations from which the vector of nodal derivatives  can be 

obtained. The same approach can be used for the 2nd derivatives. From : 
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(21) 

2nd derivatives can now be evaluated in this same average sense: 
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(22) 

This is a system of equations from which the vector of nodal 2nd derivatives  can 

be obtained. Figures 17 and 18 illustrate the smoothing process to obtain the refined 

gradient from the FE solution. 
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Figure 17: Higher order approximation for the gradient 

- adapted from (Olgierd C. Zienkiewicz & Taylor, 1994) 

 
Figure 18: Construction of recovered gradient - adapted from (Ainsworth & Oden, 1997) 
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3.1.2 Error Estimates and Adaptive Finite Element Refinement 

This section follows the discussion as presented in (Huebner et al., 2008) and in (Olgierd 

C. Zienkiewicz & Taylor, 1994). Error estimators are used in adaptive remeshing. The 

goal is to have constant error throughout the domain, or to have the error uniformly 

distributed throughout the mesh. 

• 1-D: find h such that 

 
(23) 

• 2-D: find eigenvalues λ1, λ2 and corresponding eigenvectors x1, x2 of the matrix 

 

 

(24) 

 such that 

 (25) 

Where hi is the element size in the direction of the eigenvector xi corresponding to the 

eigenvalue λi. With this, an h refinement process is obtained. Figure 19 illustrates the 

process. 

 

Figure 19: Resizing the mesh - adapted from (Huebner et al., 2008) 

Errors and adaptivity 

The general procedure is 

(a) Find the error, i.e., the a-posteriori estimate. For an elasticity problem , the errors 
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(b) Use this information on the error to refine the approximation. Refinement methods 

could be h-, p-, hp- or r-. Adaptive refinement process is used for optimal results. 

Figure 20 illustrates the refinement process. 

 
Figure 20: h- and p- refinements -adapted from (Olgierd C. Zienkiewicz & Taylor, 1994) 

Error norms and convergence rates 

 Let  and  be the equations for elasticity problem.  Different norms can 

be defined:   

• Energy norm: 
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 • L2 norm for displacement error: 
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• L2 norm for stress error: 

2

2
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Total error in the entire domain is the sum of the errors in all elements. 

0Lu P+ = D =

Jorge, Ariosto B., et al. (2022)Error Estimators & Bayesian Approaches Comput. Model Validation pp. 640-743

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 674



2 2

1

m

i
i

e e
=

=  (29) 

Convergence rate is the slope of the curve error (in non-dimensional form) and the 

number of degrees of freedom of the FEM mesh used. The biggest this slope, the faster 

convergence is attained with the same refinement.  Figures (21) and (22) illustrate the 

differences in convergence rates when there is a singularity. This example shows that 

there is a need for highly refined meshes in a vicinity close to a singularity. 

 
Figure 21: L-shaped domain with singularity (Olgierd C. Zienkiewicz & Taylor, 1994) 

 
Figure 22: L-shape domain without singularity (Olgierd C. Zienkiewicz & Taylor, 1994) 
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3.1.3 a-posteriori Error Estimation in Finite Element Analysis 

This section follows the discussion as presented in (Ainsworth & Oden, 1997). 

3.1.3.1 Status and scope 

• earliest estimates 

o a-priori : for example, errors ~ Chp 

o opredictor corrector algorithms, as for ODE’s 

o error  on energy norm on element: explicit algorithm; basis for 

adaptivity 

o complementary energy (global) 

o element complementary plus equilibrated boundary data 

o element residual (plus equilibrated boundary data) 

• 1980’s 

o ad-hoc estimators, for example, based on interpolation. Used in CFD; not 

accurate for boundary layer problems 

o recovery based methods (smoothed gradients) (superconvergent patch 

recovery method) 

o extrapolation (global / hierarchical) 

• 1990’s 

o application to general problems 

• current 

o robustness of estimators 

o limits on their performance    

3.1.3.2 Reference elements 

Standard elements: 

K =  

 

Polynomial spaces of degree p : Pk 

Finite element space: 

 (30) 

 3.1.3.3 Model problem 

Elliptic BVP:  in Ω, with BC:  on ;  on .  

Variational form: , ,  

Where  on  
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( ) ( ) ( ) ( ) ( )x xB e v B u v B u v L v B u v =  −  = −          v V   (32) 

Orthogonality condition: 

 (33) 

3.1.3.4 Estimators based on gradient recovery 

In this approach,  is post-processed to obtain more accurate representations of the 

gradient .  

An estimate of the error is . 

This estimator makes no use of information from original problem. In Section 3.1.1 this 

procedure was explained with more detail.  

3.1.3.5 Explicit a posteriori estimators 

Here, a residual equation similar to Eq. 28 is obtained using integration by parts. 

 (34) 

Where: k is the element; 

  is the boundary;  

 nk is the unit exterior normal;  

and the residual is: . Solution is bounded: 

 (35) 

Where C1 and C2 are non-negative constants. If flux on  is replaced by a suitable 

approximation, a bound on the error is found. This leads to the implicit error residual 

method.  

Error estimate in energy norm 

Upper bound on discretization error for the above bilinear model problem 

 (36) 

Where 

•  in k is the interior residual 

•  on  on  is the boundary residual 

•  is the local error indicator in energy norm   

Error estimate in L2 norm 

The upper bound is: 

 (37) 

Where  is the local error indicator in L2 norm   
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Equivalence of estimators 

There should be C such that 

 
(38) 

 Two sided bound for the error: 

 (39) 

The effect of numerical quadrature 

Actual error is different from . Also, rk and Rk are finite dimensional approximations 

on actual data.  

3.1.3.6 Implicit a posteriori estimators 

The implicit error residual method is obtained by replacing the flux on  in Eq. 34 by a 

suitable approximation. In this case, a bound on the error is found.  

Error residual problem must be solved over k to determine error estimator .  

To get rid of C1 and C2 a local BVP has to be solved for the error: 

 (40) 

Where: 

•  = approximation of flux on  

•  
• an infinite-dimensional space is approximated by a finite dimensional sub-space 

• boundary flux  must be approximated in some effective way 

• if , solution may not exist unless: 

 (41) 

Subdomain residual method 

• homogeneous essential boundary data over subdomains of Ω 

• requires the exact solution of the local problem over the subdomain 

• the method is seldom used 

• integrating by parts leads to , which is an explicit estimator in 

energy norm.   

Element residual method 

• uses a larger space than the original FE subspace x 

• replaces the original problem by a number of independent local problems posed 

over each k 

• BC for elements in the interior of Ω will interfere on existence of solution. For 

instance, homogeneous essential BC does not guarantee existence of solution. In 

fact, in this case only for very particular problems the solution will exist.   
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3.1.3.7 The equilibrated residual method 

 This approach evaluates implicit error estimates in which boundary fluxes are specially 

constructed so that problem is well posed.  

Let  be the local error estimate. Let  be the global error estimate. Then 

 
(42) 

General property for a successful error estimator. 

 (43) 

Where   is the global error in energy norm.  

Effectivity indices: 

global
e


               local k

e


  (44) 

This section reviewed issues of error estimation for the finite element method. Different 

types of error measures were discussed. Error estimators based on error norms or residuals 

are helpful in adaptive remeshing. To obtain an error estimator suited for further 

stochastic treatment, the procedures for error estimation need to be adapted or modified 

in order for the error estimate to be allowed to assume either positive or negative values. 

Error estimators are needed that represent directly the errors in the response quantity of 

interest, and not errors obtained from energy norms related to this quantity. Section 4.1 

describes several types of error estimators adapted to give directly the desired information 

of error in stress for the elasticity problem. 

3.2 Error Estimators in Boundary Element Methods (BEM) 

This section is based on new error estimation and adaptivity approaches for BEM, 

presented in (Jorge, Ribeiro, et al., 2003), for 2D potential-BEM, and in (Jorge et al., 

2005), for 2-D elastostastics BEM. These approaches were originally presented in the 

PhD Dissertation (Jorge, 2002) at Vanderbilt University. 

3.2.1 Introduction 

Boundary integral equation (BIE) formulations are exact representations of a boundary 

value problem (BVP), but errors may appear in the discretization process leading to the 

boundary element method (BEM). To evaluate these local errors, two error estimator 

approaches are presented. An adaptive mesh refinement procedure using these local error 

estimators is also presented. 

To solve the BIE numerically, the boundary is divided into elements. The collocation 

boundary element method (BEM) is a discretization of the BIE so that the solution is only 

valid at a finite number of boundary collocation points. For the other boundary points, an 

approximation is written using interpolating functions. Several sources of error exist in 

BEM problems. First, the discretized boundary may not represent the original one 

anymore. Second, the polynomial interpolation is only an approximation of the variable 

inside the element. Third, the continuity of the boundary elements may not allow the 
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smoothness requirements for the boundary in the original BIE to be satisfied exactly. 

Fourth, numerical integration using Gaussian quadrature is only an approximation of the 

integral being evaluated. Local and global contributions for the error due to an element 

can be estimated so that refinements of the mesh of the discretized problem can be 

performed in order to minimize these errors. A global error estimator can be used to 

determine the need for refinement, while a local error estimator can be used to determine 

which portions of the boundary require refinement, in an adaptive process. 

This section briefly gives some background on existing error estimation approaches and 

algorithms for the collocation Boundary Element Method (BEM). This brief review 

includes error estimators for BEM in two different representations: symmetric and 

collocation. Two different error estimator approaches for the collocation BEM are 

considered in detail, for 2-D potential problems. The first approach is a local error 

estimator based on a gradient recovery procedure, wherein the smoothed or recovered 

functions are rates of change of the boundary variables in the local tangential direction. 

The gradient recovery approach as used in the Finite Element Method (Huebner et al., 

2008) (Olgierd C. Zienkiewicz & Taylor, 1994) (Ainsworth & Oden, 1997) considers the 

evaluation of the gradient in global coordinates, allowing for continuous derivatives of 

the field variable in the fixed global directions. On the other hand, in the BEM the 

variables of interest are written in local coordinates, so that the flux is the boundary 

variable associated to the outward local normal derivative of the potential. The potential 

is continuous throughout the boundary, while the flux and the tangential derivative of the 

potential may be discontinuous, such as in the case where the boundary is not smooth. 

The recovery procedure of the tangential derivatives in BEM shall allow these 

discontinuities to appear in the formulation. The adopted approach was to include double 

nodes at corners for the recovery approach. 

The second error estimator approach is associated to an external problem formulation and 

gives both a local and a global measure of the error, depending on an appropriate choice 

of the external point where the equation is applied. The potential should vanish at points 

located in the exterior of the domain due to the fact that the swept angle that appears in 

the boundary integral formulation is zero. Nonzero values indicate that the formulation is 

in error. By collocating the external point close to the boundary, the influence of the 

nearby elements in the error estimator will be dominant, so that the information on the 

error can be considered to be local. 

These two error estimator approaches represent a post-processing step, after the BEM 

solution is already known. No information on the exact solution is required for both error 

estimators. The two error estimators are computed for a 2-D potential problem containing 

a singularity, so that a comparison is made between both error estimators for comparable 

boundary meshes. The consistency with mesh refinement is also compared for both error 

estimators. 

3.2.2 Current Error Estimators for Collocation and Symmetric BEM 

Several types of a posteriori error estimators for BEM have been proposed in the 

literature. A review can be found in (S. Liapis, 1994). These error estimators include 

various versions of element residual methods, flux projection estimators, extrapolation 

error estimators and estimators measuring the sensitivity of the numerical solution to a 

shift in the collocation point. In (Kelly et al., 1987) a global error estimator is proposed. 
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In (Liang et al., 1999) local error estimators are proposed based on dual BIE formulations. 

In (Paulind et al., 1996) and (Menon et al., 1999) a pointwise error estimator is proposed, 

based on the difference between two formulations, the standard formulation and the 

hypersingular formulation, obtained by differentiation of the first one. This approach is 

applied to Symmetric-Galerkin BEM formulation in (Glaucio H. Paulino & Gray, 1999). 

An error estimator for the direct collocation method in the elastostatics problem is 

proposed in (Denda & Dong, 1999). In this case, a comparison with an equivalent 

representation of the same problem, obtained for the exterior domain, is done. Upper and 

lower bounds of the error are found using a residual approach in (Jou & Liu, 1999). Nodal 

sensitivities are used in (G. H. Paulino et al., 1997). Other nodal sensitivities to variations 

in node location are found in (Shi et al., 1995) and (Guiggiani, 1996). Other error 

estimators are proposed in (Varfolomeyev et al., 1998) (Zhan & Yokoyama, 1997) 

(Karafiat, 1997) (Stergios Liapis, 1996) (Charafi & Wrobel, 1997) (Chao & Lee, 1999) 

(Zhao, 1998) (Ammons & Vable, 1998). 

Some current approaches for error estimators or error indicators already available in other 

BEM formulations can be adapted or transposed to the collocation BEM formulation. 

Usually, the error estimator approaches deal with the discretization error, looking for an 

optimal adaptive procedure for mesh refinement, if a local error measure is available. The 

approaches for error estimators and adaptivity for the collocation BEM can be grouped 

as follows. 

Gradient recovery 

Using a local average approach, an updated or more accurate gradient could be obtained. 

This average could be an element average or a domain average. If a domain average is 

used, then the gradient could be evaluated in some interior region in the vicinity of the 

boundary, and then a limit to the boundary could be done. The difference between this 

refined gradient and the actual gradient as found for a certain mesh would be a measure 

of the error. The components of the gradient are the normal and the tangential derivatives. 

The tangential derivative is obtained in a post-processed manner, by taking the derivative 

of the shape functions with respect to the intrinsic variable ξ, while the normal derivative 

is written in terms of the shape functions themselves. For the usual polynomial shape 

functions, the tangential derivative is written in a representation that has one degree less 

than the normal derivative. So, another possibility, which would be simpler, would be the 

recovery of only the tangential derivative, so that the gradient components (normal and 

tangential) would now be written with shape functions of same order. A measure of the 

error could be the difference between the refined and the actual tangential derivatives. 

This simpler approach would be better adapted to the parts of the boundary where the 

tangential derivative varies very fast, and its representation, with shape functions of one 

degree less, is inaccurate. On the other hand, for parts of the boundary where the normal 

derivative is changing very fast, as could be the case, for example, if the radius of 

curvature of that part of the boundary is small, then the contribution of the normal 

derivative to the error might be significant and could not be neglected a-priori. 

Average in the norm 

The numerical solution is the exact solution plus some error. The error satisfies the 

equation modeling the problem. If numerical solution is not known, the numerical 

solution for a refined mesh could be adopted as the ”exact“ solution for the purpose of 

finding this difference. Errors in displacement and traction (in the elastostatics problem) 
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or in potential and flux(in the potential problem) can be evaluated for all nodal points. 

Local (in the element) and global (in the entire boundary) averages of this error could be 

written, in the L2 norm sense or in some energy norm, and a local relative error in this 

norm could be obtained. This relative error could be used to guide adaptive mesh 

refinement. The error in one variable (say, traction or flux) could be dominant with 

respect to the error on the other variable (say, displacement or potential). Another 

procedure could be to first find the error in the tangential derivatives from the error in 

displacement (or in potential), and then evaluate the error in some norm sense, the norm 

being some average of the tangential and normal derivatives. The same as before, local 

(element) and global measures of the error shall be obtained, so that a relative error is 

assessed in the element. This alternative procedure could be adopted in conjunction with 

the tangent derivative recovery, to have both tangential and normal derivatives written 

with shape functions of the same order, before the error norm is evaluated. 

Sensitivity analysis 

A sensitivity analysis could be performed in two ways, leading to two different sensitivity 

measures. The first measure is related to regularization sensitivity. The singular or 

hypersingular kernels in certain BIEs can be regularized before a numerical procedure to 

solve the BIE is implemented. Simple solutions may be imposed in this regularization 

procedure to obtain self-regular formulations for the BIEs. The sensitivity measure would 

be on the response to variations in the simple solution being imposed in the self-regular 

formulation of the integral representation of the problem. If these simple solutions are 

considered as a truncated Taylor series expansion about some point, then small variations 

about this point could be considered when higher order terms where included in this series 

expansion. For example, for the self-regular potential-BIE formulation, with local 

coordinates ζi, the general format of the variation about the simple constant potential 

solution would be to include the Taylor expansion first order term, which means to 

substitute ϕ(x) by [∅(𝑥) +
𝜕∅

𝜕𝜁𝑖
|
𝑥
𝜁𝑖]. 

Similarly, in the self-regular gradient-BIE formulation, the variation about the simple 

linear potential solution would be to include the Taylor expansion second order term, 

which means to substitute  [∅(𝑥) +
𝜕∅

𝜕𝜁𝑖
|
𝑥
𝜁𝑖] by [∅(𝑥) +

𝜕∅

𝜕𝜁𝑖
|
𝑥
𝜁𝑖 +

1

2

𝜕2∅

𝜕𝜁𝑖
2|
𝑥
𝜁𝑖
2]. 

The variations in the self-regular displacement and traction formulations in the 

elastostatics problem would have similar approaches. 

The second measure is related to nodal sensitivity. The sensitivity of the response to 

variations of location of nodes could be evaluated. Small variations of the position of the 

central node could be done. To evaluate this sensitivity, two approaches are possible: 

allowing the element size to change (Lagrangian approach) or imposing the change in 

position of the node to occur in the same deformed shape of the element, i.e. without 

changing its length (Eulerian approach). 

Difference between two equivalent formulations 

The exact solution for the BVP as written in one integral representation shall satisfy any 

other possible different integral representation of the same BVP. When a numerical 

solution is found for some discretization of one formulation, this solution can be plugged 

into the discretized form (with same discretization) of the other possible formulation. As 
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the numerical solution is not exact, the identities in the discretized form of this second 

formulation will not be satisfied. The difference will be a measure of the error in the 

discretization of both formulations. For example, for a closed domain, the exterior 

problem representation is equal to zero in both the potential and in the elastostatics 

problems. So, any difference from zero could be related to the discretization error. As the 

fundamental solutions are functions of the distance between source and field points, one 

representation in which the exterior point is very close to the boundary might give a 

different error measure than another external formulation in which the exterior point is 

considered far away from the boundary. If different exterior points are considered, 

different external formulations may be obtained. The error measure might be sensitive to 

the external point position, for some particular problem. Another possibility is to obtain 

an equivalent formulation by taking derivatives of an existing formulation. Derivatives 

taken in different directions are all different equivalent formulations of the same problem. 

All scalar equations that are components of the vector equation obtained in some 

representation, are different equivalent formulations and can be used for this error 

measure purpose. This is the case in the gradient formulation, which was transformed into 

the flux formulation by taking the component of this equation in one direction. So, the 

component of this equation in the other direction (say, tangential) is an equivalent 

formulation that can be used. The same applies to the various components of the vector 

equation in the elasticity problem. 

Various equivalent formulations could be used, for some specified boundary 

discretization. For example, for the potential problem, a comparison could be done 

between the potential-BIE and the gradient-BIE formulations. As the gradient-BIE 

formulation is a vector equation, one component of this equation, say, the flux equation, 

could be retained. The decomposition of the gradient equation in a different direction will 

lead to a different, but equivalent, equation, because the derivative of the potential 

equation was taken in a different direction. Other possible comparisons could be between 

the potential formulation and potential formulation for an exterior problem, or between 

the gradient formulation and the gradient formulation for an exterior problem. Again, as 

the gradient formulation is a vector equation, all scalar components of this equation are 

valid equivalent formulations. 

Similar comparisons for the elastostatics problem could also be done, for example, 

between the displacement-BIE and the traction-BIE formulations. As the traction 

formulation is a vector equation (the projection of the tensor of stresses in one direction) 

any component of this equation can be retained. The traction equation in a different 

direction will lead to a different, but equivalent, equation, because the derivative of the 

displacement equation was taken in a different direction. Other possible comparisons 

could be between the displacement formulation and the displacement formulation for an 

exterior problem, or between the traction formulation and the traction formulation for an 

exterior problem. As before, as the traction formulation is a vector equation, all scalar 

components of this equation are valid equivalent formulations. 

Adaptivity 

When a local measure of the discretization error, in one element, is available, it could be 

compared to an average global measure of this error. If the relative error is bigger than 1 

for a certain element, a refinement shall be applied to this element. Adaptive refinement 

of the mesh could be done by adopting either h-refinement or p-refinement procedures. 
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In the h-refinement procedure, the element where the local error is big is divided into two 

small elements (usually it is divided into two equal elements). In the p-refinement 

procedure, the degree of the shape functions used to represent the variables in this element 

is increased. For this p-refinement procedure, the use of hierarchical shape functions 

would be advantageous, because computations already done for the coarse mesh will be 

kept and don’t need to be done again in the refined mesh. 

3.2.3 Proposed Error Estimators for Potential-BEM 

Two error estimators for BEM are proposed, one based on the gradient recovery approach 

and the other based on the error on the external formulation. These error estimators are 

post-processing approaches that give qualitative indicators of the local errors on the 

boundary solution for any BEM formulation and for a certain boundary discretization into 

a particular mesh. These error estimators are suitable to be used for the collocation BEM, 

where other error estimators such as the ones obtained using energy norms may not be 

available. 

3.2.3.1 The gradient recovery approach 

The following discussion will be limited to potential theory in 2D, but the ideas can be 

adapted to the 3D problem and to the elasticity theory. The idea of recovery of derivatives 

is borrowed from error estimators for finite element methods, where to compute some 

error indicators it was necessary first to obtain expressions for the derivatives of the finite 

element solution. Even small errors in the finite element solution could lead to large errors 

or inaccuracy in the derivatives of the solution, evaluated in a post-processing manner by 

taking derivatives of the shape functions. Smoothed or refined approximations for the 

derivatives were developed so that the error indicators depending on these derivatives 

would be more credible. A procedure to smooth the gradient to compute these derivatives 

with good accuracy is called gradient recovery (Huebner et al., 2008) (Olgierd C. 

Zienkiewicz & Taylor, 1994) (Ainsworth & Oden, 1997). The derivatives are evaluated 

from a weighted average of element derivatives surrounding the node. The weighting 

factors are the element areas. The FEM procedure is illustrated for a one-dimensional 

problem, for simplicity. For each element (e), the first derivatives are first expressed in 

terms of the derivatives of the shape functions N and of the nodal values of the potential 

solution {ϕ}(e) as: 

(
∂𝜙

∂𝑥
)
𝑒

= ⌊
∂𝑁

∂𝑥
⌋ {𝜙}(𝑒) 

(45) 

The derivatives are now written in an average sense 

∫ {
𝛺(𝑒)

𝑁}⌊𝑁⌋𝑑𝐴 {
∂𝜙

∂𝑥
} = ∫ {

𝛺(𝑒)
𝑁}𝑑𝐴

∂𝜙

∂𝑥

(𝑒)

 
(46) 

where the goal is to find the vector of smoothed or recovered nodal derivatives {∂ϕ/∂x}e. 

For that, an equivalence equation can now be written in a region Ω(e) surrounding an 

element (e) as: 
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∫ {
𝛺(𝑒)

𝑁}⌊𝑁⌋𝑑𝐴 {
∂𝜙

∂𝑥
} = ∫ {

𝛺(𝑒)
𝑁}𝑑𝐴

∂𝜙

∂𝑥

(𝑒)

 
(47) 

The element equations as in Eq. (47) are then assembled for the entire domain Ω. A system 

of equations is obtained from which the vector of smoothed nodal derivatives {∂𝜙/ ∂𝑥}(𝑒) 
can be obtained. An important feature in this procedure is that the x-coordinate belongs 

to a global coordinate system, so that not only the potential field at the nodes {𝜙}(𝑒) is 

continuous in Ω, but also all the elements of the smoothed gradient components 

{∂𝜙/ ∂𝑥}(𝑒) vector in a general problem are continuous in Ω too, so long as linear or 

higher order elements are used. 

This post-processing approach to find error estimators from gradient recovery can be 

adapted to a BEM problem, after the solution is known for all nodes on the boundary. 

Consider first an element (e) of the boundary region in which the gradient is being 

recovered. Let ϕ be the potential, ∂ϕ/∂s be the tangent derivative of ϕ and q = ∂ϕ/∂n be 

the flux. From the BEM solution, the nodal values ϕi
(e) and qi

(e) are known. Both the flux 

q and the tangential derivative ∂ϕ/∂s are allowed to be discontinuous at boundary points 

where the normal unit vector is not unique. The tangent and normal unit vectors are 

uniquely defined only locally in the interior of a boundary element. Usual BEM solutions 

allow for these discontinuities to occur, and the flux solution on the boundary is given 

both as a function of the node number i and of the element number (e) so that on a certain 

element i the flux on the element before the node qi
(e) might be different form the flux for 

the element after the node qi
(e+1). The same discontinuities will apply for both the original 

and the recovered or smoothed values of the tangential derivative of the potential ∂ϕ/∂s 

at the same boundary nodes where the flux is discontinuous. 

To be able to write a system of equations similar to the one obtained with the FEM 

procedure as outlined above, continuity would be required for the derivatives of the 

potential. But the derivatives of the potential would be continuous only in a global 

coordinates system, and not in local coordinates systems along the boundary curve, if the 

boundary has corners. The approach adopted in this work was to introduce double nodes 

at all the discontinuity points, such as the corner nodes on the boundary. Elements with 

zero length connect these double nodes, so that no local or global contribution for the 

error from these fictitious elements is obtained. It must be pointed out that the gradient 

recovery approach is a post-processing procedure that is completely independent from the 

BEM method that was used to obtain the boundary solution. The original BEM method 

may or may not use double nodes, and this is irrelevant for the post-processing procedure, 

because the double nodes being introduced here came from the fact that discontinuities 

exist in the values of q and ∂ϕ/∂s on these corner nodes locations, and not due to the 

original BEM procedure to evaluate the boundary solution, that remains unchanged. 

The solution at any point inside the element is 𝜙(𝑒)(𝜉) = ∑ 𝑁𝑖
𝑚
𝑖=1 (𝜉)𝜙𝑖

(𝑒)
 and 𝑞(𝑒)(𝜉) =

∑ 𝑁𝑖
𝑚
𝑖=1 (𝜉)𝑞𝑖

(𝑒)
, where ξ is the intrinsic coordinate and m is the number of element nodes 

corresponding to the polynomial interpolation being used, such as m = 2 for linear 

elements, m = 3 for quadratic elements, etc. Taking derivatives with respect to the intrinsic 

coordinate gives 
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𝑑𝜙(𝑒)(𝜉)

𝑑𝜉
=∑

𝑑𝑁𝑖(𝜉)

𝑑𝜉

𝑚

𝑖=1

𝜙𝑖
(𝑒)         ;         

𝑑𝑞(𝑒)(𝜉)

𝑑𝜉
=∑

𝑑𝑁𝑖(𝜉)

𝑑𝜉

𝑚

𝑖=1

𝑞𝑖
(𝑒)

 
(48) 

These derivatives can now be written with polynomial shape functions one degree higher 

as 

𝑑𝜙(𝑒)(∗)(𝜉)

𝑑𝜉
=∑𝑁𝑖

𝑚

𝑖=1

(𝜉)
𝑑𝜙𝑖

(𝑒)(∗)

𝑑𝜉
        ;        

𝑑𝑞(𝑒)(∗)(𝜉)

𝑑𝜉

=∑𝑁𝑖

𝑚

𝑖=1

(𝜉)
𝑑𝑞𝑖

(𝑒)(∗)

𝑑𝜉
 

(49) 

where 𝑑𝜙𝑖
(𝑒)(∗)/𝑑𝜉 and 𝑑𝑞𝑖

(𝑒)(∗)/𝑑𝜉 are the sets of nodal values of the corresponding 

derivatives, equivalent in a local averaging sense, to the original ones, 𝑑𝜙𝑖
(𝑒)/𝑑𝜉 and 

𝑑𝑞𝑖
(𝑒)/𝑑𝜉. The element equivalence is enforced by setting that both formulations for the 

derivatives give same element integrals, defined by 

𝐼𝜙
(𝑒) = ∫ {

(𝑒)

𝑆

𝑁}
𝑑𝜙𝑖

(𝑒)(𝜉)

𝑑𝜉
𝐽(𝜉, 𝑠)𝑑𝑆 = ∫ {

(𝑒)

𝑆

𝑁}
𝑑𝜙𝑖

(𝑒)(∗)(𝜉)

𝑑𝜉
𝑑𝑆

𝐼𝑞
(𝑒) = ∫ {

(𝑒)

𝑆

𝑁}
𝑑𝑞𝑖

(𝑒)(𝜉)

𝑑𝜉
𝐽(𝜉, 𝑠)𝑑𝑆 = ∫ {

(𝑒)

𝑆

𝑁}
𝑑𝑞𝑖

(𝑒)(∗)(𝜉)

𝑑𝜉
𝑑𝑆

 

 

(50) 

where  
𝑑𝜙𝑖

(𝑒)(𝜉)

𝑑𝜉
𝐽(𝜉, 𝑠) =

∂𝜙𝑖
(𝑒)(𝑠)

∂𝑠
, 𝐽(𝜉, 𝑠) being the Jacobian of the transformation between 

the real element (with coordinate s) and the standard element (with the intrinsic coordinate 

ξ). The derivatives of 𝜙(𝑒)(∗), 𝑞(𝑒) and 𝑞(𝑒)(∗) follow similar transformation of 

coordinates. The integration is performed on S which is the element length in 2-D or the 

element area in 3-D. If the element for integration is now written as 𝑑𝑆 = 𝐽(𝜉, 𝑠)𝑑𝜉, all 

terms in the integrands are now only function of the intrinsic variable ξ, and all element 

integrations are now performed for 𝜉 ∈ [−1,1], for the usual Lagrangian interpolating 

functions. 

The element equations as in Eq. (50) are then assembled for the entire boundary S. A 

system of equations is obtained from which the vectors of smoothed nodal derivatives 

{∂𝜙𝑖/ ∂𝑠}
(𝑒) and {∂𝑞𝑖/ ∂𝑠}

(𝑒) can be obtained. It must be pointed out that the system 

matrix for the coefficients of the recovered or smoothed quantities is not singular, and 

admits an inverse, after all elements are assembled, including the zero-length elements 

that link the double nodes. 

Several approaches could be envisaged to use the assembly of the element integrals as 

obtained in Eq. (50). By assembling the element integrals of the type 𝐼𝜙
(𝑒)

 only, an 

expression for the local error related to the tangent derivative of ϕ could be obtained. 

Similarly, by assembling the integrals of the type 𝐼𝑞
(𝑒)

 only, an expression for the local 

error related to the tangential derivative of the flux q could be obtained, noting that the 

flux is the normal derivative of the potential ϕ. A more elaborate expression for the error 

related to both the tangential and the normal derivatives of the potential could be obtained 

by combining both integrals. In this case, normalizing or scaling the integrals first, before 
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adding or combining them, might be necessary, so that they will be of the same order of 

magnitude. 

In any of these approaches, the error is already normalized with respect to the size of the 

element, the normalization factor being the Jacobian 𝐽(𝜉, 𝑠) that appeared naturally in the 

formulation when the chain rule was applied for the derivatives of the transformation 

equations from local variables to intrinsic element variables. So the obtained the quantity 

of interest is a measure of the relative error, already normalized with respect to the 

element size, and not a measure of the error that could be dependent on the size of the 

element. 

The approach follows several steps. The first step is to solve the system of equations 

corresponding to the integral (or to the combination of integrals) chosen, obtaining the 

equivalent set of nodal values for the derivatives. For any point with generic coordinate 

S in the element, a difference will exist between the derivative as written in the original 

system and the derivative using the recovered equivalent nodal values. By construction, 

these differences will add to zero if the entire boundary is considered, because adding for 

all positions S is the same as integrating in the entire boundary, obtaining again the 

equivalence equation that was enforced. A quadratic expression for a residual is proposed 

such that the differences between the derivatives point by point are first squared and then 

added to obtain an expression for the local error. The proposed residuals are, then, 

functions of the position S within the element: 

𝑟∅
(𝑒)(𝑠) = [

𝜕∅(𝑒)(∗)

𝜕𝑠
(𝑠) −

𝜕∅(𝑒)

𝜕𝑠
(𝑠)]

2

 ;    𝑟𝑞
(𝑒)(𝑠) = [

𝜕∅(𝑒)(∗)

𝜕𝑠
(𝑠) −

𝜕𝑞(𝑒)

𝜕𝑠
(𝑠)]

2

 (51) 

Local error expressions in the original elements can now be defined as: 

𝐸𝜙
(𝑒) =

1

𝑆(𝑒)
∫ 𝑟𝜙

(𝑒)

𝑆(𝑒)
(𝑠)𝑑𝑆(𝑒)           ;           𝐸𝑞

(𝑒) =
1

𝑆(𝑒)
∫ 𝑟𝑞

(𝑒)

𝑆(𝑒)
(𝑠)𝑑𝑆(𝑒) (52) 

where 𝑆(𝑒)is the total size, or length, of the element, appearing as the scaling factor 

equivalent to the Jacobian that would appear if the integration were performed with 

respect to the intrinsic variable ξ. 

The residuals in an element (e) at the position s, obtained from the two sources of error, 

𝑟𝜙
(𝑒)(𝑠) and 𝑟𝑞

(𝑒)(𝑠) can be combined to give a unique information about the local error in 

the element, coming from both the tangential and the normal derivatives of the potential. 

As the order of magnitude of the quantities involved may vary, these residuals are 

proposed to be normalized with respect to the average values of the quantities in the 

element, before they are added to obtain a unique residual, now normalized, for the 

element. 

The average values can be obtained directly from the equivalence equation, Eq. (50) as 

𝜕∅(𝑒)

𝜕𝑠
|
𝐴𝑉𝐸

=
1

𝑆(𝑒)
∫

𝜕∅𝑖
(𝑒)

𝜕𝑠𝑆(𝑒)
(𝑠)𝑑𝑆𝑒 =

1

𝑆(𝑒)
∫

𝜕∅𝑖
(𝑒)(∗)

𝜕𝑠𝑆(𝑒)
(𝑠)𝑑𝑆𝑒        

𝜕𝑞(𝑒)

𝜕𝑠
|
𝐴𝑉𝐸

=
1

𝑆(𝑒)
∫

𝜕𝑞𝑖
(𝑒)

𝜕𝑠𝑆(𝑒)
(𝑠)𝑑𝑆𝑒 =

1

𝑆(𝑒)
∫

𝜕𝑞𝑖
(𝑒)(∗)

𝜕𝑠𝑆(𝑒)
(𝑠)𝑑𝑆𝑒        

 

(53) 

The normalized residuals are then defined as: 
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𝑟∅
(𝑒)(𝑠)|𝑛𝑜𝑟𝑚 =

[
 
 
 𝜕∅

(𝑒)(∗)

𝜕𝑠
(𝑠) −

𝜕∅(𝑒)

𝜕𝑠
(𝑠)

𝜕∅(𝑒)

𝜕𝑠
|
𝐴𝑉𝐸 ]

 
 
 
2

 ;    𝑟𝑞
(𝑒)(𝑠)|

𝑛𝑜𝑟𝑚
=

[
 
 
 𝜕∅

(𝑒)(∗)

𝜕𝑠
(𝑠) −

𝜕𝑞(𝑒)

𝜕𝑠
(𝑠)

𝜕𝑞(𝑒)

𝜕𝑠
|
𝐴𝑉𝐸 ]

 
 
 
2

 

 

(54) 

so that a single residual for the element (e) at the position s and the resulting local error 

element can now be defined as 

𝑟(𝑒)(𝑠) = 𝑟𝜙
(𝑒)(𝑠)|𝑛𝑜𝑟𝑚 + 𝑟𝑞

(𝑒)(𝑠)|𝑛𝑜𝑟𝑚   ;   𝐸
(𝑒) =

1

𝑆(𝑒)
∫ 𝑟(𝑒)

𝑆(𝑒)
(𝑠)𝑑𝑆(𝑒) 

(55) 

It has to be pointed out that the residuals were normalized with respect to the average 

values of the corresponding variables, and also with respect to the size of the elements, 

so that these residuals are now related only to the local error due to the corresponding 

source, either the tangential derivative or the normal derivative of the potential. 

It may occur that one source of error might be dominant, so that the other residual could 

be negligible in a certain problem. Numerical experiments have to be performed to 

establish relationships between these residuals, or conditions in which one of them, if any, 

could be discarded without loss in the accuracy of the error estimator. 

In the current work, only the error obtained from the recovery of the tangential derivative 

of the potential, denoted as Errorϕ, is evaluated. Thus, in this gradient recovery approach, 

the smoothed or recovered function is not the gradient itself, but its component in the 

locally tangent direction, because this component is not obtained from the integral 

equation directly, but from the tangential derivative of the potential. 

The reason for not considering the error from the recovery of the flux in this first study is 

that the tangential derivative of the potential is being approximated, using isoparametric 

elements, by a polynomial that is one degree less then the polynomial that approximates 

the normal derivative of the potential, which was obtained directly in the solution of the 

boundary integral equation. The smoothed tangential derivative and the original normal 

derivative are, then, approximated using polynomials of the same degree. 

The recovery procedure could be refined in a future work, so that the rate of change in 

tangential direction of the normal derivative could be smoothed too. With this refinement 

in the gradient recovery procedure, a comparison could be performed between the normal 

and tangential contributions for the element error. This refinement is proposed but not 

implemented in this work, as the tangential derivative of the potential, being written with 

a polynomial with one degree less than the flux, appears to be the component of the 

gradient that gives the most significant contribution for the total element error. (Jorge, 

Ribeiro, Cruse, et al., 2001) shows that accurate results for the potential and the flux were 

obtained for coarse graded meshes where the tangential derivatives of the potential were 

better approximated. 

A global error estimator can now be defined simply by 𝐸𝐺𝑙𝑜𝑏𝑎𝑙 = ∑ 𝐸(𝑒)𝑁
𝑒=1 , where N is 

the number of boundary elements, so that an average error for the entire boundary and the 

normalized local element errors can be defined respectively as: 

𝐸𝐴𝑉𝐸 =
1

𝑁
𝐸𝐺𝑙𝑜𝑏𝑎𝑙 =

1

𝑁
∑𝐸(𝑒)
𝑁

𝑒=1

   ;   𝐸(𝑒)|𝑛𝑜𝑟𝑚 =
𝐸(𝑒)

𝐸𝐴𝑉𝐸
 

(56) 
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so that this normalized local error indicator can now be used in an adaptive procedure. If 

𝐸(𝑒)|𝑛𝑜𝑟𝑚 > 1 then the local error in the element is bigger than the average, and a mesh 

refinement is needed, either changing the size of the elements in this boundary region to 

smaller ones (h- refinement) or increasing the order of the polynomial interpolant in the 

element (p- refinement). If 𝐸(𝑒)|𝑛𝑜𝑟𝑚 ≅ 1, the local error has an average value and no 

refinement is needed. If 𝐸(𝑒)|𝑛𝑜𝑟𝑚 < 1, no refinement is needed, either. In this case, in 

fact, the local error being small shows that the element size is already small enough and 

it could be made bigger without much loss in the solution accuracy. 

3.2.3.2 The external domain approach 

Usually, the error estimator approaches deal with the discretization error, looking for an 

optimal adaptive procedure for mesh refinement, if a local error measure is available. 

Existing ideas, approaches and error estimators for collocation BEM are the starting point 

for the error estimators to be proposed. From these ideas, the difference between two 

equivalent formulations is seems to be one of the easiest to be adopted, due to its 

simplicity. The exact solution for the BVP as written in one integral representation shall 

satisfy any other possible different integral representation of the same BVP. When a 

numerical solution is found for some discretization of one formulation, this solution can 

be plugged into the discretized form (with same discretization) of the other possible 

formulation. As the numerical solution is not exact, the identities in the discretized form 

of this second formulation will not be satisfied. The difference will be a measure of the 

error in the discretization of both formulations. 

For example, for a closed domain, the exterior problem representation is equal to zero in 

both the potential and in the elastostatics problems. So, any difference from zero could 

be related to the discretization error. As the fundamental solutions are functions of the 

distance between source and field points, one representation in which the exterior point 

is very close to the boundary might give a different error measure than another external 

formulation in which the exterior point is considered far away from the boundary. If 

different exterior points are considered, different external formulations may be obtained. 

The error measure might be sensitive to the external point position, for some particular 

problem. Two equivalent formulations can be used, for some discretization, for the 

potential problem: evaluate the solution in the boundary with a potential formulation and 

then check the expected vanishing of the results of the potential formulation for an 

exterior problem. 

So, an error estimator is implemented for the potential problem, based on the fact that the 

potential vanishes at external points. In the potential formulation for an exterior problem, 

a numerical solution at the boundary is first obtained for the discretized mesh using the 

collocation BEM or any other BEM formulation. This boundary solution is then 

substituted on the exterior form of Green’s identity given by 

0 = −∫𝜙
𝑆

(𝑠)∇⃗⃗ ln (
1

𝑟(𝑠, 𝑦)
) ⋅ �⃗� (𝑠)𝑑𝑆 + ∫∇⃗⃗ 

𝑆

𝜙(𝑠) ⋅ �⃗� (𝑠)ln (
1

𝑟(𝑠, 𝑦)
)𝑑𝑆  ∀𝑦 ∈ 𝑅‾  (57) 

As it was discussed in Section 3.2.2, other choices of integral representations could also 

have been adopted for the exterior equation. By implementing this methodology to other 

exterior problem equations, optimal choices for this equation could be looked at. 
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The exterior point 𝑦 ∈ 𝑅‾  is proposed to be located at a distance to the boundary (the 

distance from the exterior point to the closest point on the boundary) that is 1/4 of the size 

of the element closest to this exterior point. This distance is measured in the direction 

normal to the element. This distance was chosen to avoid the quasi-singularity problem 

that may appear if the external point is too close to the boundary and also to avoid round-

off error that may appear in the computations of very small fundamental solutions when 

the exterior point is too far away from the boundary. It has to be noted that other choices 

for this position could have been adopted, and numerical experiments could have been 

performed to determine optimum minimal distances for different cases. 

3.2.3.3 Implementation of the proposed Error Estimators  

A numerical example is performed to demonstrate the implementation of the two 

proposed error estimators (Jorge, Ribeiro, & Fisher, 2001). This example was proposed 

by Motz (Jaswon et al., 1978). The problem consists of a rectangular domain, as shown 

in Fig. 23 (a). The flux is singular at point O in the element where the potential is 

prescribed. 

 

 

(a) (b) 

Figure 23: The Motz problem: (a) a singularity is created at point O by the boundary 

conditions; (b) the coarse mesh: 10 elements - adapted from (Jorge, Ribeiro, et al., 2003) 

All BEM results were obtained with the code BETIS from (París & Cañas, 1997), which 

uses linear elements. Two meshes are implemented to compare the error estimators. The 

first mesh is coarse and has only 2 elements in each linear segment in which a specific 

boundary condition is prescribed. Then, a finer mesh is studied in which there are eight 

elements on the side where the flux is known to have a discontinuity. Figure 23 (b) 

illustrates the coarse mesh that was implemented. 

The implementation of the tangent derivative recovery for linear elements is detailed as 

follows. A standard linear element has two end nodes with corresponding shape functions 

𝑁1(𝜉) = (1 − 𝜉)/2 and 𝑁2(𝜉) = (1 + 𝜉)/2 for 𝜉 ∈ [−1,1]. The Jacobian for this 1-D 

straight element is 𝐽(𝜉, 𝑠) = ∂𝜉/ ∂𝑠 = 2/𝐿(𝑒), where 𝐿(𝑒) is the length of the boundary 

element (e), so the element of integration is 𝑑𝑆(𝑒) = (𝐿(𝑒)/2)𝑑𝜉. The original and the 

recovered (denoted by (*)) tangent derivatives of the potential are written for the element 

(e) so that the equivalence in the element can be enforced as follows. 
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∫
1

−1

{
𝑁1(𝜉)

𝑁2(𝜉)
} ⌊𝑁1(𝜉)   𝑁2(𝜉)⌋

𝐿(𝑒)

2
𝑑𝜉

{
 
 

 
 ∂𝜙1
∂𝑠

(𝑒)(∗)

∂𝜙2
∂𝑠

(𝑒)(∗)

}
 
 

 
 

= ∫ {
𝑁1(𝜉)

𝑁2(𝜉)
}

1

−1

𝐿(𝑒)

2
𝑑𝜉

2

𝐿(𝑒)
⌊𝑁1′(𝜉)   𝑁2′(𝜉)⌋ {

𝜙1
(𝑒)

𝜙2
(𝑒)}

 

 

 

(58) 

Now all element matrices given by Eq. (58) can be assembled for both the coarse and the 

refined meshes. By solving the assembled system of equations, the vector of nodal values 

for the smoothed tangential derivatives of the potential ∂𝜙𝑖
(∗)
/ ∂𝑠 is obtained. The 

assembled matrices are sparce. The vector of element interpolations is now obtained as 

{
∂𝜙(𝑖)(∗)

∂𝑠
(𝜉)} = (

1 − 𝜉

2
)
∂𝜙𝑖

(∗)

∂𝑠
+ (

1 + 𝜉

2
)
∂𝜙𝑖+1

(∗)

∂𝑠
 

(59) 

The residuals 𝑟𝜙
𝑖  are now evaluated for each element as the square of the differences 

between the smoothed solution obtained in Eq. (59) and the original non-smoothed 

solution. 

𝑟𝜙
𝑖 (𝜉) = [

∂𝜙(𝑖)(∗)

∂𝑠
(𝜉) −

2

𝐿𝑖
⌊𝑁𝑖′(𝜉)   𝑁𝑖+1′(𝜉)⌋ {

𝜙𝑖
𝜙𝑖+1

}]

2

 
(60) 

so the element errors 𝑅𝜙
𝑖 , the average error 𝐸𝐴𝑉𝐸  and the normalized element errors 𝐸𝜙

𝑖 =

𝑅𝜙𝑛𝑜𝑟𝑚
𝑖  are found as 

𝑅𝜙
𝑖 = ∫ 𝑟𝜙

𝑖
1

−1

(𝜉)𝑑𝜉      𝐸𝐴𝑉𝐸 =
1

𝑁
∑𝑅𝜙

𝑖

𝑖

      𝐸𝜙
𝑖 =

𝑅𝜙
𝑖

𝐸𝐴𝑉𝐸
 

(61) 

where the element errors 𝐸𝜙
𝑖  can now be compared with the local element errors 𝐸𝐸𝑋𝑇

𝑖 , 

obtained from the external error approach. Figure (24) shows the results for the 

normalized local error estimators for both the coarse and the fine meshes. The horizontal 

axis of the four plots corresponds to the s- coordinate of the middle of each element along 

the boundary. 
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Figure 24: Error estimator results. (a) and (b): Influence of mesh refinement for each 

estimator. (c) and (d): Comparison between estimators for each mesh. - adapted from 

(Jorge, Ribeiro, & Fisher, 2001) 

Plot (a) shows the results for the error on the tangential derivative of the recovered 

gradient 𝐸𝑟𝑟𝑜𝑟𝜙 while plot (b) shows the results for the error obtained using the exterior 

domain formulation 𝐸𝑟𝑟𝑜𝑟𝐸𝑋𝑇. The boundary region that shows the highest values for the 

normalized error in both cases is the region that contains the elements adjacent to the 

singular point O, as expected. The error results were qualitatively consistent with the 

mesh refinement. Plots (c) and (d) compare the error estimators for the coarse and the 

refined meshes, respectively. Both error estimators indicate the same region about the 

singular point O with highest values for the normalized error. 

Also, the boundary region immediately before corner node D presents relatively high 

secondary errors for both estimators. These errors appear to be related to the fact that this 

region corresponds to the boundary corner the farthest distance away from any boundary 

region where the potential is prescribed. 

It must be pointed out that the element before the singular point has the potential 

prescribed as constant. So, any contribution for the error could only come from the error 

in the flux, in this element. Similarly, the element after the singular point has the flux 

prescribed as constant. So, any contribution for the error could only come from the error 

in the potential, in this element. This means that both error estimators were capable of 

recovering the local information of the total error regardless of the cause of the error being 

the boundary potential or the boundary flux. 

Although the adopted gradient recovery procedure does not explicitly recover the errors 

from the tangential derivative of the flux, high values for the error that could only be 

related to the local flux were encountered in an element adjacent to the singular point. An 
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explanation for this behavior is that the gradient recovery procedure is based on an 

algorithm that includes all the boundary elements. The recovery of the tangential 

derivative of the potential is not made independently for each element, in a local basis. 

Instead, a unique value for the smoothed or recovered nodal values of the tangential 

derivative of the potential is only obtained when all the element matrices are assembled 

and the solution for the obtained system of equations is calculated. The redistribution of 

the tangential derivatives of the potential throughout the boundary appears to implicitly 

account for the local error in the flux. 

3.2.4 Proposed Error Estimators for Elastostatics-BEM 

New Error Estimators based on Gradient Recovery and External Domain Approaches 

were extended to 2D Elastostatics Problems in (Jorge et al., 2005). These error estimator 

approaches were derived for 2D potential problems in (Jorge, Ribeiro, et al., 2003), and 

the extension of these error estimators for a problem with a different integral formulation 

highlights their generality of use. 

Error estimators based on residuals and error norms, similar to the approaches available 

in the finite element method (FEM), have been used for symmetric BEM formulations, 

but the error estimators literature is scarce for the collocation BEM formulation. Reviews 

for error estimation and adaptivity methods for BEM can be found in (S. Liapis, 1994) 

and in (Kita & Kamiya, 1994) (Kita & Kamiya, 2001). 

The two local error estimator approaches presented in this work can be used for both 

Galerkin and collocation BEM formulations. The first approach involves a gradient 

recovery procedure, wherein the smoothed or recovered functions are rates of change of 

the boundary variables in the local tangential direction. The gradient recovery approach 

is commonly used in the finite element method (Ainsworth & Oden, 1997) and considers 

the evaluation of the gradient of the field variable in global coordinates, with continuous 

derivatives of this field variable in fixed global directions. 

On the other hand, in the BEM the variables of interest are written in local coordinates, 

the displacements are continuous throughout the boundary, while the tractions and the 

tangential derivatives of the boundary variables may be discontinuous, such as at points 

where the boundary is not smooth or where the boundary conditions are discontinuous. 

The second error estimator approach is associated with an external problem formulation 

and gives both a local and a global measure of the error depending on the external point 

where the equation is applied. (Denda & Dong, 1999) presented an error estimator for 

elasticity based on the strain energy in the exterior region. In the current work, the error 

estimator is obtained using directly the error in the displacements and in the stresses 

obtained from the exterior problem. Displacements and stresses should vanish at points 

located in the exterior of a closed domain, and consequently, nonzero values indicate 

errors. If the external evaluation point is near the boundary, the influence of the nearby 

boundary elements in the error estimate will be dominant, and the error information 

assumes a local characteristic. To eliminate any influence of the choice of the global 

directions on the values of the stress error estimates, the stresses at the exterior point are 

first combined into stress invariants, the mean stress and the octahedral stress, before any 

error information is evaluated. In (Jorge et al., 2005), the two error estimators were 

computed for two 2D elastostatics problems, one of which contains a singularity. A 

comparison was made between global and local error estimates, and the error consistency 
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with mesh refinement is also compared. Some details are shown in the following 

subsections. 

3.2.4.1 The gradient recovery approach 

The concept of recovery of derivatives for error estimation originated with finite element 

methods, in which error indicators were derived from derivatives of the computed finite 

element solution. A procedure to smooth the gradient to compute these derivatives with 

good accuracy is called gradient recovery (Ainsworth & Oden, 1997). The derivatives are 

evaluated from a weighted average of element derivatives surrounding a node. The 

weighting factors are the element areas. 

This post-processing approach to estimate error from gradient recovery was adapted by 

the authors to 2D potential BEM problems in (Jorge, Ribeiro, et al., 2003). An important 

feature in this procedure when applied to FEM is that the derivatives of the field variables 

(displacements) are taken with respect to a global coordinate system. Thus, not only are 

the field variables continuous at the domain nodes, but also the smoothed gradient vectors 

in a general elastostatics problem are continuous. On the other hand, when the gradient 

recovery procedure is applied to BEM, the tangential and normal directions are written in 

local coordinates, and discontinuities in the tangential derivatives need to be allowed in 

both the original and the recovered tangential derivatives of the density fields (boundary 

displacements and tractions). 

To write a system of equations similar to the one obtained with the FEM procedure, 

continuity would be required for the derivatives of the densities. The approach adopted 

in (Jorge, Ribeiro, et al., 2003) and extended in this work is to introduce double nodes at 

all the discontinuous points, such as the corner nodes on the boundary. Elements with 

zero length connect these double nodes, so that no local or global contribution for the 

error from these fictitious elements is incurred. The concept of double nodes to account 

for discontinuities in the tractions when obtaining the boundary solution is well known in 

the BEM literature (París & Cañas, 1997) but is not used in this work. 

The double nodes introduced here originate from discontinuities in the values of the 

tangential derivatives of the densities at corner nodes in the post-processing algorithm to 

obtain the element errors and not from the original BEM procedure to evaluate the 

boundary solution. 

The basic boundary integral equation for the elastostatics problem (Wendland & Cruse, 

1990), gives the displacement 𝑢𝑗(𝑥) as a function of boundary integrals. This 

displacement-BIE, can be written, for an homogeneous domain Ω as: 

𝐶𝑗𝑖(𝑝)𝑢𝑖(𝑝) = ∫ 𝛹𝑗𝑖
∂𝛺

(𝑝, 𝑄)𝑡𝑖(𝑄)𝑑𝑆(𝑄) − ∫ 𝑇𝑗𝑖
𝜓

∂𝛺

(𝑝, 𝑄)𝑢𝑖(𝑄)𝑑𝑆(𝑄) (62) 

where 𝑄 ∈ ∂𝛺. The functions 𝛹𝑗𝑖 and 𝑇𝑗𝑖
𝜓

 are associated with fundamental solutions of 

the Navier equation, and 𝐶𝑗𝑖 is associated with the location of the collocation point p, as 

an interior, exterior, or boundary point. The integrals in Eq. (62) provide a constraining 

equation for the boundary variables when evaluated for 𝑝 ∈ ∂𝛺, in which case 𝐶𝑗𝑖 depends 

on the boundary smoothness at the point. 

Four different densities must be considered when writing a boundary integral equation 

for 2D elastostatics: the two components of the displacements, 𝑢1 = 𝑢 and 𝑢2 = 𝑣, and 
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the two components of the tractions, 𝑡1 = 𝑆𝐺 and 𝑡2 = 𝑇𝐴𝑈. In this work, recovery of 

the tangential derivatives of each density is made independently, so that separate element 

error information is obtained for each of the four boundary densities. In a later step, the 

element residuals are combined into element errors that contain information from the 

recovery of the tangential derivatives of all four densities. 

In what follows, a boundary density is denoted by 𝜙 (𝜙 = 𝑢, 𝑣, 𝑆𝐺 or 𝑇𝐴𝑈) and its 

tangential derivative by ∂𝜙/ ∂𝑠. The solution at any point inside the element (e) is  

𝜙(𝑒)(𝜉) = ⌊𝑁⌋{𝜙}(𝑒) =∑𝑁𝑖

𝑚

𝑖=1

(𝜉)𝜙𝑖
(𝑒)

 

where ξ is the intrinsic coordinate and m is the number of element nodes corresponding 

to the polynomial interpolation being used. The symbols ⌊⋯⌋ and {⋯} denote row and 

column vectors, respectively. Taking derivatives with respect to the intrinsic coordinate 

gives 

(
∂𝜙

∂𝑠
)

(𝑒)

= (
∂𝜙

∂𝜉
)

(𝑒)

(
∂𝜉

∂𝑠
)

(𝑒)

= ⌊
∂𝑁

∂𝜉
⌋ {𝜙}(𝑒) (

∂𝜉

∂𝑠
)

(𝑒)

 
(63) 

where 𝐽(𝜉, 𝑠) = (∂𝜉/ ∂𝑠)(𝑒) is the Jacobian of the transformation between the real 

element (with coordinate s) and the standard element (with the intrinsic coordinate ξ). 

These derivatives can be written with polynomial shape functions of one degree higher 

order as 

(
∂𝜙

∂𝑠
)

(𝑒)∗

= ⌊𝑁⌋  {
∂𝜙

∂𝑠
}

(𝑒)∗

 
(64) 

where {∂𝜙/ ∂𝑠}(𝑒)∗ is the set of nodal values of the corresponding derivatives, equivalent 

in a local averaging sense, to the original ones, {∂𝜙/ ∂𝑠}(𝑒). The element equivalence is 

enforced by requiring that both formulations for the derivatives give same element 

integrals, defined by 

𝐼𝜙
(𝑒) = ∫ {

𝑆(𝑒)
𝑁} (

∂𝜙

∂𝑠
)

(𝑒)∗

𝑑𝑠 = ∫ {
𝑆(𝑒)

𝑁} (
∂𝜙

∂𝜉
)

(𝑒)

𝐽(𝜉, 𝑠)𝑑𝑠 (65) 

where the integration is performed on 𝑆(𝑒), which is the element length in 2D or the 

element area in 3D. If the element under integration is now written as 𝑑𝑠 = 𝐽(𝑠, 𝜉)𝑑𝜉, 

where 𝐽(𝑠, 𝜉) = ∂𝑠/ ∂𝜉 = 1/𝐽(𝜉, 𝑠), all terms in the integrands are only functions of the 

intrinsic variable ξ, and all element integrations are performed for 𝜉 ∈ [−1,1], for the 

usual Lagrangian interpolating functions. 

The element equations in Eq. (65) are then assembled for the entire boundary S, leading 

to an expanded system of equations that includes the original elements and the new zero-

length elements at the double nodes. 

A simple procedure is implemented in this work to account automatically for these new 

zero-length elements when assembling the system of equations. The procedure consists 

of three steps. In the first step, a test is performed at each node i, for discontinuities in the 

tractions or in the normal unit vector between the elements that share the node. A corner 

locator variable is set to a value of one wherever a corner is located or a discontinuity in 

traction exists. 
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The second step is to renumber the current nodes and elements to include the zero-length 

elements at the located “corner” nodes. A new augmented connectivity matrix is thus 

created relating node/element numbering, including the added zero-length elements. With 

this procedure, single values for the tractions and for the tangential derivatives of both 

the displacements and the tractions can be assigned to each node in the augmented system. 

An assembled system of equations is thus obtained from which the vectors of smoothed 

nodal derivatives {∂𝜙/ ∂𝑠}(𝑒) can be obtained in this augmented system. The system 

matrix for the coefficients of the recovered or smoothed quantities is not singular and 

admits an inverse after assembling all elements. 

The third step is to evaluate the element errors still in the augmented system and then 

renumber backwards the nodes/elements to their original numbering, by excluding the 

zero-length elements, so that only the error information of the original elements is 

retained. 

The recovery of all four densities (𝜙 = 𝑢, 𝑣, 𝑆𝐺 or 𝑇𝐴𝑈) is implemented in this work so 

that error estimators are obtained separately from the smoothed tangential derivatives of 

the displacements and of the tractions, and also a combined error estimator is obtained 

when the individual contributions from the tangential derivatives of the various densities 

are added. A scaling parameter is introduced so that the individual contributions are 

scaled before being added. Additional details for the implementation of the tangential 

derivative recovery for linear elements are described in (Jorge et al., 2005). 

3.2.4.2 The external domain approach 

The external domain error estimator approach is based on the difference between two 

equivalent formulations. The exact solution for one integral representation a problem 

satisfies any other possible different integral representation of the same problem. When a 

numerical solution is found for one formulation, this solution can be substituted into the 

discretized form (with same discretization) of the other possible formulation. Because 

numerical solutions are not exact, the identities in the discretized form of this second 

formulation will not be satisfied. The difference is a measure of the discretization error 

of both formulations. 

The external domain approach uses the fact that, for a closed domain, the exterior 

boundary integral representations for both the displacements and the stresses equal zero 

in the elastostatics problem. Thus, any difference from zero can be related to the 

discretization error. Because fundamental solutions are functions of the distance between 

source and field points, one representation in which the exterior point is very close to the 

boundary might give a different error measure than the case in which the point is far away 

from the boundary. If different exterior points are considered, several external 

formulations may be obtained. 

This error measure, estimated from the residual of the integral equation held at the outer 

source point, is sensitive to the external point position for non-trivial problems. For small 

but finite distances to the boundary, the estimator gives a local measure of the 

discretization error, but if the distance to the boundary becomes too small, errors 

associated to the location of the source point, coming from the numerical evaluation of 

the near-singular integrals, might become significant. 

To implement the procedure, first a numerical solution at the boundary is obtained for the 

discretized mesh using a collocation BEM formulation. This boundary solution is then 
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substituted into the discretized integral representations for the interior displacements and 

stresses, and finally these displacements (u and v) and stresses (𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦) are 

evaluated at an exterior point 𝑦(𝑒) in a close vicinity to a boundary element (e). An 

external error estimator for the total displacement (𝐸𝑥𝑡: 𝐷) is constructed as 

𝐸𝐸𝑥𝑡:𝐷
(𝑒) = [𝑢(𝑦(𝑒))

2
+ 𝑣(𝑦(𝑒))

2
]
1/2

 (66) 

External error estimators can be defined from the stresses at the exterior point, as well. 

To eliminate any influence of the choice of global directions on the values of the stress 

error estimates, the stresses at the exterior point are combined into stress invariants to 

obtain error estimators. Two external errors estimators are adopted in this work: the 

octahedral stress (𝐸𝑥𝑡: 𝑇) and the mean stress (𝐸𝑥𝑡:𝑀), given by 

𝐸𝐸𝑥𝑡:𝑇
(𝑒) =

√2

3
[𝜎𝑥

2 − 𝜎𝑥𝜎𝑦 + 𝜎𝑦
2 + 3𝜏𝑥𝑦

2 ]
1/2

 
 

(67) 

𝐸𝐸𝑥𝑡:𝑀
(𝑒) = (𝜎𝑥 + 𝜎𝑦)/2 

with 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦 evaluated at the exterior point 𝑦(𝑒). The mean and octahedral stresses 

were chosen because they are independent stress invariants. Naturally, if the numerical 

boundary solution is exact, all external error estimators are zero. 

The exterior evaluation point 𝑦(𝑒) is located at a distance from the boundary (the distance 

from the exterior point to the closest point on the boundary) that is a fraction α of the size 

of the nearest boundary element (e). This distance is measured from the element center in 

the normal direction to the element at this point. 

In this work, numerical experiments are done with various values of the fraction α in order 

to evaluate the most appropriate location for the external point y. The closer the external 

point to the boundary, the more “local” the error information is. 

On the other hand, if the external point is too close to the boundary, numerical errors may 

appear due to quasi-singularities. 

The external domain error estimators can also be combined to obtain a more general error 

estimator (𝐸𝑥𝑡: 𝐷 + 𝑇 +𝑀) with error information from both external displacements and 

stresses. The individual contributions for element error are also scaled before adding, with 

the scaling factors defined as the average boundary total displacement (𝑢2 + 𝑣2)1/2 and 

total traction (𝑆𝐺2 + 𝑇𝐴𝑈2)1/2, respectively. 

An implementation of the proposed error estimators was presented in (Jorge et al., 2005), 

for the element errors 𝐸𝐸𝑥𝑡
(𝑒)

 for various values of the fraction α. Comparisons were also 

made between 𝐸𝐸𝑥𝑡
(𝑒)

 and 𝐸𝐺𝑅
(𝑒)

 to show the consistency of the local information given by 

these estimates with mesh refinement. 

One must point out that the external domain error estimator can be used only for domains 

in which an exterior region exists. For example, if using a traction-BIE without a 

multiregion approach for the case of a crack embedded in an infinite elastic body, no 

exterior region could be defined in which the evaluation point would be at a finite distance 

from the boundary. 
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In this case, the external domain error estimator could not be used, while the gradient 

recovery approach can always be used, for closed or open boundaries, and for finite or 

infinite domains. 

3.2.4.3 A final note on the proposed Error Estimators for elastostatics BEM  

Error estimators based on gradient recovery and external solution have shown consistency 

with mesh refinement and have given similar qualitative results. The error estimators were 

also proven to be useful to compare the efficiency of different types of mesh refinement 

(such as the r- and h-refinement schemes) for a particular problem. 

The error estimator using the gradient recovery approach presents a more general 

characteristic as this formulation does not rely on an “optimal” choice of an external 

parameter, such as in the case of the external domain error estimator. Also, the external 

domain error estimator can be used only for domains in which an exterior region exists, 

while the gradient recovery approach can be used on a broader range of elastostatics 

problems. 

 

4 Model Validation Under Uncertainty: Consistent Error Estimators and 

Bayesian Approaches 

This section is based on research work in errors estimators in the context of modeling and 

simulation for design under uncertainty (Jorge et al., 2002), performed under the 

supervision of Dr. Sankaran Mahadevan, head of the multidisciplinary NSF-IGERT 

program (Multidisciplinary Doctoral Studies in Reliability and Risk Engineering and 

Management). The research objectives comprised: 

- Review of error estimators for finite element methods. 

- Coding of two error error estimators for the 2-D displacement-FEM. The first 

estimator is based on a gradient recovery procedure; the second estimator is based 

on the lack of inter-element stress continuity for the discretized results. 

- Study the correlation / consistency between different error estimators, including 

both estimators coded (see previous item) and two other estimators previously 

obtained: error estimator based on Richardson extrapolation (uses two meshes: 

coarse and fine) and maximum error bound for the error (based on second 

derivatives). 

- Outline a global-to-local approach for validation as follows: globally, the error 

estimator is investigated for consistency with the measured error or with other 

available estimators. Then, weak local regions are chosen to construct a reliability 

model to validate the numerical code. 

A new model validation approach has been developed (Zhang & Mahadevan, 2003) 

(Rebba et al., 2006) (Mahadevan, 2002), in which error estimators from the discretized 

model were combined into an appropriate stochastic response surface approach, and a 

Bayesian approach for hypothesis testing was subsequently used, leading to decisions on 

acceptance/rejection of the model. The methods were demonstrated for application to the 

probabilistic life prediction of a composite helicopter rotor hub component, shown in Fig. 

(25). 
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(a) (b) 

Figure 25: (a) Rotor hub assembly (b) Half of the symmetric section of tapered 

composite test specimen - adapted from (Mahadevan, 2002) 

In (Jorge et al., 2002), the consistency of different error estimators evaluated from 

different response quantities was investigated. Mean and octahedral stresses at a 

particular location were used as response quantities to obtain independent error estimates. 

Consistency between predicted weak locations of the structure was also investigated. The 

gradient recovery and the stress continuity error estimators were shown to be highly 

correlated and to indicate similar weak regions for the structure, while error estimators 

based on Richardson extrapolation and maximum error bound didn’t shown similar 

consistency. 

Also in this work, model validation results were investigated for consistent and 

nonconsistent error estimators, using conventional and stochastic response surface 

methods (RSM). Stochastic RSM was shown to be a more accurate model (for the 

response quantity of interest) than conventional RSM. Also, model validation results were 

found to be consistent (i.e., the probability of rejecting the code was similar) for consistent 

error estimators using the stochastic RSM. 

For related research work in these topics see also (Rebba et al., 2003) (Rebba, 2005) 

(Rebba & Mahadevan, 2006b) (Rebba et al., 2006) (Rebba & Mahadevan, 2006b) (Rebba 

& Mahadevan, 2006a). 

4.1 Consistent Error Estimation Strategy for Model Validation 

4.1.1 Introduction 

A 3-step methodology for numerical model validation under uncertainty is presented in 

this paper, in which a) a consistent error estimator is selected; b) an appropriate response 

surface method is constructed for the error function to replace the numerical model; and 

c) a Bayesian approach is used for decisions on model acceptance. This section 

concentrates on the strategy for the choice and use of appropriate error estimators for 

model validation purposes. 

The details of the proposed methodology are included in subsection 4.1.2. For the purpose 

of illustrating the consistent error estimator strategy, the discussion in this work uses a 

displacement-based finite element model for a 2D elastostatics problem. Surveys of the 

extensive literature existing on error estimation for finite element methods can be found 

in (Noor & Babuška, 1987) (Olgierd C. Zienkiewicz & Taylor, 1994) (J. Tinsley Oden & 

Demkowicz, 1989) (Zhu, 1997) (Ainsworth & Oden, 1997). Mostly, the literature deals 

with discretization error, and the development of methods for estimating modeling error 
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has appeared very recently (J. Tinsley Oden & Vemaganti, 2000) (J. Tinsley Oden et al., 

2003). 

Adaptive mesh refinement is a common application of error estimators (O. C. 

Zienkiewicz & Zhu, 1991) (Verfürth, 1994) (Zhu & Zienkiewicz, 1997). For that purpose, 

error approaches usually include the evaluation of error norms and / or some type of 

residuals (J. T. Oden et al., 1990) (Ainsworth & Oden, 1993) (I. Babuška et al., 1995). 

Usually, residuals, norms and other quantities used for error estimation are not explicit 

variables of a code. Instead, residuals are usually obtained after numerical manipulations 

of the code variables, and thus they cannot be measured directly. In this work, error 

estimators are sought that provide local error information on variables obtained explicitly 

from the code, so that these variables can be studied as response quantities of interest, for 

further stochastic treatment.   

Four existing discretization error estimator approaches are investigated in this work, for 

their usefulness for further stochastic treatment of the error. The first error estimator is 

based on Richardson’s extrapolation (Richards, 1997), in which the local error is 

evaluated from the differences between the response quantities obtained for two different 

meshes. The second error estimator gives in fact not an estimate, but just an upper bound 

for the magnitude of the error, and is called the maximum error bound error estimator 

(Huebner et al., 2008). This maximum error bound is obtained by evaluating second 

derivatives of the smoothed numerical solution. The third error estimator procedure is 

based on inter-element continuity requirements for the stress field, not satisfied by the 

finite element solution (O. C. Zienkiewicz & Zhu, 1987). The fourth error estimator is 

based on a gradient recovery procedure (O. C. Zienkiewicz & Zhu, 1987) (O. C. 

Zienkiewicz & Zhu, 1992a) (O. C. Zienkiewicz & Zhu, 1992b). The recovery of 

displacement derivatives is rewritten as stress recovery, using Hooke’s law. The error 

estimators used in this work are detailed in subsection 4.1.3. 

The key feature in the approach is the study of the consistency of some error estimator 

with respect to other available information. In this work, the available information is 

represented by other independent error estimator approaches and / or error estimators 

obtained for other independent response quantities. The error estimators are investigated 

for consistency in Section 4.1.4. 

Model validation can be performed also by comparing the numerical information with 

some available measured / experimental results. The procedure to investigate error 

consistency is analogous, with the error estimator results being compared with the 

experimental results, in this case. The consistency of the error estimators with respect to 

measurement results (if available) is studied using the same global-to-local methodology, 

but comparisons between measurement and numerical results can be made only in regions 

were measurement results are available.  

The consistent error estimator approach (first step of the 3-step approach) is detailed in 

subsection 4.1.4. Depending on the choice of the error estimator and response quantity, 

the model validation criterion could lead to different decisions of accepting or rejecting 

the model. The strategy adopted in this work is to choose different error estimators and 

check for the consistency of the error throughout the domain being modeled. For a 

particular problem, a measure of the consistency between the available error estimators 

can be obtained by the correlation between the 2D plots of the local error estimates. 

Similarly, this correlation study can be performed between estimated error results and the 

Jorge, Ariosto B., et al. (2022)Error Estimators & Bayesian Approaches Comput. Model Validation pp. 640-743

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 700



measured error, if some information from measurements of the physical problem is 

available. Typical results for the errors are included in subsection 4.1.4, below. 

The response surface methods (RSM) and the Bayesian approach used in this work (for 

the time-independent case without statistical uncertainty in the model) are detailed in 

subsection 4.2, below. The Bayesian approach is applied to obtain Bayes factors, needed 

for model-acceptance decisions. The obtained model-acceptance decisions are compared 

in subsection 4.2, below, for the cases of the conventional and stochastic RSMs and also 

for the cases of consistent and non-consistent error estimators. 

4.1.2 A 3-Step Methodology for Numerical Model Validation under Uncertainty 

The proposed methodology for numerical model validation under uncertainty consists of 

three steps. In the first step, a global-to-local strategy is used to locate regions with high 

error values and to choose an error estimator that consistently represents the discretization 

error in these regions of interest. 

For a particular problem being modeled, local error estimators could be evaluated for 

different response quantities. Also, different error estimation approaches could be 

adopted for the same response quantity. Also, different locations in the domain being 

modeled could be chosen to generate the prior estimates of model failure probability. 

Depending on so many choices for the error estimator, the Bayesian model validation 

could lead to different decisions of accepting or rejecting the model, for different error 

estimators, response quantities and locations. 

The strategy adopted in this work is to check for the consistency of the distributed error 

throughout the domain being modeled, for different error estimators. The correlation 

between 2D plots for the local error obtained from different estimators is used in this work 

as a measure of the consistency of the estimator. 

From the correlation between the estimators, an error estimator is chosen based on its 

global consistency when compared with the other available error sources. 

Different error estimators are compared by means of 2D dispersion plots. Also compared 

are the errors obtained from different response quantities. By using 3D plots, errors are 

shown to indicate weak regions of the structure, where high errors coexist with high, 

unacceptable, values of the response quantity. Consistent error estimators are highly-

correlated, and thus are expected to identify and locate similar weak regions. A certain 

number of representative points are selected from these weak regions. 

The second step constructs a metamodel for the error at the selected points using response 

surface techniques, to estimate the statistical distribution of the prediction error for the 

finite element model. The statistical distribution of the model error at a particular location 

is used to compute prior estimates of model failure probability, to be used in Bayesian 

model validation. 

Finally, Bayesian hypothesis testing-based model validation procedure can be applied for 

the selected critical locations, and decisions of accepting or rejecting the model are made 

based on the Bayes factor computed at the critical locations. The Bayesian approach (third 

step of the 3-step approach) has been developed earlier in (Zhang & Mahadevan, 2003), 

for time-independent and time-dependent cases, and for cases with or without statistical 

uncertainty in the model. 
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The obtained Bayes factors were used as acceptance/rejection criteria for the model. This 

Bayesian approach is extended in this work to metamodels corresponding of response 

surfaces representing the chosen consistent estimator of the numerical error at the selected 

points. 

Basically, first the approach looks for error estimator consistency from a global point of 

view. Then, weak regions are located where the Bayesian approach is applied, so model 

validation is considered from a local perspective, only at regions where important errors 

were found. 

The goals are to establish enough confidence on the error estimator first, and then to use 

the error information to reduce the number of points where model validation will be 

tested. 

4.1.3 Estimators of Discretization Error for Model Validation 

Errors in the prediction of a certain response quantity are expected to exist when using 

approximate numerical models. Different error estimators can be envisaged for a 

particular problem. The current work focuses on a strategy for the choice and use of 

appropriate error estimators for model validation purposes. 

Some error estimators well suited for adaptive refinement provide estimates that are 

always positive. This is the case, for example, of error estimators based on residuals. In 

this work, the envisaged stochastic distribution of the error may be able to assume either 

positive or negative values, as the numerical model over-predicts or under-predicts the 

average response quantity in the element. 

Some of the error estimators in this work were derived so that they can assume positive 

or negative values, to allow further stochastic treatment for the error. 

Four error estimator approaches are investigated in this work: 

• error estimator based on Richardson’s extrapolation (Richards, 1997); 

• maximum error bound error estimator (Huebner et al., 2008); 

• error estimator based on lack of inter-element stress continuity (O. C. Zienkiewicz 

& Zhu, 1987); and 

• gradient recovery error estimator (O. C. Zienkiewicz & Zhu, 1987) (O. C. 

Zienkiewicz & Zhu, 1992a) (O. C. Zienkiewicz & Zhu, 1992b). 

These estimators were selected because they are able to provide error information for 

variables explicitly obtained from the code, without the need to indirectly obtain other 

quantities such as the residuals. These code variables can be understood as response 

quantities, for further stochastic treatment of the error.  

For the elastostatics problem being studied, all estimators provide local error information 

for the stresses. Stress invariants can be written so that the stress information is recast in 

terms of scalar quantities, independent of the directions. The mean stress and the 

octahedral stress are used for this purpose. Because in 2D these two stresses are 

independent quantities, error estimators based on mean stress and on octahedral stress are 

also independent. 

After the various distributions of element errors are obtained, relationships between the 

different error indicators, or between an error indicator and the measured error, can be 

obtained. In subsection 4.1.4, 2D plots are adopted, to study the 2D dispersion or 
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correlation of those error measures. Linear regression can be used to quantify this 

correlation. Points in the 2D plot are generated from local error information at the various 

elements. As far as the spatial error distribution is concerned, each element error is 

associated with a point corresponding to the element centroid. 

 A square plate with a hole in the center subjected to uniform distributed loading 

is considered as a numerical example. One quarter of the plate is modeled, as shown in 

Fig. (26). The plate is discretized using a mesh of 133 nodes, with constant strain 

triangular elements (CST), i.e., elements with linear distribution for the displacements. A 

second mesh with 280 nodes is considered for the Richardson extrapolation error 

estimator. 

 

Figure 26: Plate with a central hole under uniform distributed loading 

- adapted from (Jorge et al., 2002) 

4.1.3.1 Richardson extrapolation error estimator 

In the Richardson extrapolation for estimating the error in grid refinement, consider an 

analysis code that predicts the output response f as 

 (68) 

where fh=0 is the exact solution or the continuum value given for the mesh size h = 0. The 

functions g1, g2, g3, etc., are independent of the grid size. Assuming a second order 

solution and computing the response at two different mesh sizes h1 and h2, with h1 being 

the size of the finer mesh, neglecting higher order terms in the above expansion and 

solving for fh=0, 

 (69) 

where the grid refinement ratio r = 
1

2

h

h
 and f1, f2 are the solutions at two mesh sizes. By 

generalizing the Richardson extrapolation for a pth order method, 
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 (70) 

The ordered error estimate, given by (fh=0 - f1), is a good approximation of the 

discretization error. The order of convergence p can be obtained from the equation: 

 (71) 

where f3 is the solution with the finest grid size. 

4.1.3.2 Maximum error bound 

If the exact solution for a problem in two dimensions, f(x, y) is known, then the error 

associated with the finite element solution ffem(x, y) can be written as (Verfürth, 1994): 

E(x, y) = f(x, y) - ffem(x, y) (72) 

Thus the error varies across the domain. If the exact solution is not known, local error 

estimation based on interpolation error is adopted. To illustrate the derivation of the local 

maximum error bound, a one-dimensional case is shown subsection 3.1.1, for simplicity 

(see also Fig. (16), above). For a two-dimensional problem, 

 
(73) 

4.1.3.3 Error based on inter-element continuity for stresses 

An error estimation procedure for displacement-based FEM was developed by (O. C. 

Zienkiewicz & Zhu, 1987) to obtain energy norms of errors derived from the lack of inter-

element stress continuity. In this work, instead of evaluating element residuals that are 

always positive, an average value for the element error is pursued, which can assume 

either positive or negative values. 

The usual C0 continuity assumption for the displacements in displacement-based finite 

element formulations results in a stress field that is continuous inside the elements, while 

discontinuous in the interface between elements. Except for problems with physical 

discontinuities, such as cracks in fracture mechanics problems, the usual linear 

elastostatics problems deal with stress fields that are physically continuous. Thus, 

differences between stress values evaluated at an inter-element node, from the various 

elements sharing this node, represent local error indicators. 

To construct an element-based measure for the stress error at a node, the average stress at 

this node, as evaluated from all elements sharing the node, is taken as a better 

approximation for the nodal stress. Thus, the stress error vector at node n of element i is 

given by 

 (74) 

where   represents a stress component (either  σx, σy or τxy) at node n of element i, and 

the corresponding averaged stress is evaluated as 
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(75) 

where  is the number of elements sharing node n. An element error for each stress 

quantity is constructed as the element average of the nodal contributions. For that, the 

stress error is interpolated inside element i using appropriate shape functions. 

 (76) 

The element error for each stress quantity is obtained from the stress error average. 

 (77) 

In this work, the stress error is interpolated with the same shape functions used for the 

interpolation of the displacements. In other words, the stress error is interpolated inside 

each element with shape functions one degree higher than the shape functions necessary 

to interpolate the original stress components. In the case that  is interpolated 

with linear shape functions, the element error in Equation (77) reduces to the stress error 

at the element centroid G  

 (78) 

The resulting element error has dimensions of stress, and in terms of spatial error 

distribution, this error can be associated with a point in the domain corresponding to the 

centroid of the element. Also, different from (O. C. Zienkiewicz & Zhu, 1987), the error 

is not obtained from an energy norm expression. The goal here is to obtain estimates that 

can assume positive or negative values, to allow further stochastic treatment for the error. 

The stress tensor components are direction-dependent quantities. To obtain scalar 

quantities to be used as response quantities, the stress tensor invariants can be evaluated. 

In this work, the mean stress (σm) and the octahedral stress (τo) are adopted as response 

quantities, as they are independent invariants obtained from the stress tensor. 

 (79) 

 (80) 

Thus, from Equation (77) (general case) or from Equation (78) (linear interpolations for 

the stress errors), the element stress errors can be obtained as 𝐸𝜎𝑚
𝑖  and 𝐸𝜏𝑜

𝑖 . Thus, 

independent error estimators are obtained from the two independent response quantities, 

mean stress and the octahedral stress. 

4.1.3.4 Error based on a gradient recovery approach 

The procedures of error estimation using stress or gradient recovery were introduced by 

(O. C. Zienkiewicz & Zhu, 1987) and are detailed in subsection 3.3.1, above. In this 

procedure, element residuals are obtained from differences between smoothed and non-
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smoothed derivatives of the field variables. In the current work, instead of evaluating 

element residuals that are always positive, an average value for the element error is 

pursued, which can assume either positive or negative values. 

Nodal smoothed derivatives are evaluated from a weighted average of element derivatives 

surrounding the node. The weighting factors are the element areas. The derivative of the 

finite element solution in the element can be written using derivatives of the shape 

functions. The derivatives are written in an average sense to find the vector of nodal 

smoothed derivatives. An element equivalence between smoothed and non-smoothed 

derivatives is written and a system of equations is obtained by assembling the element 

equations, from which the vector of nodal smoothed derivatives is obtained. 

Also, similar to the inter-element continuity error procedure, the response quantities of 

interest are two independent stress invariants, the mean stress and the octahedral stress. 

To obtain a better approximation of nodal stresses, the first step is to apply the gradient 

recovery approach to displacement derivatives. Smoothed nodal values for the 

displacement derivatives are obtained by imposing the smoothed solution to be equivalent 

to the original solution in an average sense. The obtained nodal values for the smoothed 

displacement derivatives are converted into smoothed strains which are subsequently 

converted into stresses by means of Hooke’s law. Then, a better approximation for the 

mean and octahedral stresses is obtained from Equations (79) and (80). Finally, the stress 

error vector at node n of element i is given by 

 (81) 

where   represents a stress component (either  σx, σy or τxy) at node n of element i, and 

the smoothed stresses are denoted by an asterisk (*). Then, similar to the inter-element 

continuity error procedure, the element error is obtained by Equation (77), for both the 

mean and the octahedral stresses. Thus, two independent local error estimators, one for 

each response quantity, are obtained using the recovery procedure for the displacement 

derivatives. 

The gradient recovery error estimator was coded for 2D elastostatics problems modeled 

by displacement-based FEM. The FEM code uses CST constant strain triangular elements 

with linear distribution of displacements. The recovery of the four types of derivatives 

, , , and  is performed independently. Also, to obtain the smoothest solution 

for the displacement derivatives, element matrices obtained from the equivalence 

equation are assembled for the entire domain, and not only for a region surrounding a 

node. 

4.1.4 Consistency of the Error Estimators 

The four error estimators presented in this work are investigated for consistency. The 

correlation between different error estimator results for the response quantity is 

investigated. Also investigated is the correlation between error results for the same error 

estimator and different response quantities. 
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4.1.4.1 Consistency between error estimators for the same response quantity 

Different error estimation approaches can lead to different local error estimates for a given 

response quantity. Consistency through different error estimators is investigated for the 

two response quantities used in this work: mean stress and octahedral stress in the region 

of interest. Figure 27 shows the good agreement between the errors in mean stress from 

two different error estimation approaches: gradient recovery and lack of inter-element 

continuity in stress. The points present a very good correlation, with ρ=0.9927, showing 

that the gradient recovery error estimator is consistent with the inter-element continuity 

error estimator for the response quantity considered. 

 
Figure 27: Errors in Mean Stress from two different error estimation approaches.  Each 

point corresponds to an element centroid. Mesh of 280 nodes  

- adapted from (Jorge et al., 2002) 

The four error estimators for the octahedral stress were compared two by two, to 

investigate the correlation between the pairs of estimators. Figures 28 (a) to (f) show the 

various plots, including the regression equation and the R-squared parameter obtained 

from linear regression. 
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(a) (b) 

  
(c) (d) 

 
 

(e) (f) 
Figure 28: error estimators for the octahedral stress, 133-node mesh (a) Gradient 

recovery vs. stress continuity; (b) Gradient recovery vs. maximum error bound; (c) 

Gradient recovery vs. Richardson extrapolation; (d) Stress continuity vs. maximum 

error bound; (e) Stress continuity vs. Richardson extrapolation; (f) Maximum error 

bound vs. Richardson extrapolation - adapted from (Jorge et al., 2002) 

From the six cases, the diagram for gradient recovery and stress continuity presents the 

best correlation, with ρ = 0.8657. When the comparison is done including either 

Richardson extrapolation or maximum error bound error estimators, the plots present 

poorer correlation coefficients. 
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Table 1 summarizes the results for the correlation. 

Table 1: octahedral stress error estimators correlation - adapted from (Jorge et al., 2002) 

Estimators being compared Correlation coefficient ρ 

Gradient recovery versus stress continuity 0.8657 

Gradient recovery versus maximum error bound 0.7049 

Gradient recovery versus Richardson extrapolation 0.6454 

Stress continuity versus maximum error bound 0.8187 

Stress continuity versus Richardson extrapolation 0.6478 

Maximum error bound versus Richardson extrapolation 0.5752 

The poor correlation results shown in Table 1 whenever either Richardson extrapolation 

or maximum error bound is included in the 2-D plot, helps demonstrate the lack of 

consistency when comparing these error estimators to any other estimator among those 

evaluated in this work. 

4.1.4.2 Consistency between response quantities for the same error estimator 

The consistency of different (and independent) error estimators evaluated from different 

response quantities is investigated. For example, the mean stress and the octahedral stress 

at a particular point are independent stress invariants and can be used to obtain 

independent error indicators. Figure 29 shows the plot of the errors from the gradient 

recovery approach as evaluated for the two response quantities of interest, the mean stress 

and the octahedral stress. The points present a reasonably good correlation, with ρ = 

0.8512, showing that the gradient recovery error estimators are consistent for the two 

independent response quantities considered. 

 
Figure 29: Stress errors from gradient recovery for two independent quantities. Points 

are associated with element centroids. Mesh with 133 nodes  

- adapted from (Jorge et al., 2002) 
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4.1.4.3 Consistency of weak locations for response quantities and error estimators 

The consistency between predicted weak locations of the structure is investigated. Weak 

locations are expected to be consistent for different (but consistent) error indicators. Also, 

predicted weak locations should be consistent with experimentally measured weak 

locations. In case weak locations are not consistent, an issue remains to be investigated, 

namely, to verify if the error indicators were able to predict this inconsistency. 

Figure 30 shows the plot of the errors in mean stress (from the lack of inter-element 

continuity in stresses) versus the mean stress values at element centroids. The points 

present a very correlation, with ρ = 0.9641, showing that these errors are consistent with 

the variable values. High values of the errors were found at locations with high stress 

values. 

 

Figure 30: Error in mean stress (from the lack of inter-element continuity in stresses) 

versus mean stress values at element centroids. Mesh with 133 nodes – adapted from 

(Jorge et al., 2002) 

Figure 31(a) shows the plot of the errors due to the lack of inter-element continuity in the 

octahedral stresses versus the Cartesian coordinates of the plate. The locations for the 

points with high errors are consistent with the locations with high values for the 

octahedral stress itself, as shown in Figure 31(b). The gradient recovery error estimator 

(not shown) gives similar results. 
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(a) (b) 

Figure 31: Consistency of weak locations of the plate. (a) Errors in Octahedral Stress 

from lack of inter-element stress continuity.  (b) Octahedral Stress – adapted from 

(Jorge et al., 2002) 

In this problem, the region close to the circular hole corresponds to high values of both a 

response quantity and the discretization error relative to this quantity. 

4.1.4.4 Consistency between error estimators and model validation 

An important issue that needs to be addressed is to verify the desired correlation between 

error consistency and model validation consistency. If error indicators are consistent, the 

corresponding model validation results are expected to be consistent, too. In other words, 

the probability of rejecting the code is expected to be similar in the case of two consistent 

error indicators. Furthermore, the decisions to accept/reject the model are also expected 

to be similar. This issue is addressed in subsection 4.2, below. 

4.1.5 Global-to-Local Approach for Using Consistent Error Estimators in Model 

Validation 

Error estimators quantify the local discretization error. With random inputs to the finite 

element model, the output becomes a random quantity. Thus the prediction error is a 

random variable, whose statistics combined with Bayesian hypothesis testing (I. Babuška 

et al., 1995) lead to a model validation criterion. However, the choice of the error 

estimator may control the acceptance or rejection of the model to some extent. 

One estimator may imply that the model is valid but another estimator may imply the 

opposite. Also, the error in model predictions may vary over the domain. A consistent 

error estimator is needed for model validation, so that error predictions for two different 

but consistent estimators are equivalent. 

A global-local approach for using consistent errors for model validation can be envisaged 

as follows: globally, an error indicator for a particular response quantity is investigated 

for consistency with other available error estimators or with a measured error, if available. 

Then, local weak regions are identified, where the error is large and the values of the 

response quantity are also large. One or more points can be selected in this ‘’weak’’ 

region so that a metamodel for the error at this location can be constructed using response 

surface methods. 
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Finally, the Bayesian approach can be applied at the chosen points in the weak region, to 

obtain a minimum value for the Bayes factor, to be used for model validation. The 

Bayesian approach is applied in subsection 4.2, below, for two metamodels, one 

constructed using conventional response surface methods (RSM) and another using 

stochastic RSM. Also, the Bayesian approach is applied in subsection 4.2, below, for 

metamodels obtained using consistent and non-consistent error estimators. 

4.1.6 Some Remarks on Consistent Error Estimators 

Error consistency can be qualitatively demonstrated by means of 2D dispersion plots. A 

statistical model to measure error consistency is useful to quantify this consistency. In 

this work, the evaluation of the regression parameters from the 2D plots was performed 

with this purpose. 

Typical consistency results are obtained by comparing the correlation between different 

error estimators and also by comparing errors from different response quantities. In this 

work, two error estimators didn’t show consistent behavior (Richardson extrapolation and 

maximum error bound) while two other estimators (inter-element continuity and gradient 

recovery) presented a good correlation, for a give response quantity. Also, two different 

response quantities were shown to be reasonably correlated (the mean and the octahedral 

stress)  

From this approach, one or more weak locations are selected to apply the Bayesian 

approach on subsection 4.2, below. Consistent error estimators lead to the same decisions 

in terms of the choice of the weak regions of the structure. 

Consistency of the error estimators with respect to measurement results (if available) can 

also be studied using the same global-to-local methodology. Comparisons between 

measurement and numerical results can be made only in regions were measurement 

results are available. 

4.2 Combining Error Estimators and Bayesian Hypothesis Testing in a Model 

Validation procedure 

4.2.1 Introduction 

In subsection 4.1, a 3-step methodology for numerical model validation under uncertainty 

is presented, in which 

a) a consistent error estimator is selected; 

b) an appropriate response surface method is constructed for the error function to 

replace the numerical model; and 

c) a Bayesian approach is used for decisions on model acceptance. 

Also, subsection 4.1 concentrates on the strategy for the choice and use of appropriate 

error estimators for model validation purposes. The consistent error estimator approach 

(first step of the 3-step approach) is detailed in subsection 4.1, wherein four error 

estimator approaches were investigated: error estimator based on Richardson’s 

extrapolation (Richards, 1997), maximum error bound error estimator (Huebner et al., 

2008), error estimator based on inter-element stress continuity requirements (O. C. 

Zienkiewicz & Zhu, 1987), and error estimator based on a gradient recovery procedure 

(O. C. Zienkiewicz & Zhu, 1987) (O. C. Zienkiewicz & Zhu, 1992a) (O. C. Zienkiewicz 

& Zhu, 1992b). 
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These local error estimators were applied to two independent response quantities: the 

octahedral stress and the mean stress. The error estimator based on inter-element 

continuity for stress and the gradient recovery error estimator were shown to be consistent 

for a given response quantity. Also, the two response quantities were shown to be 

consistent for a given error estimator. 

The Bayesian approach for model validation (third step of the 3-step approach) was 

introduced in (Zhang & Mahadevan, 2003). This approach requires the knowledge, or at 

least an estimate, of the statistical distribution of the error in the computational model. 

This information is used to compute a prior estimate of model failure probability, an 

essential quantity in Bayesian model validation. The error estimators used in deterministic 

finite element analysis need to be extended to stochastic analysis for systems with 

uncertainties. To attain this objective, two possible approaches would be Monte Carlo 

simulation and response surface methods (RSM). 

In this subsection, response surface models are employed for computational efficiency in 

predicting the stochastic distribution of error. The conventional RSM, as well as a 

stochastic collocation point-based RSM are explored to obtain prior error distribution to 

be used in the Bayesian approach. The error in predicting the response is obtained in terms 

of the input random variables and the distribution of this error is used to calculate the 

Bayes factor, an estimator of model validity. 

Finally, in this subsection, only the Bayesian approach for the time-independent case 

without statistical uncertainty in the model is applied, to obtain the Bayes factors needed 

for model-acceptance decisions. The obtained model-acceptance decisions are compared 

for the cases of the conventional and stochastic RSMs and also for the cases of consistent 

and non-consistent error estimators. 

4.2.2 Stochastic Distribution of Error 

For a certain problem, the output of the model is given by some function of response 

quantities. In the 2D plate presented in subsection 4.1, the octahedral and the mean stress 

are local response quantities obtained from the finite element model. These response 

quantities are evaluated at certain locations, either the nodes or the element centroids, 

depending on the error estimator. 

Due to physical, model and data uncertainty, the obtained response quantity at a certain 

location is not a single value but follows a statistical distribution. The type of distribution 

depends on the statistics of the input random variables, and also on how these 

uncertainties propagate through the model to become uncertainties in the response 

quantity. 

The uncertainties in the response need to be quantified using probabilistic methods. One 

possible approach to quantity these uncertainties would be to perform Monte Carlo 

simulation. For that, statistical parameters are assigned to the input quantities, and the 

response is obtained by repeating the finite element analysis for a large sample input 

parameters. For the plate problem, the loads are the random inputs of the model. The 

scatter in the response can be used to estimate the scatter in error. In order to determine 

the type of distribution for the response, we need typically, a large number of finite 

element runs. For complex finite element models, this could be practically impossible and 

very time intensive, and is not pursued in this work. 
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For computational efficiency, a sufficiently accurate computational model may be used 

to replace the finite element model. The variabilities in the input variables are propagated 

to the output through this computational model. Various methods are available to carry 

out such uncertainty analysis. Available uncertainty propagation models can be classified 

into three categories: 

(a) analytical methods; 

(b) sampling based methods; and 

(c) response surface methods. 

The selection of the method depends on the nature of model used for predicting the output. 

In this subsection, response surface-based methods are used to predict the output of the 

response quantity at a certain location and determine the distribution of the error in this 

predicted output.  The error estimators discussed in subsection 4.1 can be extended to 

estimating the error in the prediction of the response in stochastic analysis, in which the 

response is written in terms of input random variables by a response surface technique. 

Thus, the error calculated is stochastic and its distribution can be easily obtained by 

simulating the input random variables. 

4.2.3 Response Surface Methods 

Response surface methods (Pike et al., 1988) consist in selecting different values of input 

parameters, running the computer or simulation model to get samples of response, and 

then fitting a closed-form model which acts as a surrogate to the actual input-output 

relationship. The new adopted surrogate model or metamodel can be used to predict the 

response and carry out the uncertainty analysis. In this subsection, two stochastic response 

surface based methods are investigated, specifically, conventional response surface 

method (CRSM) and stochastic response surface method (SRSM). The details in 

implementation of the two methods are discussed below. 

4.2.3.1 Conventional Response Surface Method 

The basic idea in using the response surface is to propagate the uncertainties in the input 

parameters to the output response. The full-scale complex physical model of interest e.g. 

finite element model or the exact model can be replaced by a response surface equation, 

consisting of the input parameters, with data obtained from an appropriate design of 

experiments. This model can describe the variability in the response. A simple second 

order response surface model in terms of the input variables xi is given by 

 ++=
j i j

jiijjjo xxbxbbxy )(  (82) 

For the implementation of the response surface methodology to the plate problem defined 

in subsection 4.1, the coefficients of the above equation are estimated from a factorial 

design, using the statistics for the load variables given in Table 2. 

Table 2: Statistics of the input variables - adapted from (Jorge et al., 2002) 

Variable Type Parameters 

W1 Normal (12, 2.4) kips/in 

W2 Normal (12, 2.4) kips/in 
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Sample points for fitting the conventional RSM are obtained when the response quantity 

(in this work, the error in the mean stress or in the octahedral stress at the chosen location) 

is evaluated for W1 and W2 assuming the following values: low=12-3*2.4=4.8, 

average=12, and high=12+3*2.4=19.2. 

4.2.3.2 Stochastic Response Surface Method 

The metamodel or response surface could also be constructed in a different way.   A 

stochastic response surface method is proposed here with the objective of providing a 

better response surface, which is accomplished by approximating both the input and 

output of the system with uncertainties through series expansions of standard random 

variables. Each of the input random variables may be expressed as a function of standard 

normal variables ξi, because of mathematical tractability. For example, a normal random 

variable can be expressed in terms of its parameters as  + .  A uniform random variable 

bounded between a and b is expressed as  
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where y is the output and ),...,(
1 piip   are muti-dimensional Hermite Polynomials of 

degree p given by 
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 where ξ is a vector of independent standard normal variables p

kik 1}{ = . The series could 

be truncated to a finite number of terms. The accuracy of the computational model 

depends on the order of the expansion. Additional transformations are necessary if the 

variables are correlated. The unknown coefficients may be estimated by various methods. 

One approach is to use the Galerkin method to minimize the residual obtained by 

requiring the residual to be orthogonal to the approximation space (Ghanem & Spanos, 

1991). Another approach is to use the collocation method (Isukapalli & Georgopoulos, 

1999). Here the model outputs are selected at a set of collocation points to estimate the 

coefficients. These collocation points can be the roots of the Hermite polynomial of a 

higher order. In this case, this way of estimating coefficients will capture points from 

regions of high probability (Tatang et al., 1997).  Compared to the conventional response 

surface method , the stochastic response surface method has several advantages. The first 

advantage is that the polynomial chaos is a mean square convergent series expansion. 

This series is optimal in the Fourier sense, as it minimizes the mean square error from 

truncation after a finite number of the terms in the series (Ghanem & Spanos, 1991). 

When the inputs are expressed as functions of standard normal variables and the number 

of the standard normal variables is defined as "number of the degrees of the freedom" in 

input uncertainty, the output are  deterministic function of the the model inputs, so they 

have the same number of degrees of the freedom with respect to uncertainty. Polynomial 

chaos in terms of the standard normal variables provides a complete orthogonal basis for 
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the L2 space (space for second order random function). Therefore any random function in 

the space can be represented by the polynomial chaos basis with corresponding 

coefficients. The second advantage is that the error from the truncation  in the polynomial 

chaos series can be quantified. Thus, the accuracy of the metamodel itself can be 

quantified. This metamodel error will be accounted for in the response surface error. The 

third advantage is that polynomial chaos is a Hermite polynomial of random variables. 

The roots af the Hermite polynomial provide efficient collocation points to evaluate the 

model output and to compute the coefficients in the response surface. In general, the 

stochastic response surface method is founded on a solid mathematical basis and it is 

expected to provide a more accurate response surface model for predicting the response 

than the model from conventional RSM. 

4.2.4 Bayesian Approach for Model Validation 

When evaluating model uncertainty, if several possible models exist to describe a 

phenomenon, a Bayesian approach can be used to include all the candidate models by 

assigning a model weight (the probability of each model being correct) and integrating 

the effects of all models. When there is observation/data available, the model weights 

may be updated and shifted to the more appropriate model. This approach has been 

applied to probability distribution type uncertainty and linear regression model 

uncertainty problems in statistics (Edwards, 1984) (Soares, 1989) (Draper, 1995) 

(Volinsky et al., 1997), and was recently used to account for mechanical model 

uncertainty (Zhang & Mahadevan, 2000). The Bayesian approach can be adapted to 

problems in which there is only one model available, either due to the complexity of the 

problem, or because of the limited resources for model implementation. The Bayesian 

hypothesis testing uses assumptions on the prior distribution under the alternative 

hypothesis (Jeffreys, 1961). 

A methodology for the problem of acceptance testing of mechanical reliability 

computation models, based on the concepts of Bayesian hypothesis testing was proposed 

in (Zhang & Mahadevan, 2003), for both time-independent and time-dependent problems, 

and also for problems both with and without statistical uncertainty. An outline of the 

Bayesian approach (only the case of time-independent problem without statistical 

uncertainty in the model) is reproduced below from (Zhang & Mahadevan, 2003), for 

clarity. First, consider two models Mi and Mj, with prior probabilities to be the correct 

model denoted by P(Mi) and P(Mj). By Bayes’ rule, when an event/data Y is observed, 

the relative posterior probabilities of two hypotheses are obtained as: 

( ) ( ) ( )

( ) ( )( )

i i i

j jj

P M observation P observation M P M

P observation M P MP M observation

   
=    
      

 (85) 

The data-dependent term in the first set of square brackets on the right hand side of Eq. 

(85) is called the “Bayes factor” (Jeffreys, 1961). This Bayes factor can be viewed as the 

“weighted” likelihood ratio of Mi to Mj and hence can be interpreted solely in terms of 

comparative support of the data for the two models. The data are said to favor Mi relative 

to Mj if the Bayes factor exceeds one, that is, if the observed data is more likely under 

hypothesis Mi than it is under hypothesis Mj. To make use of the Bayes’ rule and Bayes 

factor in the case where only one model M is available, an alternative model Ma is 

constructed to represent the case in which the model M is not correct. 

Jorge, Ariosto B., et al. (2022)Error Estimators & Bayesian Approaches Comput. Model Validation pp. 640-743

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 716



For the case without statistical uncertainty, the failure probability x of an engineering 

system predicted by model M is a deterministic value denoted by x0. It can be considered 

as a null hypothesis, under which the density of the parameter x is sharply concentrated 

at x0. To make use of Bayes’ rule, we need to constitute an alternative hypothesis. Assume 

that there is no prior information about x. Therefore, the uniform distribution between [0, 

1] is taken as P(x|Ma), the prior distribution under the alternative hypothesis. In the 

Bayesian framework, the distribution of x may be taken to be the weighted summation of 

the prediction of the two models: 

( ) ( ) ( ) ( )(1 ( ))aP x P x M P M P x M P M= + −  (86) 

where P(M) is the prior probability that we believe model M is correct. Assuming 

P(M)=a, Eq. (86) may also be written as 

0

0

( )
( )

( )(1 )

x xa
P x

x xa dx

=
= 

−
 (87) 

where 0x x=  if the model M is correct and 0x x  if the model M not is not correct. If n 

experiments are undertaken, and k failures are observed out of n samples, the probability 

of this result is: 

( ) (1 )k n k

n

n
P k x x

k

− 
= − 
 

 (88) 

And the Bayes factor is obtained as 

( )
( 1) (1 )

( )

k n k

a

nP data M
B n x x

kP data M

− 
= = + − 

 
 (89) 

Thus in this reliability prediction problem, Bayes factor B is a function of k and n, and is 

independent of the prior probability of the model being correct. The Bayes factor B in Eq. 

(89) attains its maximum at x = k/n (Zhang & Mahadevan, 2003). Using the above-

mentioned criterion for the Bayes factor, a decision can be made to reject or accept the 

model M. In what follows, several Bayes factors are evaluated, using prior error 

distribution obtained from response surface models. These RSM are metamodels for the 

error of the plate problem, defined in subsection 4.1. One quarter of the plate is modeled, 

generating corners between the interior hole and the lines representing the axis of 

symmetry. The discretization error in stress of the finite element model at a location near 

these corners is selected to be modeled using RSM. 

With the availability of the distribution and the parameters for the prior error E, the 

probability that the computational model will fail to predict accurately or the error 

exceeding a desired value can be computed. In this work, this desired value is assumed to 

be 3% of the average value of the predicted stress. Thus, the prior estimate of the 

probability of failure of the model using one of the possible error estimators is given by 

x= P(-0.03 σ < E < 0.03 σ). 

4.2.4.1 Comparison of Bayes factors for different response surface methods 

A 2D elastostatics problem was defined in subsection 4.1, consisting of a plate with a 

hole submitted to external loading. For the plate problem being studied, the region of 
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interest is one of the corners of the central hole. The octahedral stress at the centroid of 

the element closest to this corner is the response quantity of interest, and the error in this 

quantity is evaluated using the gradient recovery (GR) error estimator and the inter-

element stress continuity (SC) error estimators. These estimators were shown previously 

to be consistent error estimators. The local GR and SC error results for the octahedral 

stress are modeled using conventional and stochastic response surface methods, and the 

Bayes factors from both cases are compared. The first-order conventional response 

surface for the error E in the response quantity of interest is given by 

1 1 2 2oE a aW a W= + +  (90) 

In this work, the input load variables are written in terms of standard normal variables ξ1, 

ξ2 as: 1 112 2.4W = +  and 2 212 2.4W = + , so that these conventional response surfaces 

can be written directly in terms of the corresponding standard normal variables for the 

input variables. The local error in the region of interest is written for the conventional 

response surface using the GR and  SC error estimators as 

1 1 2 2

1 1 2 2

C C C

C C C

GR GR GR GR

C o

SC SC SC SC

C o

E a a a

E a a a

 

 

= + +

= + +
 

(91) 

2-factorial experimental design is done, obtaining nine sample points, shown in Table 3. 

Table 3: Sample points for fitting the conventional RSM.   and   are the gradient recovery 

and the stress continuity error estimates in the octahedral stress in the element centroid 

closest to the corner of the hole – adapted from (Jorge et al., 2002) 

Point 
1  2  w1 W2 GR

CE  
SC

CE  

1 -3 -3 4.8 4.8 0.1529 0.3658 

2 3 3 19.2 19.2 0.6116 1.463 

3 -3 3 4.8 19.2 0.8351 2.06 

4 3 -3 19.2 4.8 2.054 3.188 

5 0 0 12 12 0.3823 0.9145 

6 0 -3 12 4.8 1.106 1.743 

7 -3 0 4.8 12 -0.6515 0.9829 

8 0 3 12 19.2 -0.3715 1.04 

9 3 0 19.2 12 1.339 2.22 

Polynomial regression is subsequently performed to fit these sample points into the 

corresponding curves. In this case, linear fitting is adopted, with equations given by: 

1 2

1 2

0.606433333 0.203783333 -0.124316667

1.553022222 0.19235 -0.040766667

GR GR

C C

SC SC

C C

E

E

  

  

= + +

= + +
 (92) 

where GR

C  and SC

C  are the residual errors of the regression model adopted, which 

follow normal distribution with zero mean values and standard deviations of 

0.441936688333333 and 0.622834690092593, respectively. Also, the R2 values for these 

linear-fit equations are 0.537131 and 0.358417, respectively, showing the poor fit of this 

set of data. The first-order stochastic response surfaces for the errors GR

SE  and SC

SE  are 

written, respectively, in terms of the standard normal variables, as 

1 1 2 2

1 1 2 2

S S S

S S S

GR GR GR GR

S o

SC SC SC SC

S o

E a a a

E a a a

 

 

= + +

= + +
 (93) 
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The samples for the linear regression are shown in Table 4. These collocation points are 

obtained as roots of the Hermite polynomial of one degree higher than the polynomial 

expansion being used. There are 25 possible points to be generated, for each root of the 

Hermite polynomial. The first nine points are adopted to generate the linear regression 

model. These points correspond to the nine roots closest to the origin. The remaining 

points can be used to generate a more accurate linear model for comparison purposes. 

Table 4: Sample points for fitting the stochastic RSM.   and   are the gradient recovery 

and the stress continuity error estimates in the octahedral stress in the element centroid 

closest to the corner of the hole – adapted from (Jorge et al., 2002) 

Point 
1  2  w1 w2 GR

SE  
SC

SE  

1 1 1 14.4 14.4 0.4587 1.097 

2 1 0 14.4 12 0.7025 1.316 

3 1 -1 14.4 9.6 0.9442 1.591 

4 0 1 12 14.4 0.1355 0.8039 

5 0 0 12 12 0.3823 0.9145 

6 0 -1 12 9.6 0.6259 1.139 

7 -1 1 9.6 14.4 -0.1942 0.7466 

8 -1 0 9.6 12 0.05853 0.6406 

9 -1 -1 9.6 9.6 0.3058 0.7316 

10 1 3  
14.4 16.16 0.2782 0.9952 

11 1 
- 3  

14.4 7.84 1.12 1.814 

12 0 3  
12 16.16 -0.0481 0.8244 

13 0 
- 3  

12 7.84 0.8028 1.345 

14 -1 3  
9.6 16.16 -0.3841 0.9154 

15 -1 
- 3  

9.6 7.84 0.4845 0.8942 

16 3  
1 16.16 14.4 0.6939 1.383 

17 3  
0 16.16 12 0.9363 1.639 

18 3  
-1 16.16 9.6 1.177 1.932 

19 3  3  
16.16 16.16 0.5148 1.232 

20 3  - 3  
16.16 7.84 1.353 2.161 

21 
- 3  

1 7.84 14.4 -0.4466 0.889 

22 
- 3  

0 7.84 12 -0.1842 0.6295 

23 
- 3  

-1 7.84 9.6 0.06859 0.5233 

24 
- 3  3  

7.84 16.16 -0.6477 1.119 

25 
- 3  - 3  

7.84 7.84 0.2497 0.5975 

Polynomial regression is subsequently performed to fit these sample points into the 

corresponding curves. 

In this case, linear fitting using the first nine points is adopted, with equations given by: 

1 2

1 2

0.379914 0.322545 -0.245983333

0.9978 0.3142 -0.135683333

GR GR

S S

SC SC

S S

E

E

  

  

= + +

= + +
 (94) 
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where GR

S  and SC

S  are the residual errors of the regression model adopted, which 

follow normal distribution with zero mean values and standard deviations of 

0.0000116068675925925 and 0.0143696230555556, respectively. Also, the R2 values for 

these linear-fit equations are 0.999929465 and 0.890726, respectively, showing the good 

linear fit for this set of data. The prior estimate for the probability of failure (x) of the 

model is evaluated for both the conventional and the stochastic response surfaces, for the 

first order models. In all cases, the maximum allowed error is assumed to be 0.72ksi, 

which corresponds to 3% of the average predicted mean stress in the location of interest, 

the corner of the hole. The mean value for the local error in the obtained equations using 

the error estimates should be zero, corresponding to the case with no external loading. 

Equations (92) and (94) show that the linear fitting adopted for the error estimators 

presents a bias from zero. This mean value represents the inability of the error estimator 

in representing the zero-mean property of the real error. The real error is assumed to have 

zero mean with same variability than the estimated errors. Thus, to evaluate the 

probability of failure, the mean value of the error is dropped from Equations (92) and 

(94). After evaluating the probability of failure, a set of n=10 experiments is conducted. 

Failure occurs when the predicted and the observed stresses at the location of interest 

differ more than 3%. Assuming that failure occurs in a number k of these experiments 

(k=0,…,10), the Bayes factors can be evaluated using Eq. (89). The tests are based on the 

pass/fail criterion and hence the test data k (number of failures) follows binomial 

distribution with the parameters n (number of tests) and the probability of failure of the 

each test given by x. Table 5 shows the results for the probability of failure x and for the 

corresponding Bayes factors for each value of x. 

Table 5: Prior estimates of probability of failure (x) and corresponding Bayes factors (B) 

for various k values. Probabilities of failure x obtained for the cases of conventional (C) 

and stochastic (S) RSM, first order model, for the GR and SC estimators of error in the 

octahedral stress in the region of interest – adapted from (Jorge et al., 2002) 

K GR

CB  
SC

CB  
GR

SB  
SC

SB  

x = 0.3112 x = 0.3741  x = 0.0731 x = 0.0469 

0 0.264438 0.101494 5.148984 6.804205 

1 1.194732 0.606631 4.060748 3.348203 

2 2.429011 1.631625 1.44113 0.74141 

3 2.926474 2.600589 0.303079 0.097289 

4 2.313818 2.720148 0.041829 0.008378 

5 1.25446 1.950997 0.003959 0.000495 

6 0.472304 0.971758 0.00026 2.03E-05 

7 0.121936 0.331897 1.17E-05 5.7E-07 

8 0.020659 0.07439 3.47E-07 1.05E-08 

9 0.002074 0.009881 6.08E-09 1.15E-10 

10 9.37E-05 0.000591 4.79E-11 5.66E-13 

As shown in Table 5, the conventional and stochastic RSM lead to different results in 

terms of probability of failure. The large difference between the probabilities of failure 

for the conventional and stochastic RSM can be explained by the poor linear fitting in the 

conventional RSM case. Thus, only the results of probability of failure for the stochastic 

response surface case are acceptable. In this case, the Bayes factors for both error 

estimators evaluated (GR and SC) are consistently higher than 1 for K=0 and K=1, are in 

close vicinity of 1 for K=2, and are below 1 for K=3 and beyond. 
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4.2.4.2 Comparison of Bayes factors for consistent error estimators 

In this subsection, the Bayes factors are compared for different consistent error estimators 

applied to different independent response quantities. The stochastic RSM is used to 

generate response surfaces for two different error estimators, the gradient recovery (GR) 

error estimator and the error estimator obtained from the lack of inter-element continuity 

(SC) for the stress. The errors in two independent response quantities, the mean stress and 

the octahedral stress in the region of interest, are evaluated. The linear expressions for the 

error using the GR and SC error estimators for the octahedral stress were already obtained 

in Equations (94). Table 6 shows the GR and SC error data for the mean stress. 

Table 6: Sample points for fitting the stochastic RSM. ,

GR

S MeanE  and ,

SC

S MeanE  are the 

gradient recovery and the stress continuity error estimates in the mean stress in the 

element centroid closest to the corner of the hole – adapted from (Jorge et al., 2002) 

Point 
1  2  w1 w2 

,

GR

S MeanE  ,

SC

S MeanE  

1 1 1 14.4 14.4 0.8989 0.8027 

2 1 0 14.4 12 1.099 1.162 

3 1 -1 14.4 9.6 1.298 1.521 

4 0 1 12 14.4 0.5494 0.3096 

5 0 0 12 12 0.7491 0.6689 

6 0 -1 12 9.6 0.9488 1.028 

7 -1 1 9.6 14.4 0.1998 -0.1834 

8 -1 0 9.6 12 0.3995 0.1758 

9 -1 -1 9.6 9.6 0.5992 0.5351 

10 1 3  
14.4 16.16 

0.7524 0.5392 

11 1 
- 3  

14.4 7.84 
1.445 1.785 

12 0 3  
12 16.16 

0.4029 0.04615 

13 0 
- 3  

12 7.84 
1.095 1.292 

14 -1 3  
9.6 16.16 

0.05339 -0.4469 

15 -1 
- 3  

9.6 7.84 
0.7457 0.7986 

16 3  
1 16.16 14.4 

1.155 1.164 

17 3  
0 16.16 12 

1.355 1.524 

18 3  
-1 16.16 9.6 

1.555 1.883 

19 3  3  
16.16 16.16 

1.009 0.9008 

20 3  - 3  
16.16 7.84 

1.701 2.146 

21 
- 3  

1 7.84 14.4 
-0.05646 -0.545 

22 
- 3  

0 7.84 12 
0.1432 -0.1857 

23 
- 3  

-1 7.84 9.6 
0.3429 0.1736 

24 
- 3  3  

7.84 16.16 
-0.2029 -0.8085 

25 
- 3  - 3  

7.84 7.84 
0.4894 0.437 

Polynomial regression is performed to fit the sample points for the gradient recovery (GR) 

and stress continuity (SC) error estimators into the corresponding curves. In this case, 

linear fittings are adopted, with equations given by: 
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, 1 2 ,

, 1 2 ,

0.749078 0.349567 -0.19965

0.668856 0.493033 -0.3592

GR GR

S Mean S Mean

SC SC

S Mean S Mean

E

E

  

  

= + +

= + +
 

(95) 

where ,

GR

S Mean  and ,

SC

S Mean  are the residual errors of the regression model adopted, 

which follow normal distribution with zero mean values and standard deviations of 

3.9x10-8 and 5.93x10-9, respectively. Also, the R2 values for these linear-fit equations are 

both equal to 1, showing the good linear fit for this set of data. 

The prior estimate for the probability of failure (x) of the model is evaluated for the first 

order models for the stochastic response surface. Again, the maximum allowed error is 

assumed to be 0.72ksi, and a set of n=10 experiments is conducted, with failure occuring 

in k of these experiments (k=0,…,10). The Bayes factors are evaluated using Eq. (89). 

Table 7 shows the results for the probability of failure x and for the corresponding Bayes 

factors for each value of x. 

Table 7: Prior estimates of probability of failure (x) and corresponding Bayes factors (B) 

for various k values. Probabilities of failure x obtained for the gradient recovery (GR) and 

stress continuity (SC) error estimators, for first order stochastic RSM, for two response 

quantities: mean and octahedral stress – adapted from (Jorge et al., 2002) 

K  ,

GR

S OctB  ,

SC

S OctB  ,

GR

S MeanB  ,

SC

S MeanB  

x = 0.0731 x = 0.0469 x = 0.0706 x = 0.2333 

0 5.148984 6.804205 5.289558 0.772053 

1 4.060748 3.348203 4.018106 2.34929 

2 1.44113 0.74141 1.373523 3.216906 

3 0.303079 0.097289 0.278232 2.610336 

4 0.041829 0.008378 0.036987 1.390029 

5 0.003959 0.000495 0.003372 0.507568 

6 0.00026 2.03E-05 0.000213 0.128707 

7 1.17E-05 5.7E-07 9.26E-06 0.02238 

8 3.47E-07 1.05E-08 2.64E-07 0.002554 

9 6.08E-09 1.15E-10 4.45E-09 0.000173 

10 4.79E-11 5.66E-13 3.38E-11 5.25E-06 

As shown in Table 7, different (but consistent) error estimators evaluated for different 

(and independent) response quantities lead to similar results in terms of probability of 

failure in most of the cases tested. In three of the four cases tested, the Bayes factors for 

both error estimators evaluated (GR and SC) are consistently higher than 1 for K=0 and 

K=1, are in close vicinity of 1 for K=2, and are below 1 for K=3 and beyond. Only the 

case for the SC error in the mean stress presented a higher probability of failure, with 

different conclusions in terms of Bayes factors. For the majority of the cases tested, 

similar model acceptance results are obtained with consistent error estimators. 

4.2.4.3 Comparison of Bayes factors for non-consistent error estimators 

Two error estimators, Richardson extrapolation (R) and maximum error bound (MEB) 

were previously found to be non-consistent. The octahedral stress near the corner node at 

the plate hole is used as the output response quantity to be modeled, while the input 

quantities are the loads W1 and W2 given in Table 1, above. Similarly to the previous 

subsection, results can be later obtained for the R and MEB error data for the octahedral 

stress, and are not included in this chapter, at this time. 
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4.2.5 Some Remarks on Error Estimators and Bayesian Hypothesis Testing in a 

Model Validation 

The results obtained in this preliminary study indicate that: 

- stochastic RSM is might be preferable than conventional RSM (more cases need 

to be studied to confirm this statement); 

- consistent error estimators appear to lead to same decisions on model acceptance. 

On the other hand, non-consistent error estimators might lead to different 

probabilities of failure of the structure and consequently to different model 

acceptance decisions. Thus, a key part in the model validation procedure is the 

appropriate selection of a consistent set of: 

a) weak location; 

b) response quantity; and 

c) error estimator. 

4.3 Perspectives for Future work in Error Estimators and Bayesian Hypothesis 

Testing in Model Validation 

The perspectives for future work in error estimators and Bayesian hypothesis testing in 

Model Validation appear quite promising, and several important topics for future research 

can be envisaged, such as: 

- Selection criteria among error estimators; 

- Including measurement error in model validation; 

- Extrapolation of validation decision parameters to unmeasured regions; 

- Extrapolation of input parameters to regions where data is not available; 

- Consistency in model validation decision across various response quantities; 

- Incorporate random field nature of error in model validation; 

- Quantifying confidence in validation; 

- Extension of consistent error estimator technique to time-dependent problems. 

5 Perspectives: Validation Techniques in FEM Structural Models 

This section presents potential applications in FEM structural modeling that may benefit 

from the model validation techniques addressed throughout the chapter. Among the 

selected topics, the reader will find brief discussions on FE model condensation problems, 

models for structural health monitoring applications in aeronautical structures, modeling 

of structures obtained via additive manufacturing, and composite modeling for aerospace 

applications. 

5.1 Perspectives for FEM Condensation Models 

The recent advances in computer technology have made it possible to build extremely 

detailed FE models for structural applications. It is not uncommon to come across FE 

models with hundreds of thousands of degrees of freedom. However, the development of 

a reliable model often involves validation, updating, or adjustment steps, usually through 

the correlation of numerical and experimental models. Such experimental models are 

significantly smaller in size when compared to FE models. There are several 

methodologies developed over the past few decades that address the problem of reducing 

the number of degrees of freedom in a numerical model for a variety of purposes.  
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Figure 32 illustrates numerical and experimental models developed for the structural 

integrity investigations of the aluminum-aluminum honeycomb sandwich panel used in 

the construction of the Brazilian Geostationary Satellite. Detailed finite element models 

were built to study different aspects of the panel structural integrity when subjected to the 

static, dynamic, and environmental operational loads. Figure 32 (b) shows a small portion 

of a very detailed 3-D model built with shell elements, with a very large number of 

degrees of freedom, even for smaller specimens used in the experimental models. Figure 

32 (d) presents one typical configuration for an experimental modal analysis that 

produced a good experimental model with only 136 degrees of freedom (Domingues, 

2019). Once the test is carefully conducted with all the required expertise, the 

experimental model is a much more reliable representation of the real behavior of the 

panel. However, for detailed design simulations, the more refined model is extremely 

useful. The task is then to validate the numerical model using the experimental one. In 

order to allow an efficient correlation of the two models and to adjust or update the 

numerical model, reduction techniques must be used (Wang et al., 2017). The process of 

condensing a numerical model will certainly introduce errors that may impose a 

tremendous challenge that demands the applications of the theory and methodologies 

discussed in the present chapter in order to minimize possible errors induced by the 

process of model reduction. 

Figure 32: Size differences for numerical and experimental models of a Al-Al 

honeycomb sandwich panel (a) schematic representations of the panel;(b) 

detailed finite element model with an order of 105 degrees of freedom. (c) 

experimental apparatus for a modal analysis test; (d) measurement points 

that generate an experimental dynamic model of 136 degrees of freedom. 

5.2 Perspectives for Aeronautical Structures Applications 

Structural damage detection methods, sometimes also referred to as Structural Health 

Monitoring (SHM) methods have received tremendous attention from researchers in the 
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past few decades. Although some SHM techniques have been implemented in real 

structures over the years, most practical problems still need further development and offer 

interesting research challenges and opportunities. The ideal solution of having one 

general, fully automated, and dependable SHM method which is capable of solving 

damage problems in a wide variety of structural systems doesn´t seem to be feasible in 

the foreseeable future. Detecting the presence of damage may be possible with a limited 

amount of measured physical quantities that may describe the structure status during 

operation, such as strains, deflections, accelerations, etc. However, due to the intrinsic 

nature of the problem, the tasks of localizing and quantifying the damage are much more 

complex and usually will require the inclusion of a dependable, validated model of the 

structure, usually a numerical model. Such a model will be most likely used in the solution 

of an inverse problem, it will be evaluated iteratively in some sort of “error” minimization 

procedure, either classical or heuristic. Therefore, the models need to be, at the same time, 

reliable and t computationally light.  In that sense, the subject of the present chapter is of 

utmost importance. The next two subsections present potential applications in current 

research for damage identification in aeronautical structures. 

5.2.1 Perspectives for Modeling of Structural Damage Detection/Localization 

Problems 

The problem of localizing damage in aeronautical structures has gained attention in recent 

years. Many different strategies have been developed in order to solve the corresponding 

inverse problem. One interesting approach is the use of wavelet transform to treat 

measurements of the behavior of the potentially damaged structure (Katunin, 2010, 2021). 

For example, the deflection caused by the operational loads can be monitored to develop 

an indicator that can reveal the existence and location of changes in the physical 

characteristics of the structure due to the existence of damaged areas. 

Figure 33 illustrates the preliminary results of an ongoing investigation on a discrete 

wavelet transform (DWT) based method for localizing damage in a beam-like structure, 

modeled by finite elements. In the depicted example, the beam is discretized with 100 

elements and 101 nodes and fixed at both ends. The presence of damage is simulated as 

a local reduction of stiffness in one single element. Static deflections of the damaged and 

undamaged beams are calculated for different damage values and locations, and different 

loading configurations.  

A damage indicator was developed using the normalized differences between the 

calculated coefficients of the DWT of the deflections for the damaged and undamaged 

beam over its entire length. Several combinations of wavelets and levels of decomposition 

were tested in order to establish the best candidates for the implementation of the method. 

The SYM8 wavelet at one level of decomposition was found to be the more suitable 

choice for implementing the method. The index is computed along the entire FE mesh of 

the structure capturing the statistical variations of the index in the near vicinity of each 

node by computing the median and the boxplot height (range from the first and third 

quartiles) of the normalized differences of the DWT coefficients. 

It can be noticed from Figure 33 the potential of the proposed index for damage detection 

and localization. It should be noted that damage is successfully detected and localized 

even for small amounts of damage. In such scenarios, the deflection curves of the 

damaged and the undamaged beams are virtually indistinguishable. The DWT-based 

damaged index is able to provide a “statistical amplification” of the effect of the damaged 
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element over the structural behavior of the entire beam. Further investigation of the 

method is aimed at extending the idea to more complex geometries and including DTW 

of dynamic responses in the calculation of the statistical damage index. 

Figure 33: DWT based damage localization in a double clamped beam (a) 

Mesh with 101 nodes, 100 elements and force at node 5 (b)deflection plots; 

(c) typical boxplot for 50% damage at 25% beam length; (d), (e), (f) 

normalized median of damage index for different loading positions and 

10% damage at 5%, 25% and 50% of beam length, respectively. 

5.2.2 Perspectives for Modeling of Damage Detection/Identification Problems in 

Structural Aeronautical Fasteners / Joints 

Consider the problem of identifying possible failure of fasteners in a structural joint. One 

possible approach is to monitor the structures in order to evaluate eventual changes in 

their dynamic behavior (Sinou, 2009). Measured data may be used in the solution of a 

model-based inverse problem in order to identify potential damage in the joint. Figure 34 

depicts the conceptual construction of a simplified, low-fidelity model representing an 

aircraft wing. The model is intended to be light enough to feed an interactive numerical 

procedure to solve the inverse problem but must be able to include a mathematical 

description of both the distributed properties of the wing, in this case using beam finite 

elements, and the mechanical properties of the joint, modeled as concentrated elastic 

elements representing the transverse and rotational stiffnesses of the connection. These 

stiffness parameters can be related to a more detailed model of the joint, which can include 

geometrical, and material information, as well as torque of a series of bolts, for instance. 

The model can be used to reproduce the dynamic responses of the wing when submitted 

to controlled excitations in different positions of its span. The time responses of the 

structure can be monitored by a series of sensors over the wing. This simplified model is 

extremely useful for simulations in the development of SHM strategies, allowing for the 

investigation of types of excitation functions, number and position of exciters and sensors, 
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selection of damage index candidates based on the ability to evidence damage under 

uncertainties avoiding false positive and false negative results, etc. 

Figure 34: Simplified model of an aircraft wing for SHM procedures. (a)  

conceptual representation of the joint; (b) finite element mesh with beam 

elements and representation of excitation pints. 

Figure 35 illustrates the study of a damage indication index based on the normalized 

differences of time responses measured over the wing for damaged and undamaged joints. 

It can be noticed that for the configurations studied, the damaged index is sensitive to 

variations in the joint integrity for different combinations of excitation and measurement 

points, as illustrated by Figures 35 (a) through (c). For all the simulated cases, confidence-

bound curves were obtained, correlating the variations in damage index to the loss of 

torque in a simulated bolted joint. Figure 35 (d) indicates that results show low dispersion 

of the results for a 95% confidence level, indicating that the proposed strategy is a viable 

candidate for more detailed studies aiming at a reliable SHM procedure for aeronautical 

structures with fastened joints. 

Figure 35: Damage index based on normalized differences of time 

responses for one excitation point and equally spaced sensors over the 

wing span (a) 3 sensors; (b) 5 sensors (c) 21 sensors (d) Confidence bound 

curves for 95% confidence level for all sensor configurations and different 

excitation points. 
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5.3 Perspectives in FEM Models for Additive Manufacturing in Aeronautical / 

Aerospace / Materials Applications 

Additive manufacturing (AM), also known as three-dimensional printing, is an innovative 

manufacturing process based on the deposition of material in a localized manner, 

originating directly from a CAD/CAE model. This enables the fabrication of complex 

structures using metallic, ceramic, polymer and hybrid materials. The developed AM 

process are the technique of Fused Deposition Modeling (FDM) (Gibson et al. 2010), 

Selective Laser Sintering (SLS), Selective Laser Sintering (SLS), Selective Laser Melting 

(SLM)) (Gibson et al. 2010, Smith et al. 2014, Smith et al. 2014), and Electron Beam 

Melting (EBM) (Smith et al. 2017). The current AM technology for metal alloys enables 

the construction of complex monolithic parts, with high mechanical strength and 

precision, being possible to be used in operating conditions. In addition, it is important to 

emphasize that the use of the material is optimized and the production of waste is minimal 

or often nil, which are positive aspects of the environmental impact of the project. 

Currently, the negative aspects of the technique are the time and high cost of production; 

surface quality of the part, and the uncertainties generated by the AM process. Despite 

being extremely applicable and versatile, AM in metals has brought several challenges in 

the uncertainties field that must be explored to expand their application in primary 

structures. Some challenges concerning the MA process can be treated by the methods 

introduced in this chapter, such as: 

• In the influence of manufacturing parameters. The material behavior is sensitive 

to the set of parameters, such as electron beam power, number of exposures, 

chamber temperature, layer width among others. Some studies (Lopez et al. 2016 

and Hu & Mahadevan 2017) have been addressed the uncertainties associated 

with mechanical properties due to the aforementioned diversity of manufacturing 

parameters. Another factor directly affected by manufacturing parameters is the 

dimensional tolerance of the final part, generally affected by thermal expansion 

caused by beam power and speed. 

• In the computational modeling of the additive manufacturing process. Numerical 

modeling is attractive in the study of the parameters influence on the final part to 

be printed. From the analysis of the input parameters for the print, it is possible to 

evaluate possible final distortions in the geometry, such as the one caused by the 

beam power responsible for generating thermal expansion and effect of warping 

in the final geometry (Prabhakar et al. 2015). Figure 36 depicts this type of 

analysis, where as a next step the behavior of the printed geometry can be 

numerically evaluated in relation to other engineering problems, such as modal 

analysis, hysteresis effect, fatigue, among others. The use of numerical simulation 

makes the experimental AM process more assertive as long as the associated 

uncertainties are addressed, generating a more efficient and financially viable 

prototype. 
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(a) Initial iteration (b) Intermediary iteration 

 
(c) Final Iteration 

Figure 36: MA modeling by Finite Element Method. 

• In the development of complex cellular structures called gyroids. These structures 

are configuration examples for combinations via MA because of their complexity. 

This type of structure is indicated for impact absorption (Ramos et al. 2019), being 

generally manufactured by MA (Figure 37) in aluminum alloys (SLM process). The 

uncertainties are straight associated in the mechanical performance of the structure, 

once the geometric parameters such as porosity, width and helix angle affect in the 

capacity for energy absorption. 

 

 
 

 

(a) (b) (c) 

Figure 37: Gyroid-like cell structure: (a) MA fabricated gyroid structure, 

(b) numerical model of the structure and, (c) numerical-experimental 

comparison of gyroid behavior at impact. Ramos et al. (2019). 
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5.4 Perspectives for Composite Modeling in Aeronautical / Aerospace Applications 

The field of studies in composite materials with or without aeronautical application is 

vast. It is extremely important to address modeling uncertainties in these materials in 

order to obtain increasingly robust (numerical) models that are faithful to reality. 

Some examples and perspectives of application of the methods discussed in this chapter 

can be cited, namely: 

• In the modeling of composite structures in the presence of drop-off ply. These 

advanced structures are important in the field of composite materials due to their 

variable thickness. However, interrupting layers can lead to undesirable failure 

modes (Diniz et al., 2021; Kane et al., 2022; Diniz et al., 2022), as shown in Figure 

38(a) and 38(b).  

• In the development of materials with high impact absorption capacity. Interest in 

the use of structural composite materials in components for the automotive and 

aerospace industry has been increasing considerably in recent years. For this 

reason, improvements on structural composites crashworthiness are directly 

related to the human safety in a possible automotive crash and it depends on the 

energy absorption capability of the composite components (Di Benedetto et al., 

2019; Di Benedetto et al., 2021; Di Benedetto et al., 2022), the examples shown 

in Figure 38(c). 

• In the study of aeroelasticity in composite materials. The companies' incessant 

search for lighter aircraft has led to the use of several new technologies and design 

solutions in new aircraft models. Two of them have been the use of composites 

and more flexible structures. However, such structures lead to two main problems: 

(i) difficulty in identifying damage and defects in composite structures and (ii) 

very flexible aircraft are more subject to flutter. In view of the new challenges 

imposed, the present work seeks to assess the influence of structural reduction 

caused by damage/defects in the flutter speed. (Mendes & Gomes, 2022), as 

examples shown in Figure 38(d) 

• It is also known that the dynamic behaviors of mechanical structures, particularly 

composite ones, are critical to the effective operation of numerous applications 

such as automotive, civil and aeronautic industries. With appropriate structural 

behavior knowledge, failure can be avoided, and undesirable resonance can also 

be eliminated or even reduced. In this sense, it is extremely important to 

effectively understand the model and associated uncertainties in the modeling of 

sandwich structures with a core composed of magnetorheological material (de 

Souza Eloy et al., 2018; de Souza Eloy et al., 2019, Faria et al., 2020), as examples 

shown in Figure 38(e). 
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(a) Drop-off modelling  

(Kane et al., 2022) 

(b) Drop-off modelling in tubes  

(Diniz et al., 2022) 

 
 

(c) Impact absorption 

(Di Benedetto et al., 2019) 
(d) Flutter in composite wings 

(Mendes & Gomes, 2022) 

 

(e) Sandwich composite structure (de Souza Eloy et al., 2018) 

Figure 38: Some examples of application perspectives in composite 

structures. 

6 Concluding Remarks 

This chapter presented an overview of computational models and formulations, a 

description of some error estimators in Boundary Element Methods (BEM) and in Finite 

Element Methods (FEM), and some perspectives of the use of these error estimators in 

Bayesian approaches for Model Validation. 
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